Skip to main content
Log in

On order and rank of graphs

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

The rank of a graph is defined to be the rank of its adjacency matrix. A graph is called reduced if it has no isolated vertices and no two vertices with the same set of neighbors. Akbari, Cameron, and Khosrovshahi conjectured that the number of vertices of every reduced graph of rank r is at most m(r)=2(r+2)/2−2 if r is even and m(r)=5·2(r−3)/2−2 if r is odd. In this article, we prove that if the conjecture is not true, then there would be a counterexample of rank at most 46. We also show that every reduced graph of rank r has at most 8m(r)+14 vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Akbari, P. J. Cameron and G. B. Khosrovshahi: Ranks and signatures of adjacency matrices, unpublished manuscript.

  2. N. Alon and P. D. Seymour: A counterexample to the rank-coloring conjecture, J. Graph Theory 13 (1989), 523–525.

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Ericson and V. Zinoviev: Codes on Euclidean Spheres, North-Holland Mathematical Library, 63, North-Holland Publishing Co., Amsterdam, 2001.

    MATH  Google Scholar 

  4. E. Ghorbani, A. Mohammadian and B. Tayfeh-Rezaie: Maximum order of trees and bipartite graphs with a given rank, Discrete Math. 312 (2012), 3498–3501.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Ghorbani, A. Mohammadian and B. Tayfeh-Rezaie: Maximum order of triangle-free graphs with a given rank, J. Graph Theory, in press

  6. C.D. Godsil and G. F. Royle: Chromatic number and the 2-rank of a graph, J. Combin. Theory Ser. B 81 (2001), 142–149.

    Article  MATH  MathSciNet  Google Scholar 

  7. W.H. Haemers and M. J. P. Peeters: The maximum order of adjacency matrices of graphs with a given rank, Designs, Codes and Cryptography 65 (2012), 223–232.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Kotlov: Rank and chromatic number of a graph, J. Graph Theory 26 (1997), 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Kotlov and L. Lovász: The rank and size of graphs, J. Graph Theory 23 (1996), 185–189.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Lovász and M. Saks: Lattices, Möbius functions and communication complexity, in: Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, 1988, 81–90.

    Google Scholar 

  11. L. Lovász and M. Saks: Communication complexity and combinatorial lattice theory, J. Comput. System Sci. 47 (1993), 322–349.

    Article  MATH  MathSciNet  Google Scholar 

  12. N. Nisan and A. Wigderson: On rank vs. communication complexity, Combinatorica 15 (1995), 557–565.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. van Nuffelen: A bound for the chromatic number of a graph, Amer. Math. Monthly 83 (1976), 265–266.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. A. Rankin: The closest packing of spherical caps in n dimensions, Proc. Glasgow Math. Assoc. 2 (1955), 139–144.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. A. Razborov: The gap between the chromatic number of a graph and the rank of its adjacency matrix is superlinear, Discrete Math. 108 (1992), 393–396.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. F. Royle: The rank of a cograph, Electron. J. Combin. 10 (2003).

  17. C. Zong: Sphere Packings, Springer-Verlag, New York, 1999.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mohammadian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, E., Mohammadian, A. & Tayfeh-Rezaie, B. On order and rank of graphs. Combinatorica 35, 655–668 (2015). https://doi.org/10.1007/s00493-015-2922-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-015-2922-4

Mathematics Subject Classification (2010)

Navigation