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Abstract

We classify the finite connected-homogeneous digraphs, as well as the

infinite such digraphs with precisely one end. This completes the classifi-

cation of all the locally finite connected-homogeneous digraphs.

1 Introduction

A graph is called homogeneous if every isomorphism between two finite induced
subgraphs extends to an automorphism of the entire graph. The countable
homogeneous graphs were classified in [5, 16]. Weakening the assumptions
of homogeneity so that only isomorphisms between finite connected induced
subgraphs have to extend to automorphisms leads to the notion of connected-
homogeneous graphs, or simply C-homogeneous graphs. These graphs were clas-
sified in [4, 6, 8, 11, 12].

For directed graph, or digraphs, the same notions of homogeneity and C-
homogeneity apply. The homogeneous digraphs were classified in [2, 14, 15].
Of the C-homogeneous digraphs only those that have more than one end have
been classified [9, 10]. This paper completes the classification of locally finite
C-homogeneous digraphs, by describing those that are finite or have precisely
one end (Theorem 6.1).

Undirected locally finite C-homogeneous graphs, as is well-known, cannot
have precisely one end (see [17]). Directed such graphs can; but they have a
very restricted structure. We shall see in Section 5 that these digraphs are
quotients of one particular locally finite C-homogeneous digraph with infinitely
many ends, the digraph T (2). This is the digraph in which every vertex is a cut
vertex and lies on precisely two directed triangles. Some of the finite examples
are also quotients of T (2). It turns out that all the other finite connected C-
homogeneous digraphs have their origin in the finite homogeneous digraphs;
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they are canonical generalizations of the homogeneous digraphs. See Section 3
and Section 4 for more details.

Recall that every connected locally finite transitive (di)graph has either none,
one, two, or infinitely many ends, see [3]. Together with the classification by
Gray and Möller [9] of the two-ended digraphs and the classification by Hamann
and Hundertmark [10] of the infinitely-ended digraphs, our results thus complete
the classification of all the locally finite C-homogeneous digraphs.

2 Preliminaries

2.1 Definitions

A digraph D = (V D,ED) consists of a non-empty set V D of vertices and an
asymmetric, i.e. irreflexive and anti-symmetric, relation ED on V D, its edges.
For (x, y) ∈ ED we simply write xy ∈ ED and say that the edge xy is directed
from x to y. Then the vertices x and y are adjacent.

For x ∈ V D we denote with N+(x) the out-neighborhood {y | xy ∈ ED},
with N−(x) the in-neighborhood {y | yx ∈ ED}, and with N(x) the neigh-
borhood N+(x) ∪ N−(x) of x. The out-degree d+(x) of x is the cardinality of
N+(x), the in-degree d−(x) is the cardinality of N−(x), and the degree d(x) is
the cardinality of N(x). If D is a transitive digraph, then we denote with d+, d−

the value of d+(x), d−(x), respectively, for all x ∈ V D. Every element of N+(x)
is called a successor of x and every element of N−(x) is called a predecessor
of x.

A (k)-arc is a directed path (of length k). An ancestor (descendant) of a
vertex x is any vertex y for which there exists an arc from y to x (from x to y).
A walk is a sequence x0x1 . . . xn of vertices such that xi and xi+1 are adjacent
for all 0 ≤ i < nand it is an alternating walk if we have xi−1 ∈ N+(xi) ⇔
xi+1 ∈ N+(xi) for all 1 ≤ i ≤ n− 1. If two edges lie on a common alternating
walk then they reachable from each other. This defines an equivalence relation,
the reachability relation, which we denote with A. For the equivalence class
of an edge e we write A(e) and call the by A(e) induced subdigraph 〈A(e)〉
the reachability digraph of D that contains e. If D is 1-arc transitive, that is
Aut(D) is transitive on the 1-arcs of D, then all reachability digraphs of D are
isomorphic and we denote with ∆(D) the corresponding digraph.

The reachability digraph of an edge e is a bipartite reachability digraph if it
is bipartite, if one class of this bipartition has empty in-neighborhood in 〈A(e)〉
and if the other class has empty out-neighborhood.

The following proposition is due to Cameron et.al. [1, Proposition 1.1].

Proposition 2.1. Let D be a connected 1-arc transitive digraph. Then ∆(D)
is 1-arc transitive and connected. Further, either

(a) A is the universal relation on ED and ∆(D) = D, or

(b) ∆(D) is a bipartite reachability digraph.
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We need some notations for infinite (di)graphs. Let G be a graph. A ray
in G is a one-way infinite path. Two rays are equivalent if for every finite set
S of vertices both rays lie eventually in the same component of G − S. This
property is an equivalence relation whose equivalence classes are called the ends
of G. The ends of a digraph are the ends of the underlying undirected graph.

In the following we describe some classes of digraphs that occur during the
investigation of locally finite C-homogeneous digraphs. With Cm we usually
denote directed cycles of length m. But if it is obvious from the context that we
are considering a subdigraph of a bipartite reachability digraph, then we also
use Cm to denote a cycle in that reachability digraph. Cycles of length 3 are
triangles.

A vertex set is independent if no two of its vertices are adjacent. The digraph
K̄n is the empty digraph on n vertices.

For two digraphs D,D′ we denote with D[D′] the lexicographic product of D
and D′, that is the digraph with vertex set V D × V D′ and edge set

{(x, y)(x′, y′) | xx′ ∈ ED or (x = x′ and yy′ ∈ ED′)}.

The complete bipartite digraph is that bipartite digraph that contains all
edges from A to B for the bipartition A ∪ B. The (directed) complement of
a perfect matching CPk is the digraph obtained from the complete bipartite
digraph where a perfect matching between A and B is removed.

Let Yk be the digraph with vertex set V1 ∪ V2 ∪ V3 where the Vi denote
pairwise disjoint sets of the same cardinality k. There are no edges xy with
xy ∈ Vi for i = 1, 2, 3 and the subdigraphs D[Vi, Vi+1] (for i = 1, 2, 3 with
V4 = V1) are isomorphic to complements of perfect matchings such that all
edges are directed from Vi to Vi+1 and such that the tripartite complement
of D is the disjoint union of copies of C3, where the tripartite complement of D
is the digraph

(V D, (
⋃

i=1,2,3

(Vi × Vi+1)) \ ED).

Let ∼ be an equivalence relation on a digraph D. With D∼ we denote the
digraph whose vertex set is the set of equivalence classes and with edges XY
whenever there are representatives x ∈ X, y ∈ Y such that xy ∈ ED. This is
not a digraph in our restrictive meaning because it may have loops or for an
edge xy there might also exist the edge yx. However, we just consider such
equivalence relations that makes D∼ to a digraph, that means its adjacency
relation is irreflexive and anti-symmetric.

2.2 Group action

Let Γ be a group acting on a digraph D and let U ⊆ V D. We denote with ΓU
the (pointwise) stabilizer of U , that is the subgroup of Γ that fixes each element
of U . The same notion holds for an edge e ∈ ED or a single vertex x ∈ V D. If
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Γ fixes the set U setwise, then we denote with ΓU all the automorphisms of U
that are obtained by restricting elements of Γ on U .

For the following well-know proposition see for example [19] or [13, 3.1.2].

Proposition 2.2. Every subgroup of Sn with n ∈ N is equal to An or has index
at least n.

2.3 Homogeneous digraphs

In this section we briefly recall the classification result of Lachlan for homoge-
neous digraphs [14]. Let H be the digraph depicted in Figure 1.

Figure 1: The digraph H

Theorem 2.3. (Lachlan [14, Theorem 1]) A finite digraph is homogeneous if
and only if it is isomorphic to one of the following digraphs:

(i) the C4;

(ii) a K̄n for an n ≥ 1;

(iii) a K̄n[C3] for an n ≥ 1;

(iv) a C3[K̄n] for an n ≥ 1;

(v) the digraph H.

3 The non-independent case

It is a straightforward argument that the out-neighborhood as well as the in-
neighborhood of any vertex of a C-homogeneous digraph has to be a homoge-
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neous digraph. We investigate which of the homogeneous digraphs of Theo-
rem 2.3 may occur as a subdigraph induced by N+(x) or by N−(x) for a vertex
x ∈ V D. In this section we take a look at those cases that contain an edge
and show that there is precisely one such case that may occur. This case is a
generalization of the digraph H that occurs in the case (v) of Theorem 2.3.

Let x be a vertex of a connected locally finite C-homogeneous digraph. Our
first aim is to show that N+(x) and N−(x) are both not isomorphic to H .
Therefore, we define a dominated directed triangle to be a digraph that is iso-
morphic to a directed triangle together with a vertex that sends edges to all its
vertices (Figure 2).

Figure 2: A dominated directed triangle

Lemma 3.1. For every connected locally finite C-homogeneous digraph D there
is N+(x) 6∼= H and N−(x) 6∼= H for all x ∈ V D.

Proof. Let x ∈ V D and suppose by symmetry that N+(x) ∼= H . Then there is
a dominated directed triangle embedded in N−(y) for all y ∈ N+(x). Hence we
also have N−(x) ∼= H .

If two vertices x, y are adjacent, say xy ∈ ED, then |N+(x) ∩ N+(y)| ≤ 3
since N+(y) ∼= H . Furthermore, there exists a vertex z ∈ N−(y) ∩N+(x).

Claim 3.2. No neighbor of y lies in N+(x) ∩N+(z).

Proof of Claim 3.2. Suppose that there is a vertex a ∈ N+(x)∩N+(z)∩N(y).
By mapping D[x, y, z] onto D[x, a, z] by an automorphism of D, we get re-
cursively a directed cycle in N+(x) ∩ N+(z). We already mentioned that
|N+(x) ∩ N+(z)| ≤ 3. Hence there is a directed triangle in N+(x) ∩ N+(z).
Let v1 be a vertex in N+(x) that has two neighbors in N+(x) ∩N+(z), let v2
be a vertex in N+(x) with N+(x) ∩N+(z) ⊆ N+(v2), and let v3 be a vertex in
N+(x) with N+(x)∩N+(z) ⊆ N−(v3). Such vertices exist because N+(x) ∼= H .
Then either two of these vertices are adjacent to z—and hence lie in N−(z)—or
two of them are not adjacent to z. Let vi, vj (i 6= j) be two vertices either both
of the first or both of the second kind. Then D[z, x, vi] ∼= D[z, x, vj], and thus
there is an automorphism of D mapping the first onto the second subdigraph.
But this is a contradiction by the choice of vi and vj .

As N+(x) ∼= H , there are two out-neighbors of z that are adjacent to y in
contradiction to Claim 3.2. Thus the lemma is proved.
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The next case that we exclude is that neither the out- nor the in-neighborhood
induces a subdigraph isomorphic to C4.

Lemma 3.3. Let D be a connected locally finite C-homogeneous digraph and
let x ∈ V D. Then N+(x) 6∼= C4 and N−(x) 6∼= C4.

Proof. By regarding the digraph whose edges are directed in the inverse way,
if necessary, we may suppose that N+(x) ∼= C4. Let us denote with v1, . . . , v4
the four vertices in N+(x) with vivi+1 ∈ ED for 1 ≤ i ≤ 3 and v4v1 ∈ ED.
Since x, v4 ∈ N−(v1) and since N−(v1) is homogeneous, there is another vertex
in N−(v1) distinct from both x and v4.

We know by Lemma 3.1 that N−(v1) 6∼= H .

Claim 3.4. There is no other vertex than x in N−(v1) ∩N−(v2).

Proof of Claim 3.4. Let us suppose that there is a vertex y ∈ N−(v1)∩N−(v2).
Then an immediate consequence of the C-homogeneity is N+(x) = N+(y). But
then neither xy nor yx can be an edge ofD. The subdigraph induced by {x, y, 4}
is a subdigraph of N−(v1) and thus N−(v1) ∼= K̄n[C3] with n > 1. Then there
is z ∈ N+(x)∩N−(v1) which is distinct from v4. This is not possible and hence
no such y exists.

Claim 3.5. There is no vertex in N−(v1) ∩N+(v2).

Proof of Claim 3.5. Suppose that there is a vertex y ∈ N−(v1) ∩N+(v2). If y
is neither adjacent to x nor to v4, then N

−(v1) has to be isomorphic to K̄n[C3]
with n > 1. Then there is an automorphism α of D with vα4 = v4, v

α
1 = v1, and

vα2 = y and hence x 6= xα ∈ N−(v1) ∩N−(v4). This contradicts Claim 3.4 with
v4 and v1 instead of v1 and v2. So y is adjacent to at least one of x and v4.

If y is adjacent to x but not to v4, then N
−(v1) ∼= C4 or N−(v1) ∼= H since

an induced path of length 2 embeds into N−(v1). As we already saw, only the
first case can occur and then there is an automorphism α of D with vα4 = y,
vα1 = v1, and v

α
2 = v2. So x 6= xα and xα is a second vertex in N−(v1)∩N−(v2),

which is impossible by Claim 3.4.
If y is adjacent to v4 but not to x, then we distinguish two cases: in the

first one yv4 ∈ ED. But then by C-homogeneity applied to D[y, x, v4] and
D[y, x, v1] also v2 ∈ N+(y) contrary to the case we are discussing. In the second
case we have v4y ∈ ED and thus N−(v1) ∼= C4. Then there has to be a vertex
z ∈ N−(v1)\{v4, x, y}. If z is not adjacent to v2, then there is an automorphism
of D that maps D[v2, v1, z] onto D[v2, v1, v4]. Since this automorphism cannot
fix x, the image of x also lies in N−(v1) ∩ N−(v2) contrary to Claim 3.4. If
v2z ∈ ED, then there is an automorphism of D that maps the cycle D[v2, y, v1]
onto D[v2, z, v1]. This is again a contradiction and the final contradiction in the
case that y is adjacent to v4 but not to x is given directly by Claim 3.4 since, if
zv2 ∈ ED, then z ∈ N−(v1) ∩N−(v2).

Let us now consider the case that both x and v4 are adjacent to y. By the
same arguments as above there has to be v4y ∈ ED and not yv4 ∈ ED. By
C-homogeneity we have yv3 ∈ ED and since y /∈ N+(x), we have yx ∈ ED. But
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then D[v1, x, v3] is a subdigraph of N+(y) but this digraph cannot be embedded
into a C4 and thus we just have proved the final contradiction of this claim.

Claim 3.6. There is no vertex in N−(v1) ∩N+(v4) that is not adjacent to v2.

Proof of Claim 3.6. Let us suppose that there exists y ∈ N−(v1)∩N+(v4) such
that y is not adjacent to v2. Then v3 is not adjacent to y, too, and hence
there is an automorphism α of D that maps D[v3, v4, v1] onto D[v3, v4, y]. Since
y /∈ N+(x), we have x 6= xα ∈ N−(v3) ∩ N

−(v4) and thus a contradiction to
Claim 3.4.

Claim 3.7. There is N−(v1) ∩N+(v2) 6= ∅ or N−(v1) ∩N+(v4) 6= ∅.

Proof of Claim 3.7. Suppose that both intersections are empty. Let y ∈ N−(v1)
with x 6= y 6= v4. If x and y are not adjacent, then N−(v1) has to be isomorphic
to K̄n[C3] for an n > 1. Hence there is z ∈ N+(v4) ∩ N

−(x) ∩ N−(v1). This
is a direct contradiction to the assumptions. Thus x and y has to be adjacent
and hence yx ∈ ED. So there is an induced path of length 2 in N−(v1) and
thus N−(v1) ∼= C4 or N−(v1) ∼= H , whereas the second case cannot occur by
Lemma 3.1. So N−(v1) ∼= C4. Then both D[v4, v1, v2] and D[y, v1, v2] are
isomorphic subdigraphs of D and thus there is an automorphism α of D that
fixes v1 and v2 and maps v4 onto y. We conclude xα ∈ N−(v1)∩N−(v2) which
is untenable because of Claim 3.4.

By all the claims we showed that there is no vertex in N−(v1) distinct from
x and from v4 in contradiction to the homogeneity of N−(v1) by Theorem 2.3.
Thus we proved Lemma 3.3.

Lemma 3.8. Let D be a connected C-homogeneous digraph with N+(x) ∼=
K̄n[C3] and N−(x) ∼= K̄m[C3] for all x ∈ V D and with m,n ≥ 1. Then
m = n = 1.

Proof. Let xy ∈ ED. Then there exists z ∈ N−(y) ∩ N−(x). By regarding
N−(y), we obtain an a ∈ N−(y) ∩ N+(x) with az ∈ ED. Let b be the third
vertex of N+(x) in that isomorphic image of C3, that contains y and a. We have
neither zb nor bz in ED since otherwise there is an edge either in N+(x)∩N+(z)
or in N+(x) ∩N−(z) and by applying the C-homogeneity we obtain the whole
isomorphic image of C3, D[a, b, y], in N+(x)∩N+(z) or in N+(x)∩N−(z) which
is impossible.

Let us suppose that n > 1. Then there exists a vertex y′ ∈ N+(x) that
is distinct from a, b, and y. Then there is a vertex v ∈ {a, b, y} such that
D[z, x, v] ∼= D[z, x, y′] and hence the isomorphic image of C3 in N+(x) that
contains y′ contains a vertex of N+(z). We may suppose that y′ ∈ N+(z). But
then D[y, x, y′] is a digraph that cannot be embedded into N+(z). So n 6> 1.
By a symmetric argument we also have m = 1.

Lemma 3.9. Let D be a connected locally finite C-homogeneous digraph and
x ∈ V D. If N+(x) ∼= C3[K̄n] or if N−(x) ∼= C3[K̄n] for an n ≥ 1, then there is
D ∼= H [K̄n].
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Proof. We assume that N+(x) ∼= C3[K̄n] for an n ≥ 1. Let y ∈ N+(x). Then
x together with n vertices of N+(x) lie in N−(y) and hence N−(y) ∼= C3[K̄m]
for an m ≥ n or n = 1 and N−(y) ∼= K̄m[C3] for an m ≥ 1 which has to be
equal to 1 by Lemma 3.8, so in each case N−(y) ∼= C3[K̄m] for an m ≥ n. By
symmetry we conclude m = n. Then there is a vertex z ∈ N−(x) ∩N−(y).

Claim 3.10. N+(x) ∩N+(z) is an independent set of cardinality n.

Proof of Claim 3.10. This is a direct consequence of the fact that N+(z) is
isomorphic to C3[K̄n].

An immediate consequence of the C-homogeneity ofD is N+(x)∩N−(z) 6= ∅.

Claim 3.11. N+(x) ∩N−(z) is an independent set of cardinality n.

Proof of Claim 3.11. We already know that the setN+(x)∩N−(z) is not empty.
So let us suppose that there is an edge ab with both of its incident vertices in
N+(x)∩N−(z). Then the digraphs D[z, x, a] and D[z, x, b] are isomorphic and
hence there is an automorphism of D mapping the first onto the second one.
As a consequence of Claim 3.10 both, a and b, have to be adjacent to all the
vertices in N+(x) ∩ N+(z). Hence there is y′a ∈ ED and by′ ∈ ED for all
y′ ∈ N+(x) ∩ N+(z). Thus no such automorphism can exist and we conclude
that no such edge ab can exist. Since there are at least n vertices in N−(y) that
lie in N+(x) ∩N−(z) and since there are at most n vertices in N+(x) that are
pairwise not adjacent, the assertion follows.

Claim 3.12. There is |N+(x) ∩N+(z)| = n = |N+(x) ∩N−(y)|.

Proof of Claim 3.12. This is a direct consequence of the fact that the subdi-
graph induced by N+(x) is isomorphic to C3[K̄n].

Claim 3.13. There is an equivalence relation ∼ on V D whose equivalence
classes have precisely n independent vertices each and such that D∼ is iso-
morphic to H and D∼[K̄n] is isomorphic to D.

Proof of Claim 3.13. Let us define a relation ∼ via

a ∼ b :⇔ N−(a) = N−(a) ∩N−(b) = N−(b).

Then ∼ is obviously an equivalence relation.
If we consider two of the equivalent classes of ∼, then all of the edges between

these two classes must be directed in the same direction and furthermore the
digraph induced by these two classes is a complete bipartite digraph. Hence D
induces a C-homogeneous digraph on D∼ with D ∼= D∼[K̄n].

It is a straightforward argument to show that D ∼= H if N+(x) ∼= C3. So if
we consider D∼, then we may instead assume that N+(x) ∼= C3 for all x ∈ D∼

and hence we obtain the isomorphism.

The lemma is a direct consequence of the previous claim.
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4 The independent case

In this section we consider the situation that every out-neighborhood—and
hence by the results of Section 3 also every in-neighborhood—is independent.
The first case we classify is when every vertex has in- or out-degree 1.

Lemma 4.1. Let D be a locally finite connected C-homogeneous digraph and let
x ∈ V D. If N+(x) or N−(x) consists of precisely one vertex, then D is either
an infinite tree or a directed cycle.

Proof. By symmetry we may assume thatN+(x) consists of precisely one vertex.
Let F be the subdigraph of D that is induced by all descendants of x. Then
either this contains a directed ray or a directed cycle. If F contains a directed
cycle, then, by the C-homogeneity, x has to lie on such a cycle, say C. Suppose
that a vertex y exists that lies not on C but has a successor on C. Let α be an
automorphism of D with xα = y. Then Cα ∩C contains the successor of y and
hence y has to lie on C since every vertex of C has its unique successor on C.
So in this case we conclude that D is a directed cycle.

We now assume that no directed cycle lies in F . Let H be the digraph
that is induced by all ancestors of vertices of F . As |N+(x)| = 1 and as D is
connected, H has to be the whole digraph D. Now let us suppose that there is
an undirected cycle in D. Then there has to be a vertex on that cycle that has
out-degree at least 2 since F is a ray, contrary to the assumption. Hence D is
an infinite tree.

For the investigation of the C-homogeneous digraphs with bipartite reach-
ability digraph we use the classification of the locally finite C-homogeneous
bipartite graphs. A bipartite graph G (with bipartition X ∪ Y ) is connected-
homogeneous bipartite, or short C-homogeneous bipartite, if every isomorphism
between two isomorphic connected finite subgraphs A and B of G that preserves
the bipartition (that means V A ∩ X is mapped onto V B ∩ X and V A ∩ Y is
mapped onto V B ∩ Y ) extends to an automorphism of G that preserves the
bipartition.

The next lemma is due to Gray and Möller [9, Lemma 4.3], see also [10,
Lemma 5.4], and it underlines our interest in the C-homogeneous bipartite
graphs.

Lemma 4.2. Let D be a connected C-homogeneous digraph such that ∆(D)
is bipartite. Then the underlying undirected graph of ∆(D) is a connected C-
homogeneous bipartite graph.

The next result is the classification result of the C-homogeneous graphs. The
proof of Theorem 4.3 which is due to Gray and Möller [9, Theorem 4.6] uses the
classification of the homogeneous bipartite graphs, see [7].

Theorem 4.3. Let G be a locally finite connected graph. Then G is C-homoge-
neous bipartite if and only if G is isomorphic to one of the following graphs:

(i) a cycle C2m with m ≥ 2,
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(ii) an infinite semiregular tree Tk,l with k, l ≥ 2,

(iii) a complete bipartite digraph Km,n with m,n ≥ 1,

(iv) a complement of a perfect matching CPk with k ≥ 2.

In the following we will at first suppose that our digraphs suffices the as-
sumptions of Theorem 4.3 to obtain partial classification results which will be
completed in Section 5. Thereafter we shall prove in the lemmas 4.10 and 4.16
that the connected locally finite C-homogeneous digraphs indeed always satisfy
these assumptions.

Lemma 4.4. Let D be a locally finite connected C-homogeneous digraph such
that N+(x) and N−(x) are independent sets for all x ∈ V D. If ∆(D) is bipar-
tite, then either ∆(D) is a finite digraph or C3 embeds into D and ∆(D) ∼= T2,2.

Proof. Suppose that ∆(D) is not finite. Since D is locally finite, we conclude
from Theorem 4.3 that ∆(D) ∼= Tk,l for integers k, l ≥ 2. We distinguish two
cases: Either C3 embeds into D or not. So let us first suppose that C3 does not
embed into D. Let ∆1,∆2 be two distinct reachability digraphs with non-empty
intersection and let us denote with di the distance in ∆i between vertices of ∆i.
If ∆1 and ∆2 intersect in at most one vertex, let x, y, z ∈ V D with xz, yz ∈ ED,
x, y, z ∈ V∆1, z ∈ V∆2. Then there is a ray R in ∆2 starting in z and such
that no vertex on R except for z is adjacent to x or y because none of the
out-neighbors of z is adjacent to x or y. Let a ∈ V∆1 with r := d1(a, x) ≥ 2
and d1(a, x) < d1(a, y), d1(a, z). Then there is a path P outside Br+2(x) from a
to R. Let P ′ be the (induced) path in P ∪R from a to z. Then the subdigraphs
P ′ ∪ {x} and P ′ ∪ {y} are isomorphic—we can map x, z, z1 onto x, z, z2 for any
two successors of z and thus we may conclude that no vertex of ∆2 except for z
is adjacent to x or to y. But there is no automorphism of D mapping the first
onto the second since d1(a, x) < d1(a, y). Thus we have |∆1∩∆2| ≥ 2 and hence
there are infinitely many vertices in ∆1∩∆2 because of the C-homogeneity of D.

If there are two vertices u, v in ∆1 ∩∆2 with minimal distance di(u, v) and
with di(u, v) ≥ 3 and dj(u, v) ≥ 2 (i 6= j), then we get a contradiction by two
analog paths as before.

So we conclude that for all u, v ∈ V∆1 ∩ V∆2 with minimal distance in ∆1

there is d1(u, v) = 2 = d2(u, v). Now we shall construct a cycle in ∆2. Let
x1 be the vertex in ∆1 that is adjacent to both u and v and let x2 be another
neighbor of u in ∆1. Let y1 and y2 be analog vertices in ∆2. Then there is an
automorphism of D that fixes u, y1 and y2 and maps x1 onto x2 and vice versa.
Hence x1 has another neighbor v′ in ∆1 that is also a neighbor in ∆2 of y2. But
as d1(v, v

′) = 2, there is a neighbor y3 of v and v′ in ∆2. Then the digraph
induced by the vertices u, v, v′, y1, y2, y3 induces a cycle of length 6 in ∆2 which
is impossible.

For the last case we suppose that C3 embeds into D. Let ∆1,∆2 be as
above and xz, yz ∈ E∆1 with z ∈ ∆1 ∩ ∆2. Let us suppose that d+ ≥ 3 or
d− ≥ 3. Then we obtain a contradiction similar to the first one, if there is an
out-neighbor of z that is adjacent neither to x nor to y. So we may assume
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that there are at least two elements of N+(z) that are adjacent to x. As D
is C-homogeneous, each two elements of N+(z) have a common successor, and
since ∆(D) ∼= Tk,l, there is a vertex adjacent to all elements of N+(z). This
vertex has to be x by the choice of x. But by C-homogeneity this also holds
for y, so there is a cycle in ∆3 which is impossible. So in this case we have
d+ = d− = 2.

Lemma 4.5. Let D be a locally finite connected C-homogeneous digraph with at
most one end such that N+(x) and N−(x) are independent sets for all x ∈ V D.
If ∆(D) is bipartite and if the intersection of any two reachability digraphs does
not separate each of them, then no reachability digraph separates D.

Proof. Suppose that there is a reachability digraph ∆1 that separates D. Let
∆2 be a reachability digraph with V∆1 ∩ V∆2 6= ∅, let x ∈ V∆1 ∩ V∆2, y
be a neighbor of x in ∆2, and let Ci, i = 1, 2, be the component of D − ∆i

that contains y or is adjacent to y by an edge that lies not in E∆i. If C2

does not contain any vertex of ∆1, then C2 ⊂ C1 with C2 6= C1. So both C1

and C2 has to be infinite since they are isomorphic. Thus D has one end in
C1 ∩ C2 and symmetrically also another one in (D − C1) ∩ (D − C2) contrary
to the assumptions. So C2 contains a vertex of ∆1 and C2 6⊂ C1. But then,
as ∆1 \ V∆2 is connected, there is another component C′

2 of D − ∆2 that is
completely contained in C1 and contains no vertex of ∆1. The component C′

2

does not have to be isomorphic to C1, but since there is a reachability digraph
∆3 in C

′

2, we obtain a component C3 ofD−∆3 with C3 ⊂ C′

2 and so on. Because
the degree of any vertex is finite, there are m,n such that Cm and Cn—or C′

2

if m or n is 2—lead to an analog contradiction as before.

The following lemma is the main lemma for the case that there is no iso-
morphic copy of C3 in the C-homogeneous digraph. After its proof, we show in
Lemma 4.10 that in the case that the out-neighborhood and the in-neighborhood
each are independent sets the connected locally finite C-homogeneous digraphs
that contains directed triangles always satisfy the assumptions of Lemma 4.6,
so that in this case the conclusion of Lemma 4.6 holds.

Lemma 4.6. Let D be a locally finite connected C-homogeneous digraph that
contains no directed triangle and such that N+(x) and N−(x) are independent
sets for all x ∈ V D. If ∆(D) is bipartite, then either D has at least two ends
or D is isomorphic to Cm[K̄n for an m ≥ 4, n ≥ 1.

Proof. Let ∆(D) be bipartite. We suppose that D contains at most one end
and, by Lemma 4.1, that d+, d− ≥ 2.

Claim 4.7. Let ∆1,∆2 be two reachability digraphs with non-trivial intersec-
tion. Then either their intersection is contained in the same side of the biparti-
tion of ∆1 or ∆(D) ∼= CPk for a k ≥ 3 and the intersection consists of precisely
one unmatched pair in CPk.
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Proof of Claim 4.7. Suppose that the claim does not hold. We remember that
the reachability digraphs are induced subdigraphs. So D consists of at least
3 reachability digraphs. We also conclude that ∆(D) cannot be a complete
bipartite digraph, so it is either the complement of a perfect matching or a
directed cycle. Let x, y ∈ ∆1 ∩∆2 be on distinct sides of ∆1 (and hence also of
∆2) with minimal distance in ∆1. If ∆1

∼= C2m for an m ≥ 4, then we choose
a minimal path P in ∆2 from x to y. Let x′ be a neighbor of x in ∆1 and
y1, y2 two neighbors of y in ∆1. Then by mapping Pyy1 onto Pyy2 we obtain
d∆1

(x, y) = m and hence the subdigraphs induced by x′xPyy1 and x′xPyy2 are
isomorphic paths. We conclude that also d∆1

(x′, y) = m, a contradiction. So
∆(D) is isomorphic to CPk for a k ≥ 3. Then ∆1 ∩∆2 consists of precisely two
vertices that are not matched as claimed.

Since each vertex lies in at most two reachability digraphs, we consider the
following two relations: Let x ∼ y for x, y ∈ V D if x and y lie on the same
side of a reachability digraph, that is, both have the same out-degree and the
same in-degree in that reachability digraph and one of these two values is 0. Let
x ≈ y for x, y ∈ V D if x and y lie on the same side of two reachability digraphs.

Claim 4.8. Let x, y ∈ V D. Then x ∼ y if and only if x ≈ y.

Proof of Claim 4.8. Let x, y ∈ V D. It suffices to prove that x ∼ y implies x ≈ y.
So let us suppose that x ∼ y but x 6≈ y and let ∆ be the reachability digraph
that contains both vertices, x and y, in on the same side. Since ∆(D) is finite
by Lemma 4.4, we know from Theorem 4.3 that both sides of the reachability
digraph have the same size. Hence there is a vertex with two successors in
distinct reachability digraphs and one with two predecessors in two distinct
reachability digraphs. We conclude by the C-homogeneity that for every vertex
each two successors lie in precisely one common reachability digraph and the
same holds for each two predecessors. So we may assume that x and y have
distance 2. Let v1 be a vertex in the same reachability digraph as x and y that
is adjacent to both x and y. By symmetry we may assume that xv1, yv1 ∈ ED.

The next aim is to show that no reachability digraph separates D. Let us
suppose that the converse holds. By Lemma 4.5 each two reachability digraphs
that have at least one common vertex, have at least two common vertices.
We conclude from Lemma 4.5 and Claim 4.7 that the intersection of each two
reachability digraphs is contained in one side of the bipartition of each one. But
then Theorem 4.3 implies that ∆(D) is a cycle of length 2m with m ≥ 4. So
let a, b be two vertices in the same two reachability digraphs Γ1 and Γ2 with
minimal distance. Then there is a minimal path P between a and b in Γ1. Let
w1, w2 be the neighbors of b in Γ2, let u1 be the vertex on P that is adjacent
to a, and let u2 be a vertex in Γ2 that is adjacent to a. Then the paths u1Pbw1

and u1Pbw2 are isomorphic and thus there is an automorphism of D that maps
the first onto the second one. This automorphism has to fix a and thus the
distance in Γ2 from a to w1 is the same as the one from a to w2. But since
m ≥ 4, we can also map the path u2aPbw1 onto u2aPbw2. Then also u2 and
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w1 have the same distance in Γ2 as u2 and w2. But this cannot be true. Thus
we know that no reachability digraph can separate D.

Hence we find an (undirected) induced path R from v1 to y whose only
vertices in ∆ are v1 and y and that does not use the edge yv1. We may choose
R so that the only vertex on R that is adjacent to x is v1 by applying the
C-homogeneity to an automorphism that maps D[x, v1, y] onto D[y, v1, x]. Let
v3, v2, y be the last three vertices on R. If v3 ∼ y, then we conclude v3 6∼ x.
But then yv1Rv3 can be mapped onto xv1Rv3 by an automorphism of D and
we obtain by x ∼ v3 a contradiction.

So v3 6∼ y. By an analog automorphism to the one above—one that maps
yv1Rv3 onto xv1Rv3—we obtain that v3 and x have a common neighbor v4. Let
w1 be the neighbor of v1 on R. Since D contains no directed triangle, there
is an automorphism α of D that fixes w1Rv2 and also v4x pointwise, but with
yα 6= y. But then yα has to lie in the reachability digraph ∆ as y and x which
is impossible as we already saw.

We conclude from Claim 4.8 that ∼ and ≈ are equivalence relations on V D.
Let Γ be a digraph on the equivalence classes of ∼ such that there is an edge
from one class X1 to another X2 if and only if there are vertices x1 ∈ X1 and
x2 ∈ X2 with x1x2 ∈ ED. By Claim 4.8 each vertex of Γ has precisely one
successor and one predecessor. It is a straightforward argument that Γ is a
C-homogeneous digraph. Since D has at most one end, Γ must be a directed
cycle Cn for an n ≥ 3 by Lemma 4.1.

It remains to show that the inverse images of any edge of Γ, that is the
subdigraph of D induced by the equivalence classes that are incident with that
particular edge of Γ, and that is precisely one reachability digraph, induces a
complete bipartite digraph. Let V1, . . . , Vn denote the equivalence classes such
that ViVi+1 ∈ EΓ for i < n and VnV1 ∈ EΓ with n ≥ 4.

It follows from Lemma 4.2 and Theorem 4.3 that ∆(D) is either a semi-
regular tree Tk,l, a cycle C2m, the complement of a perfect matching CPk, or
a complete bipartite digraph Kk,l. To prove the lemma, we have to show that
none of the first three cases can occur where the first one was already excluded
by Lemma 4.4.

Let us suppose that ∆(D) ∼= C2m for an m ≥ 4. Let x ∈ V1 and let a, b
be its successors. Let P be a shortest a-b-path in ∆2, the subdigraph induced
by V2 and V3, and let P ◦ := P − b. Let P ′ be a path of the same length as
P ◦ in ∆2 that starts in a and is except for a distinct from P . By mapping
xP ◦ onto xP ′, we obtain d∆2

(a, b) = m. But then the same holds for the other
predecessor y 6= x of a and thus y also has to be adjacent to b and hence m = 2,
a contradiction.

Let us now suppose that ∆(D) ∼= CPk for a k ≥ 3. Let x ∈ V1. Then
there exists a unique vertex in V2 that is not adjacent to x and this vertex itself
has a unique vertex y ∈ V3 it is not adjacent to. Now let X be the digraph
D[(V3 \ {y}) ∪ P ] where P denotes a path that consists of one vertex from
each Vi, i ≥ 4 and of x such that the vertex in V4 is the only vertex incident
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with all of V3 but y. Let x′ be another vertex of V1 that is adjacent to the
predecessor of x on P and let Y be the digraph D[(V X \ {x}) ∪ {x′}]. Then
X and Y are isomorphic subdigraphs of D but there is no automorphism of D
mapping the first onto the second one since for x and y there is a unique vertex
in V2 that is not adjacent to both, but for x′ and y there is no such vertex.
Hence ∆(D) 6∼= CPk and thus we conclude from Theorem 4.3, since we excluded
all other cases, that ∆(D) is a complete bipartite digraph. As all equivalence
classes have the same size, ∆(D) ∼= Kk,k for a k ≥ 1.

The following proposition is similar to a result by Malnič et.al., see [18,
Proposition 3.2]. Since we apply it in a situation where its original assumptions
need not to be satisfied, we formulated the result with different assumptions.
But the general idea of the proof of Proposition 4.9 is quite similar to the one
of the proof of [18, Proposition 3.2]. Because our assumptions are to handle
differently, we prove it here.

Proposition 4.9. Let D be a connected C-homogeneous digraph such that in-
degree and out-degree of any vertex are at most a fixed integer d and such that
both N+(x) and N−(x) are independent sets. Let Γ = Aut(D), xy ∈ ED and
Ω ⊆ N+(x) with |Ω| = d such that H = Γxy fixes Ω setwise but stabilizes no
vertex of Ω.

Then there is no alternating walk whose first edge is xy and which ends at
a vertex of Ω.

Proof. Since D is C-homogeneous, the group H acts on Ω like SΩ, i.e. H
Ω ∼= SΩ.

Let P be an alternating walk with initial edge xy. Suppose that HΩ
P = HΩ. Let

e ∈ ED such that Pe determines an alternating walk, and let z be the vertex
incident with e but distinct from the end vertex of P . Then there are at most
d − 1 vertices in {zα | α ∈ HP }. Since HΩ = HΩ

P , either we have d = 2 or we
have |HΩ : HΩ

z | < d. Let us first assume that d 6= 2. Then, by Proposition 2.2,
HΩ
z is either HΩ or isomorphic to AΩ. We shall now show that the latter case

cannot occur. So suppose that HΩ
z

∼= AΩ. Then Hz acts transitively on Ω
but there is no automorphism fixing |Ω| − 2 elements and switching the other
two. Since D is C-homogeneous and Ω is independent, this is impossible. Hence
HΩ
z = HΩ and thus no vertex of Ω is fixed by Hz . So let us now assume that

d = 2. But in this case we immediately deduce from the fact that the orbit of z
under H contains only z, that H = Hz . So we conclude in each case that no
vertex of Ω can lie on an alternating walk.

Lemma 4.10. Let D be a connected locally finite C-homogeneous digraph such
that N+(x) and N−(x) are independent sets for all x ∈ V D and assume that
D contains no directed triangle. Then the reachability relation of D is not
universal.

Proof. Let xy ∈ ED. By symmetry we may assume that d+(x) ≥ d−(x). Let
Ω = N+(y). By applying Proposition 4.9 we conclude that no vertex of Ω lies on
an alternating path that starts with the edge xy and thus that the reachability
relation of D cannot be universal.
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Lemma 4.11. Let D be a connected locally finite C-homogeneous digraph such
that N+(x) and N−(x) are independent sets for all x ∈ V D. If C3 embeds into
D, then we have d+(x) = d−(x).

Proof. Let y ∈ N+(x) and z ∈ N−(x) ∩ N+(y). The number n1 of directed
triangles that contain xy is equal to the number of all 2-arcs from y to x. By
C-homogeneity this is the same as the number of all 2-arcs from x to z which is
again equal to the number n2 of all directed triangles that contain zx. Let n3

denote the number of all directed triangles that contain x. Then we conclude
from the C-homogeneity

|N+(x)|n1 = n3 = |N−(x)|n2.

Since n1 = n2, the claim follows.

Lemma 4.12. Let D be a locally finite C-homogeneous digraph that contains a
directed triangle. Then for every edge xy ∈ ED the number of directed cycles
that contains xy is either 1 or at least (d+ − 1).

Proof. Let d1 be the number of elements ofN+(y) that lie on a common directed
triangle with xy and let d2 be the number of elements of N+(y) for which this
is not the case. Then d = d1 + d2 where d := d+ which is the same as d− by
Lemma 4.11. Let Ω1 be the set of all vertices of N+(y) that lie on a common
directed triangle with xy and let Ω2 = N+(y) \Ω1. Let Ω3 := N+(x) \ {y}. We
consider the action of H := Aut(D)xy on Ω3. Because N

+(x) is an independent
set, H acts on Ω3 like AΩ3

. For z ∈ Ωi, i = 1, 2, we have |H : Hz| = di <
d+ − 1 = |Ω3|. Thus and by Proposition 2.2, Hz acts on Ω3 either like SΩ3

or
like SΩ3

. Let us first consider the second case. By a similar argument as in
Proposition 4.9, we know that |Ω3| = 2. But then d+ = 3 and the assertion
trivially holds. So we assume that Hz acts on Ω3 like SΩ3

. In that case either
no vertex of N+(y) lies in N+(y′) for any y 6= y′ ∈ N+(x) or every vertex of
N+(y) lies in N+(y′) for every y 6= y′ ∈ N+(x). We conclude that each edge
lies either on precisely one or on d distinct directed triangles.

The following lemma is the main lemma for the case that the C-homogeneous
digraph contains a directed triangle. The assumption that ∆(D) is bipartite in
this case shall be verified in Lemma 4.16 and the case (iv) of the conclusions
shall be investigated in Section 5.

Lemma 4.13. Let D be a locally finite connected C-homogeneous digraph that
contains an isomorphic copy of C3 and such that N+(x) and N−(x) are inde-
pendent sets for all x ∈ V D. If ∆(D) is bipartite, then one of the following
cases holds.

(i) The digraph D has at least two ends.

(ii) The reachability digraph ∆(D) is isomorphic to Kk,k for a k ≥ 3 and D
is isomorphic to C3[K̄k].
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(iii) The reachability digraph ∆(D) is isomorphic to CPk for a k ∈ N and D
is isomorphic to a Yk for a k ≥ 3.

(iv) The reachability digraph ∆(D) is isomorphic to C2m for an m ≥ 4 or
to T2,2.

Proof. Let us assume that the digraph D has at most one end, that case (iv)
does not occur, and that d+, d− ≥ 2 by Lemma 4.1. By Theorem 4.3, we know
that ∆(D) is either a semi-regular tree—which is impossible in our situation
because of Lemma 4.4—, a complete bipartite digraph, a CPk, or a cycle C2m—
which we also excluded. Let us first assume that ∆(D) is a complete bipartite
digraph Kk,l for k, l ∈ N but not K2,2. By Lemma 4.11, we know that k = l.
If, for two reachability digraphs ∆,∆′, there is |∆ ∩∆′| ≥ 2, then it is a direct
consequence of the C-homogeneity that ∆ ∩ ∆′ is a complete side of each of
∆,∆′. Thus it is—like in the proof of Lemma 4.6—a direct consequence that
(ii) holds in this case. So let us suppose that ∆ ∩ ∆′ has cardinality 1. If an
edge lies on more than one directed triangle, then we know from Lemma 4.12
that it lies on at least k − 1 distinct such triangles. But then, the intersection
∆∩∆′ has to contain at least k− 1 elements which is a contradiction. So every
edge lies on a uniquely determined directed cycle of length 3.

Claim 4.14. For every four distinct reachability digraphs ∆1,∆2,∆3,∆4 such
that ∆i∩∆i+1 (i = 1, 2, 3) is not empty and such that (∆i−1∪∆i+1)∩∆i lies on
the same side of ∆i for i = 2, 3, ∆1 ∩∆4 is not empty, too, and its intersection
lies on the same side of ∆4 as ∆3 ∩∆4.

Proof of Claim 4.14. Let us suppose that ∆1 ∩∆4 is empty. Since every edge
lies on a directed triangle, there has to be a vertex x with successors in ∆1 and
∆2. Let y be its sucessor in ∆1, z be its successor in ∆2 and let a be the vertex
in ∆2 ∩∆3, b the vertex in ∆3 ∩∆4. Then there is no automorphism of D that
maps a to b and fixes all of x, y, z, because ∆1∩∆2 6= ∅ but ∆1∩∆4 = ∅. Hence
we proved the claim.

Now we are able to show that the whole situation cannot occur. Let x, y be
two vertices on the same side of a reachability digraph such that their out-degree
is 0. Let a, b be successors of x, y, respectively, such that they lie in a common
reachability digraph. As k ≥ 3 and as every edge lies on precisely one copy
of C3, there is a successor c of a and b such that neither D[x, a, c] nor D[y, b, c]
are triangles. Furthermore, there exists a predecessor z of b such that z and c
are not adjacent. The vertices a and z cannot be adjacent because otherwise y
and x have to lie in two common reachability digraphs which we supposed to
be false. Then D[x, a, c, b, y] and D[x, a, c, b, z] are isomorphic, but there is no
automorphism of D that maps one onto the other just by fixing all of x, a, c, b.
Thus we showed that there are no two reachability digraphs whose intersection
consists of precisely one vertex. This finishes the case ∆(D) ∼= Kk,l.

The next and final situation which we consider is ∆(D) ∼= CPk for a k ≥ 4.
Let ∆1,∆2 be two distinct reachability digraphs of D with non-trivial intersec-
tion. We prove that |∆1 ∩∆2| ≥ 2. So suppose that |∆1 ∩∆2| = 1. Let b ∈ V D
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and let a, c be two predecessors of b. Let x, y be two predecessors of a and let
v (w) be a vertex such that av, vx (aw,wy, respectively) lie in ED and such
that cw but not cv lies in ED. Then the digraphs D[a, b, c, x] and D[a, b, c, y]
are isomorphic but there is no automorphism of D that maps them onto each
other because such an automorphism has to map v onto w but w is adjacent to
c and v is not.

Claim 4.15. The set ∆1 ∩∆2 is one whole side of each of ∆1,∆2.

Proof of Claim 4.15. Let us first suppose that ∆1 ∩∆2 is not contained in any
of the sides of ∆1. Then ∆1 ∩ ∆2 consists of precisely two vertices that are
adjacent in the bipartite complement of ∆1. Let us consider the subdigraph
of ∆i with vertices a, b, c, d, with edges ba, bc, dc such that a, d ∈ ∆1 ∩∆2. Let
x, y be two predecessors of d in ∆j with i 6= j and let z be the neighbor of x
in the bipartite complement of ∆j . Since each edge lies on a directed triangle,
we may assume that b, a, z form such a triangle and, since k ≥ 4, we also may
assume that c and y do not lie in a common reachability digraph. Then neither
c nor y lies in a common reachability digraph with b and z. So each of the
subdigraphs D[a, b, c, d, x] and D[a, b, c, d, y] contains precisely 4 edges and they
are isomorphic to each other. Hence there is an automorphism α that fixes each
of a, b, c, d and maps x onto y which is impossible because y and b do not lie in
any common reachability digraph in contrast to x and b. Thus we proved that
∆1 ∩∆2 is contained in one side of ∆i, i = 1, 2.

The C-homogeneity directly implies that ∆1 ∩ ∆2 is a whole side of ∆i,
i = 1, 2. Thus we proved the claim.

We shall now show that D ∼= Yk. Let D denote the tripartite complement
of D Since ∆(D) ∼= CPk, the digraph D is a union of directed cycles. We want
to show that every component of D is a directed cycle of length 3. So let us
suppose that this is not the case. Then there are x, y ∈ V1 that lie on a common
directed cycle of length at least 6 and have distance 3 on that cycle in D. Since
k ≥ 3, there is a vertex a ∈ V2 that is adjacent to both x and y. We conclude
that for every vertex z ∈ V1, distinct from x, we have that x and z lie on a
common cycle and have distance 3 on that cycle. It is a direct consequence that
k = 3 and D ∼= C9. But then there are edges of D that lie on precisely one copy
of C3 and some lie on two copies which contradicts the C-homogeneity. Hence
we have D ∼= Yk.

Lemma 4.16. Let D be a connected locally finite C-homogeneous digraph that
contains a directed triangle. Furthermore, assume that N+(x) and N−(x) are
independent sets for all x ∈ V D. Then the reachability relation of D is not
universal.

Proof. Let d = d+. By Lemma 4.11 we have d = d−. Suppose that the reacha-
bility relation of D is universal. Let D1 be the digraph depicted in Figure 3.

Claim 4.17. D contains an isomorphic image of D1.
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Figure 3: The digraph D1

Proof of Claim 4.17. Since the reachability relation of D is universal, there is
an induced cycle such that for an edge xy on that cycle the other path between x
and y is an alternating path but the such that the whole cycle is not alternating.
Such a cycle shows that the reachability relation is not universal. To show that
such a cycle exists, suppose that it is not the case. We choose a counterexample
C with minimal length. Since there is always a cycle that shows that the
reachability relation is not universal, we may assume that C is not induced. So
there is a chord in C and hence one of the smaller cycles is a counterexample of
smaller length, contrary to the assumption. Thus a cycle as described exists.

Let us first assume that such a cycle C has odd length. Then it has length at
least 5. By symmetry we may assume that for the edge xy described above we
have d−C(x) = 1 and d−C(y) = 2. Let z be the other vertex in N−(y)∩V C. Then
there is an automorphism α of D that maps C − x onto C − y. The digraph
D[x, y, z, xα] is isomorphic to D1 because N−(x) and N+(x) are independent
sets.

Let us now consider the case that C is an induced cycle of even length and
let xy be again the above described edge. Let a 6= y be the vertex on C adjacent
to x, let b 6= x be the vertex on C adjacent to y, let PC be the path on C between
a and b that contains neither x nor y, and let P−

C denote the path inverse to PC .
Since C has odd length, we have PC ∼= P−

C . Then we can map xPC onto yP−

C

by an automorphism of D and obtain an induced subdigraph isomorphic to D1

by the two paths of length 2 between a and y.

Claim 4.18. There is |N+(y) ∩N−(x)| = 1 for all edges xy ∈ ED.

Proof of Claim 4.18. By Lemma 4.12 we know that either |N+(y)∩N−(x)| = 1
or |N+(y)∩N−(x)| ≥ d−1. So it suffices to prove that N+(y)\N−(x) contains
at least two vertices. Let u, v, a, b be the four vertices of the digraph D1 such
that u has the two predecessors a and b. Since there is an automorphism of D
that fixes u and maps a onto b and vice versa, there is a directed path of
length 2 from a to b and one from b to a. Since N+(v) and N−(v) are both
independent sets and the same holds for v′, the image of v under the described
automorphism, there is no edge between v and v′. We may assume by symmetry
that va is an edge in D. Then both v′ and u are vertices in N+(a) that do not lie
on a common directed triangle with va, so we conclude N+(a)∩N−(v) contains
precisely one vertex.
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Let D2 be the digraph shown in Figure 4.

Figure 4: The digraph D2

Claim 4.19. There is an isomorphic image of D2 in D.

Proof of Claim 4.19. By an analog argument as in the proof of Claim 4.18, we
immediately see that either D2 is an induced subgraph or D2 together with an
edge from the vertex on the right hand to the vertex on the left hand is an
induced subgraph of D. But the latter cannot be the case since the additional
edge would lie on at least two copies of C3, contrary to Claim 4.18.

Now let D′ be an isomorphic copy of D2 in D. Let x be the vertex on
the left, y the one on the right and a, b, u, v the vertices of the cycle such that
x and y are adjacent to a and u. Since C3 embeds into D, there is a vertex
a′ ∈ N+(a)∩N−(x). Then a′ is adjacent neither to b, nor to v, nor to y, since the
only directed triangle that contains aa′ is D[x, a, a′] and since directed cycles are
the only cycles of length 3 that embed into D. Then there is an automorphism
ofD that fixes a′, x, and u, and maps v onto y. This automorphism also has to fix
a, since it fixes together with x and a′ the unique vertex in the directed triangle
that contains the edge a′x. Hence such an automorphism cannot exist.

5 An imprimitive case

In this section we investigate the following situation. LetD be a C-homogeneous
digraph that contains directed triangles of length 3 and whose reachability di-
graph is either T2,2 or C2m for anm ≥ 2. There exists a well-known such digraph
[9], the digraph T (2) that was defined in the introduction. This digraph has
infinitely many ends. But although we are interested only in digraphs with at
most one end, this particular digraph turns out to be very important in this
case. We shall show that every digraph with the above described properties and
with at most one end is a homomorphic image of T (2) in a very particular way.

Theorem 5.1. The following two assertions are equivalent for any locally finite
connected digraph D.

(i) The digraph D is C-homogeneous, contains directed cycles of length 3, and
its reachability digraph is either T2,2 or C2m for an m ≥ 2.
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(ii) There exists a subgroup H of Aut(T (2)) acting transitively on V T (2) and
an H-invariant equivalence relation ∼ on V T (2) such that T (2)∼ is iso-
morphic to D.

Furthermore, the digraph has at most one end if and only if each equivalence
class consists of more than one element.

In the situation (ii) we may always choose H to be the whole automorphism
group of D.

Proof. First, let us assume that (ii) holds. We choose H so that it is maximal
such that ∼ is H-invariant.

Claim 5.2. The stabilizer Hx of any vertex x of T (2) has order 2.

Proof of Claim 5.2. There are two possibilities for an element of Hx. Either it
is fixes both directed triangles that meet x or it changes the two triangles. As
every isomorphism between two directed triangles of T (2) extends uniquely to an
automorphism of T (2), |Hx| ≤ 2. So we have to prove that the element α 6= id
of Aut(T (2))x is also contained in H . Because H is the maximal subgroup
of Aut(T (2)) such that ∼ is H-invariant, we have to prove that α maps one
equivalence class onto another. Let y, z be the two predecessors of x. If they
lie in the same equivalence class, then this is fixed by α and the same holds
for the equivalence class that contains both successors of x and this extends to
all equivalence classes because of the transitivity of H on V T (2). So y and z
lie in distinct equivalence classes. But then α maps the equivalence class of y
onto the one of z and vice versa, and the same holds for the two equivalence
classes of the two successors of x. By induction on d(x, a) for any vertex a
of T (2) its equivalence class is mapped onto the one of the unique vertex b with
d(x, b) = d(x, a) and for which the shortest path from x to b is isomorphic to
the shortest path from x to a. So α acts on all equivalence classes and ∼ is
α-invariant.

To show that D ∼= T (2)∼ is C-homogeneous, let A,B be isomorphic induced
connected subdigraphs of D and ϕ : A → B be an isomorphism. Then there
are induced subdigraphs A′, B′ of T (2) with A ∼= A′, B ∼= B′ and such that
the equivalence classes of the vertices of A (of B) are the vertices of T (2)∼
that induce the digraph A (the digraph B, respectively). Let ϕ0 be the isomor-
phism A′ → B′ that maps the equivalence class of x ∈ V A to the equivalence
class of xϕ. We may assume that A contains an edge xy. Let u, v be vertices
in T (2) such that uv ∈ ET (2) and such that the equivalence class of u, v is x, y,
respectively. Since Hxϕ has order 2 by Claim 5.2, there is an automorphism
α ∈ H with uα = uϕ0 and with vα = vϕ0 . But then the claim immediately
implies A′α = B′ and that the canonical image α′ of α maps A onto B like ϕ.
Furthermore, α′ is an automorphism of D because α ∈ H .

For the other direction, let D fulfill the assumptions of (i). Let π be the map
T (2) → T (2)∼ that maps x ∈ V T (2) onto its equivalence class. We may assume
that D is not isomorphic to C3. Let xy ∈ ED, ab ∈ ET (2). For every vertex
u in T (2) there exists a unique shortest path P1 from a to u. In D there are
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precisely two isomorphic such paths with the property that no two endvertices
of any subpath of length 2 are adjacent. If the second vertex of the path P1

is b or is adjacent to b, then let P2 that one of the above described paths in D
whose second vertex is y or is adjacent to y, and in the other case for P1 let P2

be also the other one in D. Let uD denote the last vertex of P2.
We are now able to define the equivalence relation. Let u ∼ v for two vertices

u, v ∈ V T (2) if uD = vD. This is obviously an equivalence relation. It remains
to show that it is Aut(T (2))-invariant. So let u and v be arbitrary vertices
of T (2) and let ψ be an automorphism of T (2) with uψ = v. We have to show
that the equivalence class of u is mapped onto the one of v. So let w ∼ u.
It suffices to consider the case where the shortest path from u to w does not
contain any other vertex of the equivalence class that contains u. Let P be the
shortest path from u to w. We look at the paths P π and (Pψ)π. The path
P π starts and ends at the same vertex. We can map Qϕ0 for every subpath
Q of P that starts in u onto (Qψ)π inductively, because on the one hand D
is C-homogeneous and on the other hand for such a Q its succeeding vertex is
uniquely determined in D by the two digraphs Qπ and (Qψ)π . So we conclude
that also (Pψ)π has the same endvertices. But then uψ and wψ have to be
equivalent. It is an immediate consequence that this holds also for any z ∼ u.

The only remaining part is to show is the additional claim on the multi-ended
digraphs which is a direct consequence of [9, Theorem 7.1].

Figure 5 shows two C-homogeneous digraphs that arise as factor digraphs in
Theorem 5.1 one of which is finite and the other being infinite and one-ended.
In the finite digraph every reachability digraph, which is isomorphic to C10, is
drawn in a different shade of gray. The reachability digraphs of the infinite
digraph are the cycles of length 6.

Figure 5: A finite and an infinite one-ended C-homogeneous digraph
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6 The main theorem

Let us now state our main result. We shall prove it by applying all the results
of the previous sections.

Theorem 6.1. Let D be a connected digraph with at most one end. Then D is
C-homogeneous if and only if one of the following cases holds.

(i) D ∼= Cm[K̄n] for integers m ≥ 3, n ≥ 1;

(ii) D ∼= H [K̄n] for an integer n ≥ 1;

(iii) D ∼= Yk for an integer k ≥ 3;

(iv) there exists a non-trivial Aut(T (2))-invariant equivalence relation ∼ on
V T (2) such that D ∼= T (2)∼.

Proof. Let D be a connected locally finite C-homogeneous digraph with at most
one end. If the out-neighborhood (or symmetrically the in-neighborhood) of any
vertex of D is not independent, then we conclude from Theorem 2.3, Lemma 3.1,
Lemma 3.3, Lemma 3.8, and Lemma 3.9 that D is finite and isomorphic to an
H [K̄n] for an n ≥ 1. So we may assume that the out-neighborhood of every
vertex is independent. Since D is in particular 1-arc transitive, we conclude
from Proposition 2.1, Lemma 4.10, and Lemma 4.16 that the reachability di-
graph of D is bipartite. Thus one direction of the theorem follows directly from
Lemma 4.6, Lemma 4.13, and Theorem 5.1.

To prove the remaining part of Therorem 6.1 it suffices to prove that the
digraphs Yk are C-homogeneous because it is an easy consequence of the fact that
H is homogeneous, that H [K̄n] is C-homogeneous. Furthermore, an immediate
consequence of the fact that Kn,n is a homogeneous bipartite graph is that
Cm[K̄n] is C-homogeneous and that the graphs in part (iv) are C-homogeneous
was already proved in Theorem 5.1. To prove that the digraphs Yk with k ≥ 3 are
C-homogeneous, let A and B be two isomorphic connected induced subgraphs
of D := Yk. Let V1, V2, V3 be the three vertex sets as in the proof of Lemma 4.6
and let ∆1,∆2,∆3 be the corresponding reachability digraphs. Let α be an
isomorphism from A to B. It is straightforward to see that (V A∩Vi)α is precisely
the intersection of V B with a Vj . So we may assume that (V A∩Vi)α = V B∩Vi.
IfA and B have at most six vertices, then it is easy to see that every isomorphism
from A to B extends to an automorphism of D. So we may assume that there
is at least one Vi, say V1, that contains at least three vertices of A. Then both
subdigraphs ∆1∩A and ∆3∩A are connected subdigraphs. Let ∆′

1 be a minimal
subdigraph isomorphic to a CPl with l ≤ k such that A ∩ ∆1 = A ∩ ∆′

1. By
replacing B by Bγ , for an automorphism γ of D, we may assume that also
B ∩ ∆1 = B ∩ ∆′

1 holds. Since CPl is a C-homogeneous bipartite graph, we
can extend every isomorphism from ∆′

1 ∩ A to ∆′

1 ∩ B to an automorphism of
∆′

1 and hence, in particular, the restriction of α. Let α′ be the automorphism
of ∆′

1 that extends the above restriction of α. Let V ′

3 ⊆ V3 be the set of those
vertices which are not adjacent to all vertices of ∆′

1. As each vertex in V ′

3 is
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uniquely determined by two non-adjacent vertices one of which lies in V1 and
the other in V2, α

′ has precisely one extension β on D′ := D[V∆′

1 ∪ V ′

3 ]. By
the construction of β it is easy to see that the restriction of α to D′ is again an
isomorphism from A∩D′ to B∩D′ and is equal to the restriction of β to A∩D′.
Since all vertices of A∩ (V3 \V

′

3) are adjacent to all vertices of A∩ (V1 ∪V2) and
since the same holds for B instead of A, β can be extended to an automorphism
of D whose restriction to A is α.
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B. Zgrablič, Highly arc transitive digraphs: reachability, topological groups,
European J. Combin. 26 (2005), no. 1, 19–28.

[19] H. Wielandt, Finite permutation groups, Academic Press, New York-
London, 1964.

24


