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The Szemerédi-Trotter Theorem in the Complex Plane

Csaba D. Tóth∗

Abstract

It is shown that n points and e lines in the complex Euclidean plane C2 determine O(n2/3e2/3+
n + e) point-line incidences. This bound is the best possible, and it generalizes the celebrated
theorem by Szemerédi and Trotter about point-line incidences in the real Euclidean plane R2.

1 Introduction

It was shown by Szemerédi and Trotter [20], settling a conjecture by Erdős, that n points and e
lines in the Euclidean plane R

2 determine at most O(n2/3e2/3 + n+ e) point-line incidences. This
bound is the best possible [3, 7]: there are Θ(n2/3e2/3 + n + e) point-line incidences between the
points of an ⌊√n⌋ × ⌊√n⌋ section of the integer lattice and e appropriate lines in R

2. Originally,
Szemerédi and Trotter [20] proved an upper bound of 1060n2/3e2/3 + 3n + 3e for the number of
point-line incidences in R

2. The constant coefficients have been improved substantially, and the
current best upper bound [13] is 2.5n2/3e2/3 + n+m.

The Szemerédi-Trotter bound is fundamental in combinatorial geometry [16]. Its importance is
illustrated by the fact that, since the original publication of their result, two completely different
proof techniques have been developed for it, each of which has many applications on its own right.
One is the theory of ε-cuttings and ε-nets based on a divide-and-conquer strategy [2], the other is
the crossing number theory for graphs drawn in the plane [15, 19]. The Szemerédi-Trotter bound
has several generalizations to point-curve incidences in R

2, where the curves are pseudo-lines [2],
bounded degree algebraic curves [14], or Jordan curves with certain intersection constraints [15].

Extending some of the applications of the Szemerédi-Trotter bound requires a similar bound for
points and lines in the complex Euclidean plane C2. However, all existing proofs of the Szemerédi-
Trotter theorem heavily rely on the topology of the real Euclidean plane R2 and no natural complex
or multidimensional counterparts have been found so far. A line in the complex plane is the set of
points (x, y) ∈ C

2 satisfying a linear equation y = ax + b or x = b for some a, b ∈ C. Our main
result is the following.

Theorem 1. There is a constant C such that n points and e lines in the complex Euclidean plane
C
2 determine at most Cn2/3e2/3 + 3n + 3e point-line incidences.

The upper bound in Theorem 1 is the best possible apart from constant factors. Consider a
configuration of n points and e lines in R

2 that determine Θ(n2/3e2/3+n+e) point-line incidences [3].
Every point (a, b) ∈ R

2 can be embedded as a point (a, b) ∈ C
2, and every line y = cx+ d or x = d,
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with c, d ∈ R, is contained in the complex line y = cx+ d or y = d, with c, d ∈ C
2, with the same

point-line incidences.
The proof of Theorem 1 is presented in Sections 2–5. It is essentially the adaptation of the

original proof by Szemerédi and Trotter to the complex plane. We prove that the constant C in
Theorem 1 may be taken to be C = 1060. No effort has been made to optimize the value of C.
In order to keep the presentation as simple as possible, the constants are often estimated very
generously. We note here, though, that the proof technique inevitably leads to a large constant C,
similarly to the original proof by Szemerédi and Trotter [20].

Corollaries. We present a few immediate consequences of Theorem 1. The analogues of these
results in the real Euclidean plane can be derived from the Szemerédi-Trotter theorem by purely
combinatorial arguments, so they immediately generalize to the complex Euclidean plane. An
equivalent formulation of the Szemerédi-Trotter theorem is an upper bound on the number of lines
containing at least t, 2 ≤ t ≤ n, points in the plane [20].

Theorem 2. For n points in C
2, and an integer t, 2 ≤ t ≤ n, the number of complex lines incident

to at least t points is

O

(
n2

t3
+
n

t

)
.

A result by Beck [1] follows from the Szemerédi-Trotter theorem by purely combinatorial argu-
ments, and hence it generalizes to the complex plane.

Corollary 3. There is a constant c1 > 0 such that, for every set of n points in C
2, at least one of

the following two statements holds.

• There are at least c1n
2 complex lines, each of which is incident to at least two points.

• There is a complex line incident to at least n/100 points.

For a set A ⊂ C, the set of pairwise sums and products formed by the elements of A is
A + A = {a + b : a, b ∈ A} and A · A = {a · b : a, b ∈ A}, respectively. Elekes [5] proved that
for every finite set A ⊂ R, max{|A + A|, |A · A|} = Ω(|A|5/4). This bound was later improved to
Ω(|A|14/11) by Solymosi [18]. The same combinatorial argument over complex numbers yields the
following.

Corollary 4. There is a constant c2 > 0 such that for every finite set A ⊂ C, we have

c2 · |A|14/11 ≤ max{|A+A|, |A ·A|}.
Our last corollary generalizes a theorem by Elekes [6] from homothetic subsets of R2 to similar

subsets of R2. For two finite point sets A,A′ ⊂ R
2, we denote by A ∼ A′ if they are similar to

each other (that is, an isometry followed by a dilation maps A to A′). For two finite point sets,
A,B ⊂ R

2, let
S(A,B) = |{A′ ⊂ R

2 : A′ ⊂ B,A′ ∼ A}|
be the number of similar copies of A in B. The maximal number of similar copies of a set of t
points in a set of n points in R

2 is denoted by s(t, n) = max{S(A,B) : |A| = t, |B| = n}.
Corollary 5. There is a constant c3, such that for every t, n ∈ N, we have

s(t, n) ≤ c3n
2

t
.
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Possible generalizations. A natural generalization of the Szemerédi-Trotter theorem (and our
Theorem 1) would be an upper bound on the number of incidences between points and d-flats in
R
2d. A d-flat in Euclidean space is a d-dimensional affine subspace.

Conjecture 6. For every integer d ≥ 1, there is a constant cd with the following property. Given
n points and e d-flats in R

2d such that the intersection of every two d-flats is either empty or a
single point, then they determine at most cd(n

2/3e2/3 + n+ e) incidences.

For d = 1, this is equivalent to the Szemerédi-Trotter theorem. Our Theorem 1 is a special case
for d = 2 where all 2-flats correspond to complex lines in C

2.

2 Preliminaries

The proof of Theorem 1 was conceived in an attempt to prove Conjecture 6, by generalizing the
original proof of the Szemerédi-Trotter theorem. Most of the steps of the proof are either purely
combinatorial or use the real Euclidean space, where lines in C

2 are embedded as 2-flats in R
4. The

use of special properties of lines in C
2 (as opposed to 2-flats in R

4) is kept to a minimum.
In Subsection 2.1, we present a brief outline of the original proof of Szemerédi and Trotter [20],

and point out the similarities and key differences from our proof. Subsection 2.2 summarizes the
few basic properties of Grassmann manifolds. We exploit properties of C2 only in Subsection 3.3,
the proof of our Separation Lemma. Subsections 3.1 and 3.2 use purely combinatorial arguments,
and Sections 4 and 5 rely exclusively on the geometry of Rd.

2.1 Outline

Our proof follows the same strategy as that of Szemerédi and Trotter [20]. We briefly outline these
steps below.

(i) The proof by Szemerédi and Trotter proceeds by contradiction, and considers a minimum
counterexample, that is, a system (P,E) of n points and e lines with more than Cn2/3e2/3 +
3n+ 3e point-line incidences, where n+ e is minimal.

(ii) They show that (P,E) contains a large subsystem, (P3, L1∪L2), that has a “regular” structure
(Separation Lemma). In particular, P3 ⊂ P contains Ω(n) points; each point in P3 is incident
to Ω(e2/3/n1/3) lines in each of L1 and L2; and the directions of the lines in L1 and L2 are
close to two orthogonal directions after an appropriate linear transformation.

(iii) The Covering Lemma by Szemerédi and Trotter [21] shows that for a point set P3 in the plane
and a parameter 1 ≤ k ≤ |P3|, there are interior-disjoint axis-parallel squares such that each
square contains Θ(k) points of P3 and they jointly contain Ω(n) points in P3.

(iv) The combination of the Separation Lemma and the Covering Lemma leads to a lower bound
for the total number of intersection points (crossings) between lines in L1 and L2. One can
find at least e2 crossings between lines in L1 ⊂ E and L2 ⊂ E, contradicting the fact that
there cannot be more than

(e
2

)
crossings between lines in E.
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We prove a generalization of the Separation Lemma for lines in C
2 in Section 3. We prove an

elaborate version of the Covering Lemma in Section 4; and give a lower bound for the number of
intersection points of complex lines in Section 5.

In the complex plane, however, there are several key differences compared to the real plane.
Szemerédi and Trotter [20] cover a constant fraction of the points by interior-disjoint axis-aligned
squares in R

2. They make use of the simple but crucial fact that when a square in R
2 is decomposed

into four right triangles along the two diagonals then every two points p and q lying in one right
triangle has the following property: if p (resp., q) is incident to two lines ℓp1 and ℓp2 (resp., ℓq1 and
ℓq2) that are almost parallel to the two diagonals of the square, then at least one of the intersection
points, ℓp1∩ ℓ

q
2 or ℓp2∩ ℓ

q
1, is in the interior of the square. This property does not generalize to 2-flats

in a decomposition of a 4-dimensional hypercube. This explains why we need a significantly more
involved covering lemma in R

4.
Similarly, difficulties arise if we want to find appropriate regular structures, like those in our

Separation Lemma. Szemerédi and Trotter used the space of directions of lines of the Euclidean
plane and found a linear transformation that produces two almost orthogonal families of lines. The
space of directions of lines in C

2 is much more difficult to handle.

2.2 Grassmann manifolds

A line ℓ in the complex plane C2 is defined by a linear equation y = ax+b or x = b for some a, b ∈ C.
The direction of ℓ can be represented by the parallel line incident to the origin, y = ax or x = 0,
respectively, or by its slope, which is a or ∞, respectively. The space of 1-dimensional subspaces in
C
2 is the Grassmann manifold H(1, 1). It can be represented by the complex projective line CP

1

or the Riemann sphere C ∪ {∞} [9].
The standard correspondence between the Riemann sphere C ∪ {∞} and the unit sphere S

2 is
defined as follows. Identify every slope a ∈ C with the point (Re(a), Im(a), 0) ∈ R3 in the plane
z = 0 of R3. A stereographic projection maps every point from the plane z = 0 to the unit sphere
H = {(x, y, z) ∈ R

3 : x2+y2+z2 = 1}; and the slope∞ is mapped to the “North Pole” (0, 0, 1) ∈ H.
Note that every unit slope a, |a| = 1, is mapped to the equator H0 = {(x, y, z) ∈ R

3 : x2 + y2 =
1, z = 0} of H [9]. Denote the two closed hemispheres of H above and below H0 by H1 and H2,
respectively (see Fig. 1).

For a line ℓ in C
2, let ℓ̂ ∈ H denote its direction. Similarly, for a set L of complex lines, let

L̂ ⊆ H denote the multiset of directions of the lines in L.

Metrics. H(1, 1) has an essentially unique metric, invariant under unitary transformations. The
distance dist(ℓ̂1, ℓ̂2) between the directions of two lines ℓ1 and ℓ2 in C

2 can be defined in terms of
their principal angle arccos(max{|uv| : u ∈ ℓ1,v ∈ ℓ2, |u| = |v| = 1}). This is equivalent to the
chordal distance in the Riemann sphere representation [8, 22]. In this paper, we always use the
chordal metric in S

2, measured in degrees. For example, if two directions a1, a2 ∈ C ∪ {∞} are
orthogonal (i.e., a1a2 = −1, or a1 = 0 and a2 = ∞, or a1 = ∞ and a2 = 0), then they correspond
to antipodal points in S

2, hence dist(a1, a2) = 180◦.

Embedding into Gr(2, 2). The map τ : C2 → R
4, (z1, z2) → (Re(z1), Im(z1),Re(z2, ), Im(z2))

identifies the points of C2 and R
4, it maps the lines in C

2 into 2-flats in R
4. Since parallel lines

are mapped to parallel 2-flats, it induces an embedding τ̂ of H(1, 1) into the Grassmann manifold

4



H1

H0

H2

H

a

0

−a

∞

Figure 1: A Riemann sphere H, a unit slope a ∈ H0, its antipodal slope −1/a = −a ∈ H0, and
some orbits of πaλ between a and −a.

Gr(2, 2) of 2-flats in R
4. Gr(2, 2) has several different metrics, invariant under orthogonal trans-

formations. All metrics can be defined in terms of the two principal angles between two 2-flats [9].
We consider the distance between the directions of two 2-flats in R

4 to be the sum of their principal
angles. In particular, the distance of two orthogonal 2-subspaces is 2 · 90◦ = 180◦. With this
choice, the embedding τ̂ : H(1, 1) → Gr(2, 2) preserves the metric of H(1, 1). Specifically, τ̂ maps
a 3◦-neighborhood in H(1, 1) into a 3◦-neighborhood in Gr(2, 2).

Nondegenerate complex linear transformations. The group GL(2,C) of nondegenerate
complex linear transformations acts on C

2 and preserves point-line incidences. The group PGL(2,C)
acts on H(1, 1) = CP

1, and corresponds to Möbius transformations. Each linear transformation
in GL(2,C) induces a Möbius transformation in PGL(2,C). Let Ψ ⊂ GL(2,C) denote the set of
nondegenerate linear transformations on C

2 that induce automorphisms on each of H0, H1 \ H0,
and H2 \H0.

For every λ ∈ R, −1 < λ < 1, we define the linear transformation π1λ ∈ GL(2,C) to be

π1λ : C2 −→ C
2,

[
z1
z2

]
−→ 1√

1− λ2

[
1 λ
λ 1

] [
z1
z2

]
.

For every vector (z1, z2) ∈ C
2, the transformation π1λ dilates the component parallel to (1, 1) ∈

C
2 by a factor of

√
1+λ
1−λ ∈ R and the perpendicular component by a factor of

√
1−λ
1+λ ∈ R. Note that

π1λ ∈ Ψ, since a vector (z1, z2) ∈ C
2 has unit slope (that is, |z1| = |z2|) if and only if π1λ((z1, z2))

has unit slope. The orbit of an element of H \ {1,−1} under the transformations π1λ, λ ∈ (−1, 1),
is a main halfcircle between 1 ∈ H0 and its antipodal −1 ∈ H0.

For every a ∈ C, |a| = 1, we define the linear transformation πaλ := ̺aπ1λ(̺
a)−1, where

̺a : C2 −→ C
2,

[
z1
z2

]
−→

[
1 0
0 1/a

] [
z1
z2

]
.

̺a is a unitary transformation (it induces an isometry on the Riemann sphere H) and ̺a ∈ Ψ. The
orbits of the elements of H \{a,−a} under πaλ, λ ∈ (−1, 1), are the main halfcircles between a ∈ H0

5



and its antipodal 1/a = −a ∈ H0 (see Fig. 1). As λ continuously increases in the interval (−1, 1),
the image of every point in H (except for a and −a) moves continuously toward a ∈ H0 along a
main halfcircle of H.

We use one more property of the space of complex directions in the proof of our Separation
Lemma. Two sufficiently small disjoint disks (i.e., spherical caps) in the Riemann sphere H can be
mapped into two small neighborhoods around two orthogonal directions by a nondegenerate linear
transformation of C2 if the disks are at least a constant distance apart. In contrast, Gr(2, 2) does
not have this property: if two disjoint disks in Gr(2, 2) contain 2-subspaces whose intersection is
a line, then no linear transformation of R4 can increase their distance above 90◦. This is why our
proof technique cannot establish Conjecture 6 for d = 2 (that is, complex lines cannot be replaced
by arbitrary 2-flats in R

4).

3 Separation Lemma

Our Separation Lemma (Lemma 7) is a straightforward generalization of a corresponding result by
Szemerédi and Trotter in R

2. It claims that a minimal counterexample to Theorem 1 contains a
large and fairly regular structure of points and lines. Let (P,E) be a system of a finite set of points
P and a finite set of lines E in C

2. Let n = |P | and e = |E| denote the number of points and
lines, respectively, and let I = IP,E denote the number of point-line incidences between P and E.
A system (P,E) is critical if e + n is minimal among all systems where the number of incidences
satisfies I > max(Cn2/3e2/3, 3n, 3e) with constant C = 1060.

Lemma 7. (Separation Lemma) If (P,E) is a critical system, then there is a point set P3 ⊆ P
and two line sets L1, L2 ⊂ E such that for the constant M = 1010, we have

(a) |P3| ≥ n/M8;

(b) every point p ∈ P3 is incident to at least I/(nM2) lines from each of L1 and L2;

(c) there are two orthogonal directions ℓ̂1, ℓ̂2 ∈ H(1, 1) such that an appropriate nondegenerate lin-
ear transformation of C2 maps the directions of the lines in L1 and L2 into the 3◦-neighborhood
of ℓ̂1 and ℓ̂2, respectively.

3.1 Combinatorial preprocessing

First we show that in a critical system (P,E), the parameters n and e cannot be too far from each
other, more precisely, each of them is much larger than the square root of the other.

Lemma 8. If (P,E) is a critical system, then

e >
C3

33/2
√
n, and n >

C3

33/2
√
e. (1)

Proof. By symmetry, it is enough to prove the first inequality. For every point p ∈ P , denote by
dp the number of lines in E incident to p. By Jensen’s inequality, we have

e2 >

(
e

2

)
≥
∑

p∈P

(
dp
2

)
=
∑

p∈P

d2p
2

−
∑

p∈P

dp
2

≥ 1

2n



∑

p∈P
dp




2

− 1

2

∑

p∈P
dp

=
1

2n
I2 − 1

2
I >

1

2n
I2 − 1

6n
I2 =

I2

3n
,

6



where the last step follows from I > 3n. Therefore, by I > Cn2/3e2/3, we have

e2 >
C2

3
n1/3e4/3.

Corollary 9. If (P,E) is critical, then we have

e = e1/3e2/3 <
3

C2
n2/3e2/3 <

3

C3
I and n = n1/3n2/3 <

3

C2
n2/3e2/3 <

3

C3
I.

Corollary 10. If (P,E) is critical, then

max(Cn2/3e2/3, 3n, 3e) = Cn2/3e2/3.

Our next goal is to show that each point in P is incident to a large number of lines in E. Let
dA = I/n denote the average number of lines in E incident to a point in P , and let fA = I/e be
the average number of points in P incident to a line in E. For a point p ∈ C

2 and a set F of lines
in C

2, denote by F p ⊆ F the subset of lines in F incident to p. We show that every point in P is
incident to at least half the average number of lines.

Lemma 11. If (P,E) is critical, then every point in P is incident to at least dA/2 lines of E and
every line in E is incident to at least fA/2 points of P .

Proof. By symmetry, it is enough to prove the first claim, that is, |Ep| ≥ dA/2 for every p ∈ P .
Suppose, to the contrary, that there is a point p ∈ P incident to fewer than dA/2 lines in E.

Since the system (P \ {p}, E) is smaller than the critical system (P,E), we have IP\{p},E ≤
max(C(n− 1)2/3e2/3, 3(n− 1), 3e). This, together with Corollary 9, implies an upper bound on the
total number of incidences in the system (P,E).

I <
dA
2

+ max(C(n− 1)2/3e2/3, 3(n − 1), 3e) <
1

2n
· I +max

((
n− 1

n

)2/3

,
10

C3

)
· I,

1 <
1

2n
+max

((
n− 1

n

)2/3

,
10

C3

)
.

The last inequality is equivalent to either 4n2 − 2n − 1 < 0 or n < 1/(2 · (1 − 10/C3)) depending
on the value in the maximum. Neither inequality has any positive integer solution.

3.2 Distinguishing two sets of lines

Recall that we represent the space of directions of complex lines as the Riemann sphere H, where
a main circle H0 corresponds to the directions of unit slope, and the two closed hemispheres
of H bounded by H0 are denoted H1 and H2, respectively. We may assume, after applying a
nondegenerate linear transformation of C2, that |H1 ∩ Ê| ≥ e/2, |H2 ∩ Ê| ≥ e/2, and there is at
most one family of parallel lines in E whose direction is in H0.

Definition 12. Let E = E1 ∪E2 be a partition of the line set E such that E1 ⊂ {ℓ ∈ E : ℓ̂ ∈ H1},
E2 ⊂ {ℓ ∈ E : ℓ̂ ∈ H2}, |E1| = ⌊e/2⌋ and |E2| = ⌈e/2⌉.

Note that the parallel lines in E whose direction corresponds to a point in H0 may belong to
E1 or E2.

7



Definition 13. Let P0 = {p ∈ P : |Ep
1 | ≥ dA/100 and |Ep

2 | ≥ dA/100} be the set of points incident
to at least dA/100 lines from each of E1 and E2. Partition the points of P \ P0 into two subsets:
let P1 = {p ∈ P \ P0 : |Ep

1 | > |Ep
2 |} and P2 = {p ∈ P \ P0 : |Ep

1 | ≤ |Ep
2 |}.

Lemma 14. If (P,E) is critical, then |P0| ≥ n/10.

Proof. For j = 0, 1, 2, let |Pj | = xjn for some xj ≥ 0. Suppose, to the contrary, that x0 <
1

10
. Let

Ij denote the number of incidences of the system (Pj , E). Then the total number of incidences is
I =

∑2

j=0
Ij .

Note that P 6= P1, otherwise there would be at most I/100 incidences between P and E2, hence
some line in E2 would be incident to fewer than fA/2 points, contradicting Lemma 11. One can
show analogously that P 6= P2. It follows that each of the systems (P0, E), (P1, E1), and (P2, E2)
is smaller than the critical system (P,E), hence the bound of Theorem 1 applies to each of them.
Taking into account the incidences of the systems (P1, E2) and (P2, E1), as well, we obtain:

I0 < C(x0n)
2/3e2/3 + 3x0n+ 3e,

I1 < C(x1n)
2/3⌊e/2⌋2/3 + 3x1n+ 3⌊e/2⌋ + (x1n)(dA/100),

I2 < C(x2n)
2/3⌈e/2⌉2/3 + 3x2n+ 3⌈e/2⌉ + (x2n)(dA/100).

We estimate ⌈e/2⌉ as ⌈e/2⌉ ≤ C2+1

C2

e
2
using e > C2 from Lemma 8. We have

I =

2∑

j=0

Ij < x
2/3
0 Cn2/3e2/3 + (x

2/3
1 + x

2/3
2 )Cn2/3

(
C2 + 1

C2

e

2

)2/3

+
(x1 + x2)ndA

100
+ 3n+ 6e.

Applying Jensen’s inequality in the form x
2/3
1 + x

2/3
2 ≤ 2

(
x1+x2

2

)2/3
= 2

(
1−x0

2

)2/3
, we obtain

I =
2∑

j=0

Ij <

(
x
2/3
0 +

(1− x0)
2/3

21/3
· C

2 + 1

C2
+

(1− x0)

100

)
I + 6(n + e).

By Corollary 9, we deduce

1 < x
2/3
0 +

(1− x0)
1/3

21/3
· (C

2 + 1)

C2
+

1− x0
100

+
36

C3
.

This inequality is false for x0 ∈ [0, 0.1]. (The smallest positive x0 satisfying the inequality is
approximately x0 ≈ 0.108.) This proves that x0 > 0.1, as required

3.3 Separation of two line sets

Relying on the definitions of E1, E2, P0, and Ψ, we formulate a lemma (Lemma 15) that immediately
implies the Separation Lemma (Lemma 7).

Lemma 15. Let (P,E) be a critical system with E = E1 ∪ E2 as defined above. Then there is a
point set P3 ⊆ P0 and two line sets L1 ⊆ E1 and L2 ⊆ E2 such that

(a) |P3| ≥ n/M8;

(b) every point p ∈ P3 is incident to at least I/(nM2) lines from each of L1 and L2;

(c) there are two orthogonal directions ℓ̂1, ℓ̂2 ∈ H(1, 1) such that an appropriate nondegenerate lin-
ear transformation of C2 maps the directions of the lines in L1 and L2 into the 3◦-neighborhood
of ℓ̂1 and ℓ̂2, respectively.
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We prove Lemma 15 at the end of this section. The main difficulty in finding sets L1 and L2

with the required properties is that the boundary H0 of the two hemispheres, H1 and H2, is a
one-dimensional manifold. It is possible that for every point p ∈ P0, the directions of most of the
incident lines are very close to some direction in H0. This undesirable property of a point p ∈ P is
captured in the following definition.

Definition 16. Let (P,E) be a system of points and lines in C
2 such that E = E1 ∪ E2 with

Ê1 ⊆ H1 and Ê2 ⊆ H2, and let dA = I/n denote the average number of lines in E incident to a
point in P .

For a direction a ∈ H0, a point p ∈ P is called an N(a)-point, if the directions of at least
|Ep

1 | − dA
200 M lines in Ep

1 and at least |Ep
2 | − dA

200 M lines in Ep
2 are in the open disk of radius 10◦

centered at a ∈ H0.

If a point p ∈ P is an N(a)-point for some direction a ∈ H0, then we can apply a linear
transformation πaλ ∈ Ψ (cf. Subsection 2.2) with an appropriate parameter λ ∈ (−1, 1) to move
all line directions out of the disk of radius 10◦. After such a transformation, however, p might
still be an N(a′)-point for some other direction a′ ∈ H0, or another point p′ ∈ P might become
an N(a′)-point for some a′ ∈ H0. We show below (Lemma 17) that after applying an appropriate
linear transformation ψ ∈ Ψ, a positive fraction of the points in P0 ⊆ P are no longer N(a)-points
for any a ∈ H0.

Lemma 17. Let (P,E) be a critical system with E = E1∪E2 as defined above. Then there is a set
O ⊆ P0 of at least n/M6 points and a transformation ψ ∈ Ψ such that after applying transformation
ψ, no point in O is an N(a)-point for any a ∈ H0.

If, after some transformation π ∈ Ψ, no point in P0 is an N(a)-point for any a ∈ H0, then we
can put O = P0 in Lemma 17. Otherwise, we find an appropriate set O ⊆ P0 through an iterative
process over a system (Oj , Uj ∪ Vj) with Oj ⊆ P0, Uj ⊆ E1, and Vj ⊆ E2, j ∈ N0. Our goal is to
establish Lemma 17 for O = Oj for some j < 100. The line sets Uj and Vj will be, intuitively, the
witnesses for the points in Oj being N(a)-points for some direction a ∈ H0.

Initially, let O0 = P0, U0 = {ℓ ∈ E1 : ℓ̂ 6∈ H0}, and V0 = {ℓ ∈ E2 : ℓ̂ 6∈ H0}. That is, U0 (resp.,
V0) is obtained from E1 (resp., E2) by deleting all lines whose direction lies in H0 (recall that this
is at most one family of parallel lines). Every p ∈ O0 is incident to at least dA/100 − 1 ≥ dA/200
lines of U0 and at least dA/100−1 ≥ dA/200 lines of V0. For j = 0, the system (Oj , Vj ∪Uj) satisfies
the following four properties.

Invariant 18. For 0 ≤ j ≤ 100, we have Oj ⊆ P0, Uj ⊆ E1, and Vj ⊆ E2 such that

1. |Oj | ≥ nj, where nj = (1− 3

M )j(1
3
)j n

10
;

2. |Uj ∪ Vj | ≤ ej , where ej =
e
2j
;

3. for every p ∈ Oj , we have |Up
j | ≥ tj and |V p

j | ≥ tj , where tj =
dA
200

(1− j
M ).

The following lemma describes one step of the iteration. If we cannot choose O in Lemma 17
as a large subset of Oj , then we select subsets of the points and lines such that the number of lines
decreases by a factor of 2, and the number of lines incident to each point decreases only moderately.
We show that the process must stop after at most 100 iterations. The number of points and lines
in the system (Oj , Uj ∪Vj) will monotonically decrease, but the definition of N(a)-points is always
understood with respect to the original system (P,E), and the original average dA = I/n.
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Lemma 19. Let (P,E) be a critical system with E = E1 ∪ E2 as defined above. Assume that for
some j ∈ N0, the system (Oj , Vj ∪Uj) satisfies Invariant 18, and after applying any transformation
ψ ∈ Ψ, at least (1− 1

M )nj points p ∈ Oj are each N(ap)-points for some ap ∈ H0. Then there are
sets Oj+1 ⊆ Oj , Vj+1 ⊂ Vj , and Uj+1 ⊂ Uj satisfying Invariant 18.

In order to prove Lemma 19, we introduce some additional notation, and present a technical
lemma (Lemma 20). We define two new properties for every point p ∈ P with respect to a set
A ⊂ H0.

For a set A ⊆ H0, we say that a point p ∈ P is an N(A)-point, if p is an N(a)-point for
some a ∈ H0 that lies in the 10◦-neighborhood of A ⊂ H0.

Let γ : H → H0 map every direction a ∈ H, a 6∈ {0,∞}, to the closest point on the equator H0

along the main circle spanned by the directions a ∈ H, 0 ∈ H (South Pole) and ∞ ∈ H (North
Pole); and let γ(0) = γ(∞) = i ∈ H0.

For a set A ⊆ H0, we say that a point p ∈ P is a Γ(A)-point, if γ maps the directions
of at least 1

3
|Ep| lines in Ep to A.

The notion of Γ(A)-points will be helpful as it is easier to track the effect of a linear transfor-
mation ψ ∈ Ψ on Γ(A)-points than on N(A)-points. Note that if a point p ∈ Γ(A) is an N(a)-point
for any a ∈ H0, then a must be in the 10◦-neighborhood of the set A ⊂ H0. For a set A ⊆ H0 and
a transformation ψ ∈ Ψ, let Nj(A,ψ) ⊆ Oj denote the set of N(A)-points in Oj after applying ψ.
Similarly, let Γj(A,ψ) ⊆ Oj denote the set of Γ(A)-points in Oj after applying ψ. With terminology,
if a point p ∈ Γj(A,ψ) is an N(a)-point for any a ∈ H0, then a must be in the 10◦-neighborhood
of the set A ⊂ H0, and so p ∈ Nj(A,ψ).

We shall use two different decompositions of the equator H0 into closed circular arcs. First
decompose the equator H0 into the following three circular arcs (refer to Fig. 2, left and middle):
a half circle A1 = [i,−i] and two quarter circles A2 = [−i,−1] and A3 = [−1, i]. The second
decomposition of H0 consists of circular arcs H0 = B1 ∪ B2 ∪ B3 such that for every k = 1, 2, 3,
Ak ∩ Bk = ∅ and the endpoints of Bk are the midpoints of arcs Ak+1 mod 3 and Ak+2 mod 3.
Specifically, let B1 = [−1+i√

2
, −1−i√

2
], B2 = [−1−i√

2
, 1], and B3 = [1, −1+i√

2
] (refer to Fig. 2, right). Since

H0 = A1∪A2∪A3 andH0 = B1∪B2∪B3, every point p ∈ Oj is a Γ(Ak)-point for some k ∈ {1, 2, 3},
and also a Γ(Bm)-point for some m ∈ {1, 2, 3}.
Lemma 20. Let (P,E) be a critical system with E = E1 ∪ E2 as defined above. Assume that the
system (Oj , Vj ∪ Uj), j ∈ N0, satisfies Invariant 18. Then there is a transformation ψ0 ∈ Ψ such
that |Γj(Ak, ψ0)| ≥ nj

3
for all k = 1, 2, 3.

Proof. We construct ψ0 as a composition of π1λ followed by πiκ for some λ, κ ∈ (−1, 1). Let
λ ∈ (−1, 1) be the minimum value such that |Γj(A1, π

1
λ)| ≥ nj/3. This choice is possible since

every point of p ∈ Oj becomes a Γ(A1)-point for a sufficiently large λ, λ ∈ (−1, 1). For this
value of λ, we have |Γj(A2 ∪ A3, π

1
λ)| ≥ 2

3
nj. In a second step, we apply πiκ for some κ ∈ (−1, 1).

Note that for every κ ∈ (−1, 1), the transformation πiκ is an automorphism on the hemisphere
γ−1(A1) ∪ {0,∞} and so the set of Γj(A1)-points remains fixed. Let κ ∈ (−1, 1) be the minimum
value such that |Γj(A2, π

i
κ ◦ π1λ)| ≥ nj/3 and |Γj(A3, π

i
κ ◦ π1λ)| ≥ nj/3. This choice is possible since

every point of p ∈ Oj becomes a Γ(A3)-point for a sufficiently large κ ∈ (−1, 1). As noted above,
we also have |Γj(A1, π

1
λ)| = |Γj(A1, π

i
κ ◦ π1λ)| ≥ nj/3.
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Figure 2: Left: a Riemann sphere H, the equator H0 of unit slopes, and the decomposition H0 =
A1 ∪A2 ∪A3. Middle: the circular arcs A1, A2, and A3 of the equator H0. Right: the circular arcs
B1, B2, and B3 of H0.

We are now ready to prove Lemma 19.

Proof of Lemma 19. Consider the system (Oj , Uj ∪ Vj) satisfying Invariant 18 such that after any
transformation ψ ∈ Ψ, at least nj(1− 1

M ) points p ∈ Oj are N(ap)-points for some ap.
Apply a transformation ψ0 ∈ Ψ such that |Γj(Ak, ψ0)| ≥ nj

3
for k = 1, 2, 3 (cf. Lemma 20).

Recall that if a point p ∈ Γj(Ak, ψ0) is an N(ap)-point for some ap ∈ H0, then ap must be in the
10◦-neighborhood of the arc Ak ⊂ H0, and so p ∈ Nj(Ak, ψ0). This implies that |Nj(Ak, ψ0)| ≥
nj

3
− nj

M = (1− 3

M )
nj

3
for all k = 1, 2, 3.

Since H0 = B1 ∪ B2 ∪ B3, we have
∑

3

k=1
|Nj(Bk, ψ0)| ≥ nj − nj

M and maxk |Nj(Bk, ψ0)| ≥
nj

3
− nj

3M > (1− 3

M )
nj

3
.

In order to choose subsets Uj+1 ⊆ Uj and Vj+1 ⊆ Vj , we define six spherical caps of the Riemann
sphere H, and let Uj+1 ⊆ Uj and Vj+1 ⊆ Vj to be the set of lines whose directions lie in one of
these six spherical caps. We continue with the details.

Embed the Riemann sphere H into R
3 as a unit sphere S

2 centered at the origin (i.e., every
point a ∈ H0 corresponds to a unit vector in R

3). For every a ∈ H0, let f(a) be a plane in R
3 whose

normal vector is a and that equipartitions the multiset of the directions V̂j ∪ Ûj ⊂ H (that is, each
closed halfplane bounded by f(a) contains the directions of at least |Uj ∪Vj |/2 lines from Uj ∪ Vj).
If a ∈ H is in general position with respect to V̂j ∪ Ûj ⊂ H, then f(a) passes through at most one

direction in V̂j ∪ Ûj. Let a1, a2, a3 ∈ H0 be three points in general position in a sufficiently small
neighborhood of the midpoints of the arcs A1, A2, and A3, respectively (the midpoints correspond
to the directions 1 ∈ H0, (−1 + i)/

√
2 ∈ H0, and (−1− i)/

√
2 ∈ H0). As a shorthand notation, let

f1 = f(a1), f2 = f(a2), and f3 = f(a3). Refer to Fig. 2. We are now ready to define the sets Oj+1,
Uj+1, and Vj+1.

- If there is an index k ∈ {1, 2, 3} such that fk does not intersect the 10◦-neighborhood of Ak,
then let Oj+1 = Nj(Ak, ψ0). Let Uj+1 (resp., Vj+1) be the set of lines from Uj (resp., Vj)
whose directions lie in the open spherical cap of H bounded by fk that contains Bk.

- If fk intersects the 10◦-neighborhood of Ak for every k ∈ {1, 2, 3}, then consider an arc Bm

for m ∈ {1, 2, 3} where |Nj(Bm, ψ0)| is maximal. Let Oj+1 = Nj(Bm, ψ0). Let Uj+1 (resp.,
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Vj+1) be the set of lines from Uj (resp., Vj) whose directions lie in the open spherical cap of
H bounded by fm that contains Bm.

It is easy to check that Oj+1, Uj+1, and Vj+1 satisfy Invariant 18. Indeed, we have Uj+1 ⊂ E1

and Vj+1 ⊂ E2 since ψ0 ∈ Ψ. We have |Oj+1| ≥ (1 − 3

M )
nj

3
, since |Nj(Ak, ψ0)| ≥ (1 − 3

M )
nj

3
for

k = 1, 2, 3; and maxk |Nj(Bk, ψ0)| > (1− 3

M )
nj

3
. The number of lines is |Uj+1∪Vj+1| ≤ ej/2 because

of the choice of the planes f1, f2, and f3. Finally, each point p ∈ Oj+1 is an N(a)-point for some
a ∈ Ak or a ∈ Bm, and the set Uj+1∪Vj+1 contains all but at most dA

200 M lines from Ep, hence also

from Up
j ∪V

p
j . Therefore, we have |U

p
j+1

| ≥ |Up
j |− dA

200 M and |V p
j+1

| ≥ |V p
j |− dA

200 M , as required.

Proof of Lemma 17. We count the number Ij of point-line incidences for the system (Oj , Uj). On
one hand, every point in Oj is incident to at least tj lines in Uj and so Ij ≥ |Oj | · tj. On the other
hand, the system (Oj , Uj) is smaller than the critical system (P,E) and so the number of incidences
is bounded above by max(C|Oj |2/3|Uj |2/3, 3|Oj |, 3|Uj |). Using |Uj | ≤ ej and |Oj | ≥ nj, we have

|Oj | · tj ≤ max(C|Oj |2/3e2/3j , 3|Oj |, 3ej) (2)

tj ≤ max

(
Ce

2/3
j

|Oj |1/3
, 3,

3ej
|Oj |

)
. (3)

tj ≤ max

(
Ce

2/3
j

n
1/3
j

, 3,
3ej
nj

)
. (4)

Assuming M = 1010 and 0 ≤ j ≤ 100, we have (1 − j/M) ≥ 1 − 10−8 and 0.99 < (1− 3/M)j < 1.
Lemma 8 yields e2/3/n1/3 > C2/3 and e1/3/n2/3 < 3/C2. Consequently, we can bound the terms
in (4) as follows.

tj ≥ dA
200

(
1− j

M

)
>

I

203n
>
Cn2/3e2/3

203n
=

C

203
· e

2/3

n1/3
>

C3

609
(5)

Ce
2/3
j

n
1/3
j

≤ C(e/2j)2/3

[(1− 3/M)j(1/3)j(n/10)]1/3
<

3C

(4/3)j/3
· e

2/3

n1/3
(6)

3ej
nj

≤ 3e/2j

(1− 3/M)j(1/3)j(n/10)
<

31(3/2)je

n
<

93(3/2)j

C2
· e

2/3

n1/3
. (7)

For j = 100, we have tj > Ce
2/3
j n

−1/3
j , tj > 3, and tj > 3ejn

−1
j . That is, (4) is false for j = 100.

Therefore there is an index 0 ≤ j < 100 such that after an appropriate transformation ψ ∈ Ψ at
least nj/M points in the system (Oj , Uj∪Vj) are not N(a)-points for any a ∈ H0. Let O ⊆ Oj be the
set of these points. For every 0 ≤ j ≤ 100, we have nj > 0.99·3−j · n

10
> 3−100 · n

20
> n/1050 = n/M5,

hence |O| ≥ nj/M ≥ n/M6.

Cover the Riemann sphere H with the minimum number of open disks (spherical caps) of
diameter 0.1◦. Denote by K ∈ N the number of disks in a minimum cover. We show that K <
M/200 using a rough estimate. Consider a maximal packing of the sphere H with pairwise disjoint
congruent disks of radius 0.025◦. The area of a disk (i.e., spherical cap) of radius 0.025◦ is more
than 2(0.025 · π/180)2 > 3.807 · 10−7, and so the number of disks in a packing of a unit sphere is
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K < 4π/(3.807 · 10−7) < 3.31 · 107 < M/200. Increase the radius of each disk in this maximum
packing from 0.025◦ to 0.05◦ to obtain a covering of H with at most M/200 disks.

Partition the interior of the hemispheres H1 and H2 each into at most K subsets of diameter
less then 0.1◦. Let D1 and D2, respectively, denote the families of these subsets.

Proof of Lemma 15. By Lemma 17, we may assume (after applying a transformation ψ ∈ Ψ) that
there is a set O ⊆ P0 of n/M6 points such no point in O is an N(a)-point for any a ∈ H0. Consider
the partition D1 and D2 defined above. We show that that for every point p ∈ O, we can choose
two sets of directions, D1(p) ∈ D1 and D2(p) ∈ D2, such that

• the directions of at least dA
200·KM lines of Ep

1 and Ep
2 are in D1(p) and in D2(p), respectively;

• the distance between D1(p) ⊂ H1 and D2(p) ⊂ H2 is at least 6◦.

Since O ⊆ P0, every point p ∈ O is incident to at least dA
200

lines from E whose directions are in
the interior of H1 (resp., H2). For each p ∈ O, choose sets F1(p) ∈ D1 and F2(p) ∈ D2 such that at
least dA

200·K lines of Ep
1 and Ep

2 are in F1(p) and in F2(p), respectively.
If the distance between sets F1(p) and F2(p) is at least 6

◦, then let D1(p) = F1(p) and D2(p) =
F2(p). Otherwise let ap ∈ H0 be the intersection point of the equator H0 and a shortest circular
arc between F1(p) ⊂ H1 and F2(p) ⊂ H2. Assume that F1(p) is at distance at most 3◦ from ap (the
case that F2(p) is at distance at most 3◦ from ap is analogous). Then D1(p) is contained in the
disk B(ap, 3.1

◦) of radius 3.1◦ centered at ap. Let D1(p) = F1(p). Since p is not an N(ap)-point,
there are at least dA

200·M lines in Ep
2 whose directions lie outside of B(ap, 10

◦), the disk of radius 10◦

centered at ap. Out of the sets in D2 that intersect H2 \ B(ap, 10
◦), choose D2(p) ∈ D2 such that

it contains the directions of at least 1

K · dA
200 M lines of Ep

2 . Since the diameter of D2(p) is 0.1◦, it
lies in the exterior of B(ap, 9.9

◦). We have D1(p) ⊂ B(ap, 3.1
◦) and D2(p) ⊂ H2 \B(ap, 9.9

◦), and
so the distance between D1(p) and D2(p) is more than 6◦, as required.

For at least |O|/K2 points in O, we have chosen the same subsets D1 ∈ D1 and D2 ∈ D2. Let
P3 ⊆ O be the set of these points. Since K < M , we have |P3| ≥ |O|/K2 ≥ (n/M6)/K2 > n/M8.
Let L1 = {ℓ ∈ E1 : ℓ̂ ∈ D1} and L2 = {ℓ ∈ E2 : ℓ̂ ∈ D2}. For every p ∈ P3, we have |Lp

1| ≥
dA

200·KM > dA/M
2 and |Lp

2| ≥ dA
200·KM > dA/M

2, as required.
Finally, we apply a nondegenerate linear transformation on C

2 (not necessarily from Ψ) that
maps D1(p) ⊂ H1 and D2(p) ⊂ H2 into the 3◦-neighborhoods of two perpendicular directions
ℓ̂1 ∈ H and ℓ̂2 ∈ H. This can be done because the chordal metric of S2 is equivalent to the metric
of the Riemann sphere H. Let b ∈ H be the bisector of two representative points from D1(p)
and D2(p), respectively. Apply πbλ = ̺bπ1λ(̺

b)−1, with an appropriate 0 ≤ λ < 1, where ̺b is an
isometry of C2 that maps the complex line of slope b to a line of slope 1. If we increase λ > 0
continuously, the representative points in D1(p) and D2(p) move along main circles of H through
b ∈ H. When the representative points of the two sets become antipodal, the diameter of the image
of each set is below 3◦.

4 Covering Lemma

Our second main lemma (Covering Lemma) is an elaborate version of a lemma of Szemerédi and
Trotter [21]. It states that given a finite point set in R

d, a constant fraction of the points can
be enclosed into interior-disjoint axis-aligned cubes such that the points are approximately evenly
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distributed among them and each cube is adjacent to a “buffer zone.” To specify what a “buffer
zone” is, we introduce the concepts of κ-side-cubes and shift-graphs.

The extents of a hyper-rectangle
∏d

j=1
[aj , bj ] are the intervals [aj , bj], for j = 1, 2, . . . , d. In this

section, a cube always means an axis-aligned hypercube. A cube in R
d is always full-dimensional

unless stated otherwise. We call the direction ed = (0, 0, . . . , 0, 1) ∈ R
d vertical, and interpret the

“above” and “below” relationships in R
d relative to the vector ed.

Q

shift(Q)

Q

bott(Q)

p

Figure 3: Left: a cube Q with shift(Q) in R
3. Right: a cube Q with a 1-side-cube bott(Q) in R

3.

Definition 21. Let Q be a cube in R
d, and κ ∈ N. A κ-side-cube of Q is obtained by dilating Q

with ratio 1/(2κ + 1) from a center p, where p is the midpoint of a (d − 1)-dimensional face of Q
(see Fig. 3).

A cube has a κ-side-cube along each of its (d−1)-dimensional faces (sides). So every cube in R
d

has 2d distinct κ-side-cubes. We say that the orientation of a κ-side-cube Q′ of Q is the orientation
of the vector pointing from the center of Q to that of Q′.

Definition 22. Let Q be a cube in R
d (see Fig. 3).

Let bott(Q) be the κ-side-cube of Q along the bottom side of Q.
Let shift(Q) be the translate of Q by vector − q

2κ+1
· ed, where q is the edge length of Q.

Definition 23. Let K be a collection of interior-disjoint cubes in R
d. The shift-graph T (K) is a

directed graph where the nodes correspond to the cubes in K, and there is a directed edge (Q1, Q2)
in T (K) if and only if

1. shift(Q1) \Q1 and shift(Q2) have a common interior point, and

2. there is a vertical segment connecting the bottom side of Q1 and the top side of Q2 that does
not intersect the interior of any cube in K. (See Fig. 4.)

Lemma 24. (Covering Lemma) Let P be a set of n points in R
d, κ ∈ N, and r ∈ R such that

1 < r ≤ n/(4(4κ+1)2d). Then there is a set K of pairwise interior-disjoint cubes and a permutation
of the coordinate axes such that

1. the number of cubes is |K| > n/(62d · (4κ+ 1)2dr);

2. for every cube Q ∈ K, the interior of bott(Q) contains at least r points of P ; and
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Figure 4: Left: bold interior-disjoint cubes in R
2, and dotted shifted

cubes for κ = 1. Right: the corresponding shift graph.

3. the outdegree of every node in the shift graph T (K) is at most one.

A permutation of the coordinate axes may be necessary, since bott(Q) and the shift graph are
defined in terms of the “vertical” direction ed.

4.1 Proof of the Covering Lemma

A cube in R
d is called a grid-cube if all coordinates of all of its vertices are integers. A unit grid-cube

is a grid-cube of side length 1. A face-to-face tiling of Rd with grid-cubes is an infinite collection
of pairwise interior-disjoint grid-cubes whose union is Rd such that every two grid-cubes are either
disjoint or intersect in a common face. We start with a simple proposition.

Proposition 25. Let Q be a grid-cube in R
d, and let B ⊆ Q be a unit grid-cube. Then Q \ B is

the union of at most 3d − 1 (not necessarily disjoint) grid-cubes.

Proof. The hyperplanes along the 2d sides of B decompose Q\B into at most 3d−1 interior-disjoint
axis-aligned boxes. It is enough to show that each such box can be covered by a cube lying in Q\B.

Consider one such box R =
∏d

i=1
[ai, bi] ⊂ Q. Note that all coordinates of all vertices of R are

integers. At least one extent of R is interior-disjoint from the corresponding extent of B. Assume
without loss of generality that [a1, b1] is a maximal length extent of R that is interior-disjoint from
the corresponding extent of B. Then a hyperplane h1 orthogonal to e1 separates R and B (i.e., B
and R lie in closed halfspaces on opposite sides of h1). Enlarge each extent of R to an interval of
length b1 − a1 that has integer endpoints and lies in the corresponding extent of Q. We obtain a
cube that contains R, lies in Q, and is separated from Q by the hyperplane h1.

We now state and prove a weaker version of the Covering Lemma that chooses a collection S of
interior-disjoint cubes whose side-cubes jointly contain a constant fraction of the points in P , but
the side-cubes may have different orientations, and the condition about the shift graph is dropped.

Lemma 26. Let P be a set of n points in R
d, let κ ∈ N, and let r ∈ R such that 1 < r ≤

n/(4(4κ + 1)2d). Then there is a set S of pairwise interior-disjoint cubes such that

1. the number of cubes is |S| > n/(16(4κ + 1)2dr);

2. for every Q ∈ S, the interior of a κ-side-cube of Q contains at least r points of P .
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Proof. We are given a set of n points in R
d. We may assume, by applying a dilation if necessary,

that the minimum distance between any two points in P is more than
√
d, the diameter of a unit

cube. We may also assume, by applying a translation if necessary, that none of the coordinates of
any point in P is an integer.

We present a dynamic programming algorithm, Algorithm 27, that computes a collection S
of cubes with the desired properties for a point set P ⊂ R

d. It proceeds in a finite number of
phases. In phase i ∈ N, it maintains a face-to-face tiling of Rd with a set Ci of congruent grid-cubes.
Initially, C1 is a tiling of Rd with unit grid-cubes. Our assumptions ensure that every unit grid-cube
contains at most one point from P , and every point in P lies in the interior of a unit grid-cube.

In each phase i ∈ N, Algorithm 27 processes every cube of Ci that contains a point from P , and
determines a new tiling Ci+1. Each cube in Ci+1 is the union of µd congruent grid-cubes from Ci,
where µ = 4κ + 1. Algorithm 27 terminates at a phase i ∈ N, where all points of P lie in a single
cube of Ci.

We allow Algorithm 27 to delete points from P , since it is enough to establish that a side-cube
of each selected cube contains at least r points of P . The algorithm maintains a set PA ⊆ P of
available points. Initially, PA = P (i.e., all points are available), but later the algorithm may delete
some points from PA, or enclose them into special cubes (defined below).

When Algorithm 27 processes a cube Q ∈ Ci, then it may label Q or some cubes contained in
Q as green, blue, and selected. Accordingly, we distinguish labeled and unlabeled cubes. The green
labels carry information from one phase to the next, but the blue and selected labels are global (and
irrevocable). At the end of the algorithm, the set of cubes labeled selected will be S. We maintain
the property that every two labeled cubes are either interior-disjoint or nested. The labeled cubes
are characterized as follows.

- Green cubes. In each phase i, Algorithm 27 places some cubes into the set Gi of green
cubes. Green cubes are pairwise interior-disjoint. Every green cube contains at least r points
of P but it does not contain any selected or blue cube. At the end of phase i+1, some green
cubes in Gi become κ-side-cubes of selected cubes.

- Selected cubes. Algorithm 27 incrementally places cubes into S and labels them selected.
Selected cubes are interior-disjoint. Every Q ∈ S contains a green cube as a κ-side-cube, and
does not contain any smaller blue or selected cubes.

- Blue cubes. Algorithm 27 builds a hierarchy of blue cubes B that enclose the selected cubes.
Each blue cube contains a unique selected cube or at least two interior-disjoint blue cubes.

In every phase i ∈ N, Algorithm 27 processes all cubes in Ci that contain some points from
P , and then determines the next tiling Ci+1. For every tiling Ci, there are µd possible face-to-face
tilings such that each cube in Ci+1 contains exactly µd congruent cubes from Ci: Algorithm 27
chooses one of them to become Ci+1.

At the end of each phase i ∈ N, a cube Q ∈ Ci can be in one of the following six states. Initially,
in phase i = 1, every cube Q ∈ C1 is in state A1. Each state of a cube Q ∈ Ci is characterized by
the labeled cubes contained in Q that are maximal (for containment), and the number |PA ∩ Q|
of available points in Q at the beginning of the step in which Q is processed (note, however, that
some of the points may be deleted from PA when Q is processed).

(A1) Q has no label, it contains no cubes from Gi ∪ S ∪ B, and |PA ∩Q| < r;

(A2) Q ∈ G, Q contains no cube from S ∪ B, and r ≤ |PA ∩Q| < µdr;
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(A3) Q contains one maximal blue cube and one maximal green cube G ∈ Gi, and |PA ∩ Q| <
(3d − 1)r + (µd − 1)r < 2µdr;

(A4) Q has no label, Q contains one maximal blue cube, and |PA ∩Q| < (3d − 1)r;

(A5) Q ∈ B, Q contains exactly one maximal selected cube, and |PA ∩Q| < µdr;

(A6) Q ∈ B, Q contains at least two maximal blue cubes, and |PA ∩Q| < 2µ2dr;

For every cube Q ∈ Ci containing a point of P , Algorithm 27 assigns Q to one of the six states
based on the number |PA ∩ Q| of available points in Q and the states of the µd sub-cubes of Q
from the previous subdivision Ci−1. (By default, all empty cubes in Ci−1 are in state A1.) We use
a shorthand notation to summarize the states of all µd subcubes of a cube Q ∈ Ci. The expression
Q =

∑
6

k=1
ωkAk means that Q ∈ Ci consists of ωk sub-cubes from Ci−1 in state Ak, k = 1, 2, . . . , 6

(hence
∑6

k=1
ωk = µd). The assignment of a cube Q to a state Ak is denoted by Q → Ak.

Algorithm 27. Input: P ⊂ R
d, |P | = n, such that no coordinates are integers and the minimum

distance between any two points is at least
√
d.

• Set PA := P , i := 1, S := ∅, B := ∅, and G1 := ∅. Let C1 be the subdivision of Rd into unit
grid-cubes, each of which is in state A1.
• Until all points of PA lie in a single cube of Ci in state A1 ∪A4 ∪A5 ∪A6, do:

1. Set i := i+ 1, and Gi = ∅
2. For every Q ∈ Ci where Q ∩ P 6= ∅ do

(i) If Q = µdA1 and |PA ∩Q| < r, then Q→ A1.
(ii) If Q = µdA1 and |PA ∩Q| ≥ r, then Q→ A2. Set Gi := Gi ∪ {Q} and PA := PA \Q.
(iii) If Q = (µd − 1)A1 +A2, then Q → A5. Denote by G ⊂ Q the green subcube in state

A2. G is in central position within Q (cf. step 4). Let Qs be a grid-cube lying in Q such
that G = bott(Qs). Set S = S ∪ {Qs}, B := B ∪ {Q}, and PA := PA \Q.

(iv) If Q = (µd − 1)A1 + A3, then Q → A6. Subcube in state A3 contains a green cube
G ∈ Gi−1 and a maximal blue cube B ∈ B. The subcube in state A3 is in central
position within Q (cf. step 4). Let Qs ⊂ Q \ B be a grid-cube whose κ-side-cube is G.
Set S := S ∪ {Qs}, B := B ∪ {Q,Qs}, and PA := PA \Q.

(v) If Q = (µd − 1)A1 + (A4,A5, or A6) and |PA ∩Q| < (3d − 1)r, then Q→ A4.
(vi) If Q = (µd − 1)A1 + (A4,A5, or A6) and |PA ∩ Q| ≥ (3d − 1)r, then Q → A3. Let

B be the maximal blue cube in Q, which either lies in the subcube in state A4 or is the
subcube in state (A5 or A6). Let G ⊂ Q \ B be one of at most 3d − 1 cubes covering
Q\B (cf. Proposition 25) such that |PA ∩G| ≥ r. Set Gi := Gi∪{G} and PA := PA \G.

(vii) If Q = (µd − 2)A1 + A2 + (A4,A5, or A6), then Q → A6. Denote by G and B the
subcubes of Q in states A2 and A4 ∪A5 ∪A6, respectively. The subcube in state A2 is
in central position in Q (cf. step 4). Let Qs ⊂ Q \ B be a grid-cube whose κ-side-cube
is G. Set B := B ∪ {Q,Qs}, S = S ∪ {Qs}, and PA := PA \Q.

(viii) If Q contains at least two subcubes in states (A3,A4,A5, or A6) and the remaining
subcubes are in states (A1 or A2), then Q→ A6. Set B := B ∪ {Q} and PA := PA \Q.

3. Choose Ci+1 out of the µd possible tilings such that the maximal number of cubes in Ci in state
A2 ∪A3 are in central position within a cube in Ci+1.
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4. For every cube Q ∈ Ci in state A2 ∪A3 that is not in central position in Ci+1, do: If Q is
in state A2, then set Gi := Gi \ {Q} and Q → A1; if Q is in state A3 containing a green
cube G ∈ Gi, then set Gi := Gi \ {G} and Q→ A4. As a result, every surviving cube in state
A2 ∪A3 is in central position within some cube in Ci+1.

Output: S.
At the end of Algorithm 27, all points lie in a cube Q in state A1, A4, A5 or A6. Let b and s

denote the total number of blue and selected cubes, respectively. Let gi denote the total number
of cubes that are labeled green during phase i of Algorithm 27 (even if the label was removed at
the end of the phase); and let g =

∑
i≥1

gi.
We define a rooted tree on the blue cubes as follows. The vertices of the tree correspond to the

blue cubes, a cube Q1 is a descendant of Q2 if and only if Q1 ⊂ Q2. Each selected cube is contained
in a unique leaf cube of this tree, and so the tree has s leaves. Every intermediate node (state A6)
has at least two children. It follows that b < 2s ≤ 2b.

Every green cube in Gi is in a unique cube of Ci, which is in state A2 ∪ A3. The tiling Ci+1

was chosen such that at least gi/µ
d cubes Q ∈ Ci in A2 ∪A3 are in central position with respect

to Ci+1. Each of these cubes Q ∈ Ci contains a unique green cube GQ ∈ Gi. In phase i+ 1, a green
cube G ∈ Gi either becomes the κ-side-cube of a new selected cube (cases (iii), (iv), or (vii)), or
is enclosed in a new blue cube along with at least two interior-disjoint blue cubes (case (viii)). At
any rate, if a cube Q ∈ Ci in state A2 ∪A3 is in central position with respect to Ci+1, then Q is
enclosed in a unique blue cube of Ci+1, hence g/µ

d ≤ b ≤ 2s.
We derive an upper bound for the total number of points in terms of s by accounting for the

available points deleted during the algorithm. For every blue cube (in state A5 ∪ A6), at most
2µ2dr points are deleted. For every cube in state A2∪A3, at most 2µdr points are deleted. Finally,
at the last phase, the single remaining cube is in state A1 ∪A4 ∪A5 ∪A6, and it contains at most
2µ2dr available points. We have

n ≤ b · 2µ2dr + g · 2µdr + 2µ2dr,

n < 2s · 2µ2dr + 2µds · 2µdr + 2µ2dr,

n− 2µ2dr < 8µ2dr · s,
n− 2µ2dr

8µ2dr
< s.

The number of cubes in S is s > (n − 2µ2dr)/(8µ2dr) ≥ n/(16µ2dr), if r ≤ n/(4µ2d).

Proof of Lemma 24. A κ-side-cube of a cube in S can have 2d possible orientations. Let K0 be the
set of cubes from S with the most frequent orientation. We can permute the coordinate axes such
that every κ-side-cube in K0 lies along the bottom sides. The cubes of K0 satisfy properties 1 and
2 of Lemma 24. The number of cubes in K0 is |K0| = |S|/2d > n/(32d · µ2dr).

We show that the indegree of every node in the shift graph T (K0) is at most one. Assume
that (Q1, Q2) is a directed edge in T (K0). We wish to show that the indegree of Q2 is one. Recall
(Definition 23) that (Q1, Q2) is an edge of T (K0) iff (1) shift(Q1) \Q1 and shift(Q2) overlap, and
(2) there is a vertical segment connecting the bottom side of Q1 and the top side of Q2 that does
not intersect the interior of any cube in K0. Since Q1 and Q2 are interior-disjoint, Q1 must be
above Q2, and Q1 must be larger than Q2.
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It is enough to show that the vertical projection of Q1 contains that of Q2. Indeed, suppose
to the contrary, that both (Q0, Q2) and (Q1, Q2) are incoming edges to cube Q2. If the vertical
projections of both Q0 and Q1 contain that of Q2, then one of Q0 and Q1 is above the other.
Assume without loss of generality that Q0 is above Q1. Then every vertical segment between Q0

and Q2 intersects Q1, contradicting property (2) of Definition 23. Therefore, the in-degree of every
node in T (K0) is at most one, as claimed.

It remains to show that the vertical projection of Q1 contains that of Q2. Both Q1 and Q2

are in the set S of selected cubes returned by Algorithm 27. Assume without loss of generality
that Q1 was selected while processing a cube Q′

1 ∈ Ci in phase i. Then Q′
1 is the smallest blue

cube containing Q1. By construction, bott(Q1) ∈ Gi−1; and bott(Q1) lies in a cube of Ci−1 in state
A2 ∪A3 that is in central position within Q′

1. Therefore, shift(Q1) ⊂ Q′
1. Since Q2 is smaller than

Q1 and overlaps with shift(Q1), we have Q2 ⊂ Q′
1. This implies that Q′

1 already contains some
blue cube. Hence Q′

1 is processed in step 2iv or step 2vii of Algorithm 27. We distinguish between
two cases.

Assume first that Q′
1 is processed in step 2iv. Then Q′

1 = (µd−1)A1+A3, and so both bott(Q1)
and Q2 lie in the cube Q′

2 in state A3, which is in central position in Q′
1. Denote by B ⊂ Q′

2 the
maximal blue cube in Q′

2. The green cube bott(Q1) ⊂ Q′
2 was created in step 2vi of Algorithm 27,

as one of at most 3d − 1 cubes covering Q \ B (cf. Proposition 25). The green cube bott(Q1) is
one of at most 3d − 1 grid-cubes covering Q′

2 \B. Since bott(Q1) is adjacent to the bottom side of
Q1, and Q1 is interior disjoint from B, then bott(Q1) lies above the hyperplane containing the top
side B. By Proposition 25, the cube bott(Q1) is at least as large as B. Since bott(Q1) and B are
adjacent, and bott(Q1) is a κ-side-cube of Q1 for κ ≥ 1, the vertical projection of Q1 contains that
of B and hence that of Q2.

Assume now that Q′
1 is processed in step 2vii. Then Q′

1 = (µd − 2)A1 +A2 + (A4,A5, or A6).
The a green cube bott(Q1) in state A2 is in central position in Q′

1, and Q1 is the union of (2κ+1)d

subcubes in Ci−1. The cube Q2 lies within a subcube B′ ∈ Ci−1 in state A4 ∪ A5 ∪ A6. Since
(Q1, Q2) is an edge of the shift graph T (K), B′ is one of the (2κ + 1)d−1 subcubes in Ci−1 directly
below Q1. Consequently, the vertical projection of Q1 contains that of B′ and hence that of Q2.

In both cases, the vertical projection of Q1 contains the vertical projection of Q2, as required.
Since the indegree of every node in the shift graph T (K0) is at most one, it follows that T (K0)

has at least |K0| edges and so at least half of the nodes have outdegree 0 or 1. Let K be the set
of cubes in K0 whose outdegree is 0 or 1 in T (K0). We have |K| ≥ |K0|/2 > n/(64d · µ2dr). This
completes the proof of Lemma 24.

5 Combination of the two Main Lemmas

Recall that two 2-flats in R
4 that correspond to two complex lines in C

2 are either parallel or
intersect in a single point. We define a crossing in R

4 as a pair of 2-flats in R
4 that intersect in

exactly one point. The Separation Lemma gives a set of points P3, and two sets of 2-flats in R
4,

L1 and L2, such that the directions of the 2-flats in L1 and L2 are in the 3◦-neighborhood of two
orthogonal 2-dimensional subspaces ℓ̂1 ∈ Gr(2, 2) and ℓ̂2 ∈ Gr(2, 2), respectively.

Lemmas 28 and 29 below help localizing the crossings between the lines in L1 and L2. We
introduce some notation for the lines incident to two specific points. Consider two points p, q ∈ R

4

and let d = dist(p, q) be their Euclidean distance. Let ℓp1 and ℓ
p
2 (reps., ℓ

q
1 and ℓ

q
2) be two orthogonal

2-flats of direction ℓ̂1 and ℓ̂2 incident to p (resp., q). Let x = ℓp1 ∩ ℓ
q
2 and y = ℓq1 ∩ ℓ

p
2, respectively.
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Since ℓ̂1 and ℓ̂2 are orthogonal directions, pxqy is a rectangle, and in particular, p, q, x, and y are
coplanar in R

4.

Lemma 28. With the above notation, the pairs of 2-flats in Lp
1 × Lq

2 and Lq
1 × Lp

2 intersect in the
balls B(x, d/10) and B(y, d/10) of radius d

10
centered at x and y, respectively.

Proof. Denote by z = hp
1
∩ hq

2
the intersection point of some 2-flats hp

1
∈ Lp

1
and hq

2
∈ Lq

2
. Since ℓp

1

and ℓq2 are orthogonal, we have ∠pxq = 90◦, hence ∠pxz + ∠qxz ≤ 270◦. Assume, without loss of
generality, that ∠pxz ≤ 135◦ (the case that ∠qxz ≤ 135◦ is analogous). Recall that the distance
between the directions of two 2-flats in R

4 (i.e., the metric in Gr(2, 2)) is the sum of their principal
angles. Therefore, ∠xpz < 3◦. In the triangle ∆(pxz), we have ∠pzx = 180◦ −∠pxz−∠xpz > 41◦.
By the law of sines, dist(x, z) = dist(p, x) sin(∠xpz)/ sin(∠pzx) < d sin 3◦/ sin 41◦ < d/10, as
claimed.

Let f be a hyperplane in R
4, and denote its two closed halfspaces by f+ and f−, respectively.

A crucial step of the argument below considers the case where two points lie on the same side of
f , say p, q ∈ f+, but neither B(x, d/10) nor B(y, d/10) is contained in f+. The following lemma
shows that in this case, both p and q must be close to f .

Lemma 29. If p, q ∈ f+ but neither B(x, d/10) nor B(y, d/10) is contained in f+, then both p
and q are at distance at most d/5 from the hyperplane f .

Proof. Since p, q ∈ f+, the midpoint of the rectangle pxqy is also in f+. This point is also the
midpoint of xy, and so at least one of x and y is in f+. Assume without loss of generality that
x ∈ f+. Since B(x, d/10) intersects f−, point x is at distance at most d/10 from f . Hence both x
and y are at distance at most d/10 from f (on either side of f), and the midpoint of xy is also at
distance at most d/10 from f . Since p, q ∈ f+, and the midpoint of pq is at distance at most d/10
from f , both p and q are at distance at most 2(d/10) = d/5 from f .

We combine the Separation Lemma and the Covering Lemma in the following lemma.

Lemma 30. (Combination Lemma) Let P be a set of n points, and let L1 and L2 be two sets
of 2-flats in R

4 such that the directions of the 2-flats in L1 and L2 are in the 3◦-neighborhood of
two orthogonal 2-dimensional subspaces ℓ̂1 ∈ Gr(2, 2) and ℓ̂2 ∈ Gr(2, 2), respectively. Let r0 ∈ N,
1 < r0 ≤ 10−8n.

Then there is a set R of pairwise interior-disjoint regions in R
4, and point sets PR ⊂ P ∩R for

every R ∈ R, such that

1. |R| > n/(1010r0);

2. |PR| = r0 for every R ∈ R; and

3. {e1 ∩ e2 : e1 ∈ Lp
1, e2 ∈ Lq

2} ⊂ int(R) or {e1 ∩ e2 : e1 ∈ Lq
1, e2 ∈ Lp

2} ⊂ int(R) for every R ∈ R
and every p, q ∈ PR.

Proof. Invoke the Covering Lemma (Lemma 24) for the point set P with parameters r = 27r0
and κ = 1 in R

4. We obtain a set K of more than n/(64 · 4 · 58 · 27r0) > 2n/(1010r0) = 2n/(Mr0)
interior-disjoint cubes such that a 1-side-cube of each cube in K contains at least 27r0 points from P .
Assume that these special side-cubes are the lower side-cubes bott(Q) for all Q ∈ K (the argument
is analogous for any other orientation of the side-cubes). For every cube Q ∈ K, we construct a
region R ∈ R such that Q ∩ shift(Q) ⊂ R, and choose a set PR of r0 points from P ∩ bott(Q).
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bott(Q1)

Q2

Q1

σ(Q2)

Figure 5: Relative position of Q1, bott(Q1), and Q2, indicated in three-space instead of R4.

Consider two arbitrary points p, q ∈ P ∩ bott(Q), for a cube Q ∈ K. Let d = dist(p, q) and let
x and y be defined as above. By Lemma 28, the pairs of lines in Lp

1 × Lq
2 and Lq

1 × Lp
2 intersect

in the balls B(x, d/10) and B(y, d/10) of radius d
10

centered at x and y, respectively. To establish
the last condition in Lemma 30, it is enough to ensure that at least one of the balls B(x, d/10) and
B(y, d/10) lies in the region R for all p, q ∈ PR (where x, y, and d depend on p and q).

The diameter of a cube in R
4 is at most twice its side length, and so d = dist(p, q) is at most

twice the side length of bott(Q). It follows that both B(x, d/10) and B(y, d/10) are contained in
shift(Q). It is possible that for some points p, q ∈ P ∩ bott(Q), neither B(x, d/10) nor B(y, d/10)
is fully contained in the interior of Q ∩ shift(Q). Therefore, region R should extend below Q.

We are now ready to define the regions R ∈ R and the point sets PR, R ∈ R. We distinguish
two cases.
Case 1: Q ∈ K has out-degree 0 in T (K). Let R = shift(Q), and let PR be a set of r0 arbitrary
points from P ∩ bott(Q). Properties 2 and 3 of Lemma 30 are satisfied for R, in this case shift(Q)
contains both balls B(x, d/10) and B(y, d/10) for every p, q ∈ PR.
Case 2: Q1 ∈ K has out-degree 1 in T (K). Let Q2 ∈ K be the cube such that (Q1, Q2)
is the unique outgoing edge of Q1. Let σ : R

4 → f1 be the vertical projection of R
4 to the

horizontal hyperplane f1; and denote by σ(Q2) the vertical projection of Q2. (Fig. 5 shows the 3-
dimensional analogue of the projection.) The 2-flats spanned by the 2-dimensional faces of σ(Q2) ⊂
f1 decompose σ(Q1) into at most 27 axis-aligned boxes. One of them, say Q′, contains the vertical
projections of at least r0 points in P ∩bott(Q1). Let B = {p ∈ bott(Q1) : σ(p) ∈ Q′}, and let PR be
a set of r0 arbitrary points in P ∩B. Denote by shift(B) the translate of B by vector −h

3
·e4, where

h is the side length of Q2. Let region R be the set of all points of shift(Q1) except for the points
lying in or vertically below shift(Q2). The regions R ∈ R now have pairwise disjoint interiors.

It remains to show that for every p, q ∈ PR, at least one of B(x, d/10) and B(y, d/10) lies in
the interior of R. Depending on the relative position of Q′ and σ(Q2), there are k ∈ {1, 2, 3, 4}
hyperplanes that contain a 3-dimensional face of B and separate B from Q2. Denote these hyper-
planes by fi, for i = 1, . . . , k, where f1 is the horizontal hyperplane containing the bottom side of
Q1. Denote by f+i the halfspace bounded by fi that contains box B (hence B ⊂ ⋃k

i=1
f+i ).

If B(x, d/10) or B(y, d/10) lies in the interior of
⋃k

i=1
f+i , then it also lies in shift(Q1) ∩

(
⋃k

i=1
f+i ) ⊂ R. Assume now that neither B(x, d/10) nor B(y, d/10) lies in the interior of

⋃k
i=1

f+i .
By Lemma 29, both p and q are at distance at most d/5 from the hyperplane fi, for i = 1, . . . , k.
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The intersection of the k hyperplanes,
⋂k

i=1
fi, is a (4 − k)-flat containing a face of box B. On

one hand, the length of the orthogonal projection of segment pq to this (4 − k)-flat is at least√
1− k/52d ≥

√
1− 4/52d > 0.91d. On the other hand, the same orthogonal projection is shorter

than the diameter
√
3h of the 3-dimensional cube σ(Q2). We have 0.91d <

√
3h, hence d/10 < h/3.

Recall that at least one of x or y is above the hyperplane f1, and so the corresponding ball,
B(x, d/10) or B(y, d/10), is strictly above the top side of shift(Q2). It follows that B(x, d/10) or
B(y, d/10) lies in the interior of R.

5.1 Proof of Theorem 1

We show that the number of point-line incidences between n points and e lines in C
2 is at most

max(Cn2/3e2/3, 3n, 3e). We proceed by contradiction. Let (P,E) be a critical system of n points
and e lines in the complex plane C

2 where n+ e is minimal.
By the Separation Lemma, there is a set P3 ⊆ P of at least n/M8 points and disjoint sets

of complex lines L1, L2 ⊂ E such that for every point p ∈ P3, we have |Lp
1| ≥ I/(nM2) and

|Lp
2
| ≥ I/(nM2); and the directions of lines in L1 and L2 are each in a 3◦-neighborhood of two

orthogonal directions ℓ̂1, ℓ̂2 ∈ H(1, 1), after an appropriate nondegenerate transformation of C2.
Identify the complex plane with the four-dimensional real Euclidean space by τ : C2 −→ R

4. The
directions of 2-flats in τ(L1) and τ(L2) are each in a 3◦-neighborhood of directions of two orthogonal
directions τ̂(ℓ̂2), τ̂ (ℓ̂2) ∈ Gr(2, 2). For simplicity, we use the notation P3 = τ(P3), L1 = τ(L1) and
L2 = τ(L2) for a set of points and 2-flats in R

4. Apply Lemma 30 for P3, L1, and L2 with parameter
r0 = I/(nM3). (The constraints 1 < r0 and r0 ≤ 10−8 · n/M8 are satisfied by Lemma 8.) We
obtain a family R of at least |R| > (n/M8)/(Mr0) = n/(M9r0) interior-disjoint regions in R

4, and
a set PR ⊂ P3 ∩R of exactly r0 points for each R ∈ R.

We can now derive a lower bound for the number of crossings X = {(e1, e2) ∈ L1×L2} between
the 2-flats in L1 and L2. Consider a region R ∈ R. Each point p ∈ PR is incident to at least
I/(nM3) 2-flats in each of L1 and L2. Since the 2-flats correspond to complex lines and any two
points determine a unique complex line, at most r0 2-flats in Lp

1 (resp., Lp
2) may be incident to

some other point in PR. Thus, there are at least I/(nM2) − r0 ≥ I/(2nM2) 2-flats in each of Lp
1

and Lp
2 that do not pass through any other point in PR. For each region R ∈ R, we estimate the

number of crossings

X(PR) = {(e1, e2) ∈ L1 × L2 : ∃p, q ∈ PR such that e1 ∈ Lp
1, e2 ∈ Lq

2, and e1 ∩ e2 ∈ int(R)}.
By the Combination Lemma, there are at least (I/(2nM2))2 distinct crossings for each pair p, q ∈
PR. Every crossing is counted at most once, since the intersection points lie in disjoint regions of
R. The total number of crossings is at least

|X| ≥
∑

R∈R
|X(PR)| ≥ |R| ·

(
r0
2

)(
I

2nM2

)2

>
n

M9r0
· r

2
0

3
· I2

4n2M4
>

>
r0I

2

nM14
=

I3

n2M17
>

max(C3n2e2, 27n3, 27e3)

n2M17
=
C3n2e2

n2M17
=
C3e2

M17
=Me2,

by Corollary 10 and C3/M17 = M (recall that C = 1060 and M = 1010). However, L1, L2 ⊂ E,
and so the number of crossings cannot exceed

(e
2

)
. The contradicting lower and upper bounds

1010e2 < |X| ≤
(
e
2

)
imply that there is no critical system (P,E). We conclude that for every

system of n points and e lines in C
2, the number of point-line incidences is bounded by I ≤

max(Cn2/3e2/3, 3n, 3e) < Cn2/3e2/3 + 3n+ 3e, as claimed.
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in combinatorial geometry, Combinatorica 3 (1983), 281–197.

[2] K. L. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial com-
plexity bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990),
99–160.

[3] H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs in Theoretical
Computer Science, Springer, 1987.

[4] H. Edelsbrunner, L. Guibas, and M. Sharir, The complexity of many cells in three dimensional
arrangements, Discrete Comput. Geom. 5 (1990), 197–216.

[5] Gy. Elekes, A combinatorial problem on polynomials, Discrete Comput. Geom. 19 (3) (1998),
383–389.

[6] Gy. Elekes, On linear combinatorics I, Concurrency—an algebraic approach, Combinatorica
17 (4) (1997), 447–458.
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