
BIPARTITE PARTIAL DUALS AND CIRCUITS IN MEDIAL GRAPHS

STEPHEN HUGGETT∗ AND IAIN MOFFATT†

Abstract. It is well known that a plane graph is Eulerian if and only if its geometric dual is
bipartite. We extend this result to partial duals of plane graphs. We then characterize all bipartite
partial duals of a plane graph in terms of oriented circuits in its medial graph.

1. Introduction and statements of results

The geometric dual, G∗, of an embedded graph G is a fundamental construction in graph theory
and appears in many places throughout mathematics. Motivated by various new constructions in
knot theory, S. Chmutov, in [3], introduced the concept of the partial dual of an embedded graph.
Roughly speaking, a partial dual is obtained by forming the geometric dual with respect to only a
subset of edges of an embedded graph (a formal definition is given Subsection 2.3). Partial duality
appears to be a fundamental operation on embedded graphs and, although it has only recently been
introduced, it has found a number of applications in graph theory, topology, and physics (see, for
example, [3, 5, 6, 8, 9, 10, 11, 12, 14, 15]). While geometric duality always preserves the surface in
which a graph is embedded, this is not the case for the more general partial duality. For example,
if G is a plane graph, then G∗ is also a plane graph, but a partial dual GA of G need not be plane.
Partially dual embedded graphs can have different topological and graph theoretical properties.

Rather than being concerned with the ways in which a graph and its partial dual can differ,
here we are interested in how partial duality both preserves and transforms the structure of an
embedded graph. In particular, we determine the extent to which partial duality preserves the
following classical connection between Eulerian and bipartite plane graphs.

Theorem 1. Let G be a plane graph, then G is Eulerian if and only if its dual, G∗, is bipartite. �

This theorem is well-known (see, for example, Theorem 34.4 of [13] or Example 10.2.10 of [2]). It
is known to hold more generally for binary matroids (see [16] and also [7]), but it does not hold for
non-plane graphs (although the geometric dual of a bipartite graph is always Eulerian). Note that
since (G∗)∗ = G, the words bipartite and Eulerian can be in interchanged in Theorem 1. Here we
give the extension of this classical connection between Eulerian and bipartite graphs from geometric
duality to partial duality. We prove:

Theorem 2. Let G be a plane graph and A ⊆ E(G). Then:

(1) GA is bipartite if and only if the components of G∣A and G∗∣Ac are Eulerian;
(2) GA is Eulerian if and only if G∣A and G∗∣Ac are bipartite.

This result appears in Section 3 as Theorem 6. Its proof requires much more work than the case
for geometric duality stated in Theorem 1. To prove the result we introduce a new way of obtaining
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the underlying abstract graph of partial dual GA (see Theorem 5 below). The advantage of this
construction is that it avoids having to construct the embedded graph GA itself.

Having established the relation between Eulerian and bipartite partial duals, we then turn our
attention to the problem of determining which subsets of edges in a graph give rise to bipartite and
Eulerian partial duals. That is, given a plane graph G, the problem is to characterize the subsets
A ⊆ E(G) having the property that GA is bipartite or Eulerian. It turns out that this problem
is intimately related to oriented circuits in the medial graph Gm of G. We provide the following
complete characterization of edge sets that lead to bipartite partial duals:

Theorem 3. Let G be a plane graph. Then the partial dual GA is bipartite if and only if A is the
set of c-edges arising from an all-crossing direction of Gm.

The terminology for this theorem, together with its proof, appears in Section 4. (Figure 5 offers
a quick indication of the terminology). We note that Theorem 2 is used in an essential way to
prove this characterization. We also find a sufficient condition for a set of edges to give rise to an
Eulerian partial dual in terms of circuits in medial graphs (see Corollary 2). Some connections of
our results with knot theory are discussed in Remark 4.

2. Embedded graphs and duality

2.1. Cellularly embedded graphs and ribbon graphs. We begin with a brief review of em-
bedded graphs and ribbon graphs. Note that we will be concerned with both cellularly and non-
cellularly embedded graphs.

An embedded graph G = (V (G),E(G)) ⊂ Σ is a graph drawn on a surface Σ in such a way that
edges only intersect at their ends. The arcwise-connected components of Σ/G are called the regions
of G. If each of the regions of an embedded graph G is homeomorphic to a disc we say that G
is a cellularly embedded graph, and its regions are called faces. A plane graph is a graph that is
cellularly embedded in the sphere (rather than the plane).

Two embedded graphs, G ⊂ Σ and G′ ⊂ Σ′, are said to be equal if there is a homeomorphism from
Σ to Σ′ that sends G to G′. As is common, we will often abuse notation and identify an embedded
graph with its equivalence class under equality.

We will need to work with cellularly embedded graphs which arise as subgraphs of cellularly
embedded graphs. Accordingly, we will often find it convenient and natural to describe embedded
graphs as ribbon graphs.

Definition 1. A ribbon graph G = (V (G),E(G)) is a (possibly non-orientable) surface with bound-
ary represented as the union of two sets of topological discs: a set V (G) of vertices, and a set of
edges E(G) such that

(1) the vertices and edges intersect in disjoint line segments;
(2) each such line segment lies on the boundary of precisely one vertex and precisely one edge;
(3) every edge contains exactly two such line segments.

It is well known and easily seen that ribbon graphs are equivalent to cellularly embedded graphs.
Intuitively, if G is a cellularly embedded graph, a ribbon graph representation results from taking a
small neighbourhood of G. Neighbourhoods of vertices of G form the vertices of the ribbon graph,
and neighbourhoods of the edges of G form the edges of the ribbon graph. On the other hand, if G
is a ribbon graph, we simply sew discs into each boundary component of the ribbon graph to get
a graph cellularly embedded in a surface. Since ribbon graphs and cellularly embedded graphs are
equivalent we can, and will, move freely between them.

Two ribbon graphs are considered to be equal if their corresponding embedded graphs are equal.
This means that two ribbon graphs are equal if there is a homeomorphisms between their underlying
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G +⃗{e} G −⃗{e}

Figure 1. Constructing G −⃗{e} and G +⃗{e}.

surfaces that preserve the vertex-edge structure. Again, at times we abuse notation and identify a
ribbon graph with its equivalence class under equality.

Just as with graphs, if G is a ribbon graph and A ⊆ E(G), then G − A is the ribbon graph
obtained from G by deleting all of the edges in A. Note that G − A is also a ribbon graph and
therefore describes a cellularly embedded graph. It is this closure of the set of ribbon graphs under
deletion of edges that makes them useful here; note that deleting edges in a cellularly embedded
graph may result in a non-cellularly embedded graph. Furthermore, if G is a ribbon graph and
A ⊆ E(G), then G∣A denotes the ribbon subgraph of G induced by A, i.e., its edge set is A and
its vertex set consists of all vertices of G which are incident to an edge in A. If G is a cellularly
embedded graph then G∣A is defined to be the cellularly embedded graph corresponding to this
ribbon graph.

We will need to be able to delete edges from a ribbon graph without losing any information
about the position of the edge. We will do this by recording the position of the edge using labelled
arrows.

Definition 2. An arrow-marked ribbon graph consists of a ribbon graph equipped with a collection
of coloured arrows, called marking arrows, on the boundaries of its vertices. The marking arrows
are such that no marking arrow meets an edge of the ribbon graph, and there are exactly two
marking arrows of each colour.

Let G be a ribbon graph and A ⊆ E(G). Then we let G −⃗A denote the arrow-marked ribbon
graph obtained, for each edge e ∈ A, as follows: arbitrarily orient the boundary of e; place an arrow
on each of the two arcs where e meets vertices of G, such that the directions of these arrows follow
the orientation of the boundary of e; colour the two arrows with e; and delete the edge e. This
process is illustrated locally at an edge in Figure 1.

On the other hand, given an arrow-marked ribbon graph G with set of labels A, we can recover
a ribbon graph G+⃗A as follows: for each label e ∈ A take a disc and orient its boundary arbitrarily;
add this disc to the ribbon graph by choosing two non-intersecting arcs on the boundary of the
disc and two marking arrows of the same colour, and then identifying the arcs with the marking
arrows according to the orientation of the arrow. The disc that has been added forms an edge of a
new ribbon graph. Again, this process is illustrated in Figure 1.

Example 1. Figure 2 shows a ribbon graph G and its description as the arrow-marked ribbon graph
G −⃗A, where A = {1,2,5}. Note that G can be recovered from G −⃗A by taking A = {1,2,5} to be
the set of labels and forming (G −⃗A) +⃗A.

From the above we see that every arrow-marked ribbon graph gives rise to a ribbon graph. We
then say that two arrow-marked ribbon graphs are equal if the ribbon graphs they describe are
equal. We will generally abuse notation and regard the set of labels of an arrow-marked ribbon
graph as a set of edges. This will allow us to view A as an edge set in expressions likeG = (G −⃗A) +⃗A.

2.2. Geometric duals. The construction of the geometric dual, G∗, of a cellularly embedded
graph G ⊂ Σ is well known: G∗ is formed by placing one vertex in each face of G and embedding an
edge of G∗ between two vertices whenever the faces of G they lie in are adjacent. Observe that G∗
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(a) A ribbon graph G.
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(b) G −⃗A with A = {1,2,5}

Figure 2. Two descriptions of the same ribbon graph.

has a natural cellular embedding in Σ, and that there is a natural (cellular) immersion of G ∪G∗
where each edge of G intersects exactly one edge of G∗ at exactly one point. We will call this
immersion the standard immersion of G ∪G∗.

There is a natural bijection between E(G) and E(G∗). We will generally use this bijection to
identify the edges of G and the edges of G∗. However, at times we will be working with G∪G∗, so
to avoid confusion we will use e∗ to denote the edge of G∗ which corresponds to the edge e of G.

Geometric duals have a particularly neat description in the language of ribbon graphs. Let
G = (V (G),E(G)) be a ribbon graph. We can regard G as a punctured surface. By filling in
the punctures using a set of discs denoted V (G∗), we obtain a surface without boundary. The
geometric dual of G is the ribbon graph G∗ = (V (G∗),E(G)).

Suppose now that G is an arrow-marked ribbon graph, so that G has labelled arrows on its
vertices. Then in the formation of G∗ as described above, the boundaries of the vertices of G and
G∗ intersect, and therefore the marking arrows on G induce marking arrows on G∗. The geometric
dual G∗ of an arrow-marked ribbon graph G is the geometric dual of the underlying ribbon graph
equipped with the induced marking arrows.

Note that for ribbon graphs geometric duality acts disjointly on connected components, so that
(G ⊔H)∗ = G∗ ⊔H∗.

We will also need to form geometric duals of non-cellularly embedded graphs. Since the properties
of duality depend upon whether or not a graph is cellularly embedded, we will avoid confusion by
denoting the dual of a not necessarily cellularly embedded graph by G⊛. The embedded graph G⊛
is formed just as the geometric dual of an embedded graph is formed but by placing a vertex in
each region of G, rather than each face. That is, if G ⊂ Σ is an embedded graph (the embedding
may or may not be cellular here), then G⊛ ⊂ Σ is the embedded graph formed by placing one vertex
in each region of G, and embedding an edge of G⊛ between two vertices whenever the regions of G
they lie in are adjacent. It is important to note that in general (G⊛)⊛ ≠ G. Also, as there are some
choices of where to place the edges in its formation, the embedding of G⊛ is not unique. This fact
does not cause any problems here.

2.3. Partial duals of embedded graphs. We can now describe partial duality, which was intro-
duced by S. Chmutov in [3] to unify various results which realize the Jones polynomial as a graph
polynomial (two of these results were first related in [9]). We will use the definition of a partial
dual from [11]. Chmutov’s original (and equivalent) definition of a partial dual can be found in [3].

Let G be a ribbon graph and A ⊆ E(G). Then the partial dual GA of G is formed by: ‘hiding’ the
edges that are not in A by replacing them with marking arrows using G −⃗Ac; forming the geometric
dual (G −⃗Ac)∗ (so that the dual is only taken with respect to the edges of G that are in A); then
putting back in the edges that are not in A, giving (G −⃗Ac)∗+⃗Ac. The resulting ribbon graph is
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(c) (G −⃗Ac
)
∗.

(d) (G −⃗Ac
)
∗
+⃗Ac

= GA

Figure 3. Forming a partial dual.

GA. Here and henceforth, Ac denotes the complementary edge set E(G) −A of A. This process is
summarized by the following definition.

Definition 3. Let G be a ribbon graph and A ⊆ E(G). Then the partial dual of G with respect to
A, denoted by GA, is given by

GA
∶= (G −⃗Ac

)
∗
+⃗Ac.

The partial dual of a cellularly embedded graph is obtained by translating into the language
of ribbon graphs, forming the partial dual, and translating back into the language of cellularly
embedded graphs.

Example 2. Consider the ribbon graph G shown in Figure 3(a). To form the partial dual GA, with
A = {4,6}, first form the arrow-marked ribbon graph G −⃗Ac, as in Figure 3(b). Then form its
geometric dual (G −⃗Ac)

∗, shown in Figure 3(c), noting that the labelled arrows on the vertices of
G −⃗Ac induce some on (G −⃗Ac)

∗. The corresponding ribbon graph (G −⃗Ac)
∗
+⃗Ac is the partial

dual GA and is shown in Figure 3(d).

Further examples of partial duals can be found in [3, 10, 11, 12], and the references therein.
We will need the following basic properties of partial duality later. These properties are due to

Chmutov and can be found in [3].

Proposition 1. Let G be a ribbon graph and A,B ⊆ E(G). Then

(1) G∅ = G;

(2) GE(G) = G∗, where G∗ is the geometric dual of G;
(3) (GA)B = GA∆B, where A∆B ∶= (A ∪B)/(A ∩B) is the symmetric difference of A and B.

5



3. Eulerian and Bipartite partial duals

This section gives our first main result, which appears as Theorem 6 (the second main result being
Theorem 7). This is the extension to partial duality of the classical result stated in Theorem 1.
The relationship in Theorem 1 between bipartite and Eulerian graphs is usually given for connected
plane graphs, but here we need the following slightly more general form.

Theorem 4. Let G be a graph embedded in the plane. Then

(1) the components of G are all Eulerian if and only if G⊛ is bipartite; and
(2) G is bipartite if and only if G⊛ is Eulerian.

Proof. Let G1,⋯,Gk denote the components of the embedded graph G. Then the plane embedding
of G can be obtained by forming the connected sum of cellular plane embeddings of G1,⋯,Gk.
(The duals G∗

i below are formed with respect the these embeddings.) In terms of duals, this means
that G⊛ can be obtained by amalgamating G∗

1 ,⋯,G
∗
k at vertices (two vertices of the duals G∗

i and
G∗

j being amalgamated if, in the construction of G, a connected sum involves the corresponding

faces of the plane graphs Gi and Gj). If the components of G are Eulerian, then so are G1,⋯,Gk.
By Theorem 1, it follows that G∗

1 ,⋯,G
∗
k are bipartite, and since amalgamating bipartite graphs

at a vertex results in a bipartite graph, G⊛ is bipartite. Conversely, if G⊛ is bipartite, then so
are G∗

1 ,⋯,G
∗
k. By Theorem 1 it follows that G1,⋯,Gk are Eulerian, and therefore so are the

components of G.
The second item in the theorem follows by interchanging the words bipartite and Eulerian in the

above argument. �

We begin with the observation that biparticity is a property of abstract graphs rather than
embedded graphs. Accordingly, in order to study the 2-colourability of partially dual embedded
graphs, it suffices to study their underlying abstract graphs. This allows us to use tools developed
in [11] for partial duals of abstract graphs to prove Theorem 6. Also, to prove the theorem, we
introduce a new way of constructing abstract graphs that are partial duals.

Recall that an embedded graph G consists of an embedding of a graph Ĝ into a surface. We call
the graph Ĝ the underlying abstract graph of G. If G and H are two embedded graphs with the
same underlying abstract graphs we will say that G and H are equivalent as abstract graphs and
write G ≅H. The notion of partially dual abstract graphs was introduced in [11].

Definition 4. Two abstract graphs are said to be partial duals if they are the underlying abstract
graphs of two partially dual embedded graphs.

Remark 1. It is important to observe that although partial duality is a transitive relation for embed-
ded graphs, it is not a transitive relation for abstract graphs. For example, the two abstract graphs

and are partial duals because they are the underlying abstract graphs of the

partial duals and respectively. Also, the abstract graphs and

are partial duals, since they are the underlying abstract graphs of

and respectively. However, and are not partially dual

abstract graphs. This observation has implications for the results presented here.
6



We now give a new way of constructing partially dual abstract graphs. Theorem 6 will follow
easily from this construction. Given an embedded graph G, Theorem 5 provides a way to obtain an
embedded graph that is equivalent to GA as an abstract graph but not necessarily as an embedded
graph. This result is especially useful here since GA is bipartite if and only if any embedded graph
H with H ≅ GA is bipartite, so we need not worry about the embedding of GA.

Since we will be working simultaneously with an embedded graph G and its dual G∗, we will use
a superscript ‘∗’ to denote corresponding edges and edge sets in G∗. For example, if e is and edge
in G then e∗ denotes the edge in G∗ under the natural identification of E(G) with E(G∗).

Theorem 5. Let G be a connected, cellularly embedded graph, and A ⊆ E(G). Then

[(G ∪G∗
) − (Ac

∪A∗
)]
⊛
≅ GA.

Here, G ∪G∗ has the standard immersion.

In order not to disrupt our narrative on bipartite partial duals, we defer the somewhat technical
proof of Theorem 5 until Section 5.

We emphasize the fact that in general [(G∪G∗)−(Ac∪A∗)]⊛ and GA are not equal as embedded
graphs. This is what makes the above theorem significant: we have found a way of constructing
partial duals of abstract graphs that does not require us to pass through partially dual ribbon
graphs. It is perhaps prudent to highlight a second point, that in general ([(G ∪ G∗) − (Ac ∪

A∗)]⊛)∗ and (GA)∗ are not isomorphic as abstract graphs. This means that, for a plane graph
G, if [(G ∪ G∗) − (Ac ∪ A∗)]⊛ ≅ GA is bipartite (respectively Eulerian), then although the dual
([(G ∪G∗) − (Ac ∪A∗)]⊛)∗ is Eulerian (respectively bipartite), we do not know whether (GA)∗ is
bipartite or Eulerian.

Example 3. Theorem 5 is illustrated in Figure 4. For the cellularly embedded graph G shown
in Figure 4(a), G ∪ G∗ is shown in Figure 4(b). Taking A = {2,3}, we have Ac = {1,4,5} and
A∗ = {2∗,3∗}. With these sets, (G∪G∗)− (Ac ∪A∗) is shown in Figure 4(c). Figure 4(e) illustrates
the formation of the geometric dual [(G ∪G∗) − (Ac ∪A∗)]⊛, which is given in Figure 4(e).

On the other hand, by regarding G as a genus zero ribbon graph, we can form the partial dual
GA to obtain the ribbon graph in Figure 4(f), which is equivalent as an abstract graph, but not as
an embedded graph, to the graph [(G ∪G∗) − (Ac ∪A∗)]⊛ in Figure 4(e).

Our generalization of Theorem 4 is the following theorem, in which we identify the edges of G
and GA in the standard way.

Theorem 6. Let G be a plane graph and A ⊆ E(G). Then

(1) GA is bipartite if and only if the components of G∣A and G∗∣Ac are Eulerian;
(2) GA is Eulerian if and only if G∣A and G∗∣Ac are bipartite.

Note that Theorem 4 is obtained from Theorem 6 by setting A = ∅. Also note that, as one would
expect, Theorem 6 does not hold for graphs embedded in higher genus surfaces.

Proof of Theorem 6. Let G be a plane graph, and set Φ ∶= (G∪G∗)−(Ac∪A∗). By Theorem 5, GA

is bipartite if and only if Φ⊛ is bipartite. But, as Φ is embedded in the plane, Theorem 4 implies
that Φ⊛ is bipartite if and only if each component of Φ is Eulerian. This happens if and only if each
component of G −Ac and of G∗ −A∗ is Eulerian, which happens if and only if each component of
G∣A and of G∗∣Ac is Eulerian. This argument can be restated with the words bipartite and Eulerian
exchanged, thus completing the proof. �

Remark 2. The obvious extension to Theorem 4 is that, for a plane graph G, GA is bipartite if and
only if (GA)∗ is Eulerian. However, this statement is not true in one direction. For example, if GA

is the cellularly embedded graph on a torus that consists of a loop added to a 2-cycle, then GA is
7
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(a) A plane graph G.
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1∗2∗

3∗

4∗
5∗

(b) G ∪G∗.

2
3

1∗ 4∗
5∗

(c) (G ∪G∗) − (Ac
∪A∗).

(d) Forming the geometric dual. (e)

((G ∪G∗) − (Ac
∪A∗))

⊛

.

(f) The partial dual GA of G.

Figure 4. Forming partially dual abstract graphs using Theorem 5.

(a) A plane graph
G.

(b) Its canonically face
2-coloured medial graph
Gm.

(c) An all-crossing direc-
tion of Gm. Here c(Gm) =

1.

c

d

c

d

c c

(d) The corresponding
{c, d}-labelling on G.

Figure 5. Examples of constructions associated with medial graphs.

Eulerian, but (GA)∗ is not bipartite. The statement is true in the other direction since the dual of
any bipartite embedded graph is Eulerian (see Remark 3).

4. Bipartite graphs and circuits in medial graphs

In this section we apply Theorem 6 to obtain our second main result, which is a characterization
of those edge sets of plane graphs which give rise to bipartite partial duals. This characterization
will be in terms of circuits in the medial graph.

4.1. Medial graphs. The medial graph Gm of a plane graph G is the 4-regular plane graph ob-
tained from G by placing a vertex on each edge of G, and joining two such vertices by an edge
embedded in a face whenever the two edges on which they lie are on adjacent edges of the face.

8



c-vertex d-vertex

Figure 6. The definition of c-vertices and d-vertices.

Each vertex of G corresponds to a face of Gm. If we colour all such faces of Gm black and the
remaining faces white we obtain a face 2-colouring of Gm which we will call the canonical face
2-colouring. (See Figures 5(a) and 5(b).)

We are interested in particular directed graphs which arise by directing the edges of a medial
graph. An all-crossing direction of Gm is an assignment of a direction to each edge of Gm in such
a way that at each vertex v of Gm, when we follow the cyclic order of the directed edges incident
to v, we find (head, head, tail, tail). (See Figure 5(c).)

We will let c(Gm) denote the number of circuits in any all-crossing direction of Gm which are
obtained by following the directed edges in such a way that at each vertex, we enter and exit at a
head and tail which are not adjacent in the cyclic order of the incident edges at that vertex. (See
Figure 5(c).) We observe that c(Gm) is independent of the choice of all-crossing direction of Gm,

and that Gm admits 2c(Gm) all-crossing directions.
If Gm is equipped with the canonical face 2-colouring then we can partition the vertices of Gm by

calling each vertex a c-vertex or a d-vertex according to the scheme shown in Figure 6. Furthermore,
since the vertices of Gm correspond to edges of G, each all-crossing direction of Gm gives rise to
a {c, d}-labelling of the edges of G. We call the edges of G which correspond to c-vertices of Gm

c-edges, and we call the edges of G which correspond to d-vertices of Gm d-edges. (See Figure 5(d).)
We will need the following observation.

Proposition 2. Let G be a plane graph, then e is a c-edge in G if and only if e∗ is a d-edge in G∗.

Proof. The result follows by observing that the medial graphs Gm and (G∗)m are equal and that
the canonical face 2-colouring of (G∗)m is obtained from that of Gm by switching the colour of
each face. �

4.2. Bipartite partial duals and medial graphs. We now state and prove our second main
result, which is a characterization of bipartite partial duals in terms of medial graphs.

Theorem 7. Let G be a plane graph. Then the partial dual GA is bipartite if and only if A is the
set of c-edges arising from an all-crossing direction of Gm.

We will deduce the theorem from the following lemmas.

Lemma 1. Let G be a plane graph and let C be a set of c-edges of G arising from an all-crossing
direction of Gm. Then each component of G∣C and of G∗∣Cc is Eulerian.

Proof. Consider a vertex v of G, with half-edges e1, e2, . . . , en adjacent to it. This vertex v corre-
sponds to a face f of Gm, bounded by edges of Gm joined by (not necessarily distinct) vertices
w1,w2, . . . ,wn corresponding to the half-edges e1, e2, . . . , en of G. Let us take a position on the edge
wnw1 of Gm, and then walk around the face f until we return to our starting point. We note that
because Gm has an all-crossing direction, each edge will be directed, and we start our walk in this
given direction.

We walk until we meet our first vertex, which without loss of generality we may take to be w1.
This vertex has a label, either c or d. Let us assume that it is a c-vertex; see Figure 7. When

9
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Figure 7. Walking around vertex v of graph G.

we cross w1 and continue walking on to the next half-edge w1w2 we will walk against the given
direction of w1w2. In order for us to get back to where we started, the edges along which we walk
will have to change direction in total an even number of times. Therefore there must be an even
number of c-vertices around the face f , and so v is adjacent to an even number of c-half-edges.

Now let us assume that the first vertex we meet w1 is a d-vertex. When we cross this vertex
the next edge of Gm will be directed compatibly with the direction in which we are walking. So
we keep walking until we meet a c-vertex, and then the previous argument applies. If we do not
encounter any c-vertices then all the half-edges adjacent to the vertex v are labelled d.

Since a graph is Eulerian if and only if each of its vertices is of even degree, it follows that each
component of G∣C is Eulerian. Also, it follows from Proposition 2 that each component of G∗∣Cc is
Eulerian. �

(In fact it is not difficult to show the equivalent property that any cycle of G contains an even
number of d-edges.)

Lemma 2. Given a {c, d}-colouring of the edges of a plane graph G, with the set of c-edges denoted
A, if each component of G∣A is Eulerian and each component of G∗∣Ac is Eulerian, then the {c, d}-
colouring arises from an all-crossing direction of Gm.

Proof. The graph G is plane, so it is connected and equipped with an embedding i ∶ G → S2. This
induces an embedding G∗ → S2, which we also denote i (so that i(G) ∪ i(G∗) is the standard
immersion). Now take i(G∣A) ∪ i(G∗∣Ac), and denote the resulting graph by Φ.

We first show that the regions of Φ must be either discs or annuli, by arguing that no two
components of G∗∣Ac can lie in the same region of i(G∣A).

Consider a region f of i(G∣A), drawn in G. If it is a region of G, then it is a disc. If it is not a
region of G, then it contains other edges and vertices of G, all the edges being marked d. These
edges and vertices divide f into regions of G. But G is connected, so we can walk between any two
of these regions via other such regions. Therefore, the part of G∗∣Ac lying in f must be connected,
as required.

In Φ⊛, this means that ay any separating vertex of Φ⊛ exactly two blocks meet.
We can also see that Φ⊛ is bipartite, as follows. Each component of the (disjoint) graphs G∣A

and G∗∣Ac is Eulerian, and so each vertex of Φ has even degree. Hence each region of Φ⊛ has an
even number of edges. Any cycle in Φ⊛ can be formed by adding boundaries of regions mod 2.
Hence the result.

Note next that because we will be switching between directed graphs and their duals it is natural
to consider not only the usual “longitudinal” direction along an edge, but also a “transverse”
direction.

Now choose a block B1 of Φ⊛. It is bipartite, and has no cut vertices. Choose an arbitrary
transverse direction on an edge e⊛ in B1, and use this to determine a clockwise and anti-clockwise
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(b) Orientation of neighbouring blocks.

Figure 8. Extending an orientation of Φ⊛.
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Figure 9. Four possible situations for two edges which share both a vertex and a region.

orientation of the vertex at each of the ends of e⊛. (See Figure 8(a).) Any other vertex in B1 will
be clockwise if it is an even distance from a clockwise vertex, and anti-clockwise otherwise. This is
consistent because B1 is bipartite, and so it has no odd cycles.

Next, back in Φ⊛, let p be a separating vertex of B1. (If B1 has no separating vertex, then
B1 = Φ⊛ and we skip this step.) By our observation above, there is a next block: call it B2 and
orient it as in Figure 8(b). Proceed in this way until all the edges of Φ⊛ have been given a direction.

Finally, transfer this direction back to the edges of Φ. This in turn induces a direction for the
edges of G, mixed, in the sense that the d edges are directed transversely.

The vertices of the medial graph Gm inherit their c or d status from the edges of G, and around
each vertex the edges have now been directed as in Figure 6. We have to check that as we move
from one vertex of Gm to another along an edge, the directions are consistent. To see this, note
that for any two edges in G which share both a vertex and a region, our direction must give one of
the four situations in Figure 9, or their opposite orientations. So the local directions around each
vertex of Gm do arise from a global direction of the edges of Gm, and we thus have an all-crossing
direction, as required. �

Proof of Theorem 7. By combining Lemmas 1 and 2, we have that each component of G∣A and of
G∗∣Ac is Eulerian if and only if A is the set c-edges of G arising from an all-crossing direction of
Gm. The result then follows by Theorem 6. �

Corollary 1. Let G be a plane graph. Then G has at most 2c(Gm)−1 bipartite partial duals.

Proof. Gm admits 2c(Gm) all-crossing directions, each direction giving rise to a bipartite partial
dual by Theorem 7. However, reversing the direction of each edge in an all-crossing direction of
Gm does not change the {c, d}-colouring of G, accounting for the ‘−1’ in the exponent. There may
be a further reduction in the number of bipartite partial duals, as each {c, d}-colouring of G need
not result in a distinct partial dual of G. �

The following corollary of Theorem 7 provides a way of constructing some, but not all, of the
Eulerian partial duals of a plane graph.

Corollary 2. Let G be a plane graph. If A is the set of d-edges arising from an all-crossing
direction of Gm, then GA is Eulerian.

Proof. Since A is the set of d-edges of G, Ac is the set of c-edges of G. Then

GA
= G(A

c∆E(G))
= (GAc

)
∗.

11



By Theorem 7, GAc
is bipartite, and, since the geometric dual of any bipartite graph is Eulerian

(see Remark 3), (GAc
)∗ is Eulerian as required. �

We note that the converse of Corollary 2 is false and that determining exactly which subsets of
edges of a plane graph give rise to Eulerian partial duals remains an open problem.

Remark 3. The proof that the dual of a bipartite embedded graph is Eulerian is almost identical
to the well-known proof of the special case for plane graphs: let G be a bipartite graph, then every
closed walk in G is of even length (see [1] for example). Therefore every closed walk about a face
in any embedding of G is of even length, and it follows that G∗ is Eulerian.

Remark 4. The results on partial duals presented in this paper are intimately related to, and
motivated by, the authors’ work with N. Virdee on the ribbon graphs of link diagrams in [6]. In the
context of knot theory, bipartite embedded graphs arise as the Seifert graphs of an oriented link
diagram, and these embedded graphs are necessarily partial duals of plane graphs. This provides a
link between the graph theory presented in Section 4 and knot theory. In fact, our knot theoretic
results from [6] on the characterization of Seifert graphs suggested the formulation and proof of
Theorem 7 to us. Furthermore, the connection between the Tait graph and Seifert graph of a link
diagram that was also studied in [6], led the authors to conjecture that [(G∪G∗)−(Ac∪A∗)]⊛ and
GA are isomorphic as abstract (but not necessarily embedded) graphs, which appears as Theorem 5
below. The results presented here therefore further illustrate the deep and fruitful connections
between knot theory and graph theory.

5. The proof of Theorem 5

We will prove Theorem 5 by using the characterization of partially dual graphs in terms of a
bijection between edge sets from [11]. This extends the usual characterization of dual graphs in
terms of maps between edge sets, which is due to Whitney for plane graphs [17], and Edmonds for
higher genus graphs [4]. We need to introduce a little notation.

Suppose that G and H are graphs and ϕ ∶ E(G) → E(H) is a bijection between their edge sets.
Let v ∈ V (G) and S ⊆ E(G). Then we let Sv be the set of edges in S which are incident with v.
Then the set ϕ(Sv) of edges in H together with the vertices which are incident with these edges
form a subgraph of H. This subgraph is denoted by ϕ(S)v. Furthermore, we let Hv denote the
subgraph ϕ(E(G))v.

Definition 5. Let G and H be graphs and ϕ ∶ E(G) → E(H) be a bijection. We say that ϕ
satisfies Edmonds’ Criteria if

(1) edges e, f ∈ E(G) belong to the same connected component if and only if ϕ(e), ϕ(f) ∈ E(H)

belong to the same connected component;
(2) for each v ∈ V (G), each component of Hv is Eulerian;
(3) for each v ∈ V (H), each component of Gv is Eulerian.

The significance of Edmonds’ Criteria is that they provide a characterization of geometric duality
in terms of mappings between edge sets. Edmonds showed in [4] that H ≅ G∗ for some cellular
embedding of a graph G, if and only if there exists a bijection ϕ ∶ E(G) → E(H) that satisfies
Edmonds’ Criteria and thatG andH have the same number of isolated vertices. Edmonds’ Theorem
is an extension of Whitney’s characterization of planar duals in terms of combinatorial duals (see
[17]) to graphs embedded in an arbitrary surface.

In [11], the second author extended Edmonds’ and Whitney’s Theorems to partial duals:

Theorem 8. Two graphs G and H are partial duals if and only if there exists a bijection ϕ ∶

E(G)→ E(H), such that

(1) ϕ∣A ∶ A→ ϕ(A) satisfies Edmonds’ Criteria for some subset A ⊆ E(G).
12
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(b) A vertex v of G ∪G∗.
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(d) H⊛ and the mapping ϕ.

Figure 10. Figures used in the proof of Theorem 5.

(2) If v ∈ V (G) is incident with an edge in A, and if e ∈ E(G) is incident with v, then ϕ(e) is
incident with a vertex of ϕ(A)v. Moreover, if both ends of e are incident with v, then both
ends of ϕ(e) are incident with vertices of ϕ(A)v.

(3) If v ∈ V (G) is not incident with an edge in A, then there exists a vertex v′ ∈ V (H) with
the property that e ∈ E(G) is incident with v if and only if ϕ(e) ∈ E(H) is incident with v′.
Moreover, both ends of e are incident with v if and only if both ends of ϕ(e) are incident
with v′.

Furthermore, with A as above H ≅ GA.

We recall that ϕ(A)v is the subgraph of H induced by the images of the edges from A that are
incident with v.

While the claim in the above theorem that H ≅ GA did not appear explicitly in [11], it is an
immediate consequence of the proof of Theorem 26 of [11]. We will use this characterization of
partial duals to prove Theorem 5.

Proof of Theorem 5. To avoid clutter in the proof, we set H ∶= (G ∪ G∗) − (Ac ∪ A∗). We begin
by defining a mapping ϕ ∶ E(G) → E(H⊛), and go on to show that this mapping satisfies the
conditions of Theorem 8.
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Each edge e ∈ E(G) is naturally identified with exactly one edge e∗ in E(G∗), and exactly
one of e or e∗ is in H. This gives a natural bijection α between E(G) and E(H). If we let
β denote the natural bijection between E(H) and E(H⊛), then we obtain a natural bijection
between ϕ ∶ E(G)→ E(H⊛) by setting ϕ ∶= β ○ α.

To prove the theorem it remains to show that ϕ satisfies the conditions of Theorem 8 with the
edge set A given in the Theorem. For the first condition, we note that A = E(G −Ac) and so, by
the definition of α, we have α(A) = E(G −Ac). Then, since β is just the natural identification of
edge sets of a graph and its dual, we have

ϕ(A) = β(E(G −Ac
)) = E((G −Ac

)
⊛
),

so

ϕ∣A ∶ E(G −Ac
)→ E((G −Ac

)
⊛
).

It is then readily verified that ϕ∣A satisfies Edmonds’ Criteria.
We will now show that ϕ satisfies the remaining conditions of Theorem 8. To do this we consider

the construction of H⊛ from the embedded graph G locally in the neighbourhood of a vertex v
of G. We begin with the immersed graph G ∪ G∗. Let v ∈ V (G), and let e1, e2, . . . , es be the
(not necessarily distinct) cyclically ordered edges of G that are incident to v, where the cyclic
order is chosen with respect to an arbitrary orientation of a neighbourhood of v. See Figure 10(a).
Let e∗i denote the unique edge in the subgraph G∗ of G ∪G∗ which intersects ei, for each i. See
Figure 10(b). Note that the e∗i s which arise need not be distinct. We will let Dv denote the s-gon,
together with the embedding of v and its incident half-edges, which is obtained by cutting the
immersed graph G ∪ G∗ along the edges e∗1 , . . . , e

∗
s and their incident vertices. Next form H by

deleting all of the edges of the immersed graph G ∪G∗ which belong to Ac ∪A∗. The remaining
edges of G which are incident with v divide Dv into regions R1, . . . ,Rk in the following way: if
no edges in A are incident with v then there is a single region R1; if there are edges in A that
are incident with v, then cyclically order the regions R1,R2, . . . ,Rt according to some orientation
of Dv. See Figure 10(c). Note that the regions R1,R2, . . . ,Rt need not be distinct regions of the
embedded graph H. Finally, form H⊛. There is a vertex v̂k of H⊛ associated with each region Rk

(but the vertices v̂1, . . . , v̂t need not be distinct). See Figure 10(d). In addition, notice that:

● if the edge ei of H is adjacent to the region Rk, then ϕ(ei) is the edge which is incident
with v̂k and which intersects ei in the canonical immersion of H ∪H⊛;

● if the edge e∗i in H is adjacent to the region Rk, then ϕ(ei) is the edge which is incident
with v̂k and which intersects e∗i in the canonical immersion of H ∪H⊛;

● if v is incident with an edge in A, then every v̂k is in ϕ(A)v.

We will use these observations (which are illustrated in Figure 10(d)) to verify that the map
ϕ ∶ E(G) → E(H⊛) satisfies the remaining conditions of Theorem 8. There are three cases to
consider.
Case 1: Suppose that v is incident with an edge in A and e ∈ A. In this case, by definition,
ϕ(e) ∈ ϕ(A)v and so both ends of ϕ(e) are in ϕ(A)v.
Case 2: Suppose that v is incident with an edge in A and e ∉ A. In this case, we have that
ϕ(e) = e∗i , for some i. Then e∗i is adjacent to a region Rk, and hence ϕ(e) is incident with v̂k, and
therefore incident with a vertex of ϕ(A)v.

If e is a loop then ϕ(e) = e∗i = e
∗
j , for some i and j. Then e∗i is adjacent to a region Rk, and e∗i

is adjacent to a region Rl. This means that ϕ(e) is incident with v̂k and with v̂l (with incidence
being counted twice if v̂k = v̂l). Thus, both ends of ϕ(e) are incident with ϕ(A)v.
Case 3: Suppose that v is not incident with an edge in A. In this case there is only one region
R1, and the vertex v̂1 is the vertex v′ required by Theorem 8. To see why this is the case, suppose
that e ∈ E(G) is incident with v. Then ϕ(e) = e∗i , for some i, and, as before, e∗i is adjacent to a
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region R1, so ϕ(e) is incident with v̂1, as required. If, in addition, e is a loop, then ϕ(e) = e∗i = e
∗
j ,

for some i and j. Then since e∗i and e∗j are both adjacent to R1 both ends of ϕ(e) are incident to
v̂1.

Thus we have shown that ϕ satisfies the conditions of Theorem 8, and so H ≅ GA as required.
�
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