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Abstract

Erdös conjectured that if G is a triangle free graph of chromatic number at least
k ≥ 3, then it contains an odd cycle of length at least k2−o(1) [12, 14]. Nothing
better than a linear bound ([3], Problem 5.1.55 in [15]) was so far known. We make
progress on this conjecture by showing that G contains an odd cycle of length at
least O(k log log k). Erdös’ conjecture is known to hold for graphs with girth at least
5. We show that if a girth 4 graph is C5 free, then Erdös’ conjecture holds. When
the number of vertices is not too large we can prove better bounds on χ. We also
give bounds on the chromatic number of graphs with at most r cycles of length
1 mod k, or at most s cycles of length 2 mod k, or no cycles of length 3 mod k. Our
techniques essentially consist of using a depth first search tree to decompose the graph
into ordered paths, which are then fed to an online coloring algorithm. Using this
technique we give simple proofs of some old results, and also obtain several simpler
results. We also obtain a lower bound on the number of colors an online coloring
algorithm needs to use on triangle free graphs.

1 Introduction

For a graph G, let ℓ(G) denote the length of a longest odd cycle (odd circumference), L(G)
denote the set of different odd cycle lengths, C(G) denote the set of different cycle lengths
(cycle-spectrum) and let χ(G) denote the chromatic number (the G will be dropped if the
graph is clear). What can we say about L(G), C(G) or ℓ(G) given that χ(G) is at least

1

http://arxiv.org/abs/0809.1710v1


k? This question is an active area of research. See [2], [3], [5], [12], [14]. The following
conjecture is attributed to Erdös.

Conjecture 1 (Erdös [14],[12]) Let G be a triangle free graph of chromatic number
k ≥ 3. Then G contains an odd cycle of length at least k2−o(1).

That χ ≥ k implies the existence of an odd cycle of length at least k − 1 is well
known ([3] or Problem 5.1.55 in [15]). In fact the bound holds for general graphs (i.e. not
necessarily triangle free). A bound of Ω(k2) is known for graphs of girth 5. To the best
of our knowledge, nothing better is known. Our results give an improvement over these
bounds.

The following will be used through out the paper. The circumference of any 2-connected
graph is at most 2ℓ(G)− 2 (see Problem 5.1.55 in[15] or [5]). Since the odd cycle lengths
possible is a subset of {3, 5 . . . ℓ}, we have 2|L(G)|+ 1 ≤ ℓ. The number of different cycle
lengths is at most the circumference. By the length of a path we mean the number of edges
in that path. The distance between two vertices in a connected graph is the length of a
shortest path between them.

2 Our Results

We improve upon the linear bound on χ in terms of ℓ, for triangle free graphs. In particular,
we show that if G is a triangle free graph, then χ ≤ 15ℓ

log log ℓ
. When the number of vertices

is not too large, we can improve the above bound. Specifically χ ≤ O(
√

ℓ
log ℓ

log n).

For graphs of girth at least 5, an Ω(k2) bound is known (see [2], [12]). Thus the only
case where Erdös’ conjecture is not known to hold is that of graphs of girth 4. We show
that if a girth 4 graph has no C5 present, then Erdös’ conjecture holds.

For proving most of the above results, we shall decompose the graph into ordered paths
by using a depth first search tree, and then use online coloring algorithms on these paths.

We use this technique to prove bounds on the chromatic number when the graph has
at most r cycles of length 1 mod k and also when it has at most s cycles of length 2 mod k.
These results generalize earlier results mentioned in [13].

The use of online coloring leads to questions about how well can we color triangle free
graphs online. Halldórsson and Szegedy [4] gave lower bounds on the number of colors
used by online coloring algorithms. However their construction may contain triangles. We
give a simple construction to show that for every online coloring algorithm and for every
n, there is a triangle free graph on n vertices, for which the algorithm will need Ω(

√
n)

colors.

The idea of using online coloring after a depth first search ordering has been used before
(see [13]). We use this to show simple proofs of linear bounds on χ(G) in terms of L(G)
and ℓ(G), and also give very simple proofs of two other results.
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3 Depth First Search and Online Coloring

In this section we demonstrate the depth first search(DFS) (see [1]) and Online Coloring
(see [6]) method. As is well known, a DFS tree (T ) is a spanning tree of a connected
graph G rooted at a vertex (say v0), with the property that any edge in G either belongs
to T or is between an ancestor and a descendant in the tree (also called a back edge). For
i ≤ j, let V [i, j] denote the vertices at distance (in T ) at least i, but at most j from the
root. In particular, V [i, i] := V [i] denotes the sphere or radius i around the root, and
V [i, j] = ∪i≤k≤jV [k]. Since all edges of G connect vertices at different distances from v0 in
T , each V [i] is an independent set. We begin by giving simple proofs of two well known
theorems. The first was proved by Gyárfás [3], answering a question of Erdös and Bollobás.
He in fact characterized the graphs for which the inequality below is tight. The second
theorem is a result of Erdös and Hajnal (see Problem 5.1.55 of [15]). A strengthening of
this was proved in [5].

Theorem 1 (Gyárfás [3]).

χ(G) ≤ 2|L(G)|+ 2 (1)

Proof: Let T be a DFS tree of G, rooted at v0. Let Vi be the vertices of T located at
distance i in T from v0. Each Vi is an independent set. An odd(even) level refers to a level
Vi with i odd(even). A vertex in level Vi is adjacent to a vertex in level Vj, then we say
that the levels Vi and Vj are adjacent. No odd(even) level can be adjacent to more than
L(G) other odd(even) levels. To see this, note that if Vi and Vj (i and j of same parity)
are adjacent, then there are vertices vi ∈ Vi and vj ∈ Vj that are adjacent in G by a back
edge, and there is a path of even length |j − i| in T joining vi to vj . This gives an odd
cycle of length |j − i| + 1. So if an odd(even) level is adjacent to more than L(G) other
odd(even) levels, then G contains more than L(G) distinct odd cycle lengths.

So, in increasing order of levels, greedily assign colors from {0, 1 . . . L(G)} to odd lev-
els. Similarly, in increasing order of levels, greedily assign colors from {L(G) + 1, L(G) +
2 . . . 2L(G) + 1} to even levels. This gives a proper coloring of G using 2L(G) + 2 colors.
In [3], Gyárfás in fact proves a stronger structural result, that the above bound is tight
only for graphs containing K2|L(G)|+2.

The bound of inequality (2) follows easily as follows. Since 3, 5 . . . , ℓ are the only pos-
sible odd cycle lengths, L(G) ≤ ℓ−1

2
. The above theorem thus implies the following result

of Erdös and Hajnal. We also give a direct proof, which is a simplification of the above
proof.

Theorem 2 (Erdös-Hajnal (Problem 5.1.55 in [15])).

χ(G) ≤ ℓ(G) + 1 (2)
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Proof: As before, let T be a Depth First Search (DFS)[1] tree of G, rooted at v0. Let Vi

be the vertices of T located at distance i from v0 in T . By a property of DFS trees, each Vi

is an independent set. Assign the color i mod (ℓ+ 1) to vertices in Vi. We claim that this
is a proper coloring of G. For suppose that v and u are two vertices adjacent to each other
with the same color. Let v and u be at distances i and j from the root v0. Since they are
adjacent i 6= j. Since they get the same color, |j − i| = 0 mod (ℓ + 1). Hence the unique
path in T from v to u along with the uv edge forms an odd cycle of length ℓ + 2 in G,
which is a contradiction. In [5] it is proved that the this is tight only for graphs containing
a Kℓ+1.

The coloring procedures we used in the proofs above are examples of Online Coloring
algorithms, where the algorithm knows the number of vertices a priori. We explain this
below (see Kierstead’s survey [6] for more details).

An online graph G≺, is a graph G = (V,E) with a total order ≺ on its vertices. Suppose
v1, v2, . . . , vn is an ordering of the vertices of G such that vi ≺ vi+1 for i = 1 . . . n. An online
coloring algorithm A takes as input G≺, one vertex at a time in the order imposed by ≺. It
produces a proper coloring of the vertices, but the color assigned to the i-th vertex depends
only on the graph induced by the vertices v1, v2, . . . , vi. Thus the algorithm irrevocably
assigns a color to a vertex based on the vertices it has seen so far. While online coloring
algorithms may be randomized, in this paper, all algorithms considered are deterministic.
Let χA(G

≺) denote the number of colors used by A on G≺ and let χA(G) denote the
maximum of χA(G

≺) across all orderings ≺ of its vertices. Let Γ be a class of graphs.
For every non-negative integer n, let χA

Γ (n) denote the maximum of χA(G) over all n
vertex graphs from Γ (most of the notation follows Kierstead’s survey [6]). The following
theorem explains how to get bounds for the chromatic number by using DFS trees and
online coloring.

Theorem 3 Let A be any online coloring algorithm for graphs in the family Γ. Any graph
G ∈ Γ with a DFS tree T of depth h can be colored with χA

Γ (h+ 1) colors.

Proof: For convenience, let f(n) denote χA
Γ (n). Let P1, P2, . . . , Pk be the unique paths

from the root node v0, to the leaves w1, w2, . . . , wk of T . Color each Pi by presenting it to
the procedure A one vertex at a time, in order of increasing distance from v0. For any i
and j, let Pi ∩ Pj = {v0, v1, . . . , vt} where vi is at distance i from v0. When Pi or Pj was
being colored, the first t+ 1 vertices presented to A were v0, v1, . . . , vt in that exact order.
Since A is deterministic, the colors assigned by it to these t + 1 vertices when coloring Pi

is the same as those when coloring Pj . Letting each vertex have the color it was assigned
by the algorithm, gives a proper coloring of G. Since the length of each path was at most
h, A needs to use no more than f(h+ 1) colors.

Thus the use of the DFS tree and online coloring relates the chromatic number to the
height of tree.
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Theorem 4 Let A be an online coloring algorithm for graphs in the family Γ. Let G ∈ Γ
have odd circumference ℓ. Then we can color it with 3χΓ,A(ℓ) colors.

Proof: If G has a cut vertex, then we can apply induction. So assume that G is 2-
connected. As before, let f(n) denote χA

Γ (n). Using three different palettes of f(ℓ) colors,
color the subtrees of T induced by V [i, i + ℓ], V [i + ℓ + 1, i + 2ℓ], V [i + 2ℓ + 1, i + 3ℓ], by
using A as in the above theorem. Do this for i = 0, 3ℓ+ 1, 6ℓ+ 1, ..... This yields a proper
coloring of G. If there are two adjacent vertices u and v that get the same color, then from
the above we see that there is a path in T of length at least 3ℓ between u and v. Along
with the edge uv, this gives a cycle of length 3ℓ+1. However, any 2-connected graph with
odd circumference has a circumference of at most 2ℓ−2 (see lemma(3) in [5]). This proves
the theorem.

While online algorithms need not have a priori knowledge of the number of vertices or
the odd circumference of G, since we are primarily concerned with bounds on χ, we assume
as and when required that the algorithm is given information about ℓ and n.

In the next section we use the above theorem to prove sublinear bounds on coloring
triangle free graphs. We conclude this section with two simple applications of theorem (3).

Theorem 5 If G is triangle free, then the following holds.

χ ≤ ℓ+ 3

2
if ℓ = 1 mod 4 (3)

χ ≤ ℓ+ 5

2
if ℓ = −1 mod 4 (4)

Proof: From theorem (3) it suffices to prove that there is a deterministic online coloring
algorithmA, which when presented any triangle free graph P = {v1, v2 . . . vn} on n vertices,
with each vi adjacent to vi+1 for i = 1, . . . , n− 1, in the order v1 ≺ v2 ≺ . . . ≺ vn, uses at
most the number of colors mentioned in the statement of the theorem. Algorithm A works
as follows. A is given the odd circumference ℓ. Let ℓ′ be ℓ + 3 if ℓ = 1 mod 4 and ℓ + 5 if
ℓ = −1 mod 4. Then ℓ′ is a multiple of 4. We are going to partition the incoming vertices
into groups of four, and color each group using two colors. Consider an incoming vertex
vi. Let i

′ = i mod ℓ′. Let i′ considered as an integer be at least 4k and at most 4k + 3 for
some k. If i′ is either 4k or 4k + 2, color it with color k + 1, else color it with color k + 2.

The algorithm produces a proper coloring. Else there is a path P ′ with vertices vx and
vy that get the same color. Since we use online graphs, we may assume that x ≺ y. If
y = x+ 1, then if x mod ℓ′ is 4k or 4k + 2, then y mod ℓ′ is 4k + 1 or 4k + 3 respectively.
So they get different colors. So suppose that vxvy is a back edge. If y = x+2, then vy and
vx cannot be adjacent as G is triangle free. Then, from the algorithm it follows that there
is a subpath of even length at least ℓ′ − 2 from vx to vy. Along with the edge vxvy, this
gives an odd cycle of length at least ℓ′ − 1, i.e. at least ℓ+ 2. This is a contradiction.
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For counting the number of colors, note that the vertices are partitioned into ℓ′

4
groups

of size four, and two colors are used on each group. Thus the number of colors used is
2 ℓ′

4
= ℓ′

2
, which is the statement of the theorem.

In the following theorem, the graph need not be triangle free.

Theorem 6 If p is the length of a longest path in a graph G with clique number ω, then

χ ≤ p+ ω

2
(5)

Proof: From theorem (3) it suffices to show that there exists an online coloring procedure
that uses at most n+ω

2
colors when presented a graph on n vertices and clique number at

most ω. We show that the First Fit (FF) procedure suffices for this. In the FF algorithm
the colors correspond to integers, and each incoming vertex is assigned the smallest color
to which it is not adjacent. Suppose a graph P on n vertices and clique number at most
ω is presented online to the FF algorithm, and let x be the number of colors used by FF
to color these n vertices. Let t be the number of colors with only one vertex in their color
classes, and let u1, u2 . . . ut be the corresponding vertices. Wlog suppose that ui occurs
before ui+1 in the online order, for i = 1 . . . t− 1. Since exactly x colors are used, we have

t+ 2(x− t) ≤ n (6)

This implies that x ≤ n+t
2
. Since we are using First Fit, and each ui is the only vertex of

its color, every ui is adjacent to all uj for j less than i. Thus P [u1, u2 . . . ut] is the clique
Kt. Thus t ≤ ω, giving x ≤ n+ω

2
, which proves the theorem.

4 Sublinear Bounds on χ

In this section we prove the sublinear bounds on χ for triangle free graphs, as a function of ℓ.

Theorem 7 If G is a triangle free graph, then χ ≤ 15ℓ
log log ℓ

.

Proof: By theorems (3) and (4) it suffices to show that there is an online algorithm A
with χA

Γ (n) at most O( n
log logn

), where Γ is the class of all triangle free graphs. We use the
following result.

Theorem 8 (Lovász, Saks and Trotter [7]) Every online graph G can be partitioned
deterministically into sets D1, D2, . . . , Dd and C1, C2, . . . , Cr, where each Di is independent
and each Ci is contained in the neighborhood of some vertex; if we take d = n/ log log n,
then r = 4n/ log logn.
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Thus, if G is a triangle free graph, then each Ci in the above theorem is independent
as it lies in the neighborhood of a vertex. Thus A uses the above online partitioning
algorithm to partition the online graph into at most 5n/ log log n independent sets, where
each independent set corresponds to a color class. Thus χA

Γ (n) ≤ 5n
log logn

. Now, using

Theorem 4, we can color any triangle free graph with 15ℓ
log log ℓ

colors.

Thus, if a triangle free graph has chromatic number at least k ≥ 3, then it contains
an odd cycle of length at least Ω(k log log k). This is far from the Ω(k2) bound in Erdös’
conjecture, but is certainly an improvement to Ω(k) bounds known so far. A quadratic
bound is known for graphs with girth at least 5. We give a simple proof below.

Theorem 9 If G is a graph of girth at least 5, then χ ≤ O(
√
ℓ).

Proof: A result weaker than the above two can be proved using online coloring. We show
that there is an online coloring algorithm A with χA

Γ (n) ≤ 2
√
n, where Γ is the class of

graphs of girth at least 5. Let k = 2
√
n and let A be the first fit algorithm. Suppose

the n-th vertex is adjacent to vertices of each of the k colors, and let u1, u2 . . . uk be these
vertices, where ui has color i. Then each vertex ui is adjacent to vertices wi

1 . . . w
i
i−1 of

each of the colors 1, 2 . . . i − 1. Since the girth is at least 5, no wj
i equals another wj′

i for
j 6= j′. Hence there are at least 1 + 2 + 3 + · · ·+ k vertices, which exceeds n. Since this is
impossible, the theorem follows.

We note that since the circumference can be at most 2ℓ − 2, the number of different
cycle lengths is at most 2ℓ− 2. Thus, theorem (2.5) of [12] and theorem (1) of [2] are both
strengthening of the above theorem.

For triangle free graphs that contain a C4, no such quadratic bound is known. However,
for triangle free graphs that may contain a C4 but no C5, we have the following bound.

Theorem 10 If G be a triangle free graph with no C5 subgraph, then χ ≤ 6
√
ℓ.

Proof: Let Γ be the class of triangle free graphs with no C5. By theorems (4) and (3) it
suffices to find an online coloring algorithm A such that χA

Γ (n) ≤ 2
√
n. We can use the

following result of Kierstead.

Theorem 11 (Kierstead [6]) For every positive integer n, there exists an on-line coloring
algorithm B such that χB(G) ≤ 2

√
n, for any graph on n vertices that contains neither C5

nor K3.

If we let A be the algorithm of the above theorem, then χA
Γ (n) ≤ 2

√
n. Hence graphs

that are K3 and C5 free are 6
√
ℓ colorable.

It is known that if G is a triangle free graph on n vertices, then χ(G) ≤ O(
√

n
logn

) (see

[10]). When the circumference is small, we can get a better bound on χ(G).
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Theorem 12 If G is a triangle free graph on n vertices, then χ ≤ O(
√

ℓ
log ℓ

log n).

Proof: As before, do a DFS on G. As in theorem (4) split the DFS tree into levels of

height ℓ. It suffices to color a height ℓ tree with O(
√

ℓ
log ℓ

logn) colors. So let T be a DFS

tree of height ℓ, and suppose it has k leaves. Trace the following path P in the tree starting
from the root. At each vertex vi we encounter, follow that path to the subtree of vi with
the largest number of leaves. Clearly, each subtree of T − P has at most half the number

of leaves as those in T . We will color P with
√

ℓ
log ℓ

colors. We then recurse this procedure

on each of the subtrees of T −P , where the same palette of colors is used for two subtrees
with roots at the same depth from the root in T (since T was a DFS tree, there are no
edges between such subtrees). Since the number of leaves in each subtree is at least halved
at each step, there can be at most log n levels in the recursion.

Since T has height at most ℓ, each of the paths generated in the recursion has at most ℓ

vertices. Since G is triangle free, each such path can be colored with O(
√

ℓ
log ℓ

) colors. Since

there are at most log n levels of recursion, G can be colored with at most O(
√

ℓ
log ℓ

log n)

colors (using theorem (4)).

Note that if every path in G is k colorable, then each of the paths we generated the
above proof can be colored with k colors. Thus we have the following corollary (also see
[11] for a similar result).

Corollary 1 If every path in a graph G is k colorable, then G is 3k logn colorable.

5 Coloring With Excluded Cycle Lengths

In this section we prove some results that follow directly from the above technique of using
DFS and online coloring. Tuza and Toft [13] observed that every graph with chromatic
number greater than k, has a cycle of length divisible by k. This is equivalent to saying
that if a graph has no cycle of length 0 mod k, then the graph is k colorable. Tuza also
proves that if G has no cycle of length 1 mod k then G is k colorable. We extend this to
the case when there are at most r distinct cycles of lengths one more than a multiple of k.
When k = 2, we recover the result of theorem (1).

We will use the following notation: if u and v are two vertices in a given tree T , then
the unique path in T between them will be denoted by Puv.

Theorem 13 Let k be a non negative integer. If a graph G has at most r cycles of different
length 1 mod k, then χ(G) ≤ rk + k.

Proof: Let T be a DFS tree of G. Let A be the first fit online coloring algorithm. For
i = 0 . . . k− 1, let Wi be the vertices at distance i mod k from the root vertex v0. We feed
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each Wi to A as follows: the next vertex is that among the uncolored vertices of Wi, closest
in T to v0 (ties are broken arbitrarily).

We claim that each Wi can be colored with at most r + 1 colors. For suppose A is
coloring the vertex v in Wi. Let w1, w2, . . . , wt be the colored vertices of Wi adjacent to
v, through the edges e1, e2, . . . , et. Since v and each wj is in Wi, each Pvwj

has length
0 mod k. Thus, each of the cycles Pvwj

ej for j = 1, . . . , t have length 1 mod k. Thus k ≤ r,
and so A uses no more than r + 1 colors on each Wi.

By using a different palette for coloring each Wi, we get a (r + 1)k coloring of G.

We extend this for the case when the graph has at most s cycles of length 2 mod k.

Theorem 14 Let k be a non negative integer. If a graph G has at most s cycles of different
lengths 2 mod k, then χ(G) ≤ sk + k + 1.

Proof: Let T be a DFS tree of G and let A be the first fit algorithm. As in theorem (3)
let P1, P2, . . . , Pk be the unique paths from the root node v0, to the leaves of T . Color each
Pi by presenting it to A one vertex at a time, in order of increasing distance from v0.

Consider a vertex v at a distance i mod k from v0. Let u1, u2, . . . , ut be its ancestors at
distance (i− 1) mod k from v0. Let e1, e2, . . . , et be the edges through which v is adjacent
to u1, . . . , uk respectively. We may assume that u1 is the immediate ancestor of v in T .
Then e1 is a tree edge and e2, . . . , et are back edges. Clearly, all the ui’s lie on the path
Pv0v in T from v0 to v. Since the ui’s are at the same distance modulo k from v0, the paths
in T between them have lengths 0 mod k. Then for each ui with i = 2, . . . , t, each of the
t − 1 cycles, ei, Puiu1

, e1, have length 2 mod k. So t ≤ s + 1. Hence if v is adjacent to at
least sk + k + 1 of its ancestors, then at least sk + k + 1− (s+ 1) = (s+ 1)(k − 1) + 1 of
these are at distances different from (i− 1) mod k. Then there are at least s + 2 of these
adjacent ancestors (say w1, . . . , ws+2), which are at the same distance modulo k from v0.
For j = 1, . . . , s+ 2, let fj denote the edge vwj. Then f1, Pw1wj

, fj for j = 2, . . . , s+ 2 are
s+ 1 cycles of length 2 mod k. Thus v can be adjacent to at most sk + k of its ancestors.
So A uses at most sk + k + 1 colors on G.

We have the following obvious corollary.

Corollary 2 Let k be a non negative integer. If a graph G has no cycles of length 2 mod k,
then χ(G) ≤ k + 1.

When k = 2, then the condition of the theorem is equivalent to stating that the graph
has at most s cycles of different even lengths. We thus recover the following bound first
proved by Mihók and Schiermeyer [9].

Corollary 3 (Mihók and Schiermeyer [9]) If a graph G has at most s even length
cycles of different lengths, then χ(G) ≤ 2s+ 3.
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Mihók and Schiermeyer [9] also gave a structural result to characterize the graphs for
which the above inequality if tight.

If G has no cycles modulo 3, we get a 2k bound. We suspect that this is far from tight.

Theorem 15 If G is a graph with no cycles of length 3 mod k, then G is 2k colorable.

Proof: Let T be a DFS tree of G and let V [i] be the vertices at distance i from the root
v0. Let Wi be the vertices at distance i modulo k from v0 i.e.

Wi = ∪j=i mod kV [j] (7)

Let Hi be the subgraph of G induced by Wi. We claim that each of the Hi’s are acyclic.
Suppose that C is a cycle in Hi. Let u be a vertex of C, furthest from the root, and let
v and w be the two neighbors of u in C. We assume without loss of generality that v is
an ancestor of w. Let e1 and e2 denote the edges uv and uw respectively. Let x be the
neighbor of w, other than u in C. Suppose x is an ancestor of w. Since v and x lie in Hi,
Pvx has length 0 mod k. Then the cycle e1, Pvx, the edge from x to w, and the edge e2
give a 3 mod k cycle in G. So suppose that x is a descendant of w. Since C is a cycle and
no cross edges are allowed in T , there is an edge e3 of C, joining a descendant of w (say
z), with an ancestor of w (say y). Since v, w, y, z are in Hi, the paths Pvz and Pyw have
lengths 0 mod k. Then the cycle consisting of the edges e1, the path Pvz, the edge e3, the
path Pyw, and the edge e2, give a cycle of length 3 mod k in G. Thus each Hi is acyclic.
Now we can color each Hi with a different set of 2 colors to get a 2k coloring of G.

A special case of the above is when k equals 3. Then there are no cycles of length
0 mod k. We thus have the following result.

Corollary 4 If G is a graph with no cycle of length 0 mod 3, then G is 6 colorable.

6 Lower Bound For Online Coloring

Let Γ be the class of triangle free graphs. We have seen that if there is an online coloring
algorithm A with χA

Γ (n) ≤ f(n), then for each G ∈ Γ χ(G) ≤ 3f(ℓ). This raises the
question of how good can χA

Γ (n) be? We show that it cannot be less than
√
n.

Theorem 16 Let A be any online coloring algorithm. Then for each n, there is an n
vertex graph G in Γ with an ordering ≺, such that A takes at least

√
n colors to color the

online graph G≺.

Proof: Let S1 . . . Sk be the k subsets of [k] = {1, 2 . . . k}, where Si = [k] − {i}. We
assign colors from [k] to the vertices, while the algorithm A will assign the vertices to
bins. Initially, set the current color set to be S1. When the next vertex v arrives, make
it adjacent to all vertices colored i, where Si is the current color set. Let the algorithm
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assign v to the bin B. Choose a color in Si that is not in B, and assign it to v. If B gets
all the k colors, change the current color set to Si+1. Run this procedure for k2 vertices.

Since the neighborhood of each vertex is independent, the graph is triangle free. It is
clearly k colorable. Also, since each bin can contain no more than k vertices, there are at
least k bins. Thus any online procedure will use k i.e.

√
n colors.

This example is tight for the First Fit coloring algorithm. The graph generated for
the First Fit algorithm has maximum degree of k, and hence is O(k/ log k) colorable by
Johansson’s result ([8]). Note that we reveal the color we assign to a vertex to the algorithm.
This idea is also used in the construction of Halldórsson and Szegedy [4], which holds for
general graphs (i.e. may contain triangles).

7 Conclusion

There are triangle free graphs with chromatic number Ω(
√

ℓ
log ℓ

). While Erdös’ conjecture

states that there cannot be a triangle free graph with chromatic number greater than
√
ℓ.

We have proved an upper bound of 15ℓ
log log ℓ

. The exact values remain unresolved.
Another question is how well can an online algorithm perform on a triangle free graph?

We have shown that it can do no better than
√
n. If there is an online coloring algorithm

that takes at most
√
n colors, then we prove the above conjecture.

There are also several interesting questions that can be asked about the chromatic
number of graphs without certain cycles. We suspect that if G does not have cycles of
length a mod k, then χ(G) ≤ k + f(k), where f(k) = o(k) (possibly a constant). See [13]
and [12] for more open problems.
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[7] László Lovász and Michael Saks and William T. Trotter, An Online Graph Coloring
Algorithm With Sublinear Performance Ratio, Discrete Mathematics, 75, 319-325,
(1989).

[8] Michael Molloy and Bruce Reed, Graph Coloring and the Probabilistic Method,
Springer Berlin, 2000.
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