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Abstract

Homomorphism duality pairs play a crucial role in the theory of relational
structures and in the Constraint Satisfaction Problem. The case where
both classes are finite is fully characterized. The case when both side are
infinite seems to be very complex. It is also known that no finite-infinite
duality pair is possible if we make the additional restriction that both classes
are antichains. In this paper we characterize the infinite-finite antichain
dualities and infinite-finite dualities with trees or forest on the left hand
side. This work builds on our earlier papers [6] that gave several examples
of infinite-finite antichain duality pairs of directed graphs and [7] giving a
complete characterization for caterpillar dualities.

Keywords: graph homomorphism; duality pairs; general relational
structures; constraint satisfaction problems; regular languages

1. Introduction

A homomorphism duality pair is a couple (O,D) where O and D are
families of relational structures of the same type, such that the following
holds.

For any given relational structure A, there exists a homomor-
phism of A to some member D of D if and only if there is no
homomorphism of any member T of O to A.

1Research supported by Hungarian NSF (OTKA), grant PD 104386 and the János
Bolyai Research Scholarship of the Hungarian Academy of Sciences.

2Research supported in part by the Cryptography “Lendület” project of the Hungarian
Academy of Sciences.
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We refer the reader to Section 2 for basic terminology on relational structures
and homomorphisms. Note that the simplest example is that of directed
graphs and arc-preserving maps.

Homomorphism duality pairs (duality pairs, for short) (O,D) where D
consists of a single structure play a major role in the study of constraint
satisfaction problems (see [1]). Given a structure D, conditions are sought
that imply the existence of a duality pair (O, {D}), where O satisfies given
structural properties. The structural properties considered in the literature
imply that the constraint satisfaction problem for D, that is, the problem
of determining whether an input structure admits a homomorphism to D,
can be solved by an efficient algorithm. In some cases the type of duality
considered gives further clues about the precise descriptive complexity of
the constraint satisfaction problem (see [1]).

A duality pair (O, {D}) is called a tree duality if O consists of (relational)
trees, and a finite duality if O is finite. The structures D such that there
exists a tree duality (O, {D}) are characterized in [8], and the structures D

such that there exists a finite duality (O, {D}) are characterized in [10]. In
particular any finite duality (O, {D}) is essentially a tree duality (see [12]).

Finite dualities can be interpreted from an order theoretic point of view
in a category of relational structures preordered by the existence of homo-
morphisms. Any finite duality can be reduced to a form (O, {D}), where
|O| is minimal (with respect to D). In most cases D does not admit a homo-
morphism to any member of O. The set A = O ∪ {D} is then a “maximal
antichain” in the sense that there exists no homomorphism between any two
of its members, and for any other structure B of the same type, there is a
structure A in A such that there exists a homomorphism of A to B or a
homomorphism of B to A. More precisely, for any structure B of the same
type, there is a structure A in O such that there exists a homomorphism
of A to B, or there is a structure A in D = {D} such that there exists
a homomorphism of B to A. An antichain A in an ordered set P is said
to have the “splitting property” if it admits a partition into sets O and D
such that for any element B, there exists A ∈ O such that A ≤ B, or there
exists A ∈ D such that B ≤ A. (An antichain with the splitting property is
necessarily maximal.) When P is a category of relational structures and ≤
denotes the existence of a homomorphism, the antichains with the splitting
property correspond to the dualities (O,D) where O ∪ D is an antichain.
Thus viewing dualities from an order-theoretic point of view leads to remov-
ing the emphasis on the case where D is a singleton, and putting it instead
on the case where O ∪D is a maximal antichain.

In [9] it is shown how the finite duality pairs (O,D) are built up from
finite duality pairs (O′,D′) with |D′| = 1. Furthermore the finite maximal
antichains are shown to correspond to finite dualities, at least in the case
where there is only one relation (e.g., the case of directed graphs); it is possi-
ble that this correspondence extends to all categories of relational structures.
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On the other hand the infinite maximal antichains are essentially unclassifi-
able, because any antichain can be greedily extended to a maximal antichain
(see [3, 4]). However the antichains with the splitting property have a lot
of structure. In [5] it is shown that in the case of directed graphs, such an
antichain A = O ∪ D cannot have O finite and D infinite. The question of
the existence of antichains with the splitting property A = O ∪ D with O
infinite and D finite is answered positively in [6]. The context is again that
of directed graphs, and it is shown that in any such infinite-finite antichain
A = O ∪D, O must consist of forests. Thus the question arises as to which
properties must an antichain O of forests satisfy for the existence of a family
D such that A = O∪D is an infinite-finite antichain. Note that this reverses
the original question from the context of constraint satisfaction problems,
where conditions were sought on D = {D} for the existence of O such that
(O,D) is a duality pair (with prescribed properties). In [6] it is shown that if
O is an antichain of digraph paths, then there can exist a finite D such that
(O,D) is a duality only if O is “regular” in the sense of automata theory.

In [7], it is shown that regular languages can be used to characterize
the “caterpillar dualities” in general relational structures. Caterpillars are
generalizations of paths, and the caterpillar dualities (O, {D}) are of interest
in the constraint satisfaction community as the dualities for which O can be
described in the “smallest natural recursive fragment of Datalog” (see [2]).

In the present paper we extend the context of [6] from digraphs to general
relational structures, and the context of [7] from caterpillar dualities to
general forest dualities. The criterion of regularity remains relevant, but in
the context of forest dualities it is necessary to generalize it. Our notion
of regular families of forests is similar (but not identical) to other logics for
trees surveyed in [11].

The paper is structured as follows. The next section is a brief introduc-
tion to relational structures and homomorphisms. In Section 3 we present
regular families of forests and prove that the family of forests that do not
admit a homomorphism to a given structure is regular. In Section 4 we
prove that for any regular family O of forests, there exists a finite family
D of structures such that (O,D) is a duality pair. In Sections 5 and 6 we
deal with antichain dualities (O,D) with D finite, and prove that these are
essentially forest dualities. In Section 5 we prove that if (O,D) is a duality
pair such that D is finite, O consists of cores and O∪D is an antichain, then
O consists of forests. Then Theorem 5.3 states that if O is an antichain of
core forests, then there exists a finite family D such that (O,D) is a duality
pair if and only if O is regular. This uses Theorem 5.4 which states that the
cores of the minimal elements of a regular set of forests form a regular set.
Section 6 is dedicated to the (quite technical) proof of this theorem. In our
results, specifying that O consists of trees rather than forests is equivalent
to specifying that D consists of a single structure.
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2. Preliminaries

2.1. Relational structures

A type is a finite set σ = {R1, . . . , Rm} of relation symbols, each with
an arity ri assigned to it. A σ-structure is a relational structure A =
〈A;R1(A), . . . , Rm(A)〉 where A is a finite set called the universe of A,
and Ri(A) is an ri-ary relation on A for each i. The elements of Ri(A),
1 ≤ i ≤ m will be called hyperedges of A. By analogy with the graph theo-
retic setting, the universe A of A will also be called its vertex-set, denoted
V (A).

A σ-structure A may be described by its bipartite incidence multigraph

Inc(A) defined as follows. The two parts of Inc(A) are V (A) and Block(A),
where

Block(A) = {(R, (x1, . . . , xr)) : R ∈ σ has arity r and (x1, . . . , xr) ∈ R(A)},

and with edges ea,i,B joining a ∈ V (A) to B = (R, (x1, . . . , xr)) ∈ Block(A)
when xi = a. Thus, the degree of B = (R, (x1, . . . , xr)) in Inc(A) is precisely
r. Here “degree” means number of incident edges rather than number of
neighbors because parallel edges are possible: If xi = xj = a ∈ V (A), then
ea,i,B and ea,j,B both join a and B. A σ-structure A is called a σ-tree (or
tree for short) if Inc(A) is a (graph-theoretic) tree, that is, it is connected
and has no cycles or parallel edges. Similarly, A is called a σ-forest (or forest
for short) if Inc(T) is a (graph-theoretic) forest, that is, it has no cycles or
parallel edges.

A σ-structure A is a substructure of B (in notation: A ⊆ B) if the
universe and relations of A are subsets of the corresponding families for B.
In this case Inc(A) is a subgraph of Inc(B). In particular the components
of Inc(B) determine substructures that we call the components of B.

2.2. Homomorphisms

For σ-structures A and B, a homomorphism from A to B is a map
f : V (A) → V (B) such that f(Ri(A)) ⊆ Ri(B) for all i = 1, . . . ,m, where
for any r-ary relation R ∈ σ we have

f(R) = {(f(x1), . . . , f(xr)) : (x1, . . . , xr) ∈ R}.

We write A → B if there exists a homomorphism from A to B, and A 6→ B

otherwise. We write A ↔ B when A → B and B → A; A and B are then
called homomorphically equivalent. For a finite structure A, we can always
find a structure B such that A ↔ B and the cardinality of V (B) is minimal
with respect to this property. It is well known (see [12]) that such B is
unique up to isomorphism. We then call B the core of A.

Recall the definition of homomorphism duality pairs from the beginning
of the Introduction. In our definition of σ-structure we insisted that it
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must be finite but in this paragraph we comment on the natural extension
to infinite structures. The families O and D in the duality pairs (O,D) we
consider in this paper consist of finite structures and their defining condition
is required to hold for any finite structure A. For general duality pairs this
does not imply that the same condition also holds for infinite structures
A. But in this paper we consider duality pairs (O,D) with D finite. For a
finite family D of finite structures, a compactness argument shows that if an
infinite structure A has no homomorphism to any member of D, then this
also holds for a finite substructure of A. This implies that the duality pairs
we consider in this paper are duality pairs even if considered in the context
of arbitrary (not necessarily finite) structures.

3. Regular families of forests

Let T be the set of σ-trees and F the set of σ-forests. A rooted σ-
structure (A, a) is a σ-structure A with an arbitrary element a ∈ V (A)
designated as the root. Let Fr and Tr denote respectively the set of rooted
σ-forests and of rooted σ-trees. We do not distinguish isomorphic structures,
so more precisely T, F, Tr and Fr are the set of isomorphism classes of trees,
forests and rooted trees and rooted forests, respectively. We introduce two
operations:

• unrooting [·] : Fr → F forgets the root;

• combining + : Fr×Fr → Fr takes the disjoint union of two rooted
forests and identifies their roots.

Note that the single-vertex rooted tree with empty relations is the iden-
tity of the combining operation. We denote it by T0.

Definition 3.1. Let O be a subset of F.

• For (A, a) ∈ Fr, the set O − (A, a) ⊆ Fr is defined by

O − (A, a) = {(B, b) ∈ Fr | [(A, a) + (B, b)] ∈ O}.

• The equivalence ∼O on Fr is defined by (A, a) ∼O (A′, a′) if O −
(A, a) = O − (A′, a′).

• O is called regular if Fr has only a finite number of equivalence classes
under ∼O.

Given a set O ⊆ F, we can define a graph G whose vertex-set is Fr and
whose edges join pairs (A, a), (B, b) such that [(A, a) + (B, b)] ∈ O. Then
O− (A, a) is the neighborhood of (A, a) in G. Thus O is regular if and only
if this graph can be obtained from a finite graph by blowing up its vertices.
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In [6] and [7], the natural description of paths and caterpillars in terms
of words over an alphabet allowed a more direct correspondence between
regular languages and regular families of paths or caterpillars. Definition 3.1
is in the spirit of the Myhill-Nerode theorem, which states that a language L
over an alphabet Σ is regular if and only if the infinitely many words a ∈ Σ∗

define only finitely many distinct extension sets L − a = {b ∈ Σ∗ | ab ∈ L}.
In Definition 3.1, [·+·] plays the role of concatenation and the sets O−(A, x)
play the role of extension sets.

The following result establishes basic properties of regular sets of forests.

Lemma 3.2. Let O1 and O2 be regular subsets of F. Then O1∪O2, O1∩O2

and F \ O1 are also regular.

Proof. This follows from the fact that for any (A, x) ∈ Fr we have

(O1 ∪ O2) − (A, x) = (O1 − (A, x)) ∪ (O2 − (A, x)),

(O1 ∩ O2) − (A, x) = (O1 − (A, x)) ∩ (O2 − (A, x)) and

(F \ O1) − (A, x) = Fr \ (O1 − (A, x)).

Therefore

|Fr/ ∼O1∪O2
| ≤ |Fr/ ∼O1

| · |Fr/ ∼O2
|,

|Fr/ ∼O1∩O2
| ≤ |Fr/ ∼O1

| · |Fr/ ∼O2
| and

|Fr/ ∼F\O1
| = |Fr/ ∼O1

|.

�

Lemma 3.3. For any σ-structure D, the family HD = {A ∈ F | A → D}
is regular.

Proof. For any vertex z ∈ V (D) let Sz be the set of the rooted forests (B, y)
such that there exists a homomorphism f : B → D with f(y) = z. Then for
any (A, x) ∈ Fr, we have

HD − (A, x) =
⋃

{Sz | (A, x) ∈ Sz}.

Therefore |Fr/ ∼HD
| ≤ 2|V (D)|. �

Corollary 3.4. Let D be a finite family of σ-structures. Then the family

OD of forests which do not admit a homomorphism to any structure in D is

regular.

Proof. We have OD =
⋂

D∈D(F \ HD), and the latter is regular by Lem-
mas 3.3 and 3.2. �

Corollary 3.5. Let D be a σ-structure. Then the family of trees which do

not admit a homomorphism to D is regular.
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Proof. The family T of σ-trees is regular, since Fr/ ∼T= {Tr,Fr\Tr}. Thus
for any σ-structure D, HD ∩ T and O{D} ∩ T are regular. �

Note that by a “regular family of trees” we mean a “regular family
of forests whose members are trees.” A second interpretation is possible,
obtained by replacing F and Fr by T and Tr in Definition 3.1. However
the two interpretations turn out to be equivalent, since for O ⊆ T, we have
O− (A, x) = ∅ for all (A, x) ∈ Fr \Tr. Thus there is no need for a separate
definition of “regular family of trees.”

How about “regular families of rooted forests”? One might be tempted
to define these in a similar fashion, by defining the extension sets of Or ∈ Fr
by

Or − (A, a) = {(B, b) ∈ Fr | (A, a) + (B, b) ∈ Or}.

The regular families of rooted forests would then be those with finitely many
extension sets. However, our regular families of forests are not simply the
unrootings of such “regular families of rooted forests.” Indeed, consider any
family Or that consists only of rooted trees whose root has degree exactly
one in the incidence multigraph. With the above definition, such a family
becomes regular, with Or, {T0} and ∅ being the only possible extension sets.
Thus this approach leads to uncountably many families of rooted forests that
are regular for trivial reasons, and whose unrootings yield uncountably many
families of forests.

In contrast, our last result of this section will show that just like in the
case of regular languages over any given alphabet, there are countably many
regular families of σ-forests over any given type σ.

Definition 3.6. Let R ∈ σ be a relation of arity r, and (A1, x1), . . . , (Ar, xr)
rooted σ-structures. The concatenation C(R, (A1, x1), . . . , (Ar, xr)) is the
σ-structure C obtained from the disjoint union of A1, . . . ,Ar by adding
(x1, . . . , xr) to R(C).

Note that the concatenation of rooted σ-trees is a σ-tree.

Theorem 3.7. There are countably many regular families of σ-forests.

Proof. We associate a type o(σ) of operations to the type σ as follows. For
each R ∈ σ of arity r, o(σ) contains r operations µR,1, . . . , µR,r of arity r.
In addition, o(σ) contains an operation ν of arity 1. We define the algebra
(Fr, o(σ)) as follows.

• ν(A, x) is the rooted forest obtained by adding an isolated element to
V (A), which becomes the new root.

• For R ∈ σ of arity r and i ∈ {1, . . . , r}, µR,i is defined by

µR,i((A1, x1), . . . , (Ar, xr)) = (C(R, (A1, x1), . . . , (Ar, xr)), xi).
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Note that the whole of Fr is generated by {T0}.
Let O be a family of forests. We show that ∼O is a congruence on

(Fr, o(σ)). Indeed if (A, x) ∼O (A′, x′) and [ν(A, x) + (B, y)] ∈ O, then
since [ν(A, x) + (B, y)] = [(A, x) + ν(B, y)], we have [ν(A′, x′) + (B, y)] =
[(A′, x′) + ν(B, y)] ∈ O. Now suppose that R ∈ σ has arity r, i, j ∈
{1, . . . r} and (Ai, xi) ∼O (A′

i, x
′
i). We show that for any (Ak, xk) =

(A′
k, x

′
k) and k ∈ {1, . . . , r} \ {i}, we have µR,j((A1, x1), . . . , (Ar, xr)) ∼O

µR,j((A
′
1, x

′
1), . . . , (A

′
r, x

′
r)). Suppose that [µR,j((A1, x1), . . . , (Ar, xr)) +

(B, y)] ∈ O. We define (C1, z1), . . . , (Cr, zr) by Ck = (Ak, xk) if k /∈ {i, j};
Ci = {T0}, Cj = (Aj , xj)+(B, y) if j 6= i; finally Ci = (B, y) if j = i. Then
[µR,j((A1, x1), . . . , (Ar, xr))+(B, y)]=[(Ai, xi)+µR,i((C1, x1), . . . , (Cr, xr))].
As (Ai, xi) ∼O (A′

i, x
′
i), we then have [(A′

i, x
′
i)+µR,i((C1, x1), . . . , (Cr, xr))]

= [µR,j((A
′
1, x

′
1), . . . , (A′

r, x
′
r)) + (B, y)] ∈ O. Thus ∼O is a congruence on

(Fr, o(σ)).
If O is regular, then (Fr, o(σ))/∼O is finite, thus ∼O is the kernel of

a homomorphism φ(Fr, o(σ)) → (X, o(σ)), where (X, o(σ)) is a finite o(σ)-
algebra. Since Fr is generated by {T0}, φ is completely determined by
φ(T0). Take the unrootings of rooted forests in an ∼O equivalence class.
We have A = [(A, x)+T0], showing that either all of these forests belong to
O or none of them. To emphasize the similarity with the finite automaton
characterization of regular languages, we call the elements of X states, φ(T0)
the initial state and the states corresponding to the classes of rooted forests
whose unrootings are in O the terminal states.

There are finitely many o(σ)-algebras on any finite set, finitely many
choices for the initial state and for the terminal states. The family O is
determined by these choices (except whether the empty structure belongs
to it), thus the number of regular families of forests is countable. �

4. Constructions of duals

4.1. Duals of families of trees

Definition 4.1. Let O be a regular family of trees. We define the structure
D(O) as follows.

The vertices of D(O) are the sets V ⊆ Tr satisfying the following prop-
erties.

(i) T0 ∈ V.

(ii) If (A, a) ∈ V, then A 6∈ O.

(iii) V = Tr \
⋃

(A,a)∈H(O − (A, a)) for some family H of rooted trees.

For R ∈ σ of arity r, we have (V1, . . . ,Vr) ∈ R(D(O)) if for each
(Ai, ai) ∈ Vi, i = 1, . . . , r and T = C(R, ((A1, a1), . . . , (Ar, ar))), we have
(T, aj) ∈ Vj , j = 1, . . . , r, where C is the concatenation of Definition 3.6.
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Note that since O is regular, there are finitely many sets of the form
O − (A, a), hence V (D(O)) is finite as required.

Lemma 4.2. Let A be a σ-tree and φ : A → D(O) a homomorphism. Then

for every a ∈ V (A), (A, a) ∈ φ(a).

Proof. We use induction on the number |
⋃

R∈σ R(A)| of hyperedges of A. If
A has no hyperedges, the result follows from item (i) of Definition 4.1. Now
suppose that the result is valid for any tree with fewer hyperedges than A.
Let (x1, . . . , xr) ∈ R(A) be a hyperedge such that a ∈ {x1, . . . , xr}. Then
A = C(R, (A1, x1), . . . , (Ar, xr)), where A1, . . . ,Ar are the components of
the forest obtained from removing (x1, . . . , xr) from R(A). The restriction of
φ to each Ai is a homomorphism, so by the induction hypothesis, (Ai, xi) ∈
φ(xi) for i = 1, . . . , r. Since φ is a homomorphism and (x1, . . . , xr) ∈ R(A),
we then have (A, xj) ∈ φ(xj) for j = 1, . . . , r, and in particular, (A, a) ∈
φ(a). �

Theorem 4.3. Let O be a regular family of trees. Then for any σ-structure
B, there exists a homomorphism of B to D(O) if and only if no tree in O
admits a homomorphism to B.

Proof. Let B be a σ-structure that admits a homomorphism φ to D(O).
Suppose that there exists a tree A in O that admits a homomorphism ψ to
B. Then φ ◦ ψ : A → D(O) is a homomorphism. Therefore by Lemma 4.2,
for any a ∈ V (A), (A, a) ∈ φ(ψ(a)). However this contradicts item (ii) in
Definition 4.1. Thus no element of O admits a homomorphism to B.

Conversely, suppose that no element of O admits a homomorphism to
B. For a vertex b of B, we define the following sets

• S(b) = {(A, a) ∈ Tr | there exists a homomorphism φ : A → B such
that φ(a) = b },

• φ(b) = Tr \
⋃

(O− (A, a)), where the union is taken for all (A, a) ∈ Tr
with S(b) ∩ (O − (A, a)) = ∅.

Note that S(b) ⊆ φ(b) for all vertex b, furthermore φ(b) is the minimal
set containing S(b) that is in the form required by item (iii) of Definition 4.1.
Item (i) is also satisfied by φ(b) as T0 ∈ S(b) ⊆ φ(b). Since no element of
O admits a homomorphism to B, we have A /∈ O whenever (A, a) ∈ S(b).
This implies S(b)∩ (O−T0) = ∅, thus φ(b) ⊆ Tr \ (O−T0). Therefore φ(b)
also satisfies item (ii) and thus it is a vertex of D(O). We will show that
the map φ : V (B) → V (D(O)) is a homomorphism.

Let R ∈ σ be a relation of arity r and (b1, . . . , br) ∈ R(B). We need to
show that (φ(b1), . . . , φ(br)) ∈ R(D(O)), that is, for every (Ai, ai) ∈ φ(bi),
i = 1, . . . , r and T = C(R, (A1, a1), . . . , (Ar, ar)) we have (T, aj) ∈ φ(bj),
j = 1, . . . , r. We will proceed by contradiction, supposing that there ex-
ists an index j such that (T, aj) 6∈ φ(bj). First note that we cannot then
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have (Ai, ai) ∈ S(bi), i = 1, . . . , r. For otherwise the corresponding ho-
momorphisms ψi : Ai → B with ψi(ai) = bi, i = 1, . . . , r could be com-
bined into a homomorphism ψ : T → B such that ψ(aj) = bj , giving
(T, aj) ∈ S(bj) ⊆ φ(bj). Thus we can assume that there exists at least one
index i such that (Ai, ai) ∈ φ(bi) \ S(bi). (We could have i = j.) We will
suppose that the cardinality |{k | (Ak, ak) ∈ φ(bk) \ S(bk)}| is as small as
possible, and derive a contradiction.

Since (T, aj) 6∈ φ(bj), there exists (A′
j , a

′
j) such that S(bj) ∩ (O −

(A′
j , a

′
j)) = ∅ and (T, aj) ∈ (O − (A′

j , a
′
j)). We then have [(A′

j , a
′
j) +

(T, aj)] ∈ O. We can rewrite the latter tree as a different sum by moving
the root: [(A′

j , a
′
j) + (T, aj)] = [(Ai, ai) + (T′, ai)]; this implicitly charac-

terizes T′. We then have (Ai, ai) ∈ (O − (T′, ai)). Thus (Ai, ai) ∈ φ(bi) 6⊆
Tr \ (O − (T′′, a′′i )). By the definition of φ(bi), this means that there exists
(A′′

i , a
′′
i ) ∈ S(bi) ∩ (O − (T′, ai)).

For k 6= i, put (A′′
k, a

′′
k) = (Ak, ak). The tree T′′ = C(R, (A′′

1 , a
′′
1), . . . ,

(A′′
r , a

′′
r )) is obtained by replacing (Ai, ai) by (A′′

i , a
′′
i ) in the concatenation

defining T. By the minimality of |{k | (Ak, ak) ∈ φ(bk) \ S(bk)}|, we have
(T′′, a′′k) ∈ φ(bk), k = 1, . . . , r, and in particular (T′′, a′′j ) ∈ φ(bj). A second
argument will also show (T′′, a′′j ) 6∈ φ(bj): Since S(bj) ∩ (O − (A′

j, a
′
j)) = ∅,

we have φ(bj) ⊆ Tr \ (O − (A′
j , a

′
j)). But by moving the root in [(T′′, a′′j ) +

(A′
j , a

′
j)] we get

[(T′′, a′′j ) + (A′
j , a

′
j)] = [(T′, ai) + (A′′

i , a
′′
i )] ∈ O,

since (A′′
i , a

′′
i ) ∈ O − (T′, ai). Thus (T′′, a′′j ) ∈ (O − (A′

j , a
′
j)), which is

disjoint from φ(bj). Therefore (T′′, a′′j ) 6∈ φ(bj), a contradiction. �

4.2. Duals of forests

We will use the symbol + to denote the disjoint union of structures
including forests (without roots). Accordingly, for O ⊆ F, we put

O −A = {B ∈ F | A + B ∈ O}.

Note that we use + and − also in the context of rooted forests for a related
but different notion.

The equivalence ≈O on F is defined by

A ≈O A′ if O −A = O −A′.

Lemma 4.4. If O ⊆ F is regular, then there are finitely many ≈O-equivalence

classes, and these are regular.

Proof. Given a forest A, let (A+, x) be the rooted forest obtained by adding
an isolated element x to V (A) and designating it as the root. Then

O −A = {[(B, b)] ∈ F | (B, b) ∈ O − (A+, x)}.

10



Since O is regular, there are finitely many sets of the form O − (A+, x),
hence finitely many sets of the form O−A and finitely many ≈O equivalence
classes.

Now for A ∈ F and (B, b), (C, c) ∈ Fr we have A + [(B, b) + (C, c)] =
[(A+B, b)+(C, c)], Thus (O−A)−(B, b) = O−(A+B, b). If O is regular,
there are finitely many sets of the form O− (A+B, b), that is, finitely many
sets of the form (O −A) − (B, b). Thus O −A is regular.

Any ≈O equivalence class can be obtained as the set of forests A satis-
fying finitely many conditions of the form Bi ∈ O−A or Bi /∈ O−A. Since
Bi ∈ O−A if and only if A ∈ O−Bi the equivalence class can be obtained
as the intersection of finitely many regular sets or their complements, and
by Lemma 3.2 it must be regular. �

Definition 4.5. Let O be a regular family of forests. A family T ⊂ T is
called O-admissible if it satisfies the following properties.

• T contains a connected component of each element of O.

• If A ∈ T and A′ ≈O A, then A′ ∈ T .

By Lemma 4.4, each ≈O-equivalence class A/≈O is regular. Since T is
also regular, T ∩ (A/≈O) is regular. An O-admissible family T is a finite
union of such regular families (since F/≈O is finite), hence it is regular.
Thus by Theorem 4.3, T admits a dual D(T ).

Definition 4.6. Let O be a regular family of forests. The family D(O) is
defined as the set of structures D(T ) such that T is an O-admissible family
of trees.

Theorem 4.7. Let O be a regular family of forests. Then D(O) is finite, and
for any σ-structure B, there exists a homomorphism of B to some member

of D(O) if and only if no member of O admits a homomorphism to B.

Proof. The number of elements of D(O) is at most 2|F/≈O| since every O-
admissible family is a union of sets of the form T∩ (A/≈O). By Lemma 4.4,
|F/≈O | is finite, hence |D(O)| is finite.

For A ∈ O and D(T ) ∈ D(O), there exists a component T of A which
belongs to T . We have T 6→ D(T ) whence A 6→ D(T ). Thus if a σ-
structure B admits a homomorphism from some A ∈ O, then there is no
homomorphism of B to any member of D(O).

Now let B be a σ-structure such that no member of O admits a homo-
morphism to B. Put S(B) = {T ∈ T | T 6→ B} and

T (B) = {T ∈ T | (T/≈O) ⊆ S(B)}.

Then S(B) contains a component of every A in O. We need to show that
the same holds for T (B).
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Suppose for a contradiction that some A ∈ O has no component T ∈
S(B) such that (T/≈O) ⊆ S(B). Let T1, . . . ,Tk be the components of A
in S(B) such that there exists T′

i with T′
i → B and T′

i ≈O Ti, i = 1, . . . , k.
Put A0 = A, and for i = 1, . . . , k, let Ai be the forest obtained from Ai−1

by replacing the component Ti by T′
i. Then by definition of ≈O, we have

Ai ∈ O for all i, hence Ak ∈ O. However, Ak → B, which contradicts the
fact that no member of O admits a homomorphism to B.

Thus T (B) is a union of ≈O classes which contains a component of
every A in O. Thus by definition, T (B) is O-admissible, and D(T (B)) ∈
D(O). No member of T (B) admits a homomorphism to B, thus B admits
a homomorphism to D(T (B)). �

5. Antichain dualities and forests

A duality pair (O,D) is called an antichain duality if O ∪ D is an an-
tichain. We will suppose that O consists of cores, since any element of O
can be retracted to its core.

Recall that we consider the the relation A → B as a preorder on the
σ-structures. Keeping with this view we call a structure D minimal in a
family D of structures if D ∈ D and for any C ∈ D with C → D we have
D → C. We use maximal for the converse notion.

Lemma 5.1. Let (O,D) be a duality pair such that D is finite and the

members of O are cores. Then the minimal members of O are forests.

Proof. The proof uses the concept of direct product of structures and its
property that for any three structures A, B and C we have A → B ×
C if and only if A → B and A → C. See e.g., [12]. Note that this
characterization is the dual of the characterization of disjoint union: A+B

admits a homomorphism to C if and only if A → C and B → C.
Suppose that A is a minimal element of O and it is no forest. Let A1 be

a non-tree component of A and let A = A1 +A0. Here A0 is empty if A is
connected. Note that A1, as a component of the core structure A is itself
a core. We have A0 → A but A 6→ A0 as A is core. If any member of O
would admit a homomorphism to A0 this would contradict the minimality
of A in O. Thus, there exist a at least one structure D ∈ D with A0 → D.

Let B = A1 ×D be a maximal element in the non-empty finite family
{A1 × D | D ∈ D,A0 → D}. We have B → A1, but A1 → B would
imply A1 → D and together with A0 → D it would also imply A → D, a
contradiction.

Corollary 3.5 of [12] can be applied here as A1 is connected, core and
not a tree and we have B → A1 6→ B. The Corollary states that there
exists a σ-structure C1 such that B → C1 → A1 and A1 6→ C1 6→ B. Let
us fix such a structure C1 and let C = C1 +A0. We have C → A 6→ C and
since A is minimal in O, no member of O admits a homomorphism to C.
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Therefore, there exists an element D′ of D such that C → D′. We then have
B → C1 → A1 ×D′ and A1 ×D′ 6→ B (since C1 6→ B). This contradicts
the maximality of B as we also have A0 → D′. �

Lemma 5.2. Let (O,D) be an antichain duality such that the members of

O are cores. Then |D| = 1 if and only if the members of O are connected.

Proof. Suppose that the members of O are connected. If D contains two
members D1 and D2, then D1 ∪ D2 does not admit a homomorphism to
any member of D, therefore there exists some A in O which admits a ho-
momorphism to D1 ∪D2. Since A is connected, this means that A admits
a homomorphism to D1 or D2, a contradiction.

Conversely, suppose that some A ∈ O has connected components A1, . . . ,
An, where n ≥ 2. For i = 1, . . . , n, put Bi =

⋃
j 6=iAj. Then we have

Bi → A 6→ Bi, i = 1, . . . , n, therefore no member of O admits a homo-
morphism to any Bi. Thus there is a function δ : {1, . . . , n} → D such
that Bi → δ(i). For i 6= j, we must have δ(i) 6= δ(j), otherwise A → δ(i).
Therefore |D| ≥ n. �

Theorem 5.3. An antichain O of core σ-structures has a finite dual D if

and only if O is a regular family of forests.

For the proof of Theorem 5.3 we need that whenever the upward closure
of an antichain O of core forests is regular, so is O itself. This follows from
the following more general observation.

Theorem 5.4. The cores of the minimal elements of a regular set of forests

form a regular set.

This result is more subtle than it looks. There are regular families O
such that none of (a) the minimal elements in O, (b) the cores among the
elements of O, or (c) the cores of all elements in O form regular languages.
To see this, consider the type of directed graphs, consider the family O
consisting of the oriented paths Pij = p(+ + (+−+)i + +−−(−+−)j−−),
where a word x1 . . . xn ∈ {+,−}n describes the orientation p(x) of the n edge
path whose kth edge is directed forward if xk = + and directed backward if
xk = −. Here Pij is core if and only if i 6= j. The minimal elements in O
are the oriented paths Pii. The core of Pii is p(+ + (+−+)i + +) and these
latter oriented paths do form a regular set as opposed to the sets mentioned
in (a–c).

We start with the proof of Theorem 5.3 using Theorem 5.4 and then we
will prove Theorem 5.4 in Section 6.

Proof of Theorem 5.3 using Theorem 5.4. The “if” part of the statement
readily follows from Theorem 4.7.

For the “only if” part assume O is an antichain of core σ-structures and
it has a finite dual. By Lemma 5.1 O must consist of forests. Applying
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Corollary 3.4 we obtain that the family OD of structures with no homomor-
phism to a member of D is regular. But the cores of the minimal elements
in this family are exactly the elements of O, so Theorem 5.4 finishes the
proof. �

Note that in a similar fashion Theorem 5.4 implies the following strength-
ening of Lemma 5.1: Let (O,D) be a duality pair with D finite and O con-
sisting of cores. Then the minimal elements of O form a regular family of
forests.

6. Cores of minimals of regular set of forest are regular

This section is devoted to the proof of Theorem 5.4. Before proving
Theorem 5.4 we rephrase it.

Using category theoretic conventions we call a homomorphism f : A→ B
a retraction if it has a right inverse, namely a homomorphism g : B → A
with f ◦ g being the identity on B. For brevity we write non-retraction for
a homomorphism that is not a retraction.

The following characterization of non-retractions will be useful.

Proposition 6.1. A homomorphism h : A → B is a non-retraction if and

only if there is a component C of B such that the restriction of h to no

substructure D ⊆ A gives a D → C isomorphism.

Proof. If h ◦ g : B → B is the identity and C is a component of B, then
the restriction of h to the substructure D of A induced by the image of C
under g is an isomorphism D → C.

Conversely, if there is such a substructure D, for each component C of
B, then the inverses gC of the D → C isomorphisms give the right inverse
g : B → A of h as their union. �

For O ⊆ F we define

UP(O) = {A ∈ F | ∃T ∈ O,T → A},

EX(O) = {A ∈ F | ∃T ∈ O and a non-retraction h : T → A}.

Proposition 6.2. For O ⊆ F the family UP(O) \ EX(O) is the set of the

cores of the minimal elements in O.

Proof. Let A ∈ F be the core of minimal element B of O. Clearly, B → A

ensures that A ∈ UP(O). Let us consider a homomorphism h : T → A

with T ∈ O. From the minimality of B and from T → A → B, we also
have B → T and hence also a homomorphism g : A → T. As A is a core,
the homomorphism h ◦ g : A → A must be an isomorphism. But then
g ◦ (h ◦ g)−1 is a right inverse of h, so h is a retraction. This shows that the
cores of the minimal elements of O are contained in UP(O) \ EX(O).
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It remains to show that each forest A ∈ UP(O) \ EX(O) is indeed the
core of a minimal element of O. From A ∈ UP(O) we have a homomorphism
h : B → A with some B ∈ O. As A /∈ EX(O), the homomorphism h is
a retraction and in particular A is homomorphically equivalent to B. To
show that B is minimal in O, consider an arbitrary C ∈ O with C → B

and note that C → B → A implies (as above) that C and A (and hence
also C and B) are homomorphically equivalent. Finally let us consider an
arbitrary homomorphism φ : A → A. The homomorphism φ ◦ h : B → A

is a retraction, so we have g : A → B with φ ◦ h ◦ g : A → A the identity.
This implies that φ itself must be an automorphism and thus A is a core.
This finishes the proof of the proposition. �

Recall that by Lemma 3.2 the difference between regular sets is also
regular. Thus Proposition 6.2 above and the following two propositions
together imply Theorem 5.4.

Proposition 6.3. For a regular set O ⊆ F its upward closure UP(O) is also
regular.

Proof. By Theorem 4.7 O has a finite dual D. By Corollary 3.4 UP(O) = OD

is regular. �

Note here that a direct proof of this result would only be simpler than
the proof of Proposition 6.4 below by not having to distinguish danger points
from safe points. The proofs give a doubly exponential bound on the num-
ber of equivalence classes of ∼UP(O) or ∼EX(O) in terms of the number of
equivalence classes of ∼O and we believe that the number of equivalence
classes can indeed be that high for some regular sets O.

Proposition 6.4. For any regular set O ⊆ F the set EX(O) is regular.

Proof. For simplicity we assume that the type σ contains no unary relations.
The proof works basically the same way in the presence of unary relations
too, but making this mild assumption makes our presentation simpler. We
start with a few definitions.

Recall that each forest has a unique decomposition as the disjoint union
of trees, its components. For a rooted forest (X, v) ∈ Fr we denote its rooted
component by (X, v)+, that is [(X, v)+] is the component of X containing
v and (X, v)+ = ([(X, v)+], v) ∈ Tr. Let (X, v)− ∈ F stand for the union of
the remaining components of X, that is X = [(X, v)+] + (X, v)−. For a tree
A ∈ T and a homomorphism h : A → [(X, v)+] we define h0 = {w ∈ V (A) |
h(w) = v} to be the set of root points, points mapped by h to the root of
(X, v). We say that w ∈ h0 is a danger point of h if a restriction of h to
a suitable substructure of A containing w is an isomorphism to [(X, v)+].
Let h1 stand for the set of danger points of h and note that h1 ⊆ h0. We
write h2 = h0 \h1 stand for the safe points of h. Note that we slightly abuse
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notation by not indicating the dependence of hi on (X, v)+, but this will
lead to no confusion.

Let us consider A ∈ T, (X, v) ∈ Fr and a homomorphism h : A →
[(X, v)+]. We define the (E,E0)-extension of A for E0 ∈ F and E : h0 → Tr
to be the forest B obtained by gluing a copy of E(w) to w for each w ∈ h0

and further adding E0. More precisely, we obtain B by taking the disjoint
union of the forests A, E0 and [E(w)] for each w ∈ h0 and then identifying
the root of E(w) with w for each w ∈ h0. We will identify the forests A, E0

and [E(w)] with the corresponding substructures of B as long as this leads
to no confusion.

Let us fix the regular set O ⊆ F. We call a map L : Fr/∼O→ {0, 1, 2} a
list.

Let A ∈ T, (X, v) ∈ Fr, h : A → [(X, v)+] and let B be the (E,E0)-
extension of A. We define the signature of this extension to be the triple
(L1, L2, C

′), where C′ = E0/≈O∈ F/≈O and L1 and L2 are lists defined by
Li(C) = min(2, |{w ∈ hi | E(w) ∈ C}|) for i = 1, 2 and C ∈ Fr/∼O.

We say that (X, v) ∈ Fr is compatible with the signature T if there is
A ∈ T, h : A → [(X, v)+] and an extension B of A of signature T with
B ∈ O. We say that (X, v) ∈ Fr is compatible with C′ ∈ F/≈O if there is a
forest A ∈ C′ satisfying A → (X, v)−. If a non-retraction A → (X, v)− also
exists from such a forest A ∈ C′, we say that (X, v) is strongly compatible

with C′.
Note that since O is regular, Fr/∼O and F/≈O must be finite (the

latter by Lemma 4.4), there is a finite number of different signatures. Let
us accept Proposition 6.5 below. It implies that ∼EX(O) has a finite number
equivalence classes, in other words, that EX(O) is regular, finishing the proof
of Proposition 6.4. �

To complete the proof above it remains to prove the following:

Proposition 6.5. If (X, v), (X′, v) ∈ Fr are compatible with the same signa-

tures and the same elements of F/≈O and they are also strongly compatible

with the same elements of F/≈O and further (X, v)+ = T0 if and only if

(X′, v)+ = T0, then (X, v) ∼EX(O) (X′, v).

Proof. Let (X, v), (X′, v) satisfy the condition of the proposition and (Y, v) ∈
Fr satisfy [(X, v) + (Y, v)] ∈ EX(O). By symmetry it is enough to prove
that [(X′, v) + (Y, v)] ∈ EX(O).

By the definition of EX(O) we have a non-retraction h : B → [(X, v) +
(Y, v)] for some B ∈ O. Our goal is to find another non-retraction h′ : B′ →
[(X′, v) + (Y, v)] with B′ ∈ O. We do the transformation step by step. In
each step we have some Bi ∈ O and a homomorphism hi : Bi → [(X, v)+ +
(X′, v) + (Y, v)] using “less and less” the part of [(X, v)+ + (X′, v) + (Y, v)]
coming from (X, v)+.

16



Consider the substructure A0 of B induced by the vertices h maps to
(X, v)−. Clearly, (X, v) is compatible with C′ = A0/≈. If h restricted to
A0 is a non-retraction A0 → (X, v)−, then (X, v) is strongly compatible
with C′. So (X′, v) must also be compatible with C′ and, in the latter case,
also strongly compatible with C′. Let A′

0 ∈ C′ and the homomorphism
g′0 : A′

0 → (X′, v)− show this, that is g′0 is a non-retraction if (X, v) is
strongly compatible with C′. Let B1 = A′

0+B∗, where B∗ is the substructure
of B outside A0. From B = A0 + B∗ ∈ O and A ≈O A′ we have B1 ∈ O.
We define h1 : B1 → [(X, v)+ + (X′, v) + (Y, v)] by making its restriction
to A′

0 be g′0 (this maps to (X′, v)−) and making its restriction to B∗ be the
same as the corresponding restriction of h (mapping to [(X, v)+ + (Y, v)]).

Next we give the recursive step. Assume Bi ∈ O and hi : Bi →
[(X, v)+ + (X′, v) + (Y, v)] is given. We define the old-parts of Bi to be the
maximal connected substructures of Bi that hi maps into [(X, v)+] (consid-
ered as a substructure of [(X, v)+ + (X′, v) + (Y, v)]). We exclude single
vertex substructures mapped to v and do not consider these old-parts. We
measure progress by the decreasing number of old-parts, that is, we make
sure that Bi+1 has fewer old-parts than Bi. This ensures that the procedure
terminates with no old-parts left. If Bi has no old-parts, then hi maps the
entire structure Bi to [(X′, v) + (Y, v)]. In this case we set B′ = Bi and
h′ = hi.

Assume now that there is still at least one old-part of Bi. As Inc(Bi) is
a forest with the old-parts being pairwise disjoint subtrees we can choose an
old-part Ai that does not separate two further old-parts in this graph. Let
us fix such an old-part Ai and let gi : Ai → [(X, v)+] denote the restriction
of hi to Ai. There is a unique way to express Bi as an (Ei,Ei,0)-extension
of Ai: we set Ei,0 to be the forest consisting of the components of Bi other
than the component A∗

i containing Ai, while for w ∈ g0i we set Ei(w) to be
the substructure of A∗

i that is separated from Ai by w in the tree Inc(A∗).
We make Ei(w) include w as its root. Note that for w ∈ V (Ai) \ g

0
i the

image gi(w) of w is a not v, so such a w cannot separate the old-part Ai

from any points in A∗
i as otherwise Ai would not be a maximal connected

substructure mapped to [(X, v)+].
By our choice of Ai, if there are further old-parts in A∗

i they must all
be contained in a single substructure [Ei(w)]. In this case we denote the
corresponding vertex w ∈ g0i as wi. In case Ai is the only old-part of Bi no
vertex wi is specified.

Let Ti be the signature of the (Ei,Ei,0)-extension Bi of Ai. Now Ai ∈ T,
gi : A → [(X, v)+] and Bi ∈ O shows that (X, v) is compatible with Ti. By
our assumption (X′, v) must also be compatible with the signature Ti. Let
A′

i ∈ T, g′i : A′ → [(X′, v)+] and its (E′
i,E

′
i,0)-extension B′

i ∈ O show this,
that is, assume this extension has signature Ti.

It is tempting at this point to define Bi+1 = B′
i but then we would

need to find a homomorphism hi+1 : B′
i → [(X, v)+ + (X′, v) + (Y, v)],
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which may not exist as some of the forests [E′
i(w)] or E′

i,0 may not have
a homomorphism to [(X, v)+ + (X′, v) + (Y, v)]. We need to replace the
rooted trees E′

i(w) with a ∼O-equivalent rooted tree E(w′) first to make the
homomorphism possible.

Let Ti = (Li,1, Li,2, C
′
i). We define fi : g′0i → g0i as follows. For each

j = 1, 2 and w ∈ g′ji we choose fi(w) ∈ gji with Ei(fi(w)) ∼O E′
i(w). The

number of possible choices for w′ = fi(w) is |{w′ ∈ gji | Ei(w
′) ∼O E′

i(w)}| ≥
Li,j(E

′
i(w)/∼O) ≥ 1, so such a choice is always available. If there are old-

parts in A∗
i beyond Ai, we pick fi(w) = wi for at most a single w ∈ g′0i . This

is also possible because if we have more than one w for which fi(w) = wi

is possible at all, then Li,j(Ei(wi)/∼O) = 2 for the corresponding value of
j = 1 or 2, so we have the freedom not to choose fi(w) = wi for any w.

We set E′′
i = Ei ◦ fi, that is for w ∈ g′0i we have E′′

i (w) = Ei(fi(w)). We
set Bi+1 to be the (E′′

i ,Ei,0)-extension of A′
i. (Note here that fi(w) = fi(w

′)
for distinct root vertices of g′i is possible as long as fi(w) 6= wi. In this case
we have E′′

i (w) = E′′
i (w′) = Ei(fi(w)), and the two substructures [E′′

i (w)]
and [E′′

i (w′)] are isomorphic, but naturally they are disjoint substructures.
This shows the limits of our notation, but hopefully leads to no confusion.)
We define hi+1 : Bi+1 → [(X, v)+ + (X′, v) + (Y, v)] through its restrictions.
The restriction to A′

i is g′i, the restriction to Ei,0 is the restriction of hi to
Ei,0. Finally, for w ∈ g′0i the restriction of hi+1 to [E′′

i (w)] is the restriction
of hi to [Ei(fi(w))]. These restrictions uniquely define the homomorphism
hi+1 as the given substructures cover Bi+1, only the root vertices in g′0i are
covered more than once and these points are mapped to v in all the given
restrictions.

For the recursive definition to work we need to show that Bi+1 is in O
and it has fewer old-parts than Bi.

We start with showing that Bi+1 ∈ O. Note that Ei,0 ≈O E′
i,0 since both

of them are contained in the ≈O equivalence class C′
i (part of the signature

Ti). As the (E′
i,E

′
i,0)-extension of A′

i is B′
i ∈ O the (E′

i,Ei,0)-extension of
A′

i must also be in O. The structure Bi+1 differs from this last structure
by being obtained as an extension using the function E′′

i instead of E′
i. As

we always have E′
i(w) ∼O E′′

i (w), a similar argument applies: a single such
change does not alter membership in O. Doing these changes one by one we
obtain eventually that Bi+1 ∈ O as claimed.

Consider now the old-parts of Bi+1. Some may be found in Ei,0, but
these are also old-parts of Bi. Others may be found in some [E′′

i (w)] but
only if [Ei(fi(w))] contains an old-part of Bi. By our assumption this holds
only for at most a single w ∈ g′0i with fi(w) = wi, so we have no more
old-parts in Bi+1 than in Bi. In fact, we have fewer as Ai was an old-part
in Bi and it got replaced by A′

i that is mapped to (X′, v).
We have defined the homomorphism h′ : B′ → [(X′, v) + (Y, v)]. Before

finishing the proof of Proposition 6.5 by showing that this is a non-retraction
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we make an easy observation. We call two distinct points in the universe
of a σ-structure neighbors if they appear in a common block, that is, if
they are in distance two in the incidence graph. For any step i in the
procedure above and any w ∈ g′0i the homomorphism hi+1 maps all neighbors
of w in [E′′

i (w)] ⊆ Bi+1 to non-root points of (Y, v). This is shown by an
easy induction together with the statement that no point in Bi has both a
neighbor that hi maps to a non-root point of (X, v)+ and another neighbor
that hi maps to a non-root point of (X′, v)+.

Now we turn to the proof of h′ being a non-retraction. By Proposition 6.1
and since h : B → [(X, v) + (Y, v)] is a non-retraction, [(X, v) + (Y, v)] has
a component Z with no restriction of h being an isomorphism to Z.

If Z ⊆ [(Y, v)], then the part of h1 that maps to Z is copied from h, later
the part of hi+1 that maps to Z is also copied from hi, so as no restriction h
is an isomorphism to Z the same can be said about the last function h′. Here
Z is a component of [(X′, v)+(Y, v)] either because Z ⊆ (Y, v)− or because
Z = [(Y, v)+] and (X, v)+ = T0, in the latter case forcing (X′, v) = T0.
Again by Proposition 6.1 no restriction is an isomorphism to the component
Z means that h′ is a non-retraction as claimed.

If Z ⊆ (X, v)−, then h restricted to A0 is a non-retraction to (X, v)−
as it has no restriction that is an isomorphism to Z, so by the choice of
g′0 : A′

0 → (X′, v)− it is also a non-retraction and we have a component Z′

of (X′, v)− such that no restriction of g′0 is an isomorphism to Z′. This means
that no restriction of h1 is an isomorphism to Z′ and, since the part mapping
to (X′, v)− is copied from hi to hi+1, we conclude that no restriction of h′

is an isomorphism to Z′ and therefore h′ is a non-retraction.
Finally we consider the Z = [(X, v)+ + (Y, v)+] case with (X, v)+ (and

thus also (X′, v)) not being T0. Assume for a contradiction that h′ is a
retraction. By Proposition 6.1 we have a restriction of h′ that is an isomor-
phism to Z′ = [(X′, v)+ + (Y, v)+]. No restriction of h1 is an isomorphism
to either Z or Z′, the former because the relevant part of h1 is copied from
h, the latter because the non-root vertices of (X′, v)+ do not even appear
in the image of h1. Thus we must have an index i with no restriction of
hi being an isomorphism to either Z or Z′ but such that the restriction of
hi+1 to a substructure D of Bi+1 is suddenly an isomorphism to one of Z or
Z′. We cannot have D ⊆ Ei,0 or D ⊆ [E′′

i (w)] for some w ∈ g′0i as then the
restriction of hi to the corresponding substructure in Bi would also be an
isomorphism to Z or Z′. The substructure D is connected and it contains a
single point w ∈ V (D) mapped to the root v, so we must have w ∈ g′0i and
D is the union of its substructures D0 contained in A′

i and D1 contained
in [E′′

i (w)]. Here D0 is not trivial and mapped to [(X′, v)+], so hi+1 must
map D isomorphically to Z′. We know that the neighbors of w in E′′

i (w) are
mapped by hi+1 to non-root vertices of (Y, v). As no point in V (D) other
than w is mapped to the root we must have that hi+1 maps D1 to [(Y, v)].
To make the restriction of hi+1 to D an isomorphism to Z′ we must have
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that D0 is mapped isomorphically to [(X, v)+] and D1 is mapped isomorphi-
cally to [(Y, v)+]. The restriction to D0 makes w a danger point of g′i, i.e.,
w ∈ g′1i . Thus, we also have fi(w) ∈ g1i is a danger point of gi. Let D′ ⊆ Ai

be the substructure showing this, that is D′ contains fi(w) and gi maps D′

isomorphically to [(X, v)+]. Now hi maps the union of D′ with the sub-
structure corresponding to D1 ⊆ [E′′

i (w)] in [Ei(fi(w))] isomorphically to Z.
This contradicts our assumptions and proves that h′ : B′ → [(X′, v)+(Y, v)]
is a non-retraction.

Proving that h′ is a non-retraction finishes the proof of Proposition 6.5
and thus also completes the proof of Proposition 6.4, Theorem 5.4 and The-
orem 5.3. �
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