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CONSTRAINTS, MMSNP AND EXPANDER

RELATIONAL STRUCTURES

GÁBOR KUN

Abstract. We give a poly-time construction for a combinato-
rial classic known as Sparse Incomparability Lemma, studied by
Erdős, Lovász, Nešetřil, Rödl and others: We show that every
Constraint Satisfaction Problem is poly-time equivalent to its re-
striction to structures with large girth. This implies that the com-
plexity classes CSP and Monotone Monadic Strict NP introduced
by Feder and Vardi are computationally equivalent. The technical
novelty of the paper is a concept of expander relations and a new
type of product for relational structures: a generalization of the
zig-zag product, the twisted product.

1. Introduction

The construction of graphs with large girth and chromatic number
is a classic in probabilistic combinatorics. Many great mathematicians
have contributed to this: Erdős [4] gave a probabilistic construction
for graphs. Lovász [10] had a deterministic, but huge construction for
hypergraphs. Nešetřil and Rödl gave a short probabilistic construction
[16] for hypergraphs, see also Duffus, Rödl, Sands and Sauer[3]. Feder
and Vardi showed [5] a more general statement known as Sparse Incom-
parability Lemma: They proved that for every CSP problem there is a
randomized, poly-time algorithm that transforms every input structure
of the CSP to an equivalent one of large girth.
Nešetřil and Matoušek gave a deterministic poly-time algorithm [15]

to this in case of graphs. This was simplified in the recent work of
Nešetřil and Siggers [17]. The main result of this paper is a determin-
istic, poly-time algorithm for the Sparse Incomparability Lemma for
general CSP’s. 1

Theorem 1. (Algorithm) Let t, k be positive integers and τ a finite
relational type. For every structure S of type τ there exists a polynomial

This research was supported by OTKA Grants no. T043671 and NK 67867, Sub-
hash Khot’s NSF Waterman Award CCF-1061938 and the MTA Rényi ”Lendület”
Groups and Graphs Research Group.

1We will follow the terminology of relational structures, but our theorems hold
in the special case of hypergraphs, too.
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time constructible structure S′ of type τ with girth > k such that for
every structure T of size < t the equivalence S ∈ CSP (T) ⇐⇒ S′ ∈
CSP (T) holds. Moreover, S′ ∈ CSP (S).

This theorem also answers a problem posed by Nešetřil, Kostochka
and Smoĺıkova [7]. However, our work was primarily motivated by
the paper of Feder and Vardi [5] on the dichotomy conjecture: They
analyzed the complexity classes CSP and Monotone Monadic Strict NP
(MMSNP). The class MMSNP contains the class CSP, and it has much
bigger expressive power. Feder and Vardi proved that these classes are
equivalent in a random sense. (For more on these classes and a simple
proof see [9].) The only random part in their algorithm comes from
their probabilistic proof of the Sparse Incomparability Lemma, so we
can derandomize their result using Theorem 1.
Theorem 2. Let τ be a finite relational type, L ⊆ Rel(τ) an MMSNP
language. Then there is a finite set of relational structures T ⊂ Rel(τ)
such that

(1) L has a polynomial time reduction to CSP (T ).
(2) CSP (T ) has a polynomial time reduction to L.

Note that the equivalence of the complexity classes CSP and MM-
SNP does not only mean that both of these classes contain an NP-
complete problem. In particular, Theorem 2 shows that if dichotomy
holds for CSP then it also holds for MMSNP.
Nešetřil and Matoušek used expander graphs to give a poly-time al-

gorithm for the Sparse Incomparability Lemma in the case of graphs.
Expander graphs are sparse but highly connected graphs. These play
an important role in number theory, group theory and graph theory.
Ajtai, Komlós and Szemerédi used expanders in their paper on parallel
sorting [1]: this was the first time when expanders were used in com-
puter science. ”Optimal expander graphs”, Ramanujan graphs were
constructed by Margulis [14] and independently by Lubotzky, Phillips
and Sarnak [11]. Simpler and simpler constructions were found in the
last decade [2, 18]. Recently Lubotzky, Samuels and Vishne introduced
a concept of Ramanujan complexes [12, 13].
On the other hand, for relational structures (hypergraphs) no similar

construction or even definition is known. We introduce a concept of
expander relations. We say that the r-ary relation R on S is an ε-
expander relation if for every S1, . . . , Sr ⊆ S the number of relational
tuples with the ith coordinate in Si differs by less than ε|R| from the
expected value. We construct ε-expander relational structures with
large girth and bounded degree in poly-time.
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Theorem 3. (Algorithm) Let τ be a finite relational type, k a positive
integer and ε > 0. Then for every n > nτ,ε,k there exists a polynomial
time constructible ε-expander S of size n, type τ , maximal degree at
most M = Mτ,ε and girth at least k.

In order to give this construction we define the twisted product of
relational structures, a generalization of the so-called zig-zag product
used by Reingold, Vadhan and Widgerson [18]. Alon, Schwartz and
Shapira used a similar product called replacement product in their
expander construction [2].
In Section 2 we give the basic definitions. Section 3 contains the

novelties of this paper: the definition and properties of expander rela-
tional structures and the twisted product. In Section 4 we construct
expander relational structures with large girth and bounded degree. In
Section 5 we prove Theorem 1 and Theorem 2.

2. Definitions, notations

We will work with finite relational structures throughout this pa-
per: we denote these by boldface letters A,B,C, . . . and their base
set by A,B,C, . . . , respectively. For an r-ary relational symbol R
and relational structure A with base set A let R = R(A) denote
the set of tuples of A which are in relation R. Recall, that a ho-
momorphism is a mapping which preserves all relations. Just to be
explicit, for relational structures A,B of the same type τ a map-
ping f : A −→ B is a homomorphism A −→ B if for every r-
ary relational symbol R ∈ τ and (x1, . . . , xr) ∈ Ar the implication
(x1, . . . , xr) ∈ R(A) −→ (f(x1), . . . , f(xr)) ∈ R(B) holds. A cycle in
a relational structure A is either a minimal sequence of distinct points
and distinct tuples x0, r1, x1, . . . , rt, xt = x0 where t ≥ 2, each tuple
ri belongs to one of the relations R(A) and each xi is a coordinate of
ri and ri+1, or, in the degenerate case, a relational tuple with at least
one multiple coordinate. The length of the cycle is the integer t in the
first case and 1 in the second case. The girth of a structure A is the
length of the shortest cycle in A (if it exists; otherwise it is a forest
and we define the girth to be infinity). The degree of an element x of
S is the number of relational tuples containing x (with multiplicity).
Denote the maximal degree in S by ∆(S). Given a function f : S → R

let |f | =
∑

x∈S |f(x)| denote its first norm and max(f) its maximum,
respectively.
For the relational structureA set CSP (A) = {B : B is homomorphic

toA}. For a finite set T of relational structures of the same type define
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CSP (T ) = ∪A∈T CSP (A). The class CSP consists of languages of the
form CSP (T ).

3. Expander relations and the twisted product

Definition 4. Given a finite relational structure A, a relation R ⊆ Ar

and functions f1, . . . , fr : A → R let us denote the sum
∑

(x1,...,xr)∈R(A)

r
∏

i=1

fi(xi)

by R(f1, . . . , fr). For the subsets S1, . . . , Sr ⊆ A set R(S1, . . . , Sr) =
R(χS1

, . . . , χSr
). This equals the number of r-tuples (x1, . . . , xr) ∈ R

such that x1 ∈ S1, . . . , xr ∈ Sr.

Definition 5. A nonempty r-ary relation R ⊆ Sr is called an ε-
expander relation if for every S1, . . . , Sr ⊆ S the inequality
∣

∣

∣
R(S1, . . . , Sr)− |R|

∏
r

i=1
|Si|

|S|r

∣

∣

∣
≤ ε|R| holds.

A relational structure S is a (∆, ε) -expander relational structure if
every at least binary relation of S is an ε-expander relation and ∆(S) ≤
∆.

An expander graph is an expander relational structure: this is a triv-
ial consequence of the Expander Mixing Lemma [6]. We postpone the
study of such expanders until Section 4. Now we give several equivalent
definitions for expander relations.
Lemma 6. For a finite r-ary relation R ⊆ Sr the followings are
equivalent.

(1) For every f1, . . . , fr : S → [0;∞),
∣

∣

∣
R(f1, . . . , fr)− |R|

∏
k

i=1
|fi|

|S|r

∣

∣

∣
≤ ε|R|

∏r
i=1max(fi) holds.

(2) For every f1, . . . , fr : S → [0; 1],
∣

∣

∣
R(f1, . . . , fr)− |R|

∏
r

i=1
|fi|

|S|r

∣

∣

∣
≤ ε|R| holds.

(3) R is an ε-expander relation.

Proof. The implication (1) → (2) is trivial. (3) is the special case of
(2) when all the functions fi are characteristic functions. We have to
prove (3) → (1):
∣

∣

∣
R(f1, . . . , fr)−

∏r
i=1 |fi|

|R|
|S|r

∣

∣

∣
=

∣

∣

∣

∫ max(f1)

y1=0
. . .

∫ max(fr)

yr=0

∑

(e1,...,er)∈R

∏r
i=1 χ{yi<fi(ei)}dy1 . . . dyr −

∫ max(f1)

y1=0
. . .

∫ max(fr)

yr=0
|R|
|S|r

∏r
i=1

(

∑

s∈S χ{yi<fi(s)}

)

dy1 . . . dyr

∣

∣

∣
≤

∫ max(f1)

y1=0
. . .

∫ max(fr)

yr=0

∣

∣

∣
R({s : y1 < f1(s)}, . . . , {s : yr < fr(s)})−
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|R|
|S|r

∏r
i=1 |{s : yi < fi(s)}|

∣

∣

∣
dy1 . . . dyr ≤

∫ max(f1)

y1=0
. . .

∫ max(fr)

yr=0
ε|R|dy1 . . . dyr = ε|R|

∏r
i=1max(fi). �

Definition 7. Let A and B be relational structures of type τ . We say
that C is a twisted product of A and B if the followings hold.

(1) The base set of C is the product set: C = A× B.
(2) The projection πB : A×B → B is a homomorphism C → B.
(3) For every r-ary relational symbol R of type τ , 1 ≤ i ≤ r and

relational tuple t = (t1, . . . , tr) ∈ R(B) there exists a bijec-
tion αt,i : A → C such that πB ◦ αt,i = ti and (x1, . . . , xr) ∈
R(A) ⇐⇒

(

αt,1(x1), . . . , αt,r(xr)
)

∈ R(C).

If all the bijections in the definition are identical we get the direct
product A × B. In the case of simple, undirected graphs the last
condition means that the preimage of every edge in B is isomorphic to
the direct product of A and an edge. The celebrated zig-zag product
[18] is a very special case (e.g. A is a complete graph with loops).
Two structures may have many different twisted products: we can
choose many bijections freely. However, every twisted product of two
expanders is an expander.
Lemma 8. Consider an εA-expander A and an εB-expander B of
type τ . If C is the twisted product of A and B then C is an (εA + εB)-
expander. And ∆(A)∆(B) ≥ ∆(C) holds for the maximal degrees.

Proof. Let R be an at least binary relation of type τ . We will prove
that (2) of Lemma 6 holds for R(C). Consider the functions f1, . . . , fr :
C → [0; 1]. Let gi : B → R denote the function gi(b) =

∑

x∈π−1

B
(b) fi(x).

Now |gi| = |fi|, and for every b ∈ B the inequality 0 ≤ gi(b) ≤ |A|
holds. So the expander property of R(B) implies that
∣

∣

∣
R(B)(g1, . . . , gr)− |R(B)| |g1|...|gr|

|B|r

∣

∣

∣
≤ εB|R(B)||A|r.

Given an r-tuple b = (b1, . . . , br) ∈ R(B) consider the bijections αb,1, . . . ,
αb,r determining the twisted product. Clearly gi(bi) =

∣

∣fi|π−1

B
(bi)

∣

∣ =
∣

∣fi◦

αb,i

∣

∣. We sum up all the error terms using |A||B| = |C|, |R(A)||R(B)| =
|R(C)| and the triangle inequality.

∣

∣

∣
R(C)(f1, . . . , fr)− |R(C)|

∏r
i=1 |fi|

|C|r

∣

∣

∣
=

∣

∣

∣
R(C)(f1, . . . , fr)− |R(C)|

∏r
i=1 |gi|

|C|r

∣

∣

∣
≤

∣

∣

∣
R(C)(f1, . . . , fr)−

|R(A)|

|A|r
R(B)(g1, . . . , gr)

∣

∣

∣
+
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∣

∣

∣

|R(A)

|A|r
R(B)(g1, . . . , gr)− |R(C)|

∏r
i=1 |gi|

|C|r

∣

∣

∣
=

∣

∣

∣

∑

b∈R(B)

(

R(A)(f1 ◦ αb,1, . . . , fr ◦ αb,r)−
|R(A)|

|A|r

r
∏

i=1

gi(bi)
)
∣

∣

∣
+

|R(A)|

|A|r

∣

∣

∣
R(B)(g1, . . . , gr)− |R(B)|

∏r
i=1 |gi|

|B|r

∣

∣

∣
≤

∑

b∈R(B)

(
∣

∣

∣
R(A)(f1 ◦ αb,1, . . . , fr ◦ αb,r)−

|R(A)|

|A|r

r
∏

i=1

|fi ◦ αb,i|
∣

∣

∣

)

+

|R(A)|

|A|r
εB|R(B)||A|r ≤

∑

b∈R(B)

εA|R(A)|+ εB|R(C)| = (εA+ εB)|R(C)|.

The statement about the maximal degrees follows immediately from
the definition. �

Now we have arrived at the crucial technical theorem of the paper:
Two structures with small maximal degree have a twisted product with
large girth if the first structure has large girth.

Theorem 9. (Algorithm) Consider the finite relational structures A

and B of type τ . Suppose that the girth of A is ≥ k and |A|1/k >
∆(A)∆(B). Then there exists a twisted product C of A and B with
girth ≥ k. The structure C can be constructed in polynomial time (in
|A| and |B|).

Proof. We will define better and better twisted products of A and B.
The number of cycles of minimal length will decrease in every step. We
start with the direct product C0 = A×B. Let Ci denote the twisted
product after Step i. of the algorithm. The bijections determining Ci

are denoted by αi
v,l : A → C (where v is an r-ary relational tuple of B,

1 ≤ l ≤ r and πB ◦ αv,l = vl).
Now we describe Step (i+1). Assume that the girth of Ci is j < k.

Let t ∈ R(B) be an r-ary relational tuple, 1 ≤ l ≤ r and c, c′ ∈ Ci such
that their distance is ≥ k and πB(c) = πB(c

′) = tl. We will specify
other conditions on the choice of t, l, c and c′ later.
Now we will change the bijection αi

t,l but none of the other bijec-

tions defining Ci. The relations of Ci+1 and Ci will agree but the lth

coordinate of the tuples in π−1
B (t).

Set αi+1
t,l = (aa′) ◦ αi

t,l, where (aa′) is the transposition of A flipping
a and a′.
The figure illustrates this idea on the product of two undirected

paths. The number of cycles of length four decreases. (We neglect the
fact that undirected graphs have many degenerate cycles of length two
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when considered as relational structures (digraphs). So we actually do
not work with the shortest cycles in the figure.)

c

c’

We call a cycle short if its length is j. We will prove that the number
of short cycles is strictly less in Ci+1 than in Ci. We correspond to
short cycles in Ci+1 short cycles in Ci. Let ξ denote the following
bijection between the set of relational tuples of Ci+1 and Ci. For a
relational tuple u of Ci+1 set ξ(u) = u if πB(u) 6= t, else ξ(u)h = uh if
h 6= l and ξ(u)l = (aa′) ◦ ul.
We will show that the image of a short cycle under ξ will be short.

Call the tuple u critical if ξ(u) 6= u. This means that πB(u) = t and
the lth coordinate of u is c or c′. The lth coordinate of a critical tuple
is called critical coordinate. We call a pair of tuples (u1, u2) in Ci+1 a
cutting pair if πB(u1) 6= πB(u2) and the tuples intersect. Every cycle
with length ≤ k has a cutting pair: otherwise its image under πA would
be a cycle, too.

Claim: Let t1, . . . , tm be a cycle in Ci+1, where m < max{k, 2j}
and (to, to+1) is a cutting pair. Assume that c (c′) is a coordinate of
both to and to+1. Then c (c′) can not be a critical coordinate of to or
to+1.

The Claim implies that the image of a short cycle under ξ is a (short)
cycle: If the image of two intersecting tuples under ξ will not intersect
then one should be a critical tuple and its critical coordinate should be
in the intersection.

Proof. (of the Claim) We will prove by contradiction. We might sup-
pose that o = m, say t1 is critical, tm is not and the critical coordinate c
is in their intersection. If there is no other adjacent critical-noncritical
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pair of tuples s.t. c′ is the critical coordinate and it is in their intersec-
tion then the path ξ(t1), . . . , ξ(tm) connects c and c′, hence m ≥ k.
If there is such a pair, say (th, th+1) then we distinguish two cases:
If th+1 is critical then ξ(t1), . . . , ξ(th) is a cycle, since ξ(t1) and ξ(th)

contains c′ and the other tuples remained adjacent under ξ. Similarly,
ξ(th+1), . . . , ξ(tm) is a cycle, hence min{h,m − h} ≥ j, so m ≥ 2j, a
contradiction.
In the other case, when th is critical the path ξ(t1), . . . , ξ(th) connects

c′ and c, hence k ≤ h < m, a contradiction.
�

The main step of the algorithm does not increase the girth. The
image of a short cycle under ξ will not be a cycle if it has a cutting
pair such that exactly one of the two tuples is critical and the critical
coordinate is in the intersection. The image of the other short cycles
is still a cycle, and the cutting pairs are the same.
Let us do the main step of the algorithm for all possible triple c ∈

C, l, t (and arbitrary c′) such that πB(c) = tl. This will hit every cycle
of length < max{k, 2j}, since the cutting pairs of a cycle do not change.
If we iterate this (log2(k)+1) times then we will get the required girth.
The number of such triples is O(|B||A|). We need to find c′ in every

step: this requires O(|A||B|) time using Breadth First Search. We
can exchange c and c′ in the appropriate tuples in the same time.
Altogether, the running time of the algorithm is O(|A||A||B|2log(k)).

�

4. Construction of expanders with large girth

We prove Theorem 3 in this section. First we give a probabilistic
existential proof in the spirit of [4, 5].
Lemma 10. Let τ be a finite relational type, k a positive integer and
ε > 0. Then there is a ∆ > 0 such that for every n large enough there
exists a (∆, ε)-expander of type τ on n vertices with girth ≥ k.

Proof. We consider a probability space on the set of relational struc-
tures with base set {1, . . . , 2n}. For every r-ary relational symbol R ∈ τ
and r-tuple u let Pr(u ∈ R) = D

nr−1 independently, where the constant
D will be chosen later. The expected number of cycles with length ≤ k
is O(ckDk), and the expected degree of a vertex is O(cD), where c is
a constant depending only on τ . Set ∆ to be ten times the expected
value of the degree of a vertex.
The Markov inequality implies that the number of elements covered

by the cycles with length ≤ k is at most n/4 with probability 1−on(1),
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and the number of elements with degree at least ∆ is at most n/4 with
probability ≥ 3

5
. Remove every element with large degree or covered by

a short cycle (to get a structure on exactly n elements we may remove
more), and consider the resulted structure A with base set A. With
probability 3

5
− on(1) the girth of A is ≥ k and the maximal degree of

A is bounded.
We have to prove the expander property. Consider the r-ary rela-

tion R and the subsets S1, . . . Sr ⊆ {1, . . . , 2n}. The probability that

|R(S1, . . . , Sr)−Dn
∏

r

i=1
|Si|

nr | < ε
3
Dn is at most 2e−

1

36
ε2Dn by the Cher-

noff bound. Since the number of the possible choices is 22nr this will
hold for a D large enough with probability 1− oD(1) for every r, every
r-ary relational symbol R ∈ τ and every S1, . . . , Sr ⊆ A. In partic-
ular,

∣

∣|R(A)| − Dn
∣

∣ < ε
3
Dn. Hence A is an ε-expander. Altogether,

with probability 3
5
−on(1)−o1(D) the structure A is a (∆, ε)-expander

with girth ≥ k. And this probability is positive if n and D are large
enough. �

Lemma 11. Consider the d-regular undirected graph G = (V,E) with
second largest eigenvalue λ and the integer k ≥ 2. Let S be the rela-
tional structure with base set V and a single k-ary relation Rk:
Rk = {(a1, . . . , ak) : ∀i (ai, ai+1) ∈ E}.

Then the relational structure S is a
(

kdk−1, (k − 1) |λ|
d

)

-expander.

Proof. Note that |Ri| = |V |di−1 and the degree of every element is

idi−1. Set ε = |λ|
d
. We prove by induction on k: First suppose that

k = 2. We will use the expander mixing lemma [6]: for every T,W ⊆ V

the inequality |E(T,W ) − d |T ||W |
|V |

| ≤ λ
√

|T ||W | holds. This implies
∣

∣

∣
R2(T,W )− |T ||W |

|V |2
|R2|

∣

∣

∣
≤ ε|R2|. Hence R2 is an ε-expander relation.

Assume that we have proved the lemma for (k − 1). Consider the
functions x1, . . . , xk : S → [0; 1]. By Lemma 6 we need to show that
∣

∣

∣
Rk(x1, . . . , xk)− |Rk|

∏
k

i=1
|xi|

|V |k

∣

∣

∣
≤ ε(k − 1)|Rk|.

For i = 1, . . . , k define the sequence of functions yi : S → R recur-

sively. Let y0 be the constant 1
d
function and yi+1(a) =

∑

(a,b)∈E

xi(b).

Note that |yi+1| = R2(yi, xi+1). Clearly 0 ≤ max(yi) ≤ di−1 and
Ri(x1, . . . , xi) = |yi|. Now we use the inductional hypothesis:
∣

∣Rk(x1, . . . , xk)− |Rk|
∏

k

i=1
|xi|

|V |k

∣

∣ =
∣

∣

∣
R2(yk−1, xk)− |Rk|

∏
k

i=1
|xi|

|V |k

∣

∣

∣
≤

∣

∣

∣
R2(yk−1, xk)− |R2|

|yk−1||xk|

|V |2

∣

∣

∣
+
∣

∣

∣
|R2|

|yk−1||xk|

|V |2
− |Rk|

∏
k

i=1
|xi|

|V |k

∣

∣

∣
≤
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ε|R2|max(yk−1) +
d|xk|
|V |

∣

∣

∣
|yk−1| −

∏
k−1

i=1
|xi|

|V |k−1 |Rk−1|
∣

∣

∣
≤

ε|Rk|+
d|xk|
|V |

(k − 2)ε|Rk−1| ≤ (k − 1)ε|Rk|

The structure S is a
(

kdk−1, (k − 1)ε
)

-expander. �

Proof. (of Theorem 3) Assume that every relational symbol in R is at
most r-ary. We know that for some d there exists a polynomial time
construction of d-regular expander graphs with eigenvalue gap |λ

d
| < ε

2r
,

see [14, 11].
On the other hand by Lemma 10 there exists an ε

2
-expander A with

girth at least k such that |A|
1

k > rdr−1∆(A) holds. If n is large enough
then there exists such an A of size log(n) by Theorem 10, and so we
can find it in polynomial time.
We construct an expander graph G of size n

|A|
with the above prop-

erties. Lemma 11 shows how to construct an ε r−1
2r

-expander B on the
vertex set of G with maximal degree rdr−1. The conditions of Lemma 9
hold for A and B, hence there exists a polynomial time constructible
twisted product C of A and B with girth at least k. Now C is an
ε-expander by Lemma 8 with maximal degree at most M = rdr−1∆(A)
and girth at least k. �

5. CSP vs MMSNP

Now we prove Theorem 2 showing that CSP and MMSNP are com-
putationally equivalent. Feder and Vardi [5] proved the following (see
[9] for a simple proof).

Theorem 12. Let L be an MMSNP language. Then there is a finite
set of relational structures T and a positive integer k such that

(1) L has a polynomial time reduction to CSP (T ).
(2) CSP (T ) restricted to structures with girth at least k has a poly-

nomial time reduction to L.

Theorem 1 and Theorem ?? would imply Theorem 2. So we succeed
to prove Theorem 1.
Lemma 13. Consider the structures A,B and T of type τ , where A

is an ε-expander. Suppose that every relational symbol in τ is at most
r-ary and ε|T |r < 1. Let C be a twisted product of A and B. Then B

is homomorphic to T iff C is homomorphic to T.

Proof. By the definition of the twisted product there is a homomor-
phism πB : C → B. If B is homomorphic to T then so is C. In
order to prove the converse assume that there exists a homomorphism
ϕ : C → T. Let us define the mapping ξ : B → T in the following way.
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For an element b ∈ B let ξ(b) be one of the elements of T such that

|π−1
B (b) ∩ ϕ−1(ξ(b))| ≥ |A|

|T |
. We will show that ξ is a homomorphism.

Let R be an r-ary relational symbol in τ , b = (b1, . . . , br) ∈ R(B). We
need to show that (ξ(b1), . . . , ξ(br)) ∈ R(T).
Set Si = ϕ−1(ξ(bi)) ∩ π−1

B (bi). We succeed to show that there is
a tuple (c1, . . . , cr) ∈ R(C) with ci ∈ Si: In this case the tuple
(ξ(b1), . . . , ξ(br)) = (ϕ(c1), . . . , ϕ(cr)) would be in R(T), since ϕ is
a homomorphism.
Denote the bijections corresponding to b determining the twisted

product C by αb,i : A → π−1
B (bi). The tuple (c1, . . . , cr) (where ci ∈

π−1
B (bi) for every i) is in R(C) iff

(

α−1
b,1(c1), . . . , α

−1
b,r (cr)

)

∈ R(A).

We use the expander property ofA for the sets α−1
b,i (Si) for 1 ≤ i ≤ r.

Since R(C)(S1, . . . , Sl) = R(A)(α−1
b,1(S1), . . . , α

−1
b,r (Sr)) we have

∣

∣R(C)(S1, . . . , Sl)− |R(A)|

∏l
i=1 |Si|

|A|l
∣

∣ ≤ ε|R(A)|.

On the other hand |R(A)|
∏

l

i=1
|Si|

|A|l
> ε|R(A)| by the choice of the

sets Si and ε. Hence R(C)(S1, . . . , Sr) > 0, there exists an appropriate
tuple (c1, . . . , cr) ∈ R(C). This completes the proof of the lemma. �

Proof. (of Theorem 1) Let us choose r such that every relational symbol
in τ is at most r-ary. Consider a 1

tr+1
-expander A with girth > k and

bounded degree. Hence if |A| is large enough then |A|
1

k > ∆(A)∆(S)
holds. Such an expander A can be constructed in polynomial time
(of |S|) for fixed t and k. Now we can use Lemma 9 for A = A and
B = S to construct a twisted product C of girth at least k. Set S′ = C.
Lemma 13 implies Theorem 1. �
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