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Abstract

Let r, s ≥ 2 be integers. Suppose that the number of blue r-cliques in a red/blue coloring of the

edges of the complete graph Kn is known and fixed. What is the largest possible number of red

s-cliques under this assumption? The well known Kruskal-Katona theorem answers this question

for r = 2 or s = 2. Using the shifting technique from extremal set theory together with some

analytical arguments, we resolve this problem in general and prove that in the extremal coloring

either the blue edges or the red edges form a clique.

1 Introduction

As usual we denote by Ks the complete graph on s vertices and by Ks its complement, the edgeless

graph on s vertices. By the celebrated Ramsey’s theorem, for every two integers r, s every sufficiently

large graph must contain Kr or Ks. Turán’s theorem can be viewed as a quantitative version of the

case s = 2. Namely, it shows that among all Kr-free n-vertex graphs, the graph with the least number

of K2 (edges) is a disjoint union of r− 1 cliques of nearly equal size. More generally, one can ask the

following question. Fix two graphs H1 and H2, and suppose that we know the number of induced

copies of H1 in an n-vertex graph G. What is the maximum (or minimum) number of induced copies

of H2 in G? In its full generality, this problem seems currently out of reach, but some special cases

already have important implications in combinatorics, as well as other branches of mathematics and

computer science.

To state these classical results, we introduce some notation. Adjacency between vertices u and v

is denoted by u ∼ v, and the neighbor set of v is denoted by N(v). If necessary, we add a subscript G

to indicate the relevant graph. The collection of induced copies of a k-vertex graph H in an n-vertex

graph G is denoted by Ind(H;G), i.e.

Ind(H;G) := {X ⊆ V (G) : G[X] ' H}
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and the induced H-density is defined as

d(H;G) :=
|Ind(H;G)|(

n
k

) .

In this language, Turán’s theorem says that if d(Kr;G) = 0 then d(K2;G) ≤ 1− 1
r−1 and this bound

is tight. For a general graph H, Erdős and Stone [5] determined max d(K2;G) when d(H;G) = 0 and

showed that the answer depends only on the chromatic number of H. Zykov [18] extended Turán’s

theorem in a different direction. Given integers 2 ≤ r < s, he proved that if d(Ks;G) = 0 then

d(Kr;G) ≤ (s−1)···(s−r)
(s−1)r . The balanced complete (s − 1)-partite graphs show that this bound is also

tight.

For fixed integers r < s, the Kruskal-Katona theorem [9, 11] states that if d(Kr;G) = α then

d(Ks;G) ≤ αs/r. Again, the bound is tight and is attained when G is a clique on some subset of

the vertices. On the other hand, the problem of minimizing d(Ks;G) under the same assumption

is much more difficult. Even the case r = 2 and s = 3 has remained unsolved for many years

until it was recently answered by Razborov [14] using his newly-developed flag algebra method.

Subsequently, Nikiforov [12] and Reiher [15] applied complicated analytical techniques to solve the

cases (r, s) = (2, 4), and (r = 2, arbitrary s), respectively.

In this paper, we study the following natural analogue of the Kruskal-Katona theorem. Given

d(Kr;G), how large can d(Ks;G) be? For integers a ≥ b > 0 we let Qa,b be the a-vertex graph whose

edge set is a clique on some b vertices. The complement of this graph is denoted by Qa,b. Let Qa
denote the family of all graphs Qa,b and its complement Qa,b for 0 < b ≤ a. Note that for r = 2

or s = 2, the Kruskal-Katona theorem implies that the extremal graph comes from Qn. Our first

theorem shows that a similar statement holds for all r and s.

Theorem 1.1. Let r, s ≥ 2 be integers and suppose that d(Kr;G) ≥ p where G is an n-vertex graph

and 0 ≤ p ≤ 1. Let q be the unique root of qr+rqr−1(1−q) = p in [0, 1]. Then d(Ks;G) ≤Mr,s,p+o(1),

where

Mr,s,p := max{(1− p1/r)s + sp1/r(1− p1/r)s−1, (1− q)s}.

Namely, given d(Kr;G), the maximum of d(Ks;G) (up to ±on(1)) is attained in one of two graphs,

(or both), one of the form Qn,t and another Qn,t′.

We obtain as well a stability version of Theorem 1.1. Two n-vertex graphs H and G are ε-close

if it is possible to obtain H from G by adding or deleting at most εn2 edges. As the next theorem

shows, every near-extremal graph G for Theorem 1.1 is ε-close to a specific member of Qn.

Theorem 1.2. Let r, s ≥ 2 be integers and let p ∈ [0, 1]. For every ε > 0, there exists δ > 0 and

an integer N such that every n-vertex graph G with n > N satisfying d(Kr;G) ≥ p and |d(Ks;G)−
Mr,s,p| ≤ δ, is ε-close to some graph in Qn.

Rather than talking about an n-vertex graph and its complement, we can consider a two-edge-

coloring of Kn. A quantitative version of Ramsey Theorem asks for the minimum number of

monochromatic s-cliques over all such colorings. Goodman [8] showed that for r = s = 3, the opti-

mal answer is essentially given by a random two-coloring of E(Kn). In other words, minG d(K3;G) +
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Figure 1: Illustration for the case r = s = 3. The green curve is (d(K3;Qn,θn), d(K3;Qn,θn)) for

θ ∈ [0, 1], and the red curve defined the same with Qn,θn. The maximum between the curves is

the extremal function in Theorem 1.1. The intersection of the curves represents the solution of the

max-min problem in Theorem 1.3

d(K3;G) = 1/4−o(1). Erdős [4] conjectured that the same random coloring also minimizes d(Kr;G)+

d(Kr;G) for all r, but this was refuted by Thomason [16] for all r ≥ 4. A simple consequence of

Goodman’s inequality is that minG max{d(K3;G), d(K3;G)} = 1/8. The following construction by

Franek and Rödl [19] shows that the analogous statement for r ≥ 4 is again false. Let H be a graph

with vertex set [2]13, the collection of all 8192 binary vectors of length 13. Two vertices are adjacent if

the Hamming distance between the corresponding binary vectors is a number in {1, 4, 5, 8, 9, 11}. Let

G be obtained from H by replacing each vertex with a clique of size n, and every edge with a complete

bipartite graph. The number of K4 and K4 in G can be easily expressed in terms of the parameters

of H (see [19]), for large enough n one can show that d(K4;G) < 0.99 · 1
64 and d(K4;G) < 0.993 · 1

64 .

While the min-max question remains at present very poorly understood, we succeeded to com-

pletely answer the max-min version of this problem.

Theorem 1.3.

max
G

min{d(Kr;G), d(Kr;G)} = ρr + o(1),

where ρ is the unique root in [0, 1] of the equation ρr = (1− ρ)r + rρ(1− ρ)r−1.

This theorem follows easily from Theorem 1.1. Moreover, using Theorem 1.2, we can also show that

for every ε > 0 there is a δ > 0 such that every n-vertex graphG with min{d(Kr;G), d(Kr;G)} > ρr−δ
is ε-close to a clique of size ρn or to the complement of this graph.

Here we prove these theorems using the method of shifting. In the next section we describe this

well-known and useful technique in extremal set theory. Using shifting, we show how to reduce the

problem to threshold graphs. Section 3 contains the proof of our main result for threshold graphs

and section 4 contains the proof of the stability result. In Section 5 we sketch a second proof for the

case r = s, based on a different representation of threshold graphs. We make a number of comments
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on the analogous problems for hypergraphs in Section 6. We finish this paper with some concluding

remarks and open problems.

2 Shifting

Shifting is one of the most important and widely-used tools in extremal set theory. This method

allows one to reduce many extremal problems to more structured instances which are usually easier

to analyze. Our treatment is rather shallow and we refer the reader to Frankl’s survey article [6] for

a fuller account.

Let F be a family of subsets of a finite set V , and let u, v be two distinct elements of V . We

define the (u, v)-shift map Su→v as follows: for every F ∈ F , let

Su→v(F,F) :=

{
(F ∪ {v}) \ {u} if u ∈ F, v 6∈ F and (F ∪ {v}) \ {u} 6∈ F ,
F otherwise.

We define the (u, v)-shift of F , to be the following family of subsets of V : Su→v(F) := {Su→v(F,F) :

F ∈ F}. We observe that |Su→v(F)| = |F|. In this context, one may think of F as a hypergraph over

V . When all sets in F have cardinality 2 this is a graph with vertex set V . As the next lemma shows,

shifting of graph does not reduce the number of l-cliques in it for every l. Recall that Ind(Kl;G)

denotes the collection of all cliques of size l in G.

Lemma 2.1. For every integer l > 0, every graph G, and every u 6= v ∈ V (G) there holds

Su→v(Ind(Kl;G)) ⊆ Ind(Kl;Su→v(G)).

Proof. Let A = Su→v(B,G), where B is an l-clique in G. First, consider the cases when u /∈ B or

both u, v ∈ B or B \{u}∪{v} is also a clique in G. Then A = B and we need to show that B remains

a clique after shifting. Which edge in B can be lost by shifting? It must be some edge uw in B that

gets replaced by the non-edge vw (otherwise we can not shift uw). Note that vw is not in B, since

B is a clique. Hence u,w ∈ B and v 6∈ B. But then B \ {u} ∪ {v} is not a clique, contrary to our

assumption.

In the remaining case when u ∈ B, v /∈ B and B \ {u} ∪ {v} is not a clique in G, we need to show

that A = B \ {u}∪ {v} is a clique after shifting Su→v(G). Every pair of vertices in A \ {v} belongs to

B and the edge they span is not affected by the shifting. So consider v 6= w ∈ A. If vw ∈ E(G), this

edge remains after shifting. If, however, vw /∈ E(G), note that uw ∈ E(G) since both vertices belong

to the clique B. In this case vw = Su→v(uw,G) and the claim is proved.

Since shifting edges from u to v is equivalent to shifting non-edges from v to u, it is immediate

that Su→v(Ind(Kl;G)) ⊆ Ind(Kl;Su→v(G)). Therefore we obtain the following corollary.

Corollary 2.2. Let G be a graph, let H = Su→v(G) and let l be a positive integer. Then

d(Kl;H) ≥ d(Kl;G) and d(K l;H) ≥ d(K l;G).

4



We say that vertex u dominates vertex v if Sv→u(F) = F . In the case when F is a set of edges

of G, this implies that every w 6= u which is adjacent to v is also adjacent to u. If V = [n], we

say that a family F is shifted if i dominates j for every i < j. Every family can be made shifted by

repeated applications of shifting operations Sj→i with i < j. To see this note that a shifting operation

that changes F reduces the following non-negative potential function
∑

A∈F
∑

i∈A i. As Corollary 2.2

shows, it suffices to prove Theorem 1.1 for shifted graphs.

In Section 3 we use the notion of threshold graphs. There are several equivalent ways to define

threshold graph (see [2]), and we adopt the following definition.

Definition 2.3. We say that G = (V,E) is a threshold graph if there is an ordering of V so that

every vertex is adjacent to either all or none of the preceding vertices.

Lemma 2.4. A graph is shifted if and only if it is a threshold graph.

Proof. Let G be a shifted graph. We may assume that V = [n], and i dominates j in G for every

i < j. Consider the following order of vertices,

..., 3, NG(2)\NG(3), 2, NG(1)\NG(2), 1, V \NG(1) ,

where the vertices inside the sets that appear here are ordered arbitrarily. We claim that this order

satisfies Definition 2.3. First, every vertex v /∈ NG(1) is isolated. Indeed, if u ∼ v, then necessarily

v ∼ 1, since 1 dominates u. Therefore, vertex 1 and its non-neighbors satisfy the condition in the

definition. The proof that G is threshold proceeds by induction applied to G[NG(1)].

Conversely, let G be a threshold graph. Let v1, v2, . . . , vn be an ordering of V as in Definition 2.3.

We say that a vertex is good (resp. bad) if it is adjacent to all (none) of its preceding vertices.

Consider two vertices vi and vj . It is straightforward to show that vi dominates vj if either (1) vi is

good and vj is bad, (2) they are both good and i > j or (3) they are both bad and i < j. Therefore

we can reorder the vertices by first placing the good vertices in reverse order followed by the bad

vertices in the regular order. This new ordering demonstrates that G is shifted.

3 Main result

In this section, we prove Theorem 1.1. It will be convenient to reformulate the theorem, in a way

that is analogous to the Kruskal-Katona theorem.

Theorem 3.1. Let r, s ≥ 3 be integers and let a, b > 0 be real numbers. The maximum (up to

±on(1)) of the function f(G) := min{a · d(Ks;G), b · d(Kr;G)} over all n-vertex graphs is attained

in one of two graphs, (or both), one of the form Qn,t and another Qn,t′. In particular, f(G) ≤
max{a · αs, b · βr}+ o(1), where α is the unique root in [0, 1] of a · αs = b · [(1− α)r + rα(1− α)r−1]

and β is the unique root in [0, 1] of b · βr = a · [(1− β)s + sβ(1− β)s−1].

We turn to show how to deduce Theorem 1.1 from Theorem 3.1. We assume that r, s ≥ 3, since

the other cases follow from Kruskal-Katona theorem.
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Proof of Theorem 1.1. Let M be the maximum of d(Ks;G) over all graphs G on n vertices with

d(Kr;G) ≥ p. Fix such an extremal G with d(Kr;G) = p′ ≥ p and d(Ks;G) = M . Now apply

Theorem 3.1 with a = p and b = M and the same n, r and s. The extremal graph G′ that Theorem

3.1 yields, satisfies

f(G′) ≥ f(G) = min{a · d(Ks;G), b · d(Kr;G)} = p ·M,

hence d(Ks;G
′) ≥M and d(Kr;G

′) ≥ p. Therefore, the same G′ is extremal for Theorem 1.1 as well

and we know that the maximum in this theorem is achieved asymptotically by a graph of Qn.

Note that we can always assume that in the extremal graph d(Kr;G
′) = p since otherwise we can

add edges to G′ without decreasing d(Ks;G
′) until d(Kr;G

′) = p is obtained. Therefore the maximum

is attained either by a graph of the form Qn,p1/rn or by Qn,(1−q)n, where qr + rqr−1(1− q) = p. This

implies that asymptotically the maximum in Theorem 1.1 is indeed

Mr,s,p = max{(1− p1/r)s + sp1/r(1− p1/r)s−1, (1− q)s}.

By Corollary 2.2 and Lemma 2.4, f(G) is maximized by a threshold graph. We turn to prove

Theorem 3.1 for threshold graphs. Let G be a threshold graph on an ordered vertex set V , as in

Definition 2.3. There exists an integer k > 0, and a partition A1, . . . , A2k of V such that

1. If v ∈ Ai and u ∈ Aj for i < j, then v < u.

2. Every vertex in A2i−1 (respectively A2i) is adjacent to all (none) of its preceding vertices.

Let xi = |A2i−1|
|V | and yi = |A2i|

|V | . Clearly
∑k

i=1(xi + yi) = 1. Up to a negligible error-term,

d(Ks;G) = p(x,y) :=

(
k∑
i=1

xi

)s
+ s ·

k−1∑
i=1

yi ·
 k∑
j=i+1

xj

s−1 ,
d(Kr;G) = q(x,y) :=

(
k∑
i=1

yi

)r
+ r ·

k∑
i=1

xi ·
 k∑
j=i

yj

r−1 .
Where x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk). Occasionally, p will be denoted by ps and q by

qr to specify the parameter of these functions.

Our problem can therefore be reformulated as follows. For given integers k ≥ 2, r, s ≥ 3 and real

a, b > 0, let Wk ⊆ R2k be the set

Wk :=

{
(x1, x2, . . . , xk, y1, y2, . . . , yk) ∈ R2k : xi, yi ≥ 0 for all i and

k∑
i=1

(xi + yi) = 1

}
.

Let p, q : Wk → R be the two homogeneous polynomials defined above, We are interested in maxi-

mizing the real function

ϕ(x,y) := min{a · p(x,y), b · q(x,y)}.
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This problem is well defined since Wk is compact and ϕ is continuous.

We say that (x,y) ∈Wk is non-degenerate if the set of zeros in the sequence (y1, x2, y2, . . . , xk, yk),

with x1 omitted, forms a suffix. If (x,y) ∈Wk is degenerate, then there is a non-degenerate (x′,y′) ∈
Wk with ϕ(x,y) = ϕ(x′,y′). Indeed, if yi = 0 and xi+1 6= 0 for some 1 ≤ i < k, let (x′,y′) ∈ Wk−1
be defined by

x′ = (x1, . . . , xi−1, xi + xi+1, xi+2, . . . , xk)

y′ = (y1, . . . , yi−1, yi+1, . . . , yk)

It is easy to verify that p(x,y) = p(x′,y′) and q(x,y) = q(x′,y′). By induction on k, we assume

that (x′,y′) is non-degenerate, and by padding x′ and y′ with a zero, the claim is proved. The case

xi = 0 and yi 6= 0 is proved similarly. In particular, ϕ has a non-degenerate maximum in Wk.

Our purpose is to show that the original problem is optimized by graphs from Qn. This translates

to the claim that a non-degenerate (x,y) that maximizes ϕ is supported only on either x1, y1 or y1, x2,

which corresponds to either a clique Qn,t or a complement of a clique Qn,t, respectively.

Lemma 3.2. Let (x,y) ∈ Wk be a non-degenerate maximum of ϕ. If x1 > 0, then for every i ≥ 2,

xi = yi = 0. On the other hand, if x1 = 0 then yi = 0 for every i ≥ 2, and xi = 0 for every i ≥ 3.

Proof. We note first that the second part of the lemma is implied by the first part. Define x′ by

x′i :=

{
xi+1 if i < k,

0 if i = k.

Clearly, if x1 = 0, then ps(x,y) = qs(y,x
′), qr(x,y) = pr(y,x

′), and

ϕ′(y,x′) := min{b · pr(y,x′), a · qs(y,x′)} = ϕ(x,y).

Since ϕ attains its maximum when x1 = 0, maximizing it is equivalent to maximizing ϕ′(y,x′). Since

(x,y) is non-degenerate, y1 > 0, and applying the first part of Lemma 3.2 for ϕ′(y,x′) finishes the

proof, by obtaining that for every i ≥ 2, yi = x′i = 0.

The first part of Lemma 3.2 is proved in the following lemmas. We successively show that x3 = 0,

then y2 = 0 and finally x2 = 0.

Here is a local condition that maximum points of ϕ satisfy.

Lemma 3.3. If ϕ takes its maximum at a non-degenerate (x,y) ∈Wk, then a · p(x,y) = b · q(x,y).

Proof. Note that 0 < y1 < 1, since (x,y) ∈ W is non-degenerate. We consider two perturbations of

the input, one of which increases p(x,y), and the other increases q(x,y). Consequently, if a ·p(x,y) 6=
b · q(x,y), by applying the appropriate perturbation, we increase the smallest between a · p(x,y) and

b · q(x,y), thus increasing min{a · p(x,y), b · q(x,y)}, contrary to the maximality assumption.

To define the perturbation that increases p, let x′ = x + te1 and y′ = y − te1, where 0 < t < y1,

and e1 is the first unit vector in Rk. Then, (x′,y′) ∈W and

∂p(x′,y′)

∂t
= s

(
t+

k∑
i=1

xi

)s−1
− s ·

 k∑
j=2

xj

s−1

> 0

7



as claimed.

In order to increase q, consider two cases. If x1 = 0, let x′ = x − te2 and y′ = y + te1, where

0 < t < x2. Then, (x′,y′) ∈W and

∂q(x′,y′)

∂t
= r

(
t+

k∑
i=1

yi

)r−1
− r ·

 n∑
j=k

yj

r−1

> 0.

If x1 > 0, we let x′ = x− te1 and y′ = y + te1, where 0 < t < x1. Then,

∂q(x′,y′)

∂t
= r(x1 − t)(r − 1)

(
t+

k∑
i=1

yi

)r−2
> 0.

Lemma 3.4. If (x,y) ∈Wk is a non-degenerate maximum of ϕ with x1 > 0, then x3 = 0.

Proof. Suppose, that x3 > 0 and let 1 ≤ l ≤ m ≤ k. Then

∂p

∂xl
= s ·

(
k∑
i=1

xi

)s−1
+ s(s− 1) ·

l−1∑
i=1

yi ·
 k∑
j=i+1

xj

s−2 ,
∂q

∂xl
= r ·

 k∑
j=l

yj

r−1

,

and

∂2p

∂xl∂xm
= s(s− 1) ·

(
k∑
i=1

xi

)s−2
+ s(s− 1)(s− 2) ·

l−1∑
i=1

yi ·
 k∑
j=i+1

xj

s−3 ,
∂2q

∂xl∂xm
≡ 0.

Clearly ∂2p
∂xl∂xm

= ∂2p
∂x2l

, for l ≤ m. We define two matrices A and B as following.

A =

 1 1 1
∂p
∂x1

∂p
∂x2

∂p
∂x3

∂q
∂x1

∂q
∂x2

∂q
∂x3

 , B =


∂2p
∂x21

∂2p
∂x1∂x2

∂2p
∂x1∂x3

∂2p
∂x1∂x2

∂2p
∂x22

∂2p
∂x2∂x3

∂2p
∂x1∂x3

∂2p
∂x2∂x3

∂2p
∂x23

 =


∂2p
∂x21

∂2p
∂x21

∂2p
∂x21

∂2p
∂x21

∂2p
∂x22

∂2p
∂x22

∂2p
∂x21

∂2p
∂x22

∂2p
∂x23

 .
It is easy to see that if (x,y) is non-degenerate with x3 > 0, then ∂2p

∂x23
> ∂2p

∂x22
> ∂2p

∂x21
> 0. This implies

that B is positive definite.

For a vector v ∈ R3 and ε > 0, we define x′ by

x′i =

{
xi + εvi if i ≤ 3,

xi if i > 3,

8



If A is invertible, let v be the (unique) vector for which

A · vT =

0

1

1

 .
In particular

∑
i x
′
i =

∑
i xi. For ε sufficiently small,

p(x′,y) = p(x,y) + ε+O(ε2) > p(x,y)

q(x′,y) = q(x,y) + ε > q(x,y)

contrary to the maximality of (x,y).

If A is singular, pick some v 6= 0 with A · vT = 0. Again
∑

i x
′
i =

∑
i xi. Since B is positive

definite, for a sufficiently small ε,

p(x′,y) = p(x,y) +
ε2

2
· v ·B · vT +O(ε3) > p(x,y)

q(x′,y) = q(x,y),

Contradicting Lemma 3.3.

Lemma 3.5. If (x,y) ∈Wk is a non-degenerate maximum of ϕ with x1 > 0, then y2 = 0.

Proof. By Lemma 3.4 we may assume that xi = yi = 0 for all i ≥ 3. Suppose, towards contradiction,

that y2 6= 0. Let

M =

[
a1 a2
b1 b2

]
,

where

a1 =
∂p

∂x1
− ∂p

∂x2
= −s(s− 1) · y1 · xs−22 , b1 =

∂q

∂x1
− ∂q

∂x2
= r · ((y1 + y2)

r−1 − yr−12 ),

a2 =
∂p

∂y1
− ∂p

∂y2
= s · xs−12 , b2 =

∂q

∂y1
− ∂q

∂y2
= −r(r − 1) · x2 · yr−22 ,

If rank(M) = 2, then there is a vector v =
(
v1
v2

)
such that M · v =

(
1
1

)
. Define x′1 = x1 + εv1, x

′
2 =

x2 − εv1 and y′1 = y1 + εv2, y
′
2 = y2 − εv2. Then x′1 + x′2 + y′1 + y′2 = 1 and for sufficiently small ε > 0

p(x′,y′) = p(x,y) + ε
( ∂p
∂x1

v1 −
∂p

∂x2
v1 +

∂p

∂y1
v2 −

∂p

∂y2
v2

)
+O(ε2)

= p(x,y) + ε
(
a1v1 + a2v2

)
+O(ε2) = p(x,y) + ε+O(ε2) > p(x,y).

Similarly q(x′,y′) = q(x,y) + ε + O(ε2) > q(x,y). Thus (x,y) cannot be a maximum of ϕ. Hence,

rank(M) ≤ 1, and in particular

det

[
a1 b1
a2 b2

]
= 0,

9



which implies that

0 = xs−12 yr−12

(
(r − 1)(s− 1)

y1
y2
−
(
y1
y2

+ 1

)r−1
+ 1

)
,

The function

g(α) = (r − 1)(s− 1)α− (α+ 1)r−1 + 1

is strictly concave for α > 0 and vanishes at 0. Since α = 0 is not a maximum of g, the equation

g
(
y1
y2

)
= 0 determines y1

y2
uniquely.

Denote α = y1
y2

, and consider the following change of variables.

x′1 = x1 +
1

1 + (r − 1)(s− 1)α
· x2, x′2 =

(r − 1)(s− 1)α

1 + (r − 1)(s− 1)α
· x2

y′1 = y1 + y2 = (α+ 1)y2, y′2 = 0

Clearly, x′1 + x′2 = x1 + x2 and y′1 + y′2 = y1 + y2. Moreover,

q(x′,y′) = (y′1)
r + r · x′1 · (y′1)r−1

= (y1 + y2)
r + r · x1 · (y1 + y2)

r−1 +
r · x2 · (y1 + y2)

r−1

1 + (r − 1)(s− 1)α

= (y1 + y2)
r + r · x1 · (y1 + y2)

r−1 +
r · (1 + α)r−1 · x2 · yr−12

(1 + α)r−1
= q(x,y)

p(x′,y′) = (x′1 + x′2)
s + s · y′1 · (x′2)s−1

= (x1 + x2)
s + s · (α+ 1) ·

(
(r − 1)(s− 1)α

1 + (r − 1)(s− 1)α

)s−1
· y2 · xs−12

> (x1 + x2)
s + s · α · y2 · xs−12 = p(x,y),

Where the last inequality is a consequence of Lemma 3.6 below. This contradicts Lemma 3.3.

Lemma 3.6. Let r, s ≥ 3 be integers. Let α > 0 be the unique positive root of

(α+ 1)r−1 − 1 = (r − 1)(s− 1)α.

Then (
1 +

1

(r − 1)(s− 1)α

)s−1
< 1 +

1

α
.

Proof. First, we show that (r − 1)α > 1. Let t = (r − 1)α and assume, by contradiction, that

t ≤ 1. For 0 < t ≤ 1, we have et < 1 + 2t. On the other hand, e ≥ (1 + α)1/α, implying et ≥
(1 + α)t/α = (1 +α)r−1. Thus we have 2t > (1 +α)r−1− 1 = (r− 1)(s− 1)α = (s− 1)t, which implies

2 > s− 1, a contradiction. Therefore (r− 1)α > 1. Also, since 1 + x < ex for all x > 0, we have that(
1 + 1

(r−1)(s−1)α
)s−1

< e
1

(r−1)α . So it suffices to show that e
1

(r−1)α ≤ 1 + 1
α . But since (r− 1)α > 1, we

have (
1 +

1

α

)(r−1)α
> 1 +

(r − 1)α

α
= r ≥ 3 > e,

which finishes the proof of the lemma.
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Lemma 3.7. If (x,y) ∈Wk is a non-degenerate maximum of ϕ with x1 > 0, then x2 = 0.

Proof. This proof is very similar to the proof of Lemma 3.5. Now x1, x2, y1 > 0 and x1 +x2 + y1 = 1.

Also

p(x,y) = (x1 + x2)
s + s · y1 · xs−12 ,

q(x,y) = yr1 + r · x1 · yr−11 .

Let

M =

[
a1 a2
b1 b2

]
,

where

a1 =
∂p

∂x1
− ∂p

∂x2
= −s(s− 1) · y1 · xs−22 , b1 =

∂q

∂x1
− ∂q

∂x2
= r · yr−11 ,

a2 =
∂p

∂y1
− ∂p

∂x1
= −s · ((x1 + x2)

s−1 − xs−12 ), b2 =
∂q

∂y1
− ∂q

∂x1
= r(r − 1) · x1 · yr−21 ,

If M is nonsingular, then there is a vector v =
(
v1
v2

)
such that M · v =

(
1
1

)
. Define x′1 = x1 + ε(v1 −

v2), x
′
2 = x2 − εv1 and y′1 = y1 + εv2. Then x′1 + x′2 + y′1 = 1 and for sufficiently small ε > 0

p(x′,y′) = p(x,y) + ε
( ∂p
∂x1

(v1 − v2)−
∂p

∂x2
v1 +

∂p

∂y1
v2

)
+O(ε2)

= p(x,y) + ε
(
a1v1 + a2v2

)
+O(ε2) = p(x,y) + ε+O(ε2) > p(x,y).

Similarly q(x′,y′) = q(x,y) + ε + O(ε2) > q(x,y) and therefore (x,y) cannot be a maximum of ϕ.

Hence,

det

[
a1 b1
a2 b2

]
= 0,

which implies

0 = yr−11 xs−12

(
(r − 1) · (s− 1) · x1

x2
−
(
x1
x2

+ 1

)s−1
+ 1

)
.

Let γ = x1
x2
> 0. Then 1 + (r − 1)(s− 1)γ − (1 + γ)s−1 = 0 and concavity of the left hand side shows

that γ is determined uniquely by this equation. Now make the following substitution:

x′1 = 0

x′2 = x1 + x2 = (1 + γ) · x2

y′1 =
1

1 + (r − 1)(s− 1)γ
· y1

y′2 =
(r − 1)(s− 1)γ

1 + (r − 1)(s− 1)γ
· y1

11



Clearly x′1 + x′2 = x1 + x2 and y′1 + y′2 = y1. Since (1 + γ)s−1 = 1 + (r − 1)(s− 1)γ, we have

p(x′,y′) = (x′2)
s + s · y′1 · (x′2)s−1

= (x1 + x2)
s + s · y1 · xs−12 = p(x,y)

q(x′,y′) = (y′1 + y′2)
r + r · x′2 · (y′2)r−1

= yr1 + r · (1 + γ)

γ
·
(

(r − 1)(s− 1)γ

1 + (r − 1)(s− 1)γ

)r−1
· x1 · yr−11

> yr1 + r · x1 · yr−11 = q(x,y),

Where the last inequality follows from Lemma 3.6, with r and s switched. Again, this contradicts

Lemma 3.3.

By combining Lemmas 3.3 – 3.7, we obtain a proof of Lemma 3.2, which states that the maximum

of ϕ is attained by a non-degenerate (x,y) supported only on either x1, y1 or y1, x2. In the first case, let

x1 = α and y1 = 1−α. Then by Lemma 3.3, a·p(x,y) = a·αs = b·q(x,y) = b
[
(1−α)r+rα(1−α)r−1

]
and ϕ(x,y) = a · αs. In the second case, let y1 = β and x2 = 1 − β. Then b · q(x,y) = b · βr =

a · p(x,y) = a
[
(1 − β)s + s(1 − β)s−1

]
and ϕ(x,y) = b · βr. This shows that the maximum of ϕ is

max{a ·αs, b ·βr} with α, β satisfying the above equations. In terms of the original graph, this proves

that ϕ is maximized by a graph of the form Qn,t or Qn,t, respectively. In particular, our problem has

at most two extremal configurations (in some cases a clique and the complement of a clique can give

the same value of ϕ).

4 Stability analysis

In this section we discuss the proof of Theorem 1.2. In essentially the same way that Theorem 3.1

implies Theorem 1.1, this theorem follows from a stability version of Theorem 3.1:

Theorem 4.1. Let r, s ≥ 3 be integers and let a, b > 0 be real. For every ε > 0, there exists δ > 0

and an integer N such that every n-vertex G with n > N for which

f(G) ≥ max{a · αs, b · βr} − δ

is ε-close to some graph in Qn. Here f, α and β are as in Theorem 3.1.

Proof. If G is a threshold graph, the claim follows easily from Lemma 3.2. Since G is a threshold

graph, f(G) = ϕ(x,y) + o(1) for some (x,y) ∈ Wk and some integer k. As this lemma shows, the

continuous function ϕ attains its maximum on the compact set Wk at most twice, and this in points

that correspond to graphs from Qn. Since f(G) is δ-close to the maximum, it follows that (x,y) must

be ε′-close to at least one of the two optimal points in Wk. This, in turn implies ε-proximity of the

corresponding graphs.

For the general case, we use the stability version of the Kruskal-Katona theorem due to Keevash

[10]. Suppose G is a large graph such that f(G) ≥ max{a ·αs, b ·βr}− δ. Let G1 be the shifted graph

obtained from G. Thus G1 is a threshold graph with the same edge density as G, and f(G1) ≥ f(G)

by Corollary 2.2. Pick a small ε′ > 0. We just saw that for δ sufficiently small, G1 is ε′-close to

12



Gmax ∈ Qn. As we know, either Gmax = Qn,t or Gmax = Q̄n,t for some 0 < t ≤ n. We deal with the

former case, and the second case can be done similarly. Now |d(K2;G)−d(K2;Gmax)| ≤ ε′, sinceG and

G1 have the same edge density. Moreover, d(Ks;G) ≥ d(Ks;Gmax)−δ/a, because f(G) ≥ f(Gmax)−δ.
Since Gmax is a clique, it satisfies the Kruskal-Katona inequality with equality. Consequently G has

nearly the maximum possible Ks-density for a given number of edges. By choosing ε′ and δ small

enough and applying Keevash’s stability version of Kruskal-Katona inequality, we conclude that G

and Gmax are ε-close.

5 Second proof

In this section we briefly present the main ingredients for an alternative approach to Theorem 1.1.

We restrict ourselves to the case r = s. This proof reduces the problem to a question in the calculus

of variations. Such calculations occur often in the context of shifted graphs.

Let G be a shifted graph with vertex set [n] with the standard order. Then, there is some

n ≥ i ≥ 1 such that A = {1, ..., i} spans a clique, whereas B = {i+ 1, ..., n} spans an independent set.

In addition, there is some non-increasing function F : A → B such that for every j ∈ A the highest

index neighbor of j in B is F (j), and all vertices of B up to index F (j) are connected to j. Let x be

the relative size of A and 1− x the relative size of B. In this case we can express (up to a negligible

error term)

d(Kk;G) =

(
n

k

)−1 ((1− x)n

k

)
+

∑
1≤j≤xn

(
n− F (j)

k − 1

) = (1− x)k +
k

n

∑
1≤j≤xn

(
n− F (j)

n

)k−1

= (1− x)k + kx(1− x)k−1
∑

1≤j≤xn

1

nx

(
1− F (j)− xn

(1− x)n

)k−1
.

Let f be a non-increasing function f : [0, 1]→ [0, 1] such that f(t) = F (j)−xn
(1−x)n for every j−1

xn ≤ t ≤
j
xn

(Think of f as a relative version of F both on its domain with respect to A and its codomain with

respect to B). Then we can express d(Kk;G) in terms of x and f

d(Kk;G) = (1− x)k + kx(1− x)k−1
∫ 1

0
(1− f(t))k−1dt = d(Kk;Gx,f ).

Similarly one can show that

d(Kk;G) = xk + kxk−1(1− x)

∫ 1

0
(k − 1)tk−2f(t)dt = d(Kk;Gx,f ).

Note that in this notation, x = θ, f = 0 (resp. x = 1−θ, f = 1) corresponds to Qn,θ·n, (resp. Qn,θ·n).

To prove Theorem 1.1 for the case r = s = k, we show that assuming d(Kk;Gx,f ) ≥ α, the

maximum of d(Kk;Gx,f ) is attained for either f = 0 or f = 1. For this purpose, we prove upper

bounds on the integrals.

Lemma 5.1. If f : [0, 1]→ [0, 1] is a non-increasing function, then∫ 1

0
(1− f(t))k−1dt ≤ max

{
1−

(∫ 1

0
(k − 1)tk−2f(t)dt

) 1
k−1

,

(
1−

∫ 1

0
(k − 1)tk−2f(t)dt

)k−1}
.
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The bounds in Lemma 5.1 are tight. Equality with the first term holds for f that takes only the

values 1 and 0, and equality with the second term occurs for f a constant function. Proving Theorem

1.1 for such functions is done using rather standard (if somehow tedious) calculations. Lemma 5.1

itself is reduced to the following lemma through a simple affine transformation and normalization.

What non-decreasing function in [0, 1] minimizes the inner product with a given monomial?

Lemma 5.2. Let g : [0, 1]→ [0, B] be a non-decreasing function with B ≥ 1 and ‖g‖k−1 = 1. Then

〈(k − 1)tk−2, g〉 =

∫ 1

0
(k − 1)tk−2g(t)dt ≥ min

{
B

(
1−

(
1− 1

Bk−1

)k−1)
, 1

}
.

Equality with the first term holds for

g(t) =

{
0 t < 1− 1

Bk−1

B t ≥ 1− 1
Bk−1

The second equality holds for g = 1.

We omit the proof which is based on standard calculations and convexity arguments.

6 Shifting in hypergraphs

In this section, we will discuss a possible extension of Lemma 2.1 to hypergraphs. Consider two set

systems F1 and F2 with vertex sets V1 and V2 respectively. A (not necessarily induced) labeled copy of

F1 in F2 is an injection I : V1 → V2 such that I(F ) ∈ F2 for every F ∈ F1. We denote by Cop(F1;F2)

the set of all labeled copies of F1 in F2 and let

t(F1;F2) := |Cop(F1;F2)|.

Recall that a vertex u dominates vertex v if Sv→u(F) = F . If either u dominates v or v dominates u

in a family F , we call the pair {u, v} stable in F . If every pair is stable in F , then we call F a stable

set system.

Theorem 6.1. Let H be a stable set system and let F be a set system. For every two vertices u, v of

F there holds

t(H;Su→v(F)) ≥ t(H;F).

Corollary 6.2. Let G be an arbitrary graph and let H be a threshold graph H. Then

t(H;Su→v(G)) ≥ t(H;G),

for every two vertices u, v of G.

Proof of Theorem 6.1 (sketch). We define a new shifting operator S̃u→v for sets of labeled copies.

First, for every u, v ∈ V , and a labeled copy I : U → V , define Iu↔v : U → V by

Iu↔v(w) =


I(w) if I(w) 6= u, v,

v if I(w) = u,

u if I(w) = v
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For I a set of labeled copies, I ∈ I, we let

S̃u→v(I, I) =


Iu↔v if Iu↔v 6∈ I and Im(I) ∩ {u, v} = {u},
Iu↔v if Iu↔v 6∈ I, {u, v} ⊂ Im(I), and I−1(u) dominates I−1(v) in H,
I otherwise.

Finally, let S̃u→v(I) := {S̃u→v(I, I) : I ∈ I}. Clearly, |S̃u→v(I)| = |I|, and we prove that

S̃u→v(Cop(H;F)) ⊆ Cop(H;Su→v(F))

thereby proving that t(H;Su→v(F)) ≥ t(H;F). As often in shifting, the proof is done by careful case

analysis which is omitted.

7 Concluding remarks

In this paper, we studied the relation between the densities of cliques and independent sets in a graph.

We showed that if the density of independent sets of size r is fixed, the maximum density of s-cliques

is achieved when the graph itself is either a clique on a subset of the vertices, or a complement of a

clique. On the other hand, the problem of minimizing the clique density seems much harder and has

quite different extremal graphs for various values of r and s (at least when α = 0, see [3, 13]).

Question 7.1. Given that d(Kr;G) = α for some integer r ≥ 2 and real α ∈ [0, 1], which graphs

minimize d(Ks;G)?

In particular, when α = 0 we ask for the least possible density of s-cliques in graphs with inde-

pendence number r − 1. This is a fifty-year-old question of Erdős, which is still widely open. Das et

al [3], and independently Pikhurko [13], solved this problem for certain values of r and s. It would

be interesting if one could describe how the extremal graph changes as α goes from 0 to 1 in these

cases. As mentioned in the introduction, the problem of minimizing d(Ks;G) in graphs with fixed

density of r-cliques for r < s is also open and so far solved only when r = 2.

Note added in proof. After writing this paper, we learned that P. Frankl, M. Kato, G. Katona

and N. Tokushige [7] independently considered the same problem and obtained similar results when

r = s.

Acknowledgment. We would like to thank the anonymous referee for valuable comments and

suggestions which improve the presentation of the paper.
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[4] P. Erdős, On the number of complete subgraphs contained in certain graphs, Magyar Tud. Akad.
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