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Abstract

We prove that, for every integer k ≥ 1, every shortest-path metric on a graph of pathwidth
k embeds into a distribution over random trees with distortion at most c = c(k), independent of
the graph size. A well-known conjecture of Gupta, Newman, Rabinovich, and Sinclair [GNRS04]
states that for every minor-closed family of graphs F , there is a constant c(F) such that the
multi-commodity max-flow/min-cut gap for every flow instance on a graph from F is at most
c(F). The preceding embedding theorem is used to prove this conjecture whenever the family
F does not contain all trees.

1 Introduction

We view an undirected graph G = (V,E) as a topological template that supports a number of
different geometries. Such a geometry is specified by a non-negative length function len : E → [0,∞)
on edges, which induces a shortest-path pseudometric dlen on V , with

dlen(u, v) = length of the shortest path between u and v in G,

where a pseudometric might have dlen(u, v) = 0 for some pairs u, v ∈ V with u 6= v. A pseudometric
d is supported on G if d = dlen for some such len : E → [0,∞). From this point of view, we are
interested in properties which hold simultaneously for all geometries supported on G, or even for
all geometries supported on a family of graphs F . In what follows, we will deal exclusively with
finite graphs and families of finite graphs unless explicitly stated otherwise.

In the seminal works of Linial-London-Rabinovich [LLR95] and Aumann-Rabani [AR98], and
later Gupta-Newman-Rabinovich-Sinclair [GNRS04], the geometry of graphs is related to the clas-
sical study of the relationship between flows and cuts.

Multi-commodity flows and L1 embeddings. For a metric space (X, d), we use c1(X, d) to
denote the L1 distortion of (X, d), i.e. the infimum over all numbers D such that X admits an
embedding f : X → L1 with

d(x, y) ≤ ‖f(x)− f(y)‖1 ≤ D · d(x, y)

for all x, y ∈ X. Here, we have L1 = L1([0, 1]), which can be replaced by the sequence space `1
when X is finite.
∗A portion of the results in this paper were announced at the 41st Annual Symposium on the Theory of Computing

[LS09].
†Computer Science & Engineering, University of Washington. Research partially supported by NSF grant CCF-

0644037 and a Sloan Research Fellowship. E-mail: jrl@cs.washington.edu.
‡Toyota Technological Institute at Chicago. E-mail: tasos@ttic.edu.

1

ar
X

iv
:0

91
0.

14
09

v3
  [

m
at

h.
M

G
] 

 6
 O

ct
 2

01
2



Corresponding to the preceding discussion, for a graph G = (V,E) we write c1(G) = sup c1(V, d)
where d ranges over all metrics supported on G. For a family F of graphs, we write c1(F) =
supG∈F c1(G). Thus for a family F of finite graphs, c1(F) ≤ D if and only if every geometry
supported on a graph in F embeds into L1 with distortion at most D.

A multi-commodity flow instance in G is specified by a pair of non-negative mappings cap : E →
R and dem : V ×V → R. We write maxflow(G; cap,dem) for the value of the maximum concurrent
flow in this instance, which is the maximal value ε such that a flow of value ε · dem(u, v) can be
simultaneously routed between every pair u, v ∈ V while not violating the given edge capacities.

A natural upper bound on maxflow(G; cap, dem) is given by the sparsity of any cut S ⊆ V :

Φ(S; cap,dem) =

∑
uv∈E cap(u, v)|1S(u)− 1S(v)|∑
u,v∈V dem(u, v)|1S(u)− 1S(v)|

, (1)

where 1S : V → {0, 1} is the indicator function for membership in S. In the case where dem(u, v) >
0 for exactly one pair u, v, also known as single-commodity flow [FF56], minimizing the upper bound
(1) over all cuts S ⊆ V computes the minimum u-v cut in G, and the max-flow/min-cut theorem
states that this upper bound is achieved by the corresponding maximum flow.

In general, we write

gap(G) = sup
cap,dem

minS⊆V Φ(S; cap,dem)

maxflow(G; cap,dem)
.

for the maximum ratio between the best upper bound given by (1) and the value of the flow, over
all multi-commodity flow instances on G. This is the multi-commodity max-flow/min-cut gap for
G. Now we can state the fundamental relationship between the geometry of graphs and the flows
they support:

Theorem 1.1 ([LLR95, GNRS04]). For every graph G, c1(G) = gap(G).

In the general Sparsest Cut problem (also known as Sparsest Cut with general demands), given
G, cap, and dem, we want to find a cut in G of minimum sparsity. Combined with the techniques
of [LR99, LLR95], Theorem 1.1 implies that there exists a c1(G)-approximation for the general
Sparsest Cut problem on a graph G. Motivated by this connection, Gupta, Newman, Rabinovich,
and Sinclair sought to characterize the graph families F such that c1(F) <∞, and they posed the
following conjecture. We will say that a family of graphs F forbids some minor if there exists a
graph G that is not a minor of any graph in F .

Conjecture 1 ([GNRS04]). For every family of finite graphs F , one has c1(F) <∞ if and only if
F forbids some minor.

We refer to Section 1.3 for a review of graph minors. Progress on the preceding conjecture has
been limited. Classical work of Okamura and Seymour [OS81] implies that c1(Outerplanar) = 1,
where Outerplanar denotes the class of outerplanar graphs (planar graphs where all vertices lie on a
single face). Gupta, Newman, Rabinovich, and Sinclair [GNRS04] proved that c1(Treewidth(2)) =
O(1), where Treewidth(k) denotes the family of all graphs of treewidth at most k (see, e.g. [Die05]
for a discussion of treewidth, or Section 1.3 for the relevant definitions). This was improved to
c1(Treewidth(2)) = 2 in [LR10, CJLV08]. Finally, in [CGN+06], it is shown that c1(Outerplanar(k)) <
2O(k) for all k ∈ N, where Outerplanar(k) denotes the class of k-outerplanar graphs. We remark that
a strengthening of Conjecture 1, regarding integer multi-commodity flows, has been investigated
by Chekuri, Shepherd, and Weibel [CSW10]. The present paper is devoted to proving the following
special case of Conjecture 1.
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Theorem 1.2. Every minor-closed family of finite graphs F which does not contain every possi-
ble tree satisfies c1(F) < ∞. Equivalently, the multi-commodity max-flow/min-cut gap for F is
uniformly bounded, i.e. gap(F) <∞, whenever F has bounded pathwidth.

We remark that Theorem 1.2 implies a polynomial-time O(1)-approximation algorithm for the
general Sparsest Cut problem on graphs of bounded pathwidth. Recently, an O(1)-approximation
algorithm for graphs of bounded treewidth has been obtained by Chlamtac, Krauthgamer, and
Raghavendra [CKR10]. We also note that [CKR10] uses a different approach, and does not es-
tablish an analogous bound on the multi-commodity max-flow/min-cut gap for graphs of bounded
treewidth (which remains an important open problem).

1.1 Simplifying the topology with random embeddings

A basic question is whether one can embed a graph metric G into a graph metric H with a simpler
topology (for example, perhaps G is planar and H is a tree), where the embedding is required to
have small distortion, i.e. such that every pairwise distance changes by only a bounded amount.
The viability of this approach as a general method was ruled out by Rabinovich and Raz [RR98].
For instance, Ω(n) distortion is required to embed an n-cycle into a tree. In general (see [CG04]),
if all metrics supported on a subdivision of some graph G can be embedded with distortion O(1)
into metrics supported on a family F , then G is a minor of some graph in F , implying that we
have not obtained a reduction in topological complexity.

On the other hand, a classical example attributed to Karp [Kar89] shows that random reductions
might still be effective: If one removes a uniformly random edge from the n-cycle, this gives an
embedding into a random tree which has distortion at most 2 “in expectation.” More formally, if
(X, d) is any finite metric space, and Y is a family of finite metric spaces, we say that (X, d) admits
a stochastic D-embedding into Y if there exists a randomly chosen metric space (Y, dY ) ∈ Y and a
randomly chosen mapping F : X → Y such that the following two properties hold.

Non-contracting. With probability one, for every x, y ∈ X, we have dY (F (x), F (y)) ≥ d(x, y).

Low-expansion. For every x, y ∈ X,

E
[
dY (F (x), F (y))

]
≤ D · d(x, y).

For two graph families F and G, we write F  G if there exists a D <∞ such that every metric
supported on F admits a stochastic D-embedding into the family of metrics supported on G. We

will write F D
 G if we wish to emphasize the particular constant. Finally, we write F 6 G if no

such D exists. The relationship with Conjecture 1 is given by the following simple lemma (see, e.g.
[GNRS04]).

Lemma 1.3. If F D
 G, then c1(F) ≤ D · c1(G).

At first glance,  seems like a powerful operation; indeed, in [GNRS04] it is proved that
OuterPlanar  Trees, where OuterPlanar and Trees are the families of outerplanar graphs and
connected, acylic graphs, respectively. In general, if L is a finite list of graphs, we will write EL
for the family of all graphs which do not have a member of L as a minor. The preceding result
can be restated as E{K2,3}  E{K3}, where Kn and Km,n denote the complete and complete
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bipartite graphs, respectively. Unfortunately, [GNRS04] also showed that this cannot be pushed
much further: E{K4} 6 E{K3}. Restated, this means that even graphs of treewidth 2 cannot be
stochastically embedded into trees.

These lower bounds were extended in [CG04] to show that Treewidth(k + 3) 6 Treewidth(k)
for any k ≥ 1. Finally, in [CJLV08], these results are extended to any family with a weak closure
property, which we describe next.

Sums of graphs. We now introduce a graph operation which will be useful in stating our results.
Suppose that H and G are two graphs and CH , CG are k-cliques in H and G respectively, for some
k ≥ 1. One defines the k-sum of H and G as the graph H⊕kG which results from taking the
disjoint union of H and G and then identifying the two cliques CH and CG, and possibly removing
a subset of the clique edges. We remark that the notation is somewhat ambiguous, as both the
cliques and their identifications are implicit. For a family of graphs F , we write ⊕kF for the closure
of F under i-sums for every i = 1, 2, . . . , k. With this notation in hand, we can state the following
theorem.

Theorem 1.4 ([CJLV08]). If F and G are families of graphs and G is minor-closed, then ⊕2F  G
implies F ⊆ G.

In fact, one case of this theorem relies on Theorem 1.7 proved in the present paper, which states
that for every k = 1, 2, . . . , we have Trees ∩ Pathwidth(k + 1) 6 Pathwidth(k), where Pathwidth(k)
denotes the class of pathwidth-k graphs (see Section 1.3 for the relevant definitions).

Theorem 1.4 implies, for example, that Planar∩Treewidth(k+ 1) 6 Treewidth(k) for any k ≥ 1,
where Planar is the family of planar graphs, since planar graphs and bounded treewidth graphs
are both closed under 2-sums. The assumptions of the preceding theorem imply that even random
embeddings are not particularly useful for reducing the topology when ⊕2F = F . However, some
recent reductions suggest that when ⊕2F 6= F , the situation is more hopeful.

In [CGN+06], it is proved that Outerplanar(k) Trees. Perhaps more surprisingly, it is shown
in [IS07] that Genus(g) Planar, where Genus(g) is the family of graphs embedded on an orientable
surface of genus g, and Genus(0) = Planar. Note that while trees and planar graphs are closed under
2-sums, neither Outerplanar(k) nor Genus(g) are for k ≥ 1 and g ≥ 1.

It should be noted that an extensive amount of work has been done on embedding finite metric
spaces into distributions over trees, where the distortion is allowed to depend on n, the number
of points in the metric space; see, e.g. [Bar96, Bar98, FRT04]. These results are not particularly
useful for us since we desire bounds that are independent of n.

1.2 Results and techniques

We now discuss the main results of the paper, along with the techniques that go into proving them.
In [GNRS04], it is proved that c1(Treewidth(2)) < ∞, and later works [LR10, CJLV08] nailed

down the precise dependence c1(Treewidth(2)) = 2. Resolving whether c1(Treewidth(3)) is finite
seems quite difficult, and is a well-known open problem. In fact, perhaps the simplest “width
3” problem (which was open until the present work) involves the family Pathwidth(3) (recall that
Pathwidth(k) ⊆ Treewidth(k) denotes the family of graphs of pathwidth at most k; see Section 1.3).
These families are fundamental in the graph minor theory (see e.g. [RS83, Lov06]); see Lemma 1.9
for an inductive definition.
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Our main technical theorem shows that graphs of bounded pathwidth can be randomly em-
bedded into trees. In fact, the theorem shows something slightly stronger, that the target trees
themselves can be taken to have bounded pathwidth.

Theorem 1.5. For every k ∈ N, Pathwidth(k) Trees ∩ Pathwidth(k). Quantitatively,

Pathwidth(k)
D
 Trees ∩ Pathwidth(k) ,

for some D ≤ (4k)k
3+1.

In particular, this verifies Conjecture 1 for graphs of bounded pathwidth. The quantitative
bound of Theorem 1.5 is likely far from tight. Naively, one might hope that for D ≤ O(log k),

one has Pathwidth(k)
D
 Trees. But, in fact, known results imply that the distortion must satisfy

D ≥ Ω(k). The k-th level diamond graph (see [GNRS04]) has pathwidth O(k) but it is shown
in [GNRS04] that every stochastic embedding of this graph into a distribution over trees incurs
distortion Ω(k).

Robertson and Seymour [RS83] showed that a minor-closed family F excludes a forest if and
only if F ⊆ Pathwidth(k) for some k ∈ N.

Corollary 1.6. If T is any tree, then E{T} Trees.

As a consequence of this, together with Lemma 1.3, and the elementary fact that c1(Trees) = 1,
we resolve Conjecture 1 whenever F forbids some tree, yielding Theorem 1.2. We remark that
Theorem 1.2 was unknown even for F = Pathwidth(3).

In Section 4, we complement our upper bound by proving the following theorem.

Theorem 1.7. For every k ∈ N, Pathwidth(k + 1) ∩ Trees 6 Pathwidth(k).

This result serves two purposes. First, it shows that our proof of Theorem 1.5, which embeds
Pathwidth(k) directly into trees cannot proceed by inductively reducing the pathwidth by one.
Secondly, it is needed in the proof of Theorem 1.4 in the case when F contains only trees (the
techniques of [CJLV08] handle the case when F contains at least one cycle). We remark that,
perhaps surprisingly, the proof our non-embeddability result (Theorem 1.7) uses our embedding
result (Theorem 1.5).

1.3 Preliminaries

We now review some basic definitions and notions which appear throughout the paper.

Graphs and metrics. We deal exclusively with finite graphs G = (V,E) which are free of loops
and parallel edges. We will also write V (G) and E(G) for the vertex and edge sets of G, respectively.
A metric graph is a graph G equipped with a non-negative length function on edges len : E → R+.
We will denote the pseudometric space associated with a graph G as (V, dG), where dG is the
shortest path metric according to the edge lengths. Note that dG(x, y) = 0 may occur even when
x 6= y, and also if G is disconnected, there will be pairs x, y ∈ V with dG(x, y) =∞. We allow both
possibilities throughout the paper. An important point is that all length functions in the paper are
assumed to be reduced, i.e. they satisfy the property that for every e = (u, v) ∈ E, len(e) = dG(u, v).

Given a metric graph G, we extend the length function to paths P ⊆ E by setting len(P ) =∑
e∈P len(e). For a pair of vertices a, b ∈ P , we use the notation P [a, b] to denote the sub-path
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of P from a to b. We recall that for a subset S ⊆ V , G[S] represents the induced graph on S.
For a pair of subsets S, T ⊆ V , we use the notations E(S, T ) = {(u, v) ∈ E : u ∈ S, v ∈ T} and
E(S) = E(S, S). For a vertex u ∈ V , we write N(u) = {v ∈ V : (u, v) ∈ E}.

Graph minors. If H and G are two graphs, one says that H is a minor of G if H can be obtained
from G by a sequence of zero or more of the three operations: edge deletion, vertex deletion, and
edge contraction. G is said to be H-minor-free if H is not a minor of G. We refer to [Lov06, Die05]
for a more extensive discussion of the vast graph minor theory.

Equivalently, H is a minor of G if there exists a collection of disjoint sets {Av}v∈V (H) with
Av ⊆ V (G) for each v ∈ V (H), such that each Av is connected in G, and there is an edge between
Au and Av whenever (u, v) ∈ E(H). A metric space (X, d) is said to be H-minor-free if it is
supported on some H-minor-free graph.

Treewidth. The notion of treewidth involves a representation of a graph as a tree, called a tree
decomposition. More precisely, a tree decomposition of a graph G = (V,E) is a pair (T, χ) in which
T = (I, F ) is a tree and χ = {χi | i ∈ I} is a family of subsets of V (G) such that (1)

⋃
i∈I χi = V ;

(2) for each edge e = {u, v} ∈ E, there exists an i ∈ I such that both u and v belong to χi; and
(3) for all v ∈ V , the set of nodes {i ∈ I | v ∈ χi} forms a connected subtree of T . To distinguish
between vertices of the original graph G and vertices of T in the tree decomposition, we call vertices
of T nodes and their corresponding χi’s bags. The maximum size of a bag in χ minus one is called
the width of the tree decomposition. The treewidth of a graph G is the minimum width over all
possible tree decompositions of G.

Pathwidth. A tree decomposition is called a path decomposition if T = (I, F ) is a path. The
pathwidth of a graph G is the minimum width over all possible path decompositions of G. We will
use the following alternate characterization.

Definition 1.8 (Linear composition sequence). Let k be a positive integer. A sequence of pairs
(G0, V0), (G1, V1), . . . , (Gt, Vt) is a linear width-k composition sequence for G if Gt = G, G0 is a k-
clique with vertex set V0, and (Gi+1, Vi+1) arises from (Gi, Vi) as follows: Attach a new vertex vi+1

to all the vertices of Vi and choose Vi+1 ⊆ Vi ∪{vi+1} so that |Vi+1| = k. Observe that it is possible
to have Vi+1 = Vi. We further note that for any j ∈ {1, . . . , t}, we have V (Gj) = V0 ∪ {v1, . . . , vj}.

The following lemma is straightforward to prove.

Lemma 1.9. A graph has pathwidth-k if and only if it is a subgraph of some graph possessing a
linear width-k composition sequence.

Proof sketch. A path decomposition of width k can be obtained from a width-k composition se-
quence (G0, V0), . . . , (Gt, Vt) by setting for every i ∈ {1, . . . , t}, the i-th bag to be Vi−1 ∪ {vi}. For
the other direction, one can always assume that a pathwidth-k graph admits a path depomposition
of width k such that every bag has size exactly k + 1, and every two bags differ in exactly one
vertex. This immediately yields a linear width-k composition sequence.

Asymptotic notation. For two expressions E and F , we sometimes use the notation E . F to
denote E = O(F ). We use E ≈ F to denote the conjunction of E . F and E & F .
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2 Warm-up: Embedding pathwidth-2 graphs into trees

In this section, we prove that Pathwidth(2)  Trees, as a warmup for the general case in Section
3. The pathwidth-2 case does not possess many of the difficulties of the general case; in particular,
it does not require us to bound the stretch in multiple phases (for which we introduce a rank
parameter in the next section). But it does show the importance of using an inflation factor to
blowup small edges, in order for a certain geometric sum to converge.

Let G = (V,E) be a metric graph of pathwidth 2. By Lemma 1.9, it suffices to give a probabilis-
tic embedding for a graph G possessing a linear width-2 composition sequence (G0, e0), . . . , (Gt, et),
where ei plays the role of Vi in Definition 1.8. We will inductively embed G into a distribution over
its spanning trees. First, we put T0 = e0. Now, let Ti be a spanning tree of Gi, with ei ∈ E(Ti). We
will produce a random spanning tree Ti+1 of Gi+1 with ei+1 ∈ E(Ti+1) as follows. Let ei = {u, v},
and let w∗ be the newly attached vertex. We also add the edges {u,w∗}, and {v, w∗}, so the
resulting graph is not a tree. We obtain a tree by randomly deleting either {u,w∗}, or {v, w∗} as
follows. Let τ = 12; we refer to this constant as an “inflation factor.”

There are two cases.

1. If ei = ei+1, we delete {u,w∗} with probability len(u,w∗)
len(u,w∗)+len(v,w∗) , and otherwise we delete

{w∗, v}.

2. If ei 6= ei+1, assume (without loss of generality) that ei+1 = {v, w∗}. In that case, we delete
{u,w∗} with probability

min

{
τ len(u,w∗)

len(u,w∗) + len(u, v)
, 1

}
, (2)

and otherwise we delete {u, v}.

It is easy to see that if Ti was a spanning tree, then so is Ti+1. Furthermore, by construction
ei+1 ∈ E(Ti+1). Let T = Tt be the final tree, and set Ti = T for i > t. It remains to bound the
expected stretch in T .

For every edge {x, y} ∈ E(Gi) and i ≥ 0, define the value,

Kx,y
i = max

{
E
[
dT (x, y)

dTi(x, y)

∣∣∣Ti = Γ

]
: P(Ti = Γ) > 0

}
.

This is the maximum expected stretch between x and y incurred over all stages later than i,
conditioned on the worst possible configuration for Ti.

For each x ∈ V , define s(x) = −1 for x ∈ V (G0), and otherwise it is the unique value s ≥ 0
such that x ∈ V (Gs+1) \ V (Gs). Also define s(x, y) = max(s(x), s(y)). The next two lemmas form
the core of our analysis.

Lemma 2.1. If {x, y} ∈ E and s(x, y) = i, then

E [dT (x, y)] ≤ 3τ ·Kx,y
i+1 · len(x, y) . (3)

Proof. If x, y ∈ V (G0), then s(x, y) = −1 and E[dT (x, y)] = Kx,y
0 ·len(x, y) by definition. Otherwise,

assume without loss of generality that s(x) < s(y). In this case, it must be that x ∈ ei = {u, v}
and y = w∗. Suppose that x = u.

7



If ei+1 = ei, an elementary calculation based on case (1) of our algorithm yields,

E
[
dTi+1(u,w∗)

len(u,w∗)

∣∣∣Ti] ≤ 3 len(v, w∗) + len(u,w∗)

len(v, w∗) + len(u,w∗)
≤ 3 ,

from which E[dT (u,w∗)] ≤ 3Ku,w∗

i+1 · len(u,w∗) immediately follows.
Similarly, if ei+1 = {v, w∗}, then the expected stretch is inflated by at most a factor of τ , and

therefore (3) again follows by a similar calculation. Finally, if ei+1 = {u,w∗}, then {u,w∗} ∈
E(Ti+1), and therefore E[dT (u,w∗)] ≤ Ku,w∗

i+1 · len(u,w∗).

Lemma 2.2. For any {x, y} ∈ E(Gi), we have Kx,y
i ≤ max{3,Ka,b

i+1} for some {a, b} ∈ E(Gi).

Proof. Let Γ be a tree on V (Gi) which is a maximizer for Kx,y
i . Let Γu and Γv be the subtrees of

Γ \ ei rooted at u and v respectively, where we recall that ei = {u, v}. If x and y are both either
in Γu, or in Γv, then Kx,y

i = 1, since Γu and Γv remain intact in the final tree T , conditioned on
Ti = Γ.

So, it suffices to consider the case x ∈ Γu and y ∈ Γv. Observe further that since the unique
path between x and y in Γ passes through {u, v}, and the x-u and y-v paths will both remain in
T , we have

E
[
dT (x, y)

dTi(x, y)

∣∣∣Ti = Γ

]
≤ E

[
dT (u, v)

dTi(u, v)

∣∣∣Ti = Γ

]
≤ Ku,v

i .

Thus to prove the lemma, it suffices to show that Ku,v
i ≤ max{3,Ku,v

i+1}. To this end, let Γ be
the maximizer for Ku,v

i , and suppose that Ti = Γ. If ei+1 = ei, then the edge {u, v} remains intact
(i.e. {u, v} ∈ E(Ti+1)), and therefore Ku,v

i ≤ Ku,v
i+1. Assume now that ei+1 6= ei, which means that

we are in case (2) of the algorithm. Assume further, without loss of generality, that ei+1 = {v, w∗}.
Recall that either {u, v} or {u,w∗} is deleted.

Let A = len(u,w∗), B = len(u, v), C = len(v, w∗). With probability p = min{1, τA
A+B}, the edge

{u,w∗} is deleted, in which case dT (u, v) = dTi(u, v). With probability 1 − p, the edge {u, v} is
deleted, and the new path between u and v in Ti+1 is u-w∗-v, so the distance between u and v is
stretched to A+C ≤ 2A+B, and is eligible to be stretched by at most a factor Ku,v

i+1 in the future.
Thus, if A ≥ B/(τ − 1), we have Ku,v

i = 1. We can therefore assume A < B/(τ − 1). Thus we
can bound,

Ku,v
i ≤ τA

A+B
+Ku,v

i+1

(
1− τA

A+B

)
2A+B

B

≤ τ
A

B
+Ku,v

i+1

(
1− τA

2B

)(
1 + 2

A

B

)
≤ τ

A

B
+Ku,v

i+1

(
1− τA

3B

)
,

where we have used 1− τA
2B + 2AB ≤ 1− τA

3B since τ = 12. But now one sees that,

Ku,v
i ≤ 3

τA

3B
+Ku,v

i+1

(
1− τA

3B

)
≤ max{3,Ku,v

i+1}.
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Figure 1: The graph Hi with k = 5.

Finally, the next lemma completes our analysis.

Lemma 2.3. For any x, y ∈ V , we have E[dT (x, y)] ≤ 9τ · dG(x, y).

Proof. By the triangle inequality and linearity of expectation, it suffices to prove the lemma for
edges {x, y} ∈ E. We will prove the following by reverse induction on i: For every {x, y} ∈ E and
i ≥ s(x, y) + 1, we have Kx,y

i ≤ 3. Combining this with Lemma 2.1 will complete the proof.
The claim is trivial for i = t since Kx,y

t = 1 for all {x, y} ∈ E. If t > i ≥ s(x, y) + 1, then

{x, y} ∈ E(Gi), and Lemma 2.2 immediately implies that Kx,y
i ≤ max{3,Ka,b

i+1} for some a, b with

i+ 1 ≥ s(a, b) + 1. By induction, Ka,b
i+1 ≤ 3, hence Kx,y

i ≤ 3 as well.

3 Embedding pathwidth-k graphs into trees

We now turn to graphs of pathwidth k for some k ∈ N. Let G be such a graph. By Lemma 1.9, we
may assume that G has a linear width-k composition sequence, (G0, V0), . . . (Gt, Vt). For i ≥ 1, we
define V̂i = Vi−1 ∪ {vi}. Our algorithm for embedding G into a random tree proceeds inductively
along the composition sequence. For each i ∈ {1, . . . , t} we compute a subgraph Hi of Gi, whose
only non-trivial 2-connected component is a (k + 1)-clique on V̂i (see Figure 1). More specifically,
H1 is just a clique on V̂1. Given Hi, we derive Hi+1 by adding all the edges between vi+1 and Vi,
and removing all the edges, except for one, between Vi and the unique vertex in V̂i \ Vi.

The main part of the algorithm involves determining which edge in (V̂i \ Vi) × Vi we keep in
Hi+1. The high-level idea behind our approach is as follows. On one hand, we want to keep short
edges so that the distance between V̂i \ Vi and Vi is small. On the other hand, keeping always
the shortest edge leads to accumulation of the stretch for certain pairs (whose shortest-path keeps
getting longer, through a sequence of “short” edges). We avoid this obstacle via a randomized
process that assigns a rank to each edge, which intuitively means that edges of lower rank are more
likely to be deleted. More specifically, at each step i, we pick a random threshold L and keep the
highest ranked edge of length at most L, deleting the rest. We also update the ranks of the edges
in the new graph appropriately.

Formally, let ranki : V (G)×V (G)→ Z≥0 be an arbitrary symmetric function, with rank1(u, v) =

0, for each u, v ∈ V (G). Let E(V̂i) =
(
V̂i
2

)
, i.e. the set of edges internal to V̂i. For u, v ∈ V (Hi), let

P u,vi be the unique path between u and v in Hi that contains at most one edge in E(V̂i). Observe

that P u,vi is well-defined since V̂i forms a clique. For an edge e ∈ E(V̂i) we set

edge-ranki(e) = max
u,v∈V (Hi):e∈Pu,v

i

ranki(u, v)

9



Figure 2: Transitioning from Hi to Hi+1. Here, w is the unique vertex in V̂i \ Vi.

The randomized process for generating Hi+1 and ranki+1 from Hi and ranki is as follows. Let
τ = 4k be our new “inflation factor.”

Let w be the unique vertex in V̂i \Vi, and enumerate E(w, Vi) = {e1, e2, . . . , ek} so that
len(e1) ≤ len(e2) ≤ · · · ≤ len(ek).

Now, let {σj}k−1
j=1 be a family of independent {0, 1} random variables with

P[σj = 1] = min

{
1, τ

len(ej)

len(ej+1)

}
,

and define the set of eligible edges by

E =

{
ej :

j−1∏
i=1

σi = 1

}
.

In particular, e1 ∈ E always. Let e∗ ∈ E be any edge satisfying edge-ranki(e
∗) =

maxe∈E edge-ranki(e).

Finally, we define Hi+1 as the graph with vertex set V (Gi+1) and edge set (see Figure
2),

E(Hi+1) = {e∗} ∪ {{vi+1, u} : u ∈ Vi} ∪ (E(Hi) \ E(w, Vi)) .

We also define ranki+1 as follows. For any u, v ∈ V (G)

ranki+1(u, v) =

{
ranki(u, v) if E(P u,vi ) ∩ E = ∅
ranki(u, v) + 1 otherwise .

Intuitively, ranki(u, v) counts how many times the path between u and v was under risk to be
significantly stretched until step i. If P u,vi does not use an edge of E then the edge {u, v} will be
stretched, but the alternative path will, on average, be “short enough” that we need not increase
its rank (this is how the set E is defined). It remains to analyze the expected stretch incurred by
the above process. First, we observe that the maximum rank of an edge is O(k2).

Lemma 3.1. For every i = 1, 2, . . . , t and every edge e ∈ E(V̂i), edge-ranki(e) ≤
(
k+1

2

)
.

10



Proof. For each i = 1, 2, . . . , t, and each j = 1, 2, . . . ,
(
k+1

2

)
, let Ri,j be the j-th largest edge-rank

of the edges in E(V̂i). That is, for each i = 1, 2, . . . , t, Ri,1 ≤ Ri,2 ≤ . . . ≤ Ri,(k+1
2 ).

We will prove by induction on i that for each i = 1, 2, . . . , t, for each 1 ≤ j ≤
(
k+1

2

)
, we have

Ri,j ≤ j. For i = 1, all the ranks are equal to 0, and the assertion holds trivially.
Assume now that the assertion holds for i − 1. It is convenient to analyze the transition from

step i − 1 to step i in three phases. We need to remove the edges in E(w, Vi) \ {e∗} and add the
edges in E(vi+1, Vi), while updating the ranks accordingly. For notational simplicity, we assume
that the rank of an edge that is removed is set to zero. Let e∗ be the maximum-rank edge in E . In
the first phase, we set the rank of e∗ to zero, and we increase the rank of all remaining edges in E
by one. Clearly, the resulting edge ranks satisfy the inductive invariant.

In the second phase, for any edge e ∈ E(w, Vi)\{e∗}, we update the rank of an edge e′ = e′(e) ∈
E(V̂i) ∩ E(V̂i+1) to be edge-rank(e′) = max{edge-rank(e′), edge-rank(e)}, and we set the rank of e
to zero. The point here is that for any e ∈ E(w, Vi), there is a unique edge e′ ∈ E(V̂i) ∩ E(V̂i+1)
such that, for any u, v ∈ V (Hi), if e ∈ P u,vi then e′ ∈ P u,vi+1. In other words, the paths that use e
will have to be rerouted through a new path that uses e′. This explains how the edge-rank of e is
“transferred” to e′.

Clearly, after the second phase the ranks still satisfy the inductive invariant. Finally, in the
third phase we remove the edges in E(w, Vi), and we add the edges in E(vi+1, Vi). All the removed
edges have at this point rank zero, and all new edges also have rank zero. Thus, the inductive
invariant is satisfied.

For any i ∈ {1, . . . , t}, r ∈ {0, . . . ,
(
k+1

2

)
}, and any edge {u, v} ∈ E(Gi), we put

Ku,v
i (r) = max

{
E
[
dHt(u, v)

dHi(u, v)

∣∣∣Hi = Γ, ranki(u, v) = ρ

]
: (Γ, ρ) ∈ Ωi(u, v; r)

}
, (4)

where we define

Ωi(u, v; r) = {(Γ, ρ) : P(Hi = Γ, ranki(u, v) = ρ) > 0 and ρ ≥ r} .

In other words, Ku,v
i (r) is the maximum expected stretch for all stages after i, conditioned on the

worst possible configuration over subgraphs Hi and rank functions satisfying ranki(u, v) ≥ r. We

further define Ku,v
i

((
k+1

2

)
+ 1
)

= 1.

For the next three lemmas and the corollary that follows, we fix an edge {u, v} ∈ E(Gi), and
a number r ∈ {0, . . . ,

(
k+1

2

)
}. Let (Γ, ρ) ∈ Ωi(u, v; r) be a maximizer in (4), and write P∗[·] =

P[· | Hi = Γ, ranki = ρ] and E∗[·] = E[· | Hi = Γ, ranki = ρ]. A major point is that the following
calculations are oblivious to the conditioning, aside from the assumption that ranki(u, v) ≥ r.

Lemma 3.2. Suppose that ej ∈ E(P u,vi ) for some j ∈ {1, 2, . . . , k}. Then,

Ku,v
i (r) ≤ P∗ [ej ∈ E ]

(
1 + 2

E∗[len(e∗) | ej ∈ E ]

len(ej)

)
Ku,v
i+1(r + 1)

+P∗ [ej /∈ E ]

(
1 + 2

E∗[len(e∗) | ej /∈ E ]

len(ej)

)
Ku,v
i+1(r)

11



Proof. We have,
dHi+1

(u,v)

dHi
(u,v) ≤

2len(e∗)+len(ej)
len(ej) . There are two possibilities: (1) ej ∈ E occurs, and the

rank of {u, v} is increased by 1, (2) ej /∈ E and the rank of {u, v} remains the same. This verifies

the claimed inequality for r <
(
k+1

2

)
.

Note that, by Lemma 3.1, ranki(u, v) ≤
(
k+1

2

)
. Thus the lemma holds true even for r =

(
k+1

2

)
, in

which case ej ∈ E =⇒ ej = e∗ (since the rank of the pair u, v cannot increase anymore). If this hap-

pens, then dHt(u, v) = dHi(u, v), again verifying the claimed inequality, since Ku,v
i+1

((
k+1

2

)
+ 1
)

= 1

by definition.

Lemma 3.3. For any j ∈ [k], P∗ [ej ∈ E ]
(

1 + 2
E∗[len(e∗) | ej∈E]

len(ej)

)
≤ 3(4k)k−1 len(e1)

len(ej) .

Proof. We have

P∗ [ej ∈ E ]E∗[len(e∗) | ej ∈ E ] ≤ E∗[len(e∗)]

=
k∑

h=1

len(eh)P∗[e∗ = eh]

≤
k∑

h=1

len(eh)P∗[eh ∈ E ]

≤
k∑

h=1

len(eh)
len(e1)

len(eh)
τh−1

≤ 2 len(e1)τk−1 .

Also, we have P∗ [ej ∈ E ] ≤ τ j−1 len(e1)
len(ej) ≤ τk−1 len(e1)

len(ej) . Combining these estimates yields the claim,

recalling that τ = 4k.

Lemma 3.4. For any j ∈ [k], P∗ [ej /∈ E ]
(

1 + 2
E∗[len(e∗) | ej /∈E]

len(ej)

)
≤ 1− len(e1)

len(ej) .

Proof. Let
I = {h ∈ {1, 2, . . . , j − 1} : len(eh+1) > τ · len(eh)} .

Observe that if h ∈ {1, 2, . . . , j − 1} \ I, then whenever eh ∈ E , we have also eh+1 ∈ E . For each

12



h ∈ I, let kh = |I ∩ {1, 2, . . . , h}|.

P∗ [ej /∈ E ]

(
1 + 2

E∗[len(e∗) | ej /∈ E ]

len(ej)

)
≤

j−1∑
h=1

P∗ [eh ∈ E and eh+1 /∈ E ]

(
1 +

2len(eh)

len(ej)

)
=

∑
h∈I

P∗ [eh ∈ E and eh+1 /∈ E ]

(
1 +

2len(eh)

len(ej)

)
≤

∑
h∈I

τkh−1 len(e1)

len(eh)

(
1− τ len(eh)

len(eh+1)

)(
1 +

2len(eh)

len(ej)

)
≤

∑
h∈I

τkh−1 len(e1)

len(eh)

(
1− τ len(eh)

len(eh+1)
+

2len(eh)

len(ej)

)
=

∑
h∈I

τkh−1 len(e1)

len(eh)

(
1− τ len(eh)

len(eh+1)

)
+

len(e1)

len(ej)

∑
h∈I

2τkh−1

≤ 1− τ |I| len(e1)

len(ej)
+

len(e1)

len(ej)
(2kτ |I|−1)

= 1 +
len(e1)

len(ej)

(
2kτ |I|−1 − τ |I|

)
≤ 1− len(e1)

len(ej)
.

Corollary 3.5. For every {u, v} ∈ E(Gi) and r ∈ {0, . . . ,
(
k+1

2

)
}, we have

Ku,v
i (r) ≤ max

{
3(4k)k−1Ku,v

i+1(r + 1),Ku,v
i+1(r)

}
.

Proof. Suppose that Hi = Γ and ranki = ρ. If E(P u,vi ) ∩E(V̂i) is empty, then Ku,v
i (r) = 1 because

the current u-v path in Hi will be preserved in Ht. Otherwise, we have E(P u,vi )∩E(V̂i) = {ej} for
some j ∈ [k]. Apply Lemmas 3.2, 3.3, and 3.4 to conclude that

Ku,v
i (r) ≤ len(e1)

len(ej)
3(4k)k−1Ku,v

i+1(r + 1) +

(
1− len(e1)

len(ej)

)
Ku,v
i+1(r)

≤ max
{

3(4k)k−1Ku,v
i+1(r + 1),Ku,v

i+1(r)
}
,

completing the proof.

We can now state and prove our main theorem.

Theorem 3.6. For every k ≥ 1, every metric graph of pathwidth k admits a stochastic D-embedding
into a distribution over trees with D ≤ (4k)k

3
.

Proof. We may assume that k ≥ 2 as the statement is trivial for k = 1. Let Ht be the random
subgraph of G. Fix {u, v} ∈ E(G), and suppose that i0 is the smallest number for which u, v ∈
V (Gi0). In this case, since {u, v} is an edge, we have dGi0

(u, v) = dG(u, v), thus

E [dHt(u, v)] ≤ Ku,v
i0

(0) · len(u, v) .

13



Now applying Corollary 3.5 inductively immediately yields the bound,

Ku,v
i0

(0) ≤
(

3(4k)k−1
)(k+1

2 )+1
,

recalling that Ku,v
i

((
k+1

2

)
+ 1
)

= 1 for all i, and Ku,v
t (r) = 1 for all r.

Finally, observe that the only non-trivial 2-connected component of Ht is a (k + 1)-clique on
V̂t. Replacing V̂t by a minimum spanning tree yields a tree T with dT (u, v) ≤ (k + 1) · dHt(u, v).
This completes the proof.

4 Pathwidth(k + 1) 6 Pathwidth(k)

We now show that for any fixed k ≥ 1, and for any n ≥ 1, there exists an n-vertex graph of pathwidth
k + 1 for which any stochastic D-embedding into graphs of pathwidth k has D ≥ Ω(n2−k

), where
the Ω(·) notation hides a multiplicative constant depending on k. In fact, our lower bound holds
even for trees of pathwidth k + 1. We begin by giving two structural lemmas that allow us to
decompose a tree of pathwidth ` into a path and a collection of trees of pathwidth at most `− 1.

Lemma 4.1. Let G1, G2, G3 be connected graphs of pathwidth k with disjoint vertex sets, and for
i ∈ [3], let vi ∈ V (Gi). Let G be the graph obtained by introducing a new vertex v∗, and connecting
it to v1, v2, and v3. Formally, V (G) = {v∗} ∪

⋃3
i=1 V (Gi), and E(G) =

⋃3
i=1E(Gi) ∪ {{v∗, vi}}.

Then G has pathwidth k + 1.

Proof. It is easy to see that G has pathwidth at most k + 1: For each i ∈ [3] take a path decom-
position of Gi with bags Ci,1, . . . , Ci,`i . For each i ∈ [3], j ∈ [`i], let C ′i,j = Ci,j ∪ {v∗}. The bags
C ′1,1, . . . , C

′
1,`1

, C ′2,1, . . . , C
′
2,`2

, C ′3,1, . . . , C
′
3,`3

induce a path decomposition of G with width at most
k + 1.

Assume now for the sake of contradiction that the pathwidth of G is at most k. That is, there
exists a path decomposition of G with bags C1, . . . , C`, such that: (i) for each i ∈ [`], |Ci| ≤ k + 1,
(ii) for each {u, v} ∈ E(G) there exists i ∈ [`] with u, v ∈ Ci, and (iii) for each v ∈ V (G) there
exists a subinterval I ⊆ [`] such that v ∈ Ci iff i ∈ I. For each i ∈ [3], let G′i be the subgraph of G
induced by V (Gi) ∪ {v∗}. Let also

Ai = {j ∈ [`] : Cj ∩ V (G′i) 6= ∅}.

Note that since G′i is connected, it follows that Ai is a subinterval of [`]. Pick i1, i2 ∈ [3], such
that 1 ∈ Ai1 , and ` ∈ Ai2 . Note that we might have i1 = i2. Since V (G′i1) ∩ V (G′i2) 6= ∅, we have
that Ai1 ∩ Ai2 6= ∅. In particular, Ai1 ∪ Ai2 = [`]. Therefore, each bag Ci contains at least one
vertex either from G′i1 , or G′i2 . Let i3 be an element in [3] \ {i1, i2}. Removing V (G′i1) ∪ V (G′i2)
from all the bags Ci, we get a decomposition of G \ (G′i1 ∪G

′
i2

) = Gi3 with width at most k − 1, a
contradiction since Gi3 has pathwidth k.

The following lemma is straightforward.

Lemma 4.2. If H is a minor of G, then the pathwidth of H is at most the pathwidth of G.

Lemma 4.3. Let T be a tree of pathwidth ` ≥ 2. Then, there exists a simple path P in T such that
deleting the vertices of P from T leaves a forest with each tree having pathwidth at most `− 1.
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Proof. For every v ∈ V (T ), let α(v) denote the number of connected components of T \ {v} of
pathwidth `. We first argue that for any v ∈ V (T ), we have α(v) ≤ 2. To see that, assume for the
sake of contradiction that there exists v ∈ V (T ), such that T \ {v} contains connected components
C1, C2, C3, each of pathwidth at least `. Then, by Lemma 4.1 it follows that T must have pathwidth
`+ 1, a contradiction.

First, observe that if there exists v ∈ V (T ) with α(v) = 0, then the path contaning only v
satisfies the assertion. Next, we consider the case where for every v ∈ V (T ), α(v) = 1. We
construct a path Q = x1, . . . , xs as follows. We set x1 to be an arbitrary leaf of T . Given xi, let
yi be the unique neighbor of xi in T , such that yi is contained in the unique connected component
of T \ {xi} of pathwidth `. If there exists j < i, such that xj = yi, then we terminate the path Q
at xi, and we set s = i. Otherwise, we set xi+1 = yi, and continue at xi+1. We now argue that Q
satisfies the assertion. For the sake of contradiction suppose that T \ V (Q) contains a connected
component C of pathwidth `. The component C must be attached to Q via some edge {y, xr},
with y ∈ V (C). This implies however that y is chosen as yr when examining xr, and therefore y
must be in Q, a contradiction.

Finally, it remains to consider the case where there exists at least one v ∈ V (T ), with α(v) = 2.
Let X = {v ∈ V (T ) : α(v) = 2}. Let H = T [X] be the subgraph of T induced on X. We first argue
that H is connected. To see this, let x, y ∈ X, and let L be the unique path between x and y in T .
Since α(x) = α(y) = 2, it follows that there exist connected components Cx, Cy of T \V (L) with Cx
attached to x, and Cy attached to y, such that both Cx and Cy have pathwidth `. Let z ∈ V (L).
It follows that there exist components C ′x, C

′
y of T \ {z}, such that Cx ⊆ C ′x, and Cy ⊆ C ′y, which

implies that α(z) = 2. Thus, z ∈ X. This implies that L ⊆ H, and therefore H must be connected.
We next show that H is a path. To see this suppose for the sake of contradiction that there

exists v ∈ V (H) with distinct neighbors v1, v2, v3 ∈ V (H). Since α(v1) = α(v2) = α(v3) = 2, it
follows that there exist components C1, C2, C3 of T \ {v, v1, v2, v3}, with each Ci adjacent to vi,
and such that each Ci has pathwidth `, for all i ∈ {1, 2, 3}. By Lemma 4.2 we have that for any
i ∈ {1, 2, 3}, the connected component of T \ {v} containing vi has pathwidth at least `. Applying
Lemma 4.1, we obtain that T has pathwidth at least `+ 1, a contradiction. Therefore, H is a path.

Let w1, w2 be the two endpoints of the path H. We remark that we might have w1 = w2, if
there is only one vertex in H. Since α(w1) = 2, it follows that there exists a connected component
of Cw1 of T \ V (H) of pathwidth ` which is attached to w1. Similarly, there exists a connected
component Cw2 of T \ V (H) of pathwidth ` which is attached to w2. Note that even if w1 = w2,
since α(w1) = 2, the components Cw1 , Cw2 can be chosen to be distinct. Let w′1, w

′
2 be the neighbors

of w1, and w2 in Cw1 , and Cw2 respectively. Let H ′ be the path obtained by adding w′1, and w′2 to
H.

We will show that Q = H ′ satisfies the assertion of the lemma. To that end, it remains to show
that any connected component of T \V (H ′) has pathwidth at most `−1. Let C be a component of
T \ V (H ′), and suppose for the sake of contradiction that it has pathwidth `. Suppose first that C
is attached to a vertex v ∈ V (H). Since v ∈ V (H), it follows that α(v) = 2. By applying Lemma
4.1 on the clusters C, Cw1 , and Cw2 , we obtain that T contains a minor of pathwidth at least `+ 1,
which combined with Lemma 4.2 leads to a contradiction.

Finally, suppose that C is attached to a vertex w ∈ {w′1, w′2}, and assume, without loss of
generality, that w = w′1. Then it follows that T \{w} contains at least two components of pathwidth
` (one containing C, and another containing Cw2), and thus α(w) = 2, a contradiction since w /∈ X.
This concludes the proof.
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Figure 3: The tree Ψ3,m.

We now state the main result of this Section.

Theorem 4.4. For any k ≥ 1, and for any n ≥ 1, there exists an n-vertex tree G of pathwidth k+1,
such that any stochastic D-embedding of G into metric graphs of pathwidth k, has D ≥ Ω(n2−k

).
In particular, Pathwidth(k + 1) ∩ Trees 6 Pathwidth(k).

The remainder of this Section is devoted to proving Theorem 4.4. We first construct a graph
that will be used for the lower bound. For each i ≥ 1, let Φi be the unit-weighted graph consisting
of a vertex v connected to i disjoint paths of length i. Observe that Φi is a tree with i leaves. We
consider Φi as being rooted at the vertex v.

For each i ≥ 1, and for each m ≥ 1, we define the graph Ψi,m as follows. For i = 1, we set
Ψ1,m = Φd

√
me. For i ≥ 2, let Ψi,m be the graph obtained by identifying the root of a copy of

Ψi−1,
√
m, with each leaf of Φd

√
me. For ` ≤ d

√
me, let Ψi,m,` be the tree obtained from Ψi,m by

deleting d
√
me− d`e children of the root of Ψi,m, along with everything underneath those children.

In particular, Ψi,m,
√
m = Ψi,m.

Lemma 4.5. For each i ≥ 1 and m ≥ 32i, Ψi,m has pathwidth i+ 1.

Proof. Note that for m ≥ 32i , Ψi,m contains, as a minor, a full ternary tree T of depth i. Using
Lemma 4.1 inductively shows that the pathwidth of the depth i ternary tree is i+ 1, hence Lemma
4.2 implies that the pathwidth of Ψi,m is at least i + 1. It is also easy to check by hand that the
pathwidth of Ψi,m is at most i+ 1, for every m ≥ 1.

Fix k ≥ 1, and let G = Ψk,m. By Lemma 4.5, for m ≥ 32k , G has pathwidth k + 1. We will
show that for m large enough, any stochastic c-embedding of (V (G), dG) into a distribution over

metric graphs of pathwidth k, has distortion c ≥ Ω(n2−k
), were n = |V (G)|.

Assume there exists a stochastic c-embedding of (V (G), dG) into a distribution over metric
graphs of pathwidth k. By composing this with the result of Theorem 3.6, we get a stochastic
c′-embedding of (V (G), dG) into the family of metrics supported on Pathwidth(k) ∩ Trees, with
c′ = O(c) (where the O(·) notation hides a constant depending on the fixed parameter k).
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By averaging, there exists a metric tree T of pathwidth k and a single non-contractive mapping
f : V (G)→ V (T ) which satisfies,

1

|E(G)|
∑

{u,v}∈E(G)

dT (f(u), f(v)) ≤ c′.

Thus it suffices to prove a lower bound on this quantity. In fact we will prove a somewhat stronger
statement; we will give a lower bound on the average stretch of any non-contractive embedding of
Ψk,m,

√
m/2. We first prove an auxiliary lemma.

Lemma 4.6. Let S be an unweighted tree with r ∈ V (S), and let L ≥ 0. Let ` ≥ 0, and let
S1, . . . , S` be vertex-disjoint subtrees of S such that for each i ∈ [`], Si is attached to r via a path Qi
of length at least L, and for each i 6= j ∈ [`], the paths Qi and Qj intersect only at r. We remark that
each Si might contain only a single vertex. Let g : V (S) → V (T ) be a non-contractive embedding
of S into a metric tree T , and let P be a simple path in T . If I = {i ∈ [`] : dT (g(Si), P ) < L/2},
then ∑

{u,v}∈E(S)

dT (g(u), g(v)) ≥ |I|
2L

16
.

Proof. For each i ∈ I, let zi = argminv∈P dT (v, g(Si)), and

Bi = {x ∈ V (P ) : dT (zi, x) ≤ L/2}.

Since g is non-contractive, we have that for each i, j ∈ I with i 6= j, dT (g(Si), g(Sj)) ≥ 2L, and
therefore

dT (zi, zj) ≥ dT (g(Si), g(Sj))− dT (g(Si), zi)− dT (g(Sj), zj) = 2L− dT (Si, P )− dT (Sj , P ) > L,

which implies Bi ∩Bj = ∅.
By reordering, we assume that I = {1, 2, . . . , |I|}, and that for each i, j ∈ I with i < j, Bi

appears to the left of Bj in P , after fixing some orientation of P . Furthermore, by choosing the
proper orientation, we may assume that there is a vertex u0 ∈ P such that u0 is contained in, or
appears to the left of Bd|I|/2e in P , and g(r) and u0 are in the same subtree of T \ E(P ).

For each i ∈ {1, . . . , |I|}, let wi = argminv∈V (Si)dS(v, r). It follows that for each i ∈ {d|I|/2e+
1, . . . , |I|},

dT (g(r), g(wi)) ≥ (i− d|I|/2e)L.

Furthermore, for every i ∈ [`], clearly dT (g(r), g(wi)) ≥ L by non-contractiveness. Therefore,∑
{u,v}∈E(S)

dT (g(u), g(v)) ≥
∑

i∈{d1,...,|I|}

∑
{u,v}∈E(Qi)

dT (g(u), g(v))

≥
∑

i∈{d1,...,|I|}

dT (g(r), g(wi))

≥
⌈
|I|
2

⌉
L+

∑
i∈{d|I|/2e+1,...,|I|}

(
i−
⌈
|I|
2

⌉)
L >

|I|2L
16

.
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The proof of the lower bound proceeds by induction on k. We first prove the base case for
embedding into trees of pathwidth one.

Lemma 4.7. Let g : V (Ψ1,m,
√
m/2) → V (T ) be a non-contracting embedding into a metric tree T

of pathwidth one. Then,

1

|E(Ψ1,m,
√
m/2)|

∑
{u,v}∈E(Ψ1,m,

√
m/2)

dT (g(u), g(v)) ≥
√
m

210
.

Proof. Since the tree T has pathwidth one, it consists of a path P = {v1, . . . , vt}, and a collection
of vertex-disjoint stars T1, . . . , Tt, with each Ti being rooted at vi. Note that Ti might contain only
the vertex vi.

Recall that Ψ1,m,
√
m/2 consists of b

√
m/2c disjoint paths Q1, . . . , Qb

√
m/2c, with

Qi = {r, qi,1, . . . , qi,d√me},

where r is the root of Ψ1,m,
√
m/2. For each i ∈ [b

√
m/2c] let Q′i be the subpath of Qi of length

b
√
m/2c with Q′i =

{
qi,d
√
m/2e, . . . , qi,d

√
me

}
.

Let I1 = {i ∈ [b
√
m/2c] : dT (g(Q′i), P ) ≥

√
m/4}, and let I2 = [b

√
m/2c] \ I1. By Lemma 4.6,

∑
{u,v}∈E(Ψ1,m,

√
m/2)

dT (g(u), g(v)) ≥ |I2|2
√
m

32
.

Since |E(Ψ1,m)| ≤ 2m, we are done if |I2| ≥
√
m/4.

It remains to consider the case |I1| ≥ b
√
m/4c. Observe that for each i ∈ I1, all the edges of

Q′i have their endpoints mapped to distinct leaves of the stars T1, . . . , Tt, with the edge adjacent to
each such leaf having length at least

√
m/4, by non-contractiveness of g. Therefore, each edge of

such a Q′i is stretched by a factor of
√
m/2 in T . In other words,

1

|E(Ψ1,m,
√
m/2)|

∑
{u,v}∈E(Ψ1,m,

√
m/2)

dT (g(u), g(v)) ≥ 1

2m
· |I1| ·

⌊√
m

2

⌋ √
m

2

=

√
m

4

⌊√
m

4

⌋⌊√
m

2

⌋
≥
√
m

32
,

with the latter bound holding for m ≥ 4. Observe that the LHS is always at least 1, yielding the
desired result for m ≤ 4 as well, and completing the proof.

We are now ready to prove the main inductive step.

Lemma 4.8. Let k ≥ 1, a ∈ N, m = (2a)2k , and let g : V (Ψk,m,
√
m/2)→ V (T ) be a non-contractive

embedding of Ψk,m,
√
m/2 into a metric tree T of pathwidth k. Then,

1

|E(Ψk,m,
√
m/2)|

∑
{u,v}∈E(Ψk,m,

√
m/2)

dT (g(u), g(v)) ≥ m2−k

27+3k
.
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Proof. We proceed by induction on k. The base case k = 1 is given by Lemma 4.7, so we can
assume that k ≥ 2, and that the assertion is true for k − 1.

Since the tree T has pathwidth k ≥ 2, by Lemma 4.3 it follows that it consists of a path P ,
and a collection of trees T1, . . . , Tt of pathwidth at most k − 1, with each Ti being rooted at some
vertex vi, and vi being attached to P via an edge. Recall that Ψk,m,

√
m/2 consists of a root r and√

m/2 subtrees Q1, . . . , Q√m/2, with each Qi having a copy Q′i of Ψk−1,
√
m that is connected to r

via a path of length
√
m.

Let I1 = {i ∈ [
√
m/2] : dT (g(Q′i), P ) ≥

√
m/2}, and let I2 = [

√
m/2] \ I1. By Lemma 4.6,

∑
{u,v}∈E(Ψk,m,

√
m/2)

dT (g(u), g(v)) ≥ |I2|2
√
m

16
.

Since |E(Ψk,m)| ≤ km, this yields the desired result for |I2| ≥
√
m/4.

It remains to consider the case |I1| ≥
√
m/4. Let I1,1 be the subset of I1 containing all indices

i ∈ I1 such that for some j ∈ [t], Tj contains the image of a copy of Ψk−1,m1/2,m1/4/2 from Q′i. Let
also I1,2 = I1 \ I1,1.

By the induction hypothesis it follows that for any i ∈ I1,1,

∑
{u,v}∈E(Q′i)

dT (g(u), g(v)) ≥ m1/2 · (k − 1) · (m1/2)21−k

27+3(k−1)
= m1/2 · (k − 1) · m

2−k

24+3k
. (5)

Consider now i ∈ I1,2. Let ri be the root of Q′i and let Wi,1, . . . ,Wi,m1/4 be the copies of Ψk−1,m1/2,1

in Q′i, intersecting only at ri. By the definition of I1,2 we have that for any J ⊂ [m1/4] with
|J | = m1/4/2, and for any i′ ∈ [t],

⋃
j∈J g(Wi,j) * Ti′ . Assume that the image of ri is contained in

Tτ , for some τ ∈ [t]. It follows that there exists R ⊆ [m1/4], with |R| ≥ m1/4/2, such that for each
j ∈ R, the image of Wi,j intersects some tree Tσj , with σj 6= τ . Since ri ∈ V (Wi,j) it follows that

there exists an edge ei,j ∈ E(Wi,j)∪E(Zi,j) that is stretched by a factor of at least m1/2. It follows
that for any i ∈ I1,2, ∑

{u,v}∈E(Q′i)

dT (g(u), g(v)) ≥ m1/4

2
·m1/2. (6)

By (5) we get a lower bound for the average stretch of the edges of every Q′i, with i ∈ I1,1. Similarly,
by (6) we get a lower bound for the average stretch of the edges of every Q′i, with i ∈ I1,2. Thus,
combining (5) and (6) we get

1

|E(Ψk,m,
√
m/2)|

∑
{u,v}∈E(Ψk,m,

√
m/2)

dT (g(u), g(v)) ≥ 1

k ·m
· |I1| ·m1/2 · (k − 1) · m

2−k

24+3k

>
m2−k

27+3k
,

as desired.

This concludes the proof of Theorem 4.4.
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