
CONNECTED BARANYAI’S THEOREM

AMIN BAHMANIAN

Abstract. Let Kh
n “ pV,

`

V
h

˘

q be the complete h-uniform hypergraph on vertex set V with

|V | “ n. Baranyai showed that Kh
n can be expressed as the union of edge-disjoint r-regular

factors if and only if h divides rn and r divides
`

n´1
h´1

˘

. Using a new proof technique, in this

paper we prove that λKh
n can be expressed as the union G1 Y . . . Y Gk of k edge-disjoint

factors, where for 1 ď i ď k, Gi is ri-regular, if and only if (i) h divides rin for 1 ď i ď k,

and (ii)
řk

i“1 ri “ λ
`

n´1
h´1

˘

. Moreover, for any i (1 ď i ď k) for which ri ě 2, this new
technique allows us to guarantee that Gi is connected, generalizing Baranyai’s theorem, and
answering a question by Katona.

1. Introduction

A hypergraph G is a pair pV,Eq where V is a finite set called the vertex set, E is the edge
multiset, where every edge is itself a multi-subset of V . This means that not only can an
edge occur multiple times in E, but also each vertex can have multiple occurrences within
an edge. The total number of occurrences of a vertex v among all edges of E is called the
degree, dGpvq of v in G. For a positive integer h, G is said to be h-uniform if |e| “ h for
each e P E. For positive integers r, r1, . . . , rk, an r-factor in a hypergraph G is a spanning
r-regular sub-hypergraph, and an pr1, . . . , rkq-factorization is a partition of the edge set of
G into F1, . . . , Fk where Fi is an ri-factor for 1 ď i ď k, abbreviate pr, . . . , rq-factorization to
r-factorization. The hypergraph Kh

n :“ pV,
`

V
h

˘

q with |V | “ n (by
`

V
h

˘

we mean the collection
of all h-subsets of V ) is called a complete h-uniform hypergraph. Avoiding trivial cases, we
assume that n ą h. Baranyai proved that:

Theorem 1.1. (Baranyai [6]) If a1, . . . , as are positive integers such that
řs
i“1 ai “

`

n
h

˘

, then

the edges of Kh
n “ pV,Eq can be partitioned into almost regular hypergraphs pV,Eiq so that

|Ei| “ ai for 1 ď i ď s.

In particular, if h � rin and
řk
i“1 ri “ λ

`

n´1
h´1

˘

, then Kh
n is pr1, . . . , rkq-factorizable. It is

natural to ask if we can obtain a connected factorization; that is, a factorization in which
each factor is a connected hypergraph. Let m be the least common multiple of h and n, and
let a “ m{h. Define the set of edges

K “ tt1, . . . , hu, th` 1, . . . , 2hu, . . . , tpa´ 1qh` 1, pa´ 1qh` 2, . . . , ahuu,

where the elements of the edges are considered mod n. The families obtained from K by
permuting the elements of the underlying set tnu are called wreaths. If h divides n, then a
wreath is just a partition. Baranyai and Katona conjectured that the edge set of Kh

n can be
decomposed into disjoint wreaths [10]. In connection with this conjecture, Katona (private

Date: September 24, 2019.
Key words and phrases. factorization, edge-colorings, decompositions, Baranyai’s theorem, connectivity,

laminar families, detachments.
1

ar
X

iv
:1

90
9.

09
64

3v
1 

 [
m

at
h.

C
O

] 
 2

0 
Se

p 
20

19



CONNECTED BARANYAI THEOREM 2

communication) suggested the problem of finding a connected factorization for Kh
n . In this

paper, we solve this problem.
If we replace every edge e of Kh

n by λ copies of e, then we denote the new hypergraph by
λKh

n . In this paper, the main result is the following theorem:

Theorem 1.2. λKh
n is pr1, . . . , rkq-factorizable if and only if h � rin for 1 ď i ď k, and

řk
i“1 ri “ λ

`

n´1
h´1

˘

. Moreover, for 1 ď i ď k, if ri ě 2, then we can guarantee that the ri-factor
is connected.

In particular if λ “ 1, and h “ r1 “ ¨ ¨ ¨ “ rk “ 2, Theorem 1.2 implies the classical result
of Walecki [11] that the edge set of Kn can be partitioned into Hamiltonian cycles if and
only if n is odd. Here we list some other interesting special consequences of Theorem 1.2:

Corollary 1.3. Kh
n is connected 2-factorizable if and only if

`

n´1
h´1

˘

is even and h � 2n.

Corollary 1.4. Kh
n has a connected h

gcdpn,hq
-factorization.

We note that the idea behind the proof of Theorem 1.2 is based on the amalgamation
technique; for some graph amalgamation results, see [1, 4, 7, 8, 9, 12] and for hypergraph
amalgamations, see [2, 3, 5]. Preliminaries are given in Section 2, followed by the proof of
Theorem 1.2 in Section 3.

We end this section with some notation we need to be able to describe hypergraphs that
arise in this setting.

Let G “ pV,Eq be a hypergraph with α P V , and let U “ tu1, . . . , uzu Ă V ztαu. Recall that
each edge is a multi-subset of V . We abbreviate an edge of the form tα, . . . , α

looomooon

p

, u1, . . . , uzu

to tαp, u1, . . . , uzu. An h-loop incident with α is an edge of the form tαhu, and mpαp, Uq
denotes the multiplicity of an edge of the form tαpuYU . A k-edge-coloring of G is a mapping
f : E Ñ C, where C is a set of k colors (often we use C “ t1, . . . , ku), and the edges of one
color form a color class. The sub-hypergraph of G induced by the color class i is denoted by
Gi, abbreviate dGipαq to dipαq and mGipα

p, Uq to mipα
p, Uq.

2. Preliminaries

A hypergraph is said to be non-trivial if it has at least one edge. A vertex α in a connected
hypergraph G is a cut vertex if there exist two non-trivial sub-hypergraphs I, J of G such
that I Y J “ G, V pI X Jq “ α and EpI X Jq “ ∅. A non-trivial connected sub-hypergraph
W of a connected hypergraph G is said to be an α-wing of G, if α is not a cut vertex of W
and no edge in EpGqzEpW q is incident with a vertex in V pW qztαu. The set of all α-wings of
G is denoted by WαpGq. We remark that WαpGq “ tGu if G is non-trivial and connected and
α is not a cut vertex of G. Figure 1 illustrates an example of a hypergraph and the set of all
its α-wings. If the multiplicity of a vertex α in an edge e is p, we say that α is incident with
p distinct objects, say h1pα, eq, . . . , hppα, eq. We call these objects hinges, and we say that e
is incident with h1pα, eq, . . . , hppα, eq. The set of all hinges in G incident with α is denoted
by HGpαq; so |HGpαq| is in fact the degree of α.

Intuitively speaking, an α-detachment of G is a hypergraph obtained by splitting a vertex
α into one or more vertices and sharing the incident hinges and edges among the subvertices.
That is, in an α-detachment G 1 of G in which we split α into α and β, an edge of the form
tαp, u1, . . . , uzu in G will be of the form tαp´i, βi, u1, . . . , uzu in G 1 for some i, 0 ď i ď p. Note
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Figure 1. A hypergraph G and the set of all its α-wings

that a hypergraph and its detachments have the same hinges. Whenever it is not ambiguous,
we use d1, m1, etc. for degree, multiplicity and other hypergraph parameters in G 1. Also, for
an α-wing W in G and an α-detachment G 1, let W 1 denote the sub-hypergraph of G 1 whose
hinges are the same as those in W . Figure 2 illustrates a detachment G 1 of the hypergraph G
in Figure 1 and the set of all its α-wings. We shall present three lemmas, all of which follow

Figure 2. A detachment G 1 of G in Figure 1 and the set of all its α-wings

immediately from definitions.

Lemma 2.1. Let G be a connected hypergraph. Let G 1 be an α-detachment of G obtained by
splitting a vertex α into two vertices α and β. Then G 1 is connected if and only if for some
α-wing W P WαpGq with dW pαq ě 2,

1 ď |HW pαq XHG1pβq| ă dW pαq.

Informally speaking, Lemma 2.1 says that for some α-wing W with dW pαq ě 2, at least
one but not all the hinges incident with α in W must be incident with β in G 1.

A family A of sets is laminar if, for every pair A,B of sets belonging to A : A Ă B, or
B Ă A, or AXB “ ∅.
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Let us fix a vertex α of a k-edge-colored hypergraph G “ pV,Eq. For 1 ď i ď k, let
Hi be the set of hinges each of which is incident with both α and an edge of color i (so
dipαq “ |Hi|). For any edge e P E, let He be the collection of hinges incident with both α
and e. Clearly, if e is of color i, then He Ă Hi. For an α-wing W , let HW “ HW pαq. For
1 ď i ď k, let

H i
“

ď

WPWαpGiq,dW pαqě2

HW .

Lemma 2.2. Let

A “ tH1, . . . , Hku Y tH
1, . . . , Hk

u

Y tHW : W P WαpGiq, 1 ď i ď ku Y tHe : e P Eu.

Then A is a laminar family of subsets of Hpαq.

For each p ě 1, and each U Ă V ztαu, let HU
p be the set of hinges each of which is incident

with both α and an edge of the form tαpu Y U in G (so |HU
p | “ pmpαp, Uq).

Lemma 2.3. Let

B “ tHU
p : p ě 1, U Ă V ztαuu.

Then B is a laminar family of disjoint subsets of Hpαq.

If x, y are real numbers, x « y means tyu ď x ď rys. We need the following powerful
lemma:

Lemma 2.4. (Nash-Williams [12, Lemma 2]) If A ,B are two laminar families of subsets
of a finite set S, and n is a positive integer, then there exist a subset A of S such that

|AX P | « |P |{n for every P P A YB.

3. Proof of the Main Theorem

To prove Theorem 1.2, first we look at the obvious necessary conditions:

Lemma 3.1. If λKh
n is connected pr1, . . . , rkq-factorizable, then

(i) ri ě 2 for 1 ď i ď k,
(ii) h � rin for 1 ď i ď k, and

(iii)
řk
i“1 ri “ λ

`

n´1
h´1

˘

.

Proof. Suppose that λKh
n is connected pr1, . . . , rkq-factorizable. The necessity of (i) is suffi-

ciently obvious. Since each edge contributes h to the the sum of the degrees of the vertices
in an ri-factor for 1 ď i ď k, we must have (ii). Since each ri-factor is an ri-regular spanning
sub-hypergraph for 1 ď i ď k, and λKh

n is λ
`

n´1
h´1

˘

-regular, we must have (iii). �

In order to get an inductive proof of Theorem 1.2 to work, we actually prove the following
seemingly stronger result:

Theorem 3.2. Let n, h, λ, k, r1, . . . , rk be positive integers with n ą h satisfying (i)–(iii).
For any integer 1 ď ` ď n, there exists an `-vertex k-edge-colored h-uniform hypergraph G
with vertex set V (α P V ) such that

(1) dipuq “

"

ripn´ `` 1q if u “ α
ri if u ‰ α

for u P V, 1 ď i ď k,
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(2) mpαp, Uq “ λ

ˆ

n´ `` 1

p

˙

for p ě 0, U Ă V ztαu with |U | “ h´ p, and

(3) Gi is connected if ri ě 2, for 1 ď i ď k.

Remark 3.3. Theorem 1.2 follows from Theorem 3.2 in the case where ` “ n as the
following argument shows. If ` “ n, then conditions (1)–(3) imply that we have an n-vertex
k-edge-colored hypergraph G in which the ith color class is ri-regular by (1), and connected
by (3). Moreover, (2) implies that for U Ă V ztαu, (i) mpUq “ λ

`

1
0

˘

“ λ if |U | “ h (when

p “ 0), (ii) mpα, Uq “ λ
`

1
1

˘

“ λ if |U | “ h ´ 1 (when p “ 1), and (iii) mpαp, Uq “ λ
`

1
p

˘

“ 0

for p ě 2, and |U | “ h´ p. Therefore G – λKh
n .

Proof. The proof is by induction on `. At each step we will assume not only that G is an
`-vertex k-edge-colored hypergraph with vertex set V (α P V ) satisfying conditions (1)–(3),
but that G also satisfies the two additional properties

(4) |He| ď n´ `` 1 for each edge e of G, and

(5) for 1 ď i ď k, if ri ě 2 and if ` ď n´ 1, then δi “ ripn´ `` 1q

where δi “ |H
i| for 1 ď i ď k.

First consider the base case when ` “ 1. Let F be a hypergraph with a single vertex α
incident with λ

`

n
h

˘

h-loops; i.e. mpαhq “ λ
`

n
h

˘

. Color the edges of F such thatmipα
hq “ rin{h

for 1 ď i ď k. This is possible since by (ii) h � rin, and by (iii)
řk
i“1mipα

hq “
řk
i“1 rin{h “

n{h
řk
i“1 ri “ λn

`

n´1
h´1

˘

{h “ λ
`

n
h

˘

“ mpαhq. Also, note that for ` “ 1, the hypergraph F
trivially satisfies (4), and since each h-loop is an α-wing, F also satisfies (5). Therefore, F
shows that conditions (1)–(5) holds for ` “ 1.

Now suppose that 1 ď ` ă n, and that G satisfies (1)–(5). The proof is completed
by showing that G has an p` ` 1q-vertex α-detachment G 1 with vertex set V 1 “ V Y tβu
satisfying

(6) |H 1
e| ď n´ ` for each edge e of G 1,

(7) d1ipuq “

"

ripn´ `q if u “ α
ri if u ‰ α

for u P V 1, 1 ď i ď k,

(8) m1
pαp, Uq “ λ

ˆ

n´ `

p

˙

for p ě 0, U Ă V 1ztαu with |U | “ h´ p,

(9) G 1piq is connected if ri ě 2, for 1 ď i ď k, and

for 1 ď i ď k, if ri ě 2 and if ` ă n´ 1, then

(10) δ1i “ ripn´ `q.

Let A and B be the laminar families in Lemmas 2.2, and 2.3. By Lemma 2.4, there exists
a subset A of Hpαq such that

(11) |AX P | « |P |{pn´ `` 1q for every P P A YB.
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Let G 1 be the hypergraph obtained from G by splitting α into two vertices α and β in such a
way that hinges which were incident with α in G become incident in G 1 with α or β according
as they do not or do belong to A, respectively. More precisely,

(12) H 1
pβq “ A, H 1

pαq “ HpαqzA.

Since Hi P A for 1 ď i ď k, we have

d1ipβq “ |AXHi|

« |Hi|{pn´ `` 1q “ dipαq{pn´ `` 1q

“ ripn´ `` 1q{pn´ `` 1q “ ri,

d1ipαq “ dipαq ´ d
1
ipβq

“ ripn´ `` 1q ´ ri “ ripn´ `q,

and for u R tα, βu, d1ipuq “ dipuq “ ri. Therefore G 1 satisfies (7).
Let e be an edge in G incident with α. Then He P A , and so

|AXHe| « |He|{pn´ `` 1q ď 1,

observing that the last inequality implies from (4). This means that either A X He “ ∅
or |A X He| “ 1. Therefore m1pβq, Uq “ 0 for q ě 2 and U Ă V 1. Also, note that if
|He| “ n ´ ` ` 1, then |A X He| “ 1 and thus |H 1

e| “ n ´ `, and if |He| ă n ´ ` ` 1, then
|H 1

e| ď |He| ď n´ `, both cases together proving (6).
Since for p ě 1, and U Ă V ztαu, HU

p P B, we have

m1
pαp´1, β, Uq “ |AXHU

p |

« |HU
p |{pn´ `` 1q “ pmpαp, Uq{pn´ `` 1q

“ λp

ˆ

n´ `` 1

p

˙

{pn´ `` 1q “ λ

ˆ

n´ `

p´ 1

˙

,

m1
pαp, Uq “ mpαp, Uq ´m1

pαp´1, β, Uq

“ λ

ˆ

n´ `` 1

p

˙

´ λ

ˆ

n´ `

p´ 1

˙

“ λ

ˆ

n´ `

p

˙

.

Therefore G 1 satisfies (8).
Let us fix an i, 1 ď i ď k such that ri ě 2. Let W be an α-wing of Gi with dW pαq ě 2.

Then HW P A , and so

(13) |AXHW | « |HW |{pn´ `` 1q “ dW pαq{pn´ `` 1q,

which implies that (noting that n´ `` 1 ě 2)

(14) |AXHW | ă |HW |.

Moreover,

(15) |AXH i
| « |H i

|{pn´ `` 1q “ δi{pn´ `` 1q “ ri ě 2,

and therefore there exists an α-wing W in Gi with dW pαq ě 2, such that A X HW ‰ ∅.
Therefore by Lemma 2.1, G 1i is connected.

Now, suppose that ` ď n´ 2, or equivalently that n´ `` 1 ě 3. Since δi “ di by (1) and
(5), we have that for every W P WαpGiq, dW pαq ě 2. So there is no α-wing W in Gi with
dW pαq “ 1. Let us fix an α-wing W in Gi. There are two cases to consider:
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‚ Case 1: If |HW | ě 3, then since |A X HW | « |HW |{pn ´ ` ` 1q ď |HW |{3, we have
that d1W 1pαq ě 2, and thus δ1i “ d1ipαq “ ripn´ `q. Note that W 1 is a sub-hypergraph
of some α-wing S in G 1 with d1Spαq ě 2.

‚ Case 2: If |HW | “ 2, then |A XHW | « |HW |{pn ´ ` ` 1q “ 2{pn ´ ` ` 1q ď 2{3. So
|AXHW | P t0, 1u. If AXHW “ ∅, we are done. So let us assume that |AXHW | “ 1.
Recall from (15) that |A X H i| ě 2. Therefore, there is another α-wing T in Gi
with |HT | ě 2 such that 1 ď |A X HT | ă |HT |. Therefore, there exists an α-
wing S in G 1 with W 1 Y T 1 Ă S, and d1Spαq ě 2. Thus, in this case also we have
δ1i “ δi ´ ri “ ripn´ `q.

Therefore G 1 satisfies (10) and the proof is complete. �
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