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On two problems in graph Ramsey theory

David Conlon∗ Jacob Fox† Benny Sudakov‡

Abstract

We study two classical problems in graph Ramsey theory, that of determining the Ramsey
number of bounded-degree graphs and that of estimating the induced Ramsey number for a graph
with a given number of vertices.

The Ramsey number r(H) of a graph H is the least positive integer N such that every two-
coloring of the edges of the complete graph KN contains a monochromatic copy of H . A famous
result of Chvátal, Rödl, Szemerédi and Trotter states that there exists a constant c(∆) such that
r(H) ≤ c(∆)n for every graph H with n vertices and maximum degree ∆. The important open
question is to determine the constant c(∆). The best results, both due to Graham, Rödl and

Ruciński, state that there are constants c and c′ such that 2c
′∆ ≤ c(∆) ≤ 2c∆log2 ∆. We improve

this upper bound, showing that there is a constant c for which c(∆) ≤ 2c∆log∆.
The induced Ramsey number rind(H) of a graph H is the least positive integer N for which

there exists a graph G on N vertices such that every two-coloring of the edges of G contains an
induced monochromatic copy of H . Erdős conjectured the existence of a constant c such that,
for any graph H on n vertices, rind(H) ≤ 2cn. We move a step closer to proving this conjecture,
showing that rind(H) ≤ 2cn logn. This improves upon an earlier result of Kohayakawa, Prömel and
Rödl by a factor of logn in the exponent.

1 Introduction

Given a graph H, the Ramsey number r(H) is defined to be the smallest natural number N such

that, in any two-coloring of the edges of KN , there exists a monochromatic copy of H. That these

numbers exist was first proven by Ramsey [30] and rediscovered independently by Erdős and Szekeres

[17]. Since their time, and particularly since the 1970s, Ramsey theory has grown into one of the most

active areas of research within combinatorics, overlapping variously with graph theory, number theory,

geometry and logic.

The most famous question in the field is that of estimating the Ramsey number r(t) of the complete

graph Kt on t vertices. However, despite some small improvements [32, 5], the standard estimates,

that 2t/2 ≤ r(t) ≤ 22t, have remained largely unchanged for over sixty years. Unsurprisingly then,

the field has stretched in different directions. One such direction that has become fundamental in its

own right is that of looking at what happens to the Ramsey number when we are dealing with various

types of sparse graphs. Another is that of determining induced Ramsey numbers, i.e., proving, for any

given H, that there is a graph G such that any two-coloring of the edges of G contains an induced
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monochromatic copy of H. In this paper, we present a unified approach which allows us to make

improvements to two classical questions in these areas.

In 1975, Burr and Erdős [2] posed the problem of showing that every graph H with n vertices and

maximum degree ∆ satisfied r(H) ≤ c(∆)n, where the constant c(∆) depends only on ∆. That

this is indeed the case was shown by Chvátal, Rödl, Szemerédi and Trotter [4] in one of the earliest

applications of Szemerédi’s celebrated regularity lemma [34]. Remarkably, this means that for graphs

of fixed maximum degree the Ramsey number only has a linear dependence on the number of vertices.

Unfortunately, because it uses the regularity lemma, the bounds that the original method gives on

c(∆) are (and are necessarily [21]) of tower type in ∆. More precisely, c(∆) works out as being an

exponential tower of 2s with a height that is itself exponential in ∆.

The situation was remedied somewhat by Eaton [11], who proved, using a variant of the regularity

lemma, that the function c(∆) can be taken to be of the form 22
c∆
. Soon after, Graham, Rödl and

Ruciński proved [22], by a beautiful method which avoids any use of the regularity lemma, that there

exists a constant c for which

c(∆) ≤ 2c∆log2 ∆.

For bipartite graphs, they were able to do even better [23], showing that if H is a bipartite graph

with n vertices and maximum degree ∆ then r(H) ≤ 2c∆ log∆n. They also proved that there are

bipartite graphs with n vertices and maximum degree ∆ for which the Ramsey number is at least

2c
′∆n. Recently, Conlon [6] and, independently, Fox and Sudakov [19] have shown how to remove

the log∆ factor in the exponent, achieving an essentially best possible bound of r(H) ≤ 2c∆n in the

bipartite case. These results were jointly extended to hypergraphs in [7], after several proofs [8, 9, 29]

using the hypergraph regularity lemma.

Unfortunately, if one tries to use these recent techniques to treat general graphs, the best one seems

to be able to achieve is c(∆) ≤ 2c∆
2
. In this paper we take a different approach, more closely related

to that of Graham, Rödl and Ruciński [22]. Improving on their bound, we show that c(∆) ≤ 2c∆log∆,

which brings us a step closer to matching the lower bound of 2c
′∆.

Theorem 1.1 There exists a constant c such that, for every graph H with n vertices and maximum

degree ∆,

r(H) ≤ 2c∆ log∆n.

A graph H is said to be an induced subgraph of H if V (H) ⊂ V (G) and two vertices of H are adjacent

if and only if they are adjacent in G. The induced Ramsey number rind(H) is the smallest natural

number N for which there is a graph G on N vertices such that in every two-coloring of the edges of

G there is an induced monochromatic copy of H. The existence of these numbers was independently

proven by Deuber [10], Erdős, Hajnal and Pósa [16] and Rödl [31]. The bounds that these original

proofs give on rind(H) are enormous, but it was conjectured by Erdős [13] that the actual values

should be more in line with ordinary Ramsey numbers. More specifically, he conjectured the existence

of a constant c such that every graph H with n vertices satisfies rind(H) ≤ 2cn. If true, the complete

graph shows that it would be best possible.

In a problem paper, Erdős [12] stated that he and Hajnal had proved a bound of the form rind(H) ≤
22

n1+o(1)

. This remained the state of the art for some years until Kohayakawa, Prömel and Rödl [25]

proved that there was a constant c such that every graph H on n vertices satisfies rind(H) ≤ 2cn log2 n.

As in the bounded-degree problem, we remove one of the logarithms in the exponent.
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Theorem 1.2 There exists a constant c such that every graph H with n vertices satisfies

rind(H) ≤ 2cn logn.

It is worth noting that the graph G that Kohayakawa, Prömel and Rödl use in their proofs is a random

graph constructed with projective planes. This graph is specifically designed so as to contain many

copies of our target graph H. Recently, Fox and Sudakov [18] showed how to prove the same bounds

as Kohayakawa, Prömel and Rödl using explicit pseudo-random graphs. We will follow a similar path.

A graph is said to be pseudo-random if it imitates some of the properties of a random graph. One

such random-like property, introduced by Thomason [35, 36], is that of having approximately the same

density between any pair of large disjoint vertex sets. More formally, we say that a graph G = (V,E)

is (p, λ)-pseudo-random if, for all subsets A,B of V , the density of edges d(A,B) between A and B

satisfies

|d(A,B)− p| ≤ λ
√

|A||B|
.

The usual random graph G(N, p), where each edge is chosen independently with probability p, is itself

a (p, λ)-pseudo-random graph where λ is on the order of
√
N . A well-known explicit example, known

to be (12 ,
√
N)-pseudo-random, is the Paley graph PN . This graph is defined by setting V to be the

set ZN , where N is a prime which is congruent to 1 modulo 4, and taking two vertices x, y ∈ V to be

adjacent if and only if x− y is a quadratic residue. For further information on this and other pseudo-

random graphs we refer the reader to [27]. Our next theorem states that, for λ sufficiently small, a

(12 , λ)-pseudo-random graph has very strong Ramsey properties. Theorem 1.2 follows by applying this

theorem to the particular examples of pseudo-random graphs given above.

Theorem 1.3 There exists a constant c such that, for any n ∈ N and any (12 , λ)-pseudo-random graph

G on N vertices with λ ≤ 2−cn lognN , every graph on n vertices occurs as an induced monochromatic

copy in all 2-edge-colorings of G. Moreover, all of these induced monochromatic copies can be found

in the same color.

The theme that unites these two, apparently disparate, questions is the method we employ in our

proofs. A simplified version of this method is the following. In the first color we attempt to find a

large subset in which this color is very dense. If such a set can be found, we can easily embed the

required graph. If, on the other hand, this is not the case, then there is a large subset in which the

edges of the second color are well-distributed. Again, this allows us to prove an embedding lemma.

Such ideas are already explicit in the work of Graham, Rödl and Ruciński and, arguably, implicit

in that of Kohayakawa, Prömel and Rödl. The advantage of our method, which extends upon these

ideas, is that it is much more symmetrical between the colors. It is this symmetry which allows us to

drop a log factor in each case.

In the next section, we will prove Theorem 1.1. Section 3 contains the proof of Theorem 1.3. The last

section contains some concluding remarks together with a discussion of a few conjectures and open

problems. Throughout the paper, we systematically omit floor and ceiling signs whenever they are

not crucial for the sake of clarity of presentation. All logarithms, unless otherwise stated, are to the

base 2. We also do not make any serious attempt to optimize absolute constants in our statements

and proofs.
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2 Ramsey number of bounded-degree graphs

The edge density d(X,Y ) between two disjoint vertex subsets X,Y of a graph G is the fraction of

pairs (x, y) ∈ X × Y that are edges of G. That is, d(X,Y ) = e(X,Y )
|X||Y | , where e(X,Y ) is the number

of edges with one endpoint in X and the other in Y . In a graph G, a vertex subset U is called

bi-(ǫ, ρ)-dense if, for all disjoint pairs A,B ⊂ U with |A|, |B| ≥ ǫ|U |, we have d(A,B) ≥ ρ. We call

a graph G bi-(ǫ, ρ)-dense if its vertex set V (G) is bi-(ǫ, ρ)-dense. Trivially, if ǫ′ ≤ ǫ and ρ′ ≥ ρ, then

a bi-(ǫ′, ρ′)-dense graph is also bi-(ǫ, ρ)-dense. Moreover, if ǫ > 1/2, then every graph is vacuously

bi-(ǫ, ρ)-dense as there is no pair of disjoint subsets each with more than half of the vertices.

Before going into the proof of Theorem 1.1, we first sketch for comparison the original idea of Graham,

Rödl, and Rucinski [22] which gives a weaker bound. We then discuss our proof technique. They

noticed that if a graph G on N vertices is bi-(ǫ, ρ)-dense with ǫ = ρ∆/(∆+1) and N ≥ 2ρ−∆(∆+1)n,

then G contains every n-vertex graph H of maximum degree ∆. This can be shown by embedding H

one vertex at a time. In particular, if a red-blue edge-coloring ofKN does not contain a monochromatic

copy of H, then the red graph is not bi-(ǫ, ρ)-dense, and there are disjoint vertex subsets A and B

with |A|, |B| ≥ ǫN such that the red density between them at most ρ. It is then possible to iterate,

at the expense of another factor in the exponent of roughly log(1/ρ), to get a subset S of size roughly

ǫlog(1/ρ)N with red edge density at most 2ρ inside. Picking ρ = 1
16∆ , a simple greedy embedding then

shows that inside S we can find a blue copy of any graph with at most |S|/4 vertices and maximum

degree ∆.

To summarize, the proof finds a vertex subset S which is either bi-(ǫ, ρ)-dense in the red graph or is

very dense in the blue graph. In either case, it is easy to find a monochromatic copy of any n-vertex

graph H with maximum degree ∆.

We will instead find a sequence of large vertex subsets S1, . . . , St such that, in one of the two colors,

each of the subsets satisfies some bi-density condition and the graph between these subsets is very

dense. The bi-density condition inside each Si is roughly the condition which ensures that we can

embed any graph on n vertices with maximum degree di, where d1 + . . . + dt = ∆ − t + 1. A simple

lemma of Lovász guarantees that we can partition V (H) = V1∪ . . .∪Vt such that the induced subgraph

of H with vertex set Vi has maximum degree at most di. Our embedding lemma shows that we can

embed a monochromatic copy of H with the image of Vi being in Si. We now proceed to the details

of the proof.

Definition: A graph on N vertices is (α, β, ρ,∆)-dense if there is a sequence S1, . . . , St of disjoint

vertex subsets each of cardinality at least αN and nonnegative integers d1, . . . , dt such that d1 + · · ·+
dt = ∆− t+ 1, and the following holds:

• for 1 ≤ i ≤ t, Si is bi-(ρ
2di , ρ)-dense, and

• for 1 ≤ i < j ≤ t, each vertex in Si has at least (1− β)|Sj | neighbors in Sj.

Note that since d1 + · · ·+ dt = ∆− t+ 1 and each di is nonnegative, we must have t ≤ ∆+ 1.

Trivially, if a graph is (α′, β′, ρ,∆′)-dense and α′ ≥ α, β′ ≤ β, and ∆′ ≥ ∆, then it is also (α, β, ρ,∆)-

dense.

We say a red-blue edge-coloring of the complete graph KN is (α, β, ρ,∆1,∆2)-dense if the red graph

is (α, β, ρ,∆1)-dense or the blue graph is (α, β, ρ,∆2)-dense. We say that (α, β, ρ,∆1,∆2) is universal

if, for every N , every red-blue edge-coloring of KN is (α, β, ρ,∆1,∆2)-dense.
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Lemma 2.1 If β ≥ 4(∆2 + 1)ρ and (α, β, ρ,∆1,∆2) is universal, then (12ρ
2∆1α, β, ρ,∆1, 2∆2 + 1) is

also universal.

Proof: Consider a red-blue edge-coloring of a complete graph KN . If the red graph is bi-(ρ2∆1 , ρ)-

dense, then, taking t = 1, S1 = V (KN ) and d1 = ∆1, we see that the red graph is (α, β, ρ,∆1)-dense

and we are done. So we may suppose that there are disjoint vertex subsets V0, V1 with |V0|, |V1| ≥
ρ2∆1N such that the red density between them is less than ρ. Delete from V0 all vertices in at least

2ρ|V1| red edges with vertices in V1; the remaining subset V ′
0 has cardinality at least 1

2 |V0| ≥ 1
2ρ

2∆1N .

Since (α, β, ρ,∆1,∆2) is universal, the coloring restricted to V ′
0 is (α, β, ρ,∆1,∆2)-dense. Thus, the

red graph is (α, β, ρ,∆1)-dense (in which case we are again done) or the blue graph is (α, β, ρ,∆2)-

dense. We may suppose the latter holds, and there are subsets S1, . . . , St each of cardinality at least

α|V ′
0 | ≥ 1

2ρ
2∆1αN and nonnegative integers d1, . . . , dt such that d1 + · · · + dt = ∆2 − t + 1, and the

following holds:

• for 1 ≤ i ≤ t, Si is bi-(ρ
2di , ρ)-dense, and

• for 1 ≤ i < j ≤ t, each vertex in Si has at least (1− β)|Sj | neighbors in Sj.

Since each vertex in V ′
0 (and hence in each Si) is in at most 2ρ|V1| red edges with vertices in V1, there

are at most 2ρ|Si||V1| red edges between Si and V1. For 1 ≤ i ≤ t, delete from V1 all vertices in at

least 4(∆2 + 1)ρ|Si| red edges with vertices in Si. For any given i, there can be at most 1
2(∆2+1) |V1|

such vertices. Therefore, since t ≤ ∆2 + 1, the set V ′
1 of remaining vertices has cardinality at least

|V1| − t · 1
2(∆2+1) |V1| ≥ |V1|/2.

Since (α, β, ρ,∆1,∆2) is universal, the coloring restricted to V ′
1 is (α, β, ρ,∆1,∆2)-dense. Thus, the red

graph is (α, β, ρ,∆1)-dense (in which case we are done) or the blue graph is (α, β, ρ,∆2)-dense. We may

suppose the latter holds, and there are subsets T1, . . . , Tu each of cardinality at least α|V ′
1 | ≥ 1

2ρ
2∆1αN

and nonnegative integers e1, . . . , eu such that e1 + · · ·+ eu = ∆2 − u+ 1, and the following holds:

• for 1 ≤ i ≤ u, Ti is bi-(ρ
2ei , ρ)-dense, and

• for 1 ≤ i < j ≤ u, each vertex in Ti has at least (1− β)|Tj | neighbors in Tj.

Note that e1 + · · ·+ eu + d1 + · · ·+ dt = ∆2 − u+1+∆2 − t+1 = (2∆2 +1)− (u+ t) + 1. Moreover,

β ≥ 4(∆2 + 1)ρ, implying that for all 1 ≤ i ≤ u and all 1 ≤ j ≤ t every vertex in Ti has at least

(1− β)|Sj | neighbors in Sj . Therefore, the sequence T1, . . . , Tu, S1, . . . , St implies that the blue graph

is (12ρ
2∆1α, β, ρ, 2∆2 + 1)-dense, completing the proof. ✷

By symmetry, the above lemma implies that if β ≥ 4(∆1 + 1)ρ and (α, β, ρ,∆1,∆2) is universal, then

(12ρ
2∆2α, β, ρ, 2∆1 + 1,∆2) is also universal.

As already mentioned, if ǫ > 1/2, every graph G is vacuously bi-(ǫ, ρ)-dense. As ρ2·0 = 1 > 1/2, setting

t = 1 and S1 = V (G), we have that every graph G is (α, β, ρ, 0)-dense. This shows that (1, 2ρ, ρ, 0, 0)

is universal, which is the base case h = 0 in the induction proof of the next lemma.

Lemma 2.2 Let h be a nonnegative integer and D := 2h − 1. Then (2−2hρ6D−4h, 2(D + 1)ρ, ρ,D,D)

is universal.
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Proof: As mentioned above, the proof is by induction on h, and the base case h = 0 is satisfied.

Suppose it is satisfied for h, and we wish to show it for h+1. Let D = 2h−1, D′ = 2D+1 = 2h+1−1,

and β = 4(D + 1)ρ = 2(D′ + 1)ρ ≥ 2(D + 1)ρ. Recall that, for β ≥ β′, if (α, β′, ρ,∆1,∆2) is

universal then so is (α, β, ρ,∆1,∆2). Therefore, since (2−2hρ6D−4h, 2(D + 1)ρ, ρ,D,D) is universal,

(2−2hρ6D−4h, β, ρ,D,D) is also. Applying Lemma 2.1, we have that (12ρ
2D2−2hρ6D−4h, β, ρ,D, 2D+1)

is universal. Applying the symmetric version of Lemma 2.1 mentioned above, we have that

(1

2
ρ2(2D+1) 1

2
ρ2D2−2hρ6D−4h, β, ρ, 2D + 1, 2D + 1

)

= (2−2(h+1)ρ6D
′−4(h+1), β, ρ,D′,D′),

is universal, which completes the proof by induction. ✷

We will use the following lemma of Lovász [28].

Lemma 2.3 If H has maximum degree ∆ and d1, . . . , dt are nonnegative integers satisfying d1+ · · ·+
dt = ∆ − t + 1, then there is a partition V (H) = V1 ∪ . . . ∪ Vt such that for 1 ≤ i ≤ t, the induced

subgraph of H with vertex set Vi has maximum degree at most di.

The next simple lemma shows that in a bi-(ǫ, ρ)-dense graph, for any large vertex subset B, there are

few vertices with few neighbors in B.

Lemma 2.4 If G is a bi-(ǫ, ρ)-dense graph on n vertices with ǫ ≥ 1/n and B ⊂ V (G) with |B| ≥ 2ǫn,

then there are less than 3ǫn vertices in G with fewer than ρ
2 |B| neighbors in B.

Proof: Suppose for contradiction that the set A of vertices in G with fewer than ρ
2 |B| neighbors in B

satisfies |A| ≥ 3ǫn. Partition A∩B = C1∪C2 with |C1| ≤ |C2| into two sets of size as equal as possible.

Then the sets A′ = A \ C2 and B′ = B \ C1 are disjoint, |A′| ≥ ⌊|A|/2⌋ ≥ ǫn, |B′| ≥ |B|/2 ≥ ǫn, the

number of edges between A′ and B′ is less than |A′|ρ2 |B|, and the edge density between A′ and B′ is

less than
|A′| ρ

2
|B|

|A′||B′| = ρ
2

|B|
|B′| ≤ ρ, contradicting G is bi-(ǫ, ρ)-dense. ✷

The following embedding lemma is the last ingredient for the proof of Theorem 1.1.

Lemma 2.5 If ρ ≤ 1/30 and G is a graph on N ≥ 4(2/ρ)2∆α−1n vertices which is (α, 1
2∆ , ρ,∆)-dense,

then G contains every graph H on n vertices with maximum degree at most ∆.

Proof: Since G is (α, 1
2∆ , ρ,∆)-dense, there is a sequence S1, . . . , St of disjoint vertex subsets each of

cardinality at least αN and nonnegative integers d1, . . . , dt such that d1 + · · · + dt = ∆ − t + 1, and

the following holds:

• for 1 ≤ i ≤ t, Si is bi-(ρ
2di , ρ)-dense, and

• for 1 ≤ i < j ≤ t, each vertex in Si has at least (1− 1
2∆)|Sj | neighbors in Sj.

By Lemma 2.3, there is a vertex partition V (H) = V1 ∪ . . . ∪ Vt such that the maximum degree of the

induced subgraph of H with vertex set Vi is at most di for 1 ≤ i ≤ t. Let v1, . . . , vn be an ordering of

the vertices in V (H) such that the vertices in Vi come before the vertices in Vj for i < j. Let N(h, k)

denote the set of neighbors vi of vk with i ≤ h. For vk ∈ Vj , let M(h, k) denote the set of neighbors

6



vi ∈ Vj of vk with i ≤ h, that is, M(h, k) = N(h, k) ∩ Vj. Notice that |M(h, k)| ≤ dj for vk ∈ Vj since

the induced subgraph of H with vertex set Vj has maximum degree at most dj .

We will find an embedding f : V (H) → V (G) of H in G such that f(Vi) ⊂ Si for each i. We will

embed the vertices in increasing order of their indices. The embedding will have the property that

after embedding the first h vertices, if k > h and vk ∈ Vj , then the set S(h, k) of vertices in Sj adjacent

to all vertices in f(N(h, k)) has cardinality at least 1
2(ρ/2)

|M(h,k)||Sj |. Notice that this condition is

trivially satisfied when h = 0. Suppose that this condition is satisfied after embedding the first h

vertices. The set S(h, k) are the potential vertices in which to embed vk after the first h vertices have

been embedded, though this set may already contain embedded vertices.

Let j be such that vh+1 ∈ Vj . We need to find a vertex in S(h, h+ 1) to embed the copy of vh+1. We

have

|S(h, h + 1)| ≥ 1

2
(ρ/2)|M(h,h+1)||Sj | ≥

1

2
(ρ/2)dj |Sj |

since |M(h, h + 1)| ≤ dj . If dj = 0, we may pick f(vh+1) to be any element of the set S(h, h +

1)\{f(v1), . . . , f(vh)}. We may assume, therefore, that 1 ≤ dj ≤ ∆. In this case we know, for each of

the at most dj neighbors vk of vh+1 with k > h+1 that are in Vj, that the set S(h, k) has cardinality

at least 1
2(ρ/2)

dj |Sj|. Let ǫ = ρ2dj . Since, for 1 ≤ dj ≤ ∆ and ρ ≤ 1/30, Sj is bi-(ρ2dj , ρ)-dense,

|S(h, k)| ≥ 1
2(ρ/2)

dj |Sj| ≥ 2ρ2dj |Sj | = 2ǫ|Sj| and ǫ|Sj | = ρ2dj |Sj| ≥ ρ2∆αN ≥ 1, we may apply

Lemma 2.4 in Sj with B = S(h, k). Therefore, for each vertex vk ∈ Vj, k > h + 1 adjacent to vh+1,

at most 3ρ2dj |Sj| vertices in Sj have fewer than ρ
2 |S(h, k)| neighbors in S(h, k). Thus, all but at most

dj · 3ρ2dj |Sj| vertices in Sj have at least ρ
2 |S(h, k)| neighbors in S(h, k) for all vk ∈ Vj , k > h+ 1 that

are neighbors of vh+1. Since, for ρ ≤ 1/30, we have dj · 3ρ2dj ≤ 1
4 (ρ/2)

dj , there are at least

|S(h, h + 1)| − dj · 3ρ2dj |Sj| − h ≥ 1

2
(ρ/2)dj |Sj| − dj · 3ρ2dj |Sj| − h ≥ 1

4
(ρ/2)dj |Sj | − h

≥ 1

4
(ρ/2)∆αN − h ≥ (2/ρ)∆n− h > 0

such vertices that are not already embedded. We can pick any of these vertices to be f(vh+1). To

continue, it remains to check that any such choice preserves the properties of our embedding. Indeed,

• for any k < h+ 1 for which vh+1 is adjacent to vk, f(vh+1) is adjacent to f(vk);

• if k > h + 1 and vk and vh+1 are not adjacent, then S(h + 1, k) = S(h, k) and M(h + 1, k) =

M(h, k);

• if, for some k > h + 1, vk and vh+1 are adjacent and vk ∈ Vℓ with ℓ 6= j, then M(h + 1, k) = 0

since vertices of Vj are embedded before vertices of Vℓ, ℓ > j, so no vertex of Vℓ was embedded

yet. Also, |S(h+ 1, k)| ≥ 1
2 |Sℓ| since |N(h+ 1, k)| ≤ ∆, the vertices in f(N(h+ 1, k)) each have

at least (1− 1
2∆)|Sℓ| neighbors in Sℓ, and hence |S(h+ 1, k)| ≥ |Sℓ| −∆ · 1

2∆ |Sℓ| = 1
2 |Sℓ|;

• if k > h+1, vk and vh+1 are adjacent and vk ∈ Vj , then |M(h+1, k)| = |M(h, k)|+1. Moreover,

by our choice of the vertex f(vh+1), it has at least ρ
2 |S(h, k)| neighbors in S(h, k). Therefore

|S(h+ 1, k)| ≥ ρ
2 |S(h, k)| ≥ 1

2(ρ/2)
|M(h,k)|+1|Sj| = 1

2(ρ/2)
|M(h+1,k)||Sj|, as required.

As we supposed there is an embedding of the first h vertices with the desired property, the above

four facts imply that there is an embedding of the first h + 1 vertices with the desired property. By

induction on h, we find an embedding of H in G. ✷

We can now prove the following theorem, which implies Theorem 1.1.
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Theorem 2.1 For every 2-edge-coloring of KN with N = 284∆+2∆32∆n, at least one of the color

classes contains a copy of every graph on n vertices with maximum degree ∆ ≥ 2.

Proof: Let h be the smallest positive integer such that D := 2h − 1 ≥ ∆. By the definition of D,

∆ ≤ D < 2∆. Let ρ = 1
8D2 , α = 2−2hρ6D−4h ≥ ρ6D, and β = 2(D+1)ρ ≤ 1

2D . Lemma 2.2 implies that

every red-blue coloring of the edges of the complete graph KN is (α, β, ρ,D,D)-dense. By Lemma 2.5,

since

4(2/ρ)2Dα−1n ≤ 4(16D2)2D · (8D2)6Dn ≤ 4(16(2∆)2)4∆(8(2∆)2)12∆n

= 22(26∆2)4∆(25∆2)12∆n = 284∆+2∆32∆n = N,

at least one of the color classes contains a copy of every graph on n vertices with maximum degree ∆.

✷

3 Induced Ramsey numbers

The goal of this section is to prove Theorem 1.3. We will do this by finding, in any 2-edge-coloring of

the pseudo-random graph G, a collection of vertex subsets S1, . . . , St satisfying certain conditions. The

conditions in question are closely related to the notion of density that we applied in the last section.

Now, as then, we demand that the graph of one particular color satisfies a certain bi-density condition

within each Si. In addition, we demand that between the different Si the other color be sparse. This

may look like a simple rearrangement of the condition from the previous section, but, given that we

are now looking at colorings of a pseudo-random graph G rather than the complete graph KN , the

condition is more general. Moreover, it is exactly what we need to make our embedding lemma work.

Definition: An edge-coloring of a graph G on N vertices with colors 1 and 2 is (α, β, ρ, f,∆1,∆2)-

dense if there is a color q ∈ {1, 2}, disjoint vertex subsets S1, . . . , St each of cardinality at least αN

and nonnegative integers d1, . . . , dt with d1 + · · ·+ dt = ∆q − t+ 1 such that the following holds:

• for 1 ≤ i ≤ t, Si is bi-(f(ρ, di), ρ)-dense in the graph of color q, and

• for 1 ≤ i < j ≤ t, each vertex in Si is in at most β|Sj | edges of color 3− q with vertices in Sj.

We say that (α, β, ρ, f,∆1,∆2) is universal if, for every graph G, every edge-coloring of G with colors 1

and 2 is (α, β, ρ, f,∆1,∆2)-dense. Note that the density condition used in the last section corresponds

to the case when G = KN and f(ρ, di) = ρ2di . Essentially the same proofs as Lemmas 2.1 and 2.2 give

the following two more general lemmas. We include the proofs for completeness.

Lemma 3.1 If β ≥ 4(∆2+1)ρ and (α, β, ρ, f,∆1,∆2) is universal, then (12f(ρ,∆1)α, β, ρ, f,∆1, 2∆2+

1) is also universal.

Proof: Consider an edge-coloring of a graph G with colors 1 and 2. If the graph of color 1 is bi-

(f(ρ,∆1), ρ)-dense, then, taking, q = 1, t = 1, S1 = V (G) and d1 = ∆1, we are done. So we may

suppose that there are disjoint vertex subsets V0, V1 with |V0|, |V1| ≥ f(ρ,∆1)N such that the density

of color 1 between them is less than ρ. Delete from V0 all vertices in at least 2ρ|V1| edges of color
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1 with vertices in V1; the remaining subset V ′
0 has cardinality at least 1

2 |V0| ≥ 1
2f(ρ,∆1)N . Since

(α, β, ρ, f,∆1,∆2) is universal, the coloring restricted to the induced subgraph of G with vertex set

V ′
0 is (α, β, ρ, f,∆1,∆2)-dense. Thus, there is q ∈ {1, 2}, disjoint vertex subsets S1, . . . , St ⊂ V ′

0 each

of cardinality at least α|V ′
0 | and nonnegative integers d1, . . . , dt with d1 + · · · + dt = ∆q − t + 1 such

that the following holds:

• for 1 ≤ i ≤ t, Si is bi-(f(ρ, di), ρ)-dense in the graph of color q, and

• for 1 ≤ i < j ≤ t, each vertex in Si is in at most β|Sj | edges of color 3− q with vertices in Sj.

If q = 1, we are done. Therefore, we may suppose q = 2.

Since each vertex in V ′
0 (and hence in each Si) is in at most 2ρ|V1| edges of color 1 with vertices in

V1, then there are at most 2ρ|Si||V1| edges of color 1 between Si and V1. For 1 ≤ i ≤ t, delete from V1

all vertices in at least 4(∆2 + 1)ρ|Si| edges of color 1 with vertices in Si. For any given i, there can

be at most 1
2(∆2+1) |V1| such vertices. Therefore, since t ≤ ∆2 +1, the set V ′

1 of remaining vertices has

cardinality at least |V1| − t · 1
2(∆2+1) |V1| ≥ |V1|/2.

Since (α, β, ρ, f,∆1,∆2) is universal, the coloring restricted to the induced subgraph of G with vertex

set V ′
1 is (α, β, ρ, f,∆1,∆2)-dense. Thus, there is q′ ∈ {1, 2}, disjoint vertex subsets T1, . . . , Tu ⊂ V ′

1

each of cardinality at least α|V ′
1 | and nonnegative integers e1, . . . , eu with e1 + · · ·+ eu = ∆q′ − u+ 1

such that the following holds:

• for 1 ≤ i ≤ u, Ti is bi-(f(ρ, ei), ρ)-dense in the graph of color q′, and

• for 1 ≤ i < j ≤ u, each vertex in Ti is in at most β|Tj | edges of color 3− q′ with vertices in Tj .

If q′ = 1, we are done. Therefore, we may suppose q′ = 2.

Note that e1 + · · ·+ eu + d1 + · · ·+ dt = ∆2 − u+1+∆2 − t+1 = (2∆2 +1)− (u+ t) + 1. Moreover,

β ≥ 4(∆2 + 1)ρ, implying that for all 1 ≤ i ≤ u and all 1 ≤ j ≤ t every vertex in Ti is in at most

β|Sj | edges of color 1 with vertices in Sj. Therefore, the sequence T1, . . . , Tu, S1, . . . , St implies that

the edge-coloring of G is (12f(ρ,∆1)α, β, ρ, f,∆1, 2∆2 + 1)-dense, completing the proof. ✷

By symmetry, the above lemma implies that if β ≥ 4(∆1 + 1)ρ and (α, β, ρ, f,∆1,∆2) is universal,

then (12f(ρ,∆2)α, β, ρ, f, 2∆1 + 1,∆2) is also universal.

Lemma 3.2 Let h be a nonnegative integer and f be such that f(ρ, 0) = 1. Define

αh = 2−2hf(ρ, 0)−1f(ρ, 2h − 1)−1
h
∏

i=0

f(ρ, 2i − 1)2.

Then (αh, 2
h+1ρ, ρ, f, 2h − 1, 2h − 1) is universal.

Proof: The proof is by induction on h. As already mentioned, if ǫ > 1/2, every graph G is vacuously

bi-(ǫ, ρ)-dense. Since α0 = 1 > 1/2, setting t = 1 and S1 = V (G), we have (1, 2ρ, ρ, f, 0, 0) is universal,

which is the base case h = 0.

Suppose the lemma is satisfied for h, and we wish to show it for h+1. Let D = 2h−1, D′ = 2D+1 =

2h+1 − 1, and β = 4(D + 1)ρ = 2(D′ + 1)ρ = 2h+2ρ. Note that, for β ≥ β′, if (α, β′, ρ, f,∆1,∆2)
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is universal then so is (α, β, ρ, f,∆1,∆2). Therefore, since (αh, 2(D + 1)ρ, ρ, f,D,D) is universal,

(αh, β, ρ, f,D,D) is also. Applying Lemma 3.1, we have that (12f(ρ,D)αh, β, ρ, f,D, 2D + 1) is uni-

versal. Applying the symmetric version of Lemma 3.1 mentioned above, we have that

(1

2
f(ρ, 2D + 1)

1

2
f(ρ,D)αh, β, ρ, f, 2D + 1, 2D + 1

)

= (αh+1, β, ρ, f,D
′,D′),

is universal, which completes the proof by induction. ✷

A graph G is n-Ramsey-universal if, in any 2-edge-coloring of G, there are monochromatic induced

copies of every graph on n vertices all of the same color. The following lemma implies Theorem 1.3.

Lemma 3.3 If G is (1/2, λ)-pseudo-random on N vertices with λ ≤ 2−140nn−40nN , then G is n-

Ramsey-universal.

The set-up for the proof of this lemma is roughly similar to the one presented in the previous section.

We start with a collection of bi-dense sets, in say blue, such that the density of red edges between

each pair of sets is small. The goal is to embed a blue induced copy of a given graph H on vertices

1, . . . , n. We embed vertices one at a time, always maintaining large sets in which we may embed later

vertices. Suppose that at step i of our embedding, after v1, v2, . . . , vi are chosen, we have sets Vj,i for

j > i corresponding to the possible choices for future vj. If the vertices j, ℓ > i are not adjacent, then,

by the pseudo-randomness of G, the density of nonedges between any two large sets is roughly 1/2,

and it is therefore easy to guarantee that we can pick vj and vℓ so that they are nonadjacent. On

the other hand, if the vertices j, ℓ > i are adjacent, then we need to guarantee that vj and vℓ will be

joined by a blue edge. Thus, it would be helpful to ensure that the density of blue edges between Vj,i

and Vℓ,i is not too small. In the bounded-degree case we maintain such a property by exploiting the

fact that the blue density between any two large sets is large. Here, we do not have this luxury in the

case that Vj,i and Vℓ,i are subsets of different bi-dense sets in the collection. It is instead necessary to

use the fact that the underlying graph G is pseudo-random.

To see how this helps, suppose that we now wish to embed vi+1. This will affect the sets Vj,i and Vℓ,i,

resulting in subsets Vj,i+1 and Vℓ,i+1. We would like these subsets to mirror the density properties

between Vj,i and Vℓ,i. The way we proceed is to show that using pseudo-randomness we can choose

vi+1 such that the density of red edges between the sets Vj,i+1 and Vℓ,i+1 remains small. Since G is

pseudo-random, the total density between large sets is roughly 1/2 and therefore there will still be

many blue edges between these two sets.

Proof of Lemma 3.3: We split the proof into four steps.

Step 1: We will first choose appropriate constants and prepare G for embedding monochromatic

induced subgraphs.

Any (1/2, λ)-pseudo-random graph on at least two vertices must satisfy λ ≥ 1/2. Indeed, letting A

and B be distinct vertex subsets each of cardinality 1, we have

1/2 = |d(A,B)− 1/2| ≤ λ
√

|A||B|
= λ.

It follows that N ≥ 2140nn40nλ ≥ 2138nn40n.
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We will start by picking some constants. Pick ρ = 2−13n−3, h = ⌈log n⌉ ≤ log 2n, β = 2h+1ρ ≤ 8nρ =

2−10n−2, f(ρ, 0) = 1 and f(ρ, d) = 2−5nρd if d > 0, so

α = 2−2hf(ρ, 0)−1f(ρ, 2h − 1)−1
h
∏

i=0

f(ρ, 2i − 1)2 = 2−2hf(ρ, 2h − 1)
h−1
∏

i=1

f(ρ, 2i − 1)2

= 2−2h−5nρ2
h−1

h−1
∏

i=1

2−10nρ2(2
i−1) = 2−2h−(2h−1)5nρ3·2

h−2h−3

≥ (2n)−12nρ6n = 2−90nn−30n.

Lemma 3.2 implies that (α, β, ρ, f, 2h −1, 2h−1) is universal. As 2h ≥ n, it follows that (α, β, ρ, f, n−
1, n−1) is also universal. Let ǫ1 =

1
2n , ǫ2 =

ǫ1ρ
32n = 2−19n−5, ǫ3 = ǫ4 =

1
8n , ǫ5 =

1
8n2 , ǫ6 = ǫ2ǫ5 = 2−22n−7

and β′ = 2nβ ≤ 2−9n−1.

Since every red-blue edge of G is (α, β, ρ, f, n− 1, n− 1)-dense, we may assume that there are disjoint

vertex subsets S1, . . . , St each of cardinality at least αN and nonnegative integers d1, . . . , dt with

d1 + · · ·+ dt = n− t such that

• for 1 ≤ i ≤ t, Si is bi-(f(ρ, di), ρ)-dense in the blue graph, and

• for 1 ≤ i < j ≤ t, each vertex in Si is in at most β|Sj | red edges with vertices in Sj.

We will show that we can find a monochromatic blue induced copy of each graph H on n vertices. We

may suppose the vertex set of H is V (H) = [n] := {1, . . . , n}. Partition [n] = U1 ∪ . . . ∪ Ut, with the

vertices in Ui coming before the vertices in Uj for i < j and |Ui| = di + 1 for 1 ≤ i ≤ t. For j ∈ Ul,

let D(i, j) denote the number of neighbors h of j with h ≤ i and h ∈ Ul. Arbitrarily partition Si into

di+1 sets
⋃

k∈Ui
Vk each of cardinality at least ⌊ |Si|

di+1⌋ ≥ ⌊ |Si|
n ⌋ ≥ |Si|

2n ≥ α
2nN , where we use di+1 ≤ n,

|Si| ≥ αN , and the lower bounds on α and N .

Step 2: We now describe our strategy for constructing induced blue copies of H. In broad outline,

we proceed by induction, embedding each successive vertex i in the set Vi. To achieve this, we have

to maintain several conditions which allow us to embed future vertices.

At the end of step i, we will have vertices v1, . . . , vi and, for j > i, subsets Vj,i ⊂ Vj such that the

following four conditions hold.

1. for j, ℓ ≤ i, if (j, ℓ) is an edge of H, then (vj , vℓ) is a blue edge of G, otherwise vj and vℓ are not

adjacent in G;

2. for j ≤ i < ℓ, if (j, ℓ) is an edge of H, then vj is adjacent to all vertices in Vℓ,i by blue edges,

otherwise there are no edges of G from vj to Vℓ,i;

3. for j > i, we have |Vj,i| ≥ 4−iρD(i,j)|Vj |;

4. for ℓ > j > i, if j ∈ Uq1 and ℓ ∈ Uq2 with q1 < q2, then each vertex in Vj,i is in at most

(1 + ǫ1)
iβ′|Vℓ,i| red edges with vertices in Vℓ,i.

Note that Vj,i is a subset of vertices of G in which we can still embed vertex j from H after i steps

of our embedding procedure. Clearly, at the end of the first n steps of this process we obtain the

required copy of H. For i = 0 and j ∈ [n], define Vj,0 = Vj . Notice that the above four properties are
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satisfied for i = 0. Indeed, the first two properties are vacuously satisfied, the third property follows

from Vj,0 = Vj, and the last property follows from the simple inequality β′|Vℓ,0| = 2nβ|Vℓ| ≥ β|Sq2 |.
We now assume that the above four properties are satisfied at the end of step i and show how to

complete step i+ 1 by finding a vertex vi+1 ∈ Vi+1,i and, for j > i+ 1, subsets Vj,i+1 ⊂ Vj,i such that

conditions 1-4 still hold.

Before we begin the next step of the proof, we need to introduce some notation. For a vertex w ∈ Vj

and a subset S ⊂ Vℓ with j 6= ℓ, let

• N(w,S) denote the set of vertices s ∈ S such that (s,w) is an edge of G,

• R(w,S) denote the set of vertices s ∈ S such that (s,w) is a red edge of G,

• B(w,S) denote the set of vertices s ∈ S such that (s,w) is a blue edge of G,

• Ñ(w,S) = N(w,S) if (j, ℓ) is an edge of H and Ñ(w,S) = S \N(w,S) otherwise,

• B̃(w,S) = B(w,S) if (j, ℓ) is an edge of H and B̃(w,S) := S \N(w,S) otherwise.

Note, for all S ⊂ Vℓ and w ∈ Vj, that B̃(w,S) = Ñ(w,S) \ R(w,S). Moreover, since the graph G

is pseudo-random with edge density 1/2, we expect that for every large subset S ⊂ Vℓ and for most

vertices w ∈ Vj the size of Ñ(w,S) will be roughly |S|/2.
Step 3: We next show that if there is a vertex satisfying certain conditions, then we can continue our

embedding. In the last step we show that there is such a “good” vertex.

Let q be the index such that i+ 1 ∈ Uq. Call a vertex w ∈ Vi+1,i good if

1. for all j > i+ 1 such that (j, i + 1) is an edge of H and j ∈ Uq, |B(w, Vj,i)| ≥ ρ|Vj,i|,

2. for all j > i+ 1, |Ñ(w, Vj,i)| ≥
(

1
2 − ǫ1

20

)

|Vj,i|,

3. for all ℓ > j > i + 1 with j ∈ Uq1 , ℓ ∈ Uq2 , and q1 < q2, there are at most ǫ2|Vj,i| vertices
y ∈ Vj,i such that y is in at least β′ (1

2 −
ǫ1
10

)

|Vℓ,i| red edges with vertices in Vℓ,i and y is in at

least
(

1
2 +

ǫ1
10

)

|R(y, Vℓ,i)| red edges with vertices of Ñ(w, Vℓ,i).

Note that, because the graph G is pseudo-random with edge density 1/2, we expect a typical vertex in

Vi+1,i to be adjacent (and also nonadjacent) to roughly 1/2 of the vertices in Vj,i and Vℓ,i. Moreover,

condition 3 roughly says that for a typical vertex, the density of red edges between its neighborhoods

in Vj,i and Vℓ,i is not much larger than the overall density of red edges between these two sets.

We will now show that if there is a good vertex w ∈ Vi+1,i, then we may continue the embedding by

taking vi+1 = w and, for j > i + 1 with j ∈ Uq1 , letting Vj,i+1 be the subset of B̃(w, Vj,i) formed by

deleting all vertices y for which there is ℓ > j with ℓ 6∈ Uq1 such that y is in at least β′ (1
2 −

ǫ1
10

)

|Vℓ,i| red
edges with vertices in Vℓ,i and y is in at least

(

1
2 +

ǫ1
10

)

|R(y, Vℓ,i)| red edges with vertices of Ñ(w, Vℓ,i).

Note that, by the third property of good vertices,

|Vj,i+1| ≥ |B̃(w, Vj,i)| − nǫ2|Vj,i|. (1)

Let us verify each of the required properties of our embedding in turn.

To verify the first property, we need to show that if j ≤ i and (j, i+1) is an edge of H then (vj , vi+1)

is a blue edge and, if (j, i + 1) is not an edge of H, then (vj , vi+1) is not in G. But this follows by
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induction since, when the first i vertices were embedded, we had that for all j ≤ i < l, if (j, l) was

an edge of H, then vj was adjacent to all edges of Vl,i by blue edges. Otherwise, there were no edges

between vj and Vl,i. Taking l = i+ 1, the necessary property follows.

For the second property, we would like to show that for j ≤ i + 1 < l, if (j, l) is an edge of H, then

vj is adjacent to all vertices in Vl,i+1 by blue edges and, otherwise, there are no edges between vj and

Vl,i+1. Observe that, for all l > i+1, the set Vl,i+1 is a subset of the set Vl,i. Therefore, by induction,

we only need to check the condition for j = i+1. But Vl,i+1 is a subset of B̃(vi+1, Vl,i), so this follows

by definition.

We now wish to prove that, for all j > i + 1, |Vj,i+1| ≥ 4−(i+1)ρD(i+1,j)|Vj |. Inequality (1) together

with the first property of good vertices implies that if j > i+ 1, (j, i + 1) is an edge of H and j ∈ Uq

(recall that also i+ 1 ∈ Uq), then, since ǫ2 ≤ ρ/(2n) and D(i+ 1, j) = D(i, j) + 1,

|Vj,i+1| ≥ (ρ− nǫ2)|Vj,i| ≥
ρ

2
|Vj,i| ≥

ρ

2
4−iρD(i,j)|Vj | ≥ 4−(i+1)ρD(i+1,j)|Vj|.

Inequality (1), the second property of good vertices and the inductive assumption that w has at most

(1 + ǫ1)
iβ′|Vj,i| red neighbors in Vj,i if j 6∈ Uq together imply that for all other j > i+ 1, we have

|Vj,i+1| ≥ |B̃(w, Vj,i)| − nǫ2|Vj,i| = |Ñ(w, Vj,i) \R(w, Vj,i)| − nǫ2|Vj,i|

≥
(

1

2
− ǫ1

20

)

|Vj,i| − (1 + ǫ1)
iβ′|Vj,i| − nǫ2|Vj,i| ≥

(

1

2
− ǫ1

20
− 3β′ − nǫ2

)

|Vj,i|

≥
(

1

2
− ǫ1

10

)

|Vj,i| ≥
1

4
4−iρD(i,j)|Vj | = 4−(i+1)ρD(i+1,j)|Vj |.

Here we use that ǫ1 = 1/2n, β′ ≤ 2−9n−1, ǫ2 ≤ ǫ1/32n, and D(i + 1, j) = D(i, j) (since i + 1 and

j are either nonadjacent or belong to different Us). In either case, the required lower bound on the

cardinality of Vj,i+1 holds. Note the intermediate inequality that |Vl,i+1| ≥
(

1
2 − ǫ1

10

)

|Vl,i| whenever
l 6∈ Uq.

If i + 1 < j < ℓ is such that j ∈ Uq1 and ℓ ∈ Uq2 with q ≤ q1 < q2, our deletion of vertices from

B̃(w, Vj,i) implies that each vertex in Vj,i+1 is in less than

β′
(

1

2
− ǫ1

10

)

|Vℓ,i| ≤ β′|Vℓ,i+1|

red edges with vertices in Vℓ,i or each vertex in Vj,i+1 is in less than

(

1

2
+

ǫ1
10

)

|R(y, Vℓ,i)| ≤
(

1

2
+

ǫ1
10

)

(1 + ǫ1)
iβ′|Vℓ,i| ≤

(

1

2
+

ǫ1
10

)

(1 + ǫ1)
iβ′|Vℓ,i+1|/

(

1

2
− ǫ1

10

)

≤ (1 + ǫ1)
i+1β′|Vℓ,i+1|

red edges with vertices of Ñ(w, Vℓ,i). In either case, we see that the last desired condition of the

embedding is satisfied.

Step 4: We have shown that if there is a good vertex, then we can continue the embedding. In this

step we show that there is a good vertex in Vi+1,i, which completes the proof.

The next three claims imply that the fraction of vertices in Vi+1,i that are good is at least 1 − nǫ3 −
nǫ4 − n2ǫ5 > 1/2, i.e., more than half of the vertices of Vi+1,i are good. Indeed, Claim 1 shows that

the first property of good vertices is satisfied for all but at most nǫ3|Vi+1,i| vertices in Vi+1,i. Claim 2
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shows that the second property of good vertices is satisfied for all but at most nǫ4|Vi+1,i| vertices in

Vi+1,i. Claim 3 shows that the third property of good vertices is satisfied for all but at most n2ǫ5|Vi+1,i|
of the vertices in Vi+1,i. These three claims therefore complete the proof. ✷

Claim 1 For j > i+1 such that (j, i+1) is an edge of H and j ∈ Uq, let Qj denote the set of vertices

w ∈ Vi+1,i such that |B(w, Vj,i)| < ρ|Vj,i|. Then |Qj| < ǫ3|Vi+1,i|.

Proof: Suppose, for contradiction, that |Qj | ≥ ǫ3|Vi+1,i|. As j, i+ 1 ∈ Uq and |Uq| = dq + 1, we have

dq ≥ 1 and f(ρ, dq) = 2−5nρdq . Since 23n ≥ 8n2, |Vi+1,i| ≥ 4−iρD(i,i+1)|Vi+1| and |Vi+1| ≥ |Sq|/2n, we
have

|Qj | ≥ ǫ34
−iρD(i,i+1)|Vi+1| ≥ ǫ34

1−nρdq |Vi+1| ≥
ǫ3
n
4−nρdq |Sq| ≥ f(ρ, dq)|Sq|.

We also have

|Vj,i| ≥ 4−iρD(i,j)|Vj | ≥ 41−nρdq |Vj | ≥ n−14−nρdq |Sq| ≥ f(ρ, dq)|Sq|.

Since Sq is bi-(f(ρ, dq), ρ)-dense in blue, the blue edge density between Qj and Vj,i is at least ρ,

contradicting the definition of Qj. ✷

Claim 2 For j > i+ 1, let Pj denote the set of vertices w ∈ Vi+1,i such that

|Ñ (w, Vj,i)| <
(

1

2
− ǫ1

20

)

|Vj,i|.

Then |Pj | < ǫ4|Vi+1,i|.

Proof: The definition of Pj implies that the density of edges between Pj and Vj,i is either less than
1
2 −

ǫ1
20 or more than 1

2 +
ǫ1
20 (depending on whether or not (i+1, j) is an edge of H). Therefore, since

G is (1/2, λ)-pseudo-random, we have ǫ1
20 < λ√

|Pj ||Vj,i|
. Note that, for j > i, since ρ = 2−13n−3 and

α ≥ 2−90nn−30n,

|Vj,i| ≥ 4−iρD(i,j)|Vj| ≥ 4−nρn|Vj | ≥ 2−15nn−3n α

2n
N ≥ 2−106nn−34nN. (2)

Hence, since we also have ǫ1 = 1/2n, ǫ4 = 1/8n and λ ≤ 2−140nn−40nN ,

|Pj | <
400λ2

ǫ21|Vj,i|
<

29|2−280nn−80nN2

(2n)−22−106nn−34nN
= 211n22−174nn−46nN (3)

≤ 2−163nn−44nN ≤ (8n)−12−106nn−34nN ≤ ǫ4|Vi+1,i|.

✷

Claim 3 Fix a pair j and ℓ with i + 1 < j < ℓ, j ∈ Uq1, ℓ ∈ Uq2 , and q1 < q2. Let X = Vi+1,i,

Y = Vj,i, and Z = Vℓ,i. Define the bipartite graph F = Fj,ℓ with parts X and Y where (x, y) ∈ X × Y

is an edge if

|R(y, Z)| ≥ β′
(

1

2
− ǫ1

10

)

|Z|

and

|R(y, Z) ∩ Ñ(x,Z)| >
(

1

2
+

ǫ1
10

)

|R(y, Z)|.

Let Tj,ℓ denote the set of vertices in X with degree at least ǫ2|Y | in F . Then |Tj,ℓ| ≤ ǫ5|X|.
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Proof: For y ∈ Y , let Xy ⊂ X denote the neighbors of y in graph F . Note that, for every x ∈ Xy,

the fact that |R(y, Z) ∩ Ñ(x,Z)| >
(

1
2 +

ǫ1
10

)

|R(y, Z)| implies that, in either the graph G or its

complement, x has at least
(

1
2 +

ǫ1
10

)

|R(y, Z)| neighbors in R(y, Z) (this is again because Ñ(x,Z) is

either the neighborhood of x or its complement depending on whether or not (i + 1, ℓ) is an edge of

H). Therefore, since G is (1/2, λ)-pseudo-random,

ǫ1
10

≤ λ
√

|Xy||R(y, Z)|
,

Note that, by the first condition on F , if y has any neighbors in X, |R(y, Z)| ≥ β′|Z|/4. Therefore,

|Xy| ≤
100λ2

ǫ21|R(y, Z)| ≤
400λ2

ǫ21β
′|Z| ≤ ǫ6|X|.

This last inequality follows as in the previous claim. Indeed, since β′ = 2−9n−1, ǫ6 = 2−22n−7,

Z = Vℓ,i, and X = Vi+1,i, using inequalities (2,3), we have

400λ2

ǫ21β
′|Z| ≤ β′−12−163nn−44nN ≤ 2−154nn−43nN ≤ 2−22n−72−106nn−34nN ≤ ǫ6|X|.

Therefore, the edge density of F between X and Y is at most ǫ6 and there are at most ǫ6|X||Y |
ǫ2|Y | = ǫ5|X|

vertices in X with degree at least ǫ2|Y | in F . ✷

4 Concluding remarks

Another interesting concept of sparseness, introduced by Chen and Schelp [3], is that of arrangeability.

A graph H is said to be p-arrangeable if there is an ordering of the vertices of H such that, for any

vertex vi, the set of neighbors to the right of vi in the ordering have at most p neighbors to the left

of vi (including vi itself). Extending the result of Chvátal, Rödl, Szemerédi and Trotter [4], Chen

and Schelp showed that for every p there is a constant c(p) such that, for any p-arrangeable graph H

with n vertices, r(H) ≤ c(p)n. This result has several consequences. Planar graphs, for example, may

be shown to be 10-arrangeable [24], so their Ramsey numbers grow linearly. The best bound that is

known for c(p), again due to Graham, Rödl and Ruciński [22], is c(p) ≤ 2cp(log p)
2
. Unfortunately, it

is unclear whether the bounds that we have given for bounded-degree graphs can be extended to the

class of arrangeable graphs. It would be interesting to prove such a bound.

An even more problematic notion is that of degeneracy. A graph H is said to be d-degenerate if there is

an ordering of the vertices of H such that any vertex vi has at most d neighbors that precede it in the

ordering. Equivalently, every subgraph of H has a vertex of degree at most d. A conjecture of Burr and

Erdős [2] states that for every d there should be a constant c(d) such that, for any d-degenerate graph

H with n vertices, r(H) ≤ c(d)n. This conjecture, which is still open, is a substantial generalization

of the results on Ramsey numbers of bounded-degree graphs. The best result that is known, due to

Fox and Sudakov [20], is r(H) ≤ 2c(d)
√
lognn.

An old related problem is to bound the Ramsey number of graphs with m edges. Erdős and Graham

[15] conjectured that among all graphs withm =
(

n
2

)

edges and no isolated vertices, the complete graph

on n vertices has the largest Ramsey number. Motivated by the lack of progress on this conjecture,

Erdős [12] asked whether one could at least show that the Ramsey number of any graph with m edges
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is not much larger than that of the complete graph with the same size. Since the number of vertices

in a complete graph with m edges is on the order of
√
m, Erdős conjectured that r(H) ≤ 2c

√
m holds

for every graph H with m edges and no isolated vertices. Until recently the best known bound for

this problem was 2c
√
m logm (see [1]). To attack Erdős’ conjecture one can try to use the result on

Ramsey numbers of bounded-degree graphs. Indeed, given a graph H with m edges, one can first

embed the 2
√
m vertices of largest degree in H using the standard pigeonhole argument of Erdős and

Szekeres [17]. The remaining vertices of H span a graph with maximum degree
√
m. Hence, one may

apply the arguments used to prove the upper bound for Ramsey numbers of bounded-degree graphs

to embed the rest of H. However, this approach will likely require an upper bound of 2c∆n on the

Ramsey number for graphs on n vertices of maximum degree ∆, which we do not have yet. Recently,

the third author [33] was able to circumvent this difficulty and prove Erdős’ conjecture.

Finally, we would like to stress that the proofs given in this paper are highly specific to the 2-color

case. The best results that are known in the q-color case are obtained by an entirely different method

[19] and are considerably worse. For example, the q-color Ramsey number rq(H) of a graph on n

vertices with maximum degree ∆ is only known to satisfy the inequality rq(H) ≤ 2cq∆
2
n. It would be

of considerable interest to improve this latter bound to rq(H) ≤ 2cq∆
1+o(1)

n.
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[2] S.A. Burr and P. Erdős, On the magnitude of generalized Ramsey numbers for graphs, in Infinite

and Finite Sets, Vol. 1 (Keszthely, 1973), Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland,

Amsterdam/London, 1975, 215–240.

[3] G. Chen and R. Schelp, Graphs with linearly bounded Ramsey numbers, J. Combin. Theory Ser.

B 57 (1993), 138–149.
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