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AN EXPONENTIAL-TYPE UPPER BOUND FOR FOLKMAN NUMBERS

VOJTĚCH RÖDL, ANDRZEJ RUCIŃSKI, AND MATHIAS SCHACHT

Abstract. For given integers k and r, the Folkman number fpk; rq is the smallest number

of vertices in a graph G which contains no clique on k ` 1 vertices, yet for every partition

of its edges into r parts, some part contains a clique of order k. The existence (finiteness)

of Folkman numbers was established by Folkman (1970) for r “ 2 and by Nešetřil and

Rödl (1976) for arbitrary r, but these proofs led to very weak upper bounds on fpk; rq.

Recently, Conlon and Gowers and independently the authors obtained a doubly exponen-

tial bound on fpk; 2q. Here, we establish a further improvement by showing an upper bound

on fpk; rq which is exponential in a polynomial function of k and r. This is comparable to

the known lower bound 2Ωprkq.

Our proof relies on a recent result of Saxton and Thomason (2015) (or, alternatively, on

a recent result of Balogh, Morris, and Samotij (2015)) from which we deduce a quantitative

version of Ramsey’s theorem in random graphs.

§1. Introduction

For two graphs, G and F , and an integer r ě 2 we write G Ñ pF qr if every r-coloring of

the edges of G results in a monochromatic copy of F . By a copy we mean here a subgraph

of G isomorphic to F . Let Kk stand for the complete graph on k vertices and let Rpk; rq be

the r-color Ramsey number, that is, the smallest integer n such that Kn Ñ pKkqr. As it is

customary, we suppress r “ 2 and write Rpkq :“ Rpk; 2q as well as G Ñ F for G Ñ pF q2.

In 1967 Erdős and Hajnal [8] asked if for some ℓ, k ` 1 ď ℓ ă Rpkq, there exists a graph G

such that G Ñ Kk and G Č Kℓ. Graham [12] answered this question positively for k “ 3

and ℓ “ 6 (with a graph on eight vertices), and Pósa (unpublished) for k “ 3 and ℓ “ 5.

Folkman [10] proved, by an explicit construction, that such a graph exists for every k ě 3

and ℓ “ k ` 1. He also raised the question to extend his result for more than two colors,

since his construction was bound to two colors.
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For integers k and r, a graph G is called pk; rq-Folkman if G Ñ pKkqr and G Č Kk`1. We

define the r-color Folkman number for Kk by

fpk; rq “ mintn P N : D G such that |V pGq| “ n and G is pk; rq-Folkmanu .

For r “ 2 we set fpkq :“ fpk; 2q. It follows from [10] that fpkq is well defined for every

integer k, i.e., fpkq ă 8. This was extended by Nešetřil and Rödl [17], who showed that

fpk; rq ă 8 for an arbitrary number of colors r.

Already the determination of fp3q is a difficult, open problem. In 1975, Erdős [7] offered

max(100 dollars, 300 Swiss francs) for a proof or disproof of fp3q ă 1010. For the history of

improvements of this bound see [5], where a computer assisted construction is given yielding

fp3q ă 1000. For general k, the only previously known upper bounds on fpkq come from

the constructive proofs in [10] and [17]. However, these bounds are tower functions of height

polynomial in k. On the other hand, since fpkq ě Rpkq, it follows by the well known lower

bound on the Ramsey number that fpkq ě 2k{2, which for k “ 3 was improved to fp3q ě 19

(see [19]).

We prove an upper bound on fpk; rq which is exponential in a polynomial of k and r. Set

R :“ Rpk; rq for the r-color Ramsey number for Kk. It is known that there exists some c ą 0

such that for every r ě 2 and k ě 3 we have

2crk ă R ă rrk .

The upper bound already appeared in the work of Skolem [25]. The lower bound obtained

from a random r-coloring of the complete graphs is of the form rk{2. However, Lefmann [14]

noted that the simple inequality Rpk; s`tq ě pRpk; sq´1qpRpk; tq´1q`1 yields a lower bound

of the form 2kr{4. Using iteratively random 3-colorings in this “product-type” construction

yields a slightly better lower bound of the form 3rk{6. Our main result establishes an upper

bound on the Folkman number fpk; rq of similar order of magnitude.

Theorem 1. For all integers r ě 2 and k ě 3,

fpk; rq ď k400k4

R40k2 ď 2cpk4 log k`k3r log rq .

for some c ą 0 independent of r and k.

To prove Theorem 1, we consider a random graph Gpn, pq, p “ Cn
´ 2

k`1 , where n “ npk, rq
and C “ Cpn, k, rq and carefully estimate from below the probabilities PpGpn, pq Ñ pKkqrq
and PpGpn, pq Č Kk`1q, so that their sum is strictly greater than 1. The latter probability

is easily bounded by the FKG inequality. However, to set a bound on PpGpn, pq Ñ pKkqrq
we rely on a recent general result of Saxton and Thomason [24], elaborating on ideas of

Nenadov and Steger [15] (see Remark 3).



AN EXPONENTIAL-TYPE UPPER BOUND FOR FOLKMAN NUMBERS 3

Remark 1. Instead of the Saxton-Thomason theorem, we could have used a concurrent

result of Balogh, Morris, and Samotij [1], which, by using our method, yields only a slightly

worse upper bound on the Folkman numbers fpk; rq than Theorem 1 (the k4 in the exponent

has to be replaced k6).

Remark 2. In [23], we combined ideas from [9, 20, 22] and, for r “ 2, obtained another

proof of the Ramsey threshold theorem that yields a self-contained derivation of a double-

exponential bound for the two-color Folkman numbers fpkq. Independently, a similar double-

exponential bound for fpk; rq, for r ě 2, was obtained by Conlon and Gowers [2] by a different

method.

Motivated by the original question of Erdős and Hajnal, one can also define, for r “ 2,

k ě 3, and k ` 1 ď ℓ ď Rpkq, a relaxed Folkman number as

fpk, ℓq “ mintn : there exists G such that |V pGq| “ n , G Ñ Kk , and G Č Kℓu.

Note that fpk, k ` 1q “ fpkq. As mentioned above, Graham [12] showed fp3, 6q “ 8, while

Nenov [16] and Piwakowski, Radziszowski and Urbański [18] determined that fp3, 5q “ 15

(see also [26]). Of course, the problem is easier when the difference ℓ ´ k is bigger. Our final

result provides an exponential bound of the form fpk, ℓq ď expp´ckq, when ℓ is close to but

bigger than 4k (the constant c is proportional to the reciprocal of the difference between ℓ{k

and 4).

Theorem 2. For every 0 ă α ă 1
4

there exists k0 such that for k and ℓ satisfying k ě k0

and k ď αℓ we have fpk; ℓq ď 24k{p1´4αq.

It would be interesting to decide if the true order of the logarithm of fpk, k ` 1q “ fpkq is

also linear in k.

The paper is organized as follows. In the next section we prove our main result, Theorem 1,

while Theorem 2 is proved in Section 3. Finally, a short Section 4 offers a brief discussion of

the analogous problem for hypergraphs. Most logarithms in this paper are binary and are

denoted by log. Only occasionally, when citing a result from [24] (Theorem 5 in Section 2

below), we will use the natural logarithms, denoted by ln.

Acknowledgment. We are very grateful to both referees for their valuable remarks which

have led to a better presentation of our results. We would also like to thank József Balogh,

David Conlon, Andrzej Dudek, Hiê.p Hàn, Wojtech Samotij, Angelika Steger, and Andrew

Thomason for their helpful comments and relevant information. Finally, we are truly in-

debted to Troy Retter for his careful reading of the manuscript.
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§2. Proof of Theorem 1

We will prove Theorem 1 by the probabilistic method. Let Gpn, pq be the binomial random

graph, where each of the
`

n

2

˘

possible edges is present, independently, with probability p.

We are going to show that for every n ě k40k4

R10k2

and a suitable function p “ ppnq,
with positive probability, Gpn, pq has simultaneously two properties: Gpn, pq Ñ pKkqr and

Gpn, pq Č Kk`1. Of course, this will imply that there exists an pk; rq-Folkman graph on n

vertices. We begin with a simple lower bound on PpGpn, pq Č Kk`1q.

Lemma 3. For all k, n ě 3, and C ą 0, if p “ Cn´2{pk`1q ď 1
2

then

PpGpn, pq Č Kk`1q ą expp´Cpk`1

2
qnq .

Proof. By applying the FKG inequality (see, e.g., [13, Theorem 2.12 and Corollary 2.13]),

we obtain the bound

PpGpn, pq Č Kk`1q ě
´

1 ´ ppk`1

2
q
¯p n

k`1
q

ě exp
´

´2Cpk`1

2
qn´k

`

n

k`1

˘

¯

ą exp
´

´Cpk`1

2
qn

¯

,

where we also used the inequalities
`

n

k`1

˘

ă nk`1{2 and 1 ´ x ě e´2x for 0 ă x ă 1
2
. �

The main ingredient of the proof of Theorem 1 traces back to a theorem from [20] estab-

lishing edge probability thresholds for Ramsey properties of Gpn, pq. A special case of that

result states that for all integers k ě 3 and r ě 2 there exists a constant C such that if

p “ ppnq ě Cn
´ 2

k`1 then limnÑ8 PpGpn, pq Ñ pKkqrq “ 1.

Adapting an idea of Nenadov and Steger [15] (see Remark 3 for more on that), and based

on a result of Saxton and Thomason [24], we obtain the following quantitative version of the

above random graph theorem. Recall that R “ Rpk; rq denotes the r-color Ramsey number

and notice an easy lower bound

Rpk; rq ą 2r (1)

valid for all r ě 2 and k ě 3 (just consider a factorization of K2r).

Lemma 4. For all integers r ě 2, k ě 3, and

n ě k400k4

R40k2

, (2)

the following holds. Set

b “ 1

2R2
, C “ 25

?
log n log kR16 , and p “ Cn´ 2

k`1 . (3)

Then

PpGpn, pq Ñ pKkqrq ě 1 ´ exp
`

´bp
`

n

2

˘˘

.

We devote the next two subsections to the proof of Lemma 4. Now, we deduce Theorem 1

from Lemmas 3 and 4.
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Proof of Theorem 1. For given r and k, let n be as in (2), and let b, C, and p be as in (3).

Below we will show that these parameters satisfy not only the assumptions of Lemma 4, but

also the assumption p ď 1
2

of Lemma 3, as well as an additional inequality

n ě p3{bq
k`1

k´1 Cpk`2

2
q. (4)

With these two inequalities at hand, we may quickly finish the proof of Theorem 1. In-

deed, (4) implies that

bp

ˆ

n

2

˙

ě 1

3
bpn2 “ pb{3qCn1` k´1

k`1

(4)
ě Cpk`1

2 qn (5)

which, by Lemma 3, implies in turn that

PpGpn, pq Č Kk`1q ą exp
`

´bp
`

n

2

˘˘

.

Since, by Lemma 4,

PpGpn, pq Ñ pKkqrq ě 1 ´ exp
`

´bp
`

n

2

˘˘

,

we conclude that

PpGpn, pq Ñ pKkqr and Gpn, pq Č Kk`1q ą 0.

Thus, there exists a pk; rq-Folkman graph on n vertices, and thus, fpkq ď k400k4

R40k2

.

It remains to show that p ď 1
2

and that (4) holds. The first inequality is equivalent to

n ě p2Cq k`1

2 . (6)

We will now show that this inequality is a consequence of (4) and then establish (4) itself.

Since C ą 2 and 3{b
(3)“ 6R2 ě 1, we infer that

p3{bq
k`1

k´1 Cpk`2

2
q ě Cpk`2

2
q ě p2Cq k`1

2 ,

and hence, (6) indeed follows from (4).

Finally, we establish (4). In doing so we will use again the identity 3{b
(3)“ 6R2, as well

as the inequalities 36 ď C, which follows from (2) and (3),
`

k`2
2

˘

ď k2 ` 1 ď 2k2 ´ 1, and
k`1
k´1

ď 2, valid for all k ě 3. The R-H-S of (4) can be bounded from above by

p6R2q k`1

k´1 Cpk`2

2 q ď 36R4Cpk`2

2 q ď R4Ck2`2 ď 210k2

?
log n log kR20k2

.

Hence, it suffices to show that

n ě 210k2
?

log n log kR20k2

. (7)

Observe that, by (2), 1
2

log n ě 20k2 log R, and thus, it remains to check that

1

2
log n ě 10k2

a

log n log k,
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or equivalently that

log n ě 400k4 log k.

This, however, follows trivially from (2). �

2.1. The proof of Lemma 4 – preparations. In this and the next subsection we present

a proof of Lemma 4, which is inspired by the work of Nenadov and Steger [15] and is based

on a recent general result of Saxton and Thomason [24] on the distribution of indepen-

dent sets in hypergraphs. For a hypergraph H , a subset I Ď V pHq is independent if the

subhypergraph HrIs induced by I in H has no edges.

For an h-graph H , the degree dpJq of a set J Ă V pHq is the number of edges of H

containing J . (Since in our paper letter r is reserved for the number of colors, we will use h

for hypergraph uniformity.) We will write dpvq for dptvuq, the ordinary vertex degree. We

further define, for a vertex v P V pHq and j “ 2, . . . , h, the maximum j-degree of v as

djpvq “ max
!

dpJq : v P J Ă
`

V pHq
j

˘

)

.

Finally, the co-degree function of H with a formal variable τ is defined in [24] as

δpH, τq “ 2ph
2q´1

nd

h
ÿ

j“2

ř

v djpvq
2pj´1

2
qτ j´1

, (8)

where the inner sum is taken over all vertices v P V pHq and d is the average vertex degree

in H , that is, d “ 1
n

ř

v dpvq.
Theorem 5 below is an abridged version of [24, Corollary 3.6], where we suppress part of

conclusion (a ) (about the sets Ti), as well as the “Moreover” part therein, since we do not

use this additional information here. In part (c ) of the theorem below, for convenience, we

switch from ln to log, but only on the R-H-S of the upper bound on ln |C|.

Theorem 5 (Saxton & Thomason, [24]). Let H be an h-graph on vertex set rns and let ε

and τ be two real numbers such that 0 ă ε ă 1{2,

τ ď 1{p144ph!q2hq and δpH, τq ď ε{p12ph!qq.

Then there exists a collection C of subsets of rns such that the following three properties hold.

(a ) For every independent set I in H there exists a set C P C such that I Ă C.

(b ) For all C P C, we have epHrCsq ď εepHq.
(c ) We have ln |C| ď c logp1{εqτ logp1{τqn, where c “ 800ph!q3h.

We will now tailor the above result to our application. The hypergraphs we consider have

a very symmetric structure. Given k and n, let Hpn, kq be the hypergraph with vertex
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set
`rns

2

˘

, the edges of which correspond to all copies of Kk in the Kn with vertex set rns.
Thus, Hpn, kq has

`

n

2

˘

vertices,
`

n

k

˘

edges, and is
`

k

2

˘

-uniform and
`

n´2
k´2

˘

-regular.

For J Ď
`rns

2

˘

, the degree of J in Hpn, kq is dpJq “
`

n´vJ

k´vJ

˘

, where vJ is the number of

vertices in J treated as a graph on rns rather than a subset of vertices of Hpn, kq. Thus,

over all J with |J | “ j, dpJq is maximized by the smallest possible value of vJ , that is, when

vJ “ ℓj, the smallest integer ℓ such that j ď
`

ℓ

2

˘

. Consequently, for every vertex v of Hpn, kq
(that is, an edge of Kn on rns) and for each j “ 2, . . . ,

`

k

2

˘

, we have

djpvq “
ˆ

n ´ ℓj

k ´ ℓj

˙

.

Clearly, ℓj ě 3 for j ě 2, which will be used later. Let

δpn, k, τq :“
pk

2
q

ÿ

j“2

2k4

kk´2

τ j´1nℓj´2
.

The co-degree function of Hpn, kq can be bounded by δpn, k, τq.

Claim 6.

δpHpn, kq, τq ď δpn, k, τq.

Proof. By the definition of δpH, τq in (8) with h replaced by
`

k

2

˘

, n by
`

n

2

˘

, d by
`

n´2
k´2

˘

, djpvq
by

`

n´ℓj

k´ℓj

˘

, and with 2pj´1

2
q dropped out from the denominator, we have

δpHpn, kq, τq ď 2k4

pk
2
q

ÿ

j“2

`

n´ℓj

k´ℓj

˘

τ j´1
`

n´2
k´2

˘ .

Now, observe that
pn´ℓj

k´ℓj
q

pn´2

k´2
q ď pk{nqℓj´2 and ℓj ď k. �

The most important property of hypergraph Hpn, kq is that a subset S of the vertices

of H corresponds to a graph G with vertex set rns and edge set S, and S is an independent

set in Hpn, kq if and only if the corresponding graph G is Kk-free. We apply Theorem 5

to Hpn, kq.

Corollary 7. Let k ě 3, n ě 3, and let ǫ and τ be two real numbers such that 0 ă ε ă 1{2,

τ ď
`

k2!
˘´2

and δpn, k, τq ď ε

k2!
. (9)

Then there exists a collection C of subgraphs of Kn such that the following three properties

hold.

(a ) For every Kk-free graph G Ď Kn there exists a graph C P C such that G Ă C.

(b ) For all C P C, C contains at most ε
`

n

k

˘

copies of Kk.

(c ) ln |C| ď p2k2q! logp1{εqτ logp1{τq
`

n

2

˘

.
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Proof. Note that for k ě 3,

k2! ą 12
`

k

2

˘

! and, consequently, pk2!q2 ą 144
`

k

2

˘

!
`

k

2

˘

,

and that, by Claim 6, δpHpn, kq, τq ď δpn, k, τq. Thus, the assumptions of Theorem 5 hold

for H :“ Hpn, kq with h “
`

k

2

˘

, and its conclusions (a )–(c ) translate into the corresponding

properties (a )–(c ) of Corollary 7. Finally, notice that

p2k2q! ą c “ 800
``

k

2

˘

!
˘3 `

k

2

˘

.

�

In the next subsection we deduce Lemma 4 from Corollary 7. First, however, we make a

simple observation about the number of monochromatic copies of Kk in every coloring of Kn.

Recall that R “ Rpk; rq is the r-color Ramsey number for Kk and set

α “
ˆ

R

k

˙´1

. (10)

Proposition 8. Let n ě R. For every pr ` 1q-coloring of the edges of Kn either there are

more than α
2

`

n

k

˘

monochromatic copies of Kk colored by the first r colors, or more than 1
R2

`

n

2

˘

edges receive color r ` 1.

Proof. Consider an pr ` 1q-coloring of the edges of Kn. Let x
`

n

R

˘

be the number of the R-

element subsets of the vertices of Kn with no edge colored by color r ` 1. By the definition

of R, each of these subsets induces in Kn a monochromatic copy of Kk. Thus, counting

repetitions, there are at least

x

`

n

R

˘

`

n´k

R´k

˘ “ x

`

n

k

˘

`

R

k

˘ “ xα

ˆ

n

k

˙

monochromatic copies of Kk colored by one of the first r colors. Suppose that their number

is at most

α

2

ˆ

n

k

˙

.

Then x ď 1
2
, that is, at least a half of the R-element subsets of V pKnq contain at least one

edge colored by r ` 1. Hence, color r ` 1 appears on at least

1
2

`

n

R

˘

`

n´2
R´2

˘ “
1
2

`

n

2

˘

`

R

2

˘ ą 1

R2

ˆ

n

2

˙

edges of Kn. This completes the proof. �
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2.2. Proof of Lemma 4 – details. Let r ě 2, k ě 3, and let n, b, C, and p be as in

Lemma 4, see (3) and (2). We have to show that

PpGpn, pq Ñ pKkqrq ě 1 ´ expp´bp
`

n

2

˘

q .

First we set up a few auxiliary constants required for the application of Corollary 7. Recalling

that α is defined in (10), let

ε “ α

2r
, (11)

C0 “ 24
?

log nR10{k, and τ “ C0n
´ 2

k`1 . (12)

We will now prove that the above defined constants ε and τ satisfy the assumptions of

Corollary 7.

Claim 9. Inequalities (9) hold true for every k ě 3.

Proof. In order to verify the first inequality in (9), note that by the definitions of τ and C0

in (12) and the obvious bound x! ă xx,

pk2!q2τ ď k4k2

24
?

log nR10{kn´ 2

k`1 . (13)

It remains to show that the R-H-S of (13) is smaller than one, or, by taking logarithms, that

4k2 log k ` 4
a

log n ` 10

k
log R ă 2

k ` 1
log n.

This, however, follows from

4
a

log n ă 1

k ` 1
log n,

or equivalently,

16pk ` 1q2 ă log n,

and from

4k2pk ` 1q log k ` 10

k
pk ` 1q log R ă log n,

both of which are true by the lower bound on n in (2).

To prove the second inequality in (9), note that since τ ď 1 and j ď
`

ℓj

2

˘

, the quantity

τ j´1nℓj´2 is minimized when j “
`

ℓj

2

˘

. Thus, we have

τ j´1 ¨ nℓj´2 ě τpℓj
2
q´1 ¨ nℓj´2 “ C

pℓj
2
q´1

0 n´ pℓj´2qpℓj `1q

k`1
`ℓj´2 “ C

pℓj
2
q´1

0 n
pℓj´2qpk´ℓjq

k`1 . (14)

Recall that for j ě 2 we have ℓj ě 3. In what follows we obtain a lower bound on the R-H-S

of (14) by distinguishing two cases: ℓj ă k and ℓj “ k. If ℓj ă k, then pℓj ´ 2qpk ´ ℓjq is

minimized for ℓj “ 3 and ℓj “ k ´ 1 and owing to C0 ą 1 we infer

τ j´1 ¨ nℓj´2
(14)
ě C

pℓj
2
q´1

0 n
pℓj ´2qpk´ℓjq

k`1 ą n
k´3

k`1

(2)
ě k80k4

R8k2

,
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where we also used the bound k`1
k´3

ď 5 for all k ě 4, which holds due to 3 ď ℓj ă k. If, on

the other hand, ℓj “ k, then, by the definition of C0 in (12) and the bound on n in (2),

C0 ě 280k2

R10{k. (15)

Hence, in view of (15), and the fact that
`

k

2

˘

´ 1 ě 1
5
k2 for k ě 3, we have that

τ j´1 ¨ nℓj´2
(14)
ě C

pk
2
q´1

0 ě
´

280k2

R10{k
¯k2{5

“ 216k4

R2k .

Consequently, using the trivial bounds kk ¨k2! ă 215k4

,
`

R

k

˘

ă Rk, and Rk
(1)ą r, we conclude

that
pk

2
q

ÿ

j“2

2k4

kk´2

τ j´1nℓj´2
ď

pk
2
q

ÿ

j“2

2k4

kk´2

216k4

R2k
ď kk

215k4

R2k
ď 1

2r
`

R

k

˘

¨ k2!

(10),(11)“ ε

k2!
,

which concludes this proof. �

In view of Claim 9, the conclusions of Corollary 7 hold true with ε and τ defined in,

resp., (11) and (12). That is, there exists a collection C of subgraphs of Kn such that

properties (a )–(c ) of Corollary 7 are satisfied for these specific values of ε and τ .

To continue with the proof of Lemma 4 consider a random graph Gpn, pq and let E be

the event that Gpn, pq Û pKkqr. For each G P E , there exists an r-coloring ϕ : EpGq Ñ rrs
yielding no monochromatic copy of Kk. (Further on we will call such a coloring proper.)

In other words, there are Kk-free graphs G1, . . . , Gr, defined by Gi “ ϕ´1piq, such that

G1 Ÿ . . . Ÿ Gr “ G. According to Property (a) of Corollary 7, for every i P rrs there exists a

graph Ci P C such that Gi Ď Ci. Consequently,

G X
˜

Kn r

r
ď

i“1

Ci

¸

“ ∅.

Notice that there are only at most |C|r distinct graphs Kn r
Ťr

i“1 Ci. Moreover, we next

show that all these graphs are dense (see Claim 10). Hence, as it is extremely unlikely for a

random graph Gpn, pq to be completely disjoint from one of the few given dense graphs, it

will ultimately follow that PpEq “ op1q.

Claim 10. For all C1, . . . , Cr P C,

|Kn r

r
ď

i“1

Ci| ě
ˆ

n

2

˙

{R2.

Proof. The graphs Ci, i P rrs, together with Kn r
Ťr

i“1 Ci, form an pr ` 1q-coloring of Kn,

more precisely, an pr ` 1q-coloring where, for each i “ 1, . . . , r, the edges of color i are

contained in Ci, while all edges of Kn r
Ťr

i“1 Ci are colored with color r ` 1. (Note that

this coloring may not be unique, as the graphs Ci are not necessarily mutually disjoint.) By
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Proposition 8, this pr ` 1q-coloring yields either more than pα{2q
`

n

k

˘

monochromatic copies

of Kk in the first r colors or more than
`

n

2

˘

{R2 edges in the last color. Since for each i P rrs,
the i-th color class is contained in Ci, it follows from Property (b) that there at most

r ¨ ε

ˆ

n

k

˙

(11)“ α

2

ˆ

n

k

˙

monochromatic copies of Kk in the first r colors. Consequently, we must have

|Kn r

r
ď

i“1

Ci| ą 1

R2

ˆ

n

2

˙

, (16)

which concludes the proof. �

Based on Claim 10 we can now bound PpEq “ PpGpn, pq Û pKsqrq from above.

Claim 11.

PpGpn, pq Û pKsqrq ď |C|r exp

"

´p
`

n

2

˘

R2

*

Proof. Let F be the event that Gpn, pq X pKn r
Ťr

i“1 Ciq “ ∅ for at least one r-tuple of

graphs Ci P C, i “ 1, . . . , r. We have E Ď F . Indeed, if G P E then there is a proper coloring

ϕ of G and graphs C1, . . . , Cr P C such that G Ď Ťr

i“1 Ci and, by Claim 10, Kn r
Ťr

i“1 Ci

has at least 1
R2

`

n

2

˘

edges and is disjoint from G. Thus, G P F . Consequently,

PpGpn, pq Û pKkqrq ď PpFq.

To estimate PpFq we write F “ Ť

FpC1, . . . , Crq, where the summation runs over all col-

lections pC1, . . . , Crq with Ci P C, i “ 1, . . . , r, and the event FpC1, . . . , Crq means that

Gpn, pq X pKn r
Ťr

i“1 Ciq “ ∅. Clearly,

PpFpC1, . . . , Crqq “ p1 ´ pq|Knr
Ťr

i“1
Ci| ď p1 ´ pqpn

2q{R2

,

where the last inequality follows by Claim 10. Finally, applying the union bound, we have

PpGpn, pq Û pKsqrq ď PpFq ď |C|rp1 ´ pqpn

2
q{R2 ď |C|r exp

ˆ

´p
`

n

2

˘

R2

˙

.

�

Observe that by property (c ) of Corollary 7,

|C|r ď exp

"

rp2k2q! logp1{εqτ logp1{τq
ˆ

n

2

˙*

. (17)

In view of Claim 11 and inequality (17), to complete the proof of Lemma 4, it suffices to

show that

rp2k2q! logp1{εqτ logp1{τq
ˆ

n

2

˙

ď p
`

n

2

˘

2R2
,
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or, equivalently, after applying the definitions of p and τ ((3) and (12), resp.) and dividing

sidewise by n
´ 2

k`1
`

n

2

˘

, that

rp2k2q! logp1{εqC0 logp1{τq ď C{p2R2q. (18)

To this end, observe that, since C0 ě 1 and, by (1), R ą 2r, we have

logp1{τq
(12)
ď 2

k`1
log n

and

logp1{εq (11)“ logp2r
`

R

k

˘

q ď pk ` 1q log R .

Hence, the L-H-S of (18) can be upper bounded by 2rp2k2q!C0 log R log n. Consequently,

using also the bounds p2k2q! ă p2kq4k2

and, again, R ą 2r, we realize that (18) will follow

from

2R3 log R ¨ p2kq4k2

log n ď C{C0. (19)

On the other hand,

C{C0
(3),(12)“ 25

?
log n log k´4

?
log nR16´10{k ě 2

?
log n log k`4

?
log np

?
log k´1qR12.

Thus, (19) is an immediate consequence of the following two inequalities, which are them-

selves easy consequences of (2):

2
?

log n log k
(2)
ě 220k2 log k ě p2kq4k2

and

24
?

log np
?

log k´1q ą 2
?

log n ě log n.

For the latter inequality we first used k ě 3 and
?

log 3 ą 5
4
, and then the fact that 2

?
x ě x

for all x ě 16, which can be easily verified by checking the first derivative (note that by (2),

log n ě 16). This completes the proof of Lemma 4.

Remark 3. The idea of utilizing hypergraph containers for Ramsey properties of random

graphs comes from a recent paper by Nenadov and Steger [15] (see also [11, Chapter 7])

where the authors give a short proof of the main theorem from [20] establishing an edge

probability threshold for the property Gpn, pq Ñ pF qr. Let us point to some similarities and

differences between their and our approach. For clarity of the comparison, let us restrict

ourselves to the case F “ Kk considered in our paper (the generalization to an arbitrary

graph F is quite straightforward).
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In [15] the goal is to prove an asymptotic result with n Ñ 8 and all other parameters

fixed. Consequently, they do not optimize, or even specify constants. Our task is to provide

as good as possible upper bound on n in terms of k and r, so there is no asymptotics.

The observation that a Kk-free coloring of the edges of Gpn, pq yields r independent sets in

the hypergraph Hpn, kq, and therefore, by the Saxton-Thomason Theorem there are r graphs

Ci, i “ 1, . . . , r, each with only a few copies of Kk, whose union contains all the edges of

Gpn, pq, was made in [15]. Also there one can find a statement similar to our Proposition 8

(cf. [15, Corollary 3].) These two facts lead to similar estimates of the probability that

Gpn, pq is not Ramsey. However, Nenadov and Steger, assuming that C is a constant, are

forced to use Theorem 2.3 from [24] which involves the sequences of sets Ti. In our setting,

we choose C “ Cpnq in a balanced way, allowing us to go through with the estimates of

PpGpn, pq Û pKkqrq without introducing the Ti’s, while, on the other hand, keeping the

upper bound on n exponential in k. In fact, as observed by Conlon and Gowers [2], the

approach via random graphs cannot yield a better than double-exponential upper bound on

n if one assumes that p is at the Ramsey threshold, i.e., if C is a constant.

§3. Relaxed Folkman numbers

In this section we prove Theorem 2. We will need an elementary fact about Ramsey

properties of quasi-random graphs. For constants ̺ and d with 0 ă d, ̺ ď 1, we say that an

n-vertex graph Γ is p̺, dq-dense if every induced subgraph on m ě ̺n vertices contains at

least dpm2{2q edges. It follows by an easy averaging argument that it suffices to check the

above inequality only for m “ r̺ns. Note also that every induced subgraph of a p̺, dq-dense

n-vertex graph on at least cn vertices is p̺

c
, dq-dense. It turns out that for a suitable choice

of the parameters, p̺, dq-dense graphs are Ramsey.

Proposition 12. For every integer k ě 2 and every d P p0, 1q the following holds. If

n ě p2{dq2k´4 and 0 ă ̺ ď pd{2q2k´4, then every two-colored n-vertex p̺, dq-dense graph Γ

contains a monochromatic copy of Kk.

Proof. For a two-coloring of the edges of a graph Γ we call a sequence of vertices pv1, . . . , vℓq
canonical if for each i “ 1, . . . , ℓ ´ 1 all the edges tvi, vju, for j ą i, are of the same color.

We will first show by induction on ℓ that for every ℓ ě 2 and d P p0, 1q, if n ě p2{dqℓ´2 and

0 ă ̺ ď pd{2qℓ´2, then every two-colored n-vertex p̺, dq-dense graph Γ contains a canonical

sequence of length ℓ.

For ℓ “ 2, every ordered pair of adjacent vertices is a canonical sequence. Assume that

the statement is true for some ℓ ě 2 and consider an n-vertex p̺, dq-dense graph Γ, where

̺ ď pd{2qℓ´1 and n ě p2{dqℓ´1. As observed above, there is a vertex u with degree at
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least dn. Let Mu be a set of at least dn{2 neighbors of u connected to u by edges of the

same color. Let Γu “ ΓrMus be the subgraph of Γ induced by the set Mu. Note that Γu

has nu ě dn{2 ě p2{dqℓ´2 vertices and is p̺u, dq-dense with ̺u ď pd{2qℓ´2. Hence, by

the induction assumption, there is a canonical sequence of length ℓ in Γu. This sequences

preceded by the vertex u makes a canonical sequence of length ℓ ` 1 in Γ.

To complete the proof of Proposition 12, set ℓ “ 2k ´ 2 above and observe that every

canonical sequence pv1, . . . , v2k´2q contains a monochromatic copy of Kk. Indeed, among the

vertices v1, . . . , v2k´3, some k ´ 1 have the same color on all the “forward” edges. These

vertices together with vertex v2k´2 form a monochromatic copy of Kk. �

Proof of Theorem 2. Let n “ 24k{p1´4αq. Consider a random graph Gpn, pq where

p “ 2n´ 7`4α
16k “ 2´ 20α`3

4p1´4αq .

By elementary estimates one can bound the expected number of ℓ-cliques in Gpn, pq by

´en

ℓ
p

ℓ´1

2

¯ℓ

.

Thus, if

ℓ ´ 1

2
ě log n

logp1{pq “ 16k

20α ` 3

then, as k Ñ 8, a.a.s. there are no ℓ-cliques in Gpn, pq. By assumption,

ℓ ´ 1

2
ě k ´ α

2α
ě 16k

20α ` 3
,

where the last inequality, equivalent to p3 ´ 12αqk ě 20α2 ` 3α, holds if k ě 2
3p1´4αq (we

used here the assumption that α ă 1
4
).

Further, by a straightforward application of Chernoff’s bound (see, e.g., [13, ineq. (2.6)]),

a.a.s. Gpn, pq is p̺, p ´ oppqq-dense, where ̺ “ log2 n

n
, say. Indeed, setting t “ ̺n “ log2 n,

ǫ “ ǫpnq “ plog nq´1{3, and d “ p1 ´ ǫqp, the probability that a fixed set T of t vertices spans

in Gpn, pq fewer than dt2{2 edges is at most

PpepT q ď p1 ´ ǫqpt2{2q ď P

ˆ

epT q ď p1 ´ ǫ{2qp
ˆ

t

2

˙˙

ď exp

ˆ

´ǫ2

8
p

ˆ

t

2

˙˙

ď exp

ˆ

´ ǫ2

24
pt2

˙

.

Finally, note that the above bound, even multiplied by
`

n

t

˘

, the number of all t-element

subsets of vertices in Gpn, pq, still converges to zero (recall that p is a constant).

Using that ǫk “ Oplog2{3 nq one can easily verify that both assumptions of Proposition 12,

that is, n ě p2{dq2k´4 and ̺ ď pd{2q2k´4, hold true. Indeed, dropping the subtrahend 4 for
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simplicity,

pd{2q2k “ p1 ´ ǫq2kn´1`δ ě ̺ ě 1

n
,

for n large enough, that is, for k large enough.

In conclusion, a.a.s. Gpn, pq is such that

‚ it contains no Kℓ, and

‚ for every two-coloring of its edges, there is a monochromatic copy of Kk.

Hence, there exists an n-vertex graph with the above two properties and, consequently,

fpk, ℓq ď n “ 24k{p1´4αq. �

§4. Hypergraph Folkman numbers

Hypergraph Folkman numbers are defined in an analogous way to their graph counterparts.

Given three integers h, k, and r, the h-uniform Folkman number fhpk; rq is the minimum

number of vertices in an h-uniform hypergraph H such that H Ñ pKphq
k qr but H Č K

phq
k`1.

Here K
phq
k stands for the complete h-uniform hypergraph on k vertices, that is, one with

`

k

h

˘

edges. The finiteness of hypergraph Folkman numbers was proved by Nešetřil and Rödl

in [17, Colloary 6, page 206] and besides the gigantic upper bound stemming from their

construction, no reasonable bounds have been proven so far. Much better understood are

the vertex-Folkman numbers (where instead of edges, the vertices are colored), which for

both, graphs and hypergraphs, are bounded from above by an almost quadratic function

of k, while from below the bound is only linear in k (see [4, 6]).

The study of Ramsey properties of random hypergraphs began in [21] where a threshold

was found for K
p3q
4 , the 3-uniform clique on 4 vertices. Also there a general conjecture was

stated that a theorem analogous to that in [20] holds for hypergraphs too. This was confirmed

for h-partite h-uniform hypergraphs in [22], and, finally, for all h-uniform hypergraphs in [9]

and, independently, in [3].

As remarked by Nenadov and Steger in [15], the Container theorem of Saxton-Thomason

(or the Balogh-Morris-Samotij) also yields a simpler proof of the hypergraph Ramsey thresh-

old theorem from [3, 9]. We believe that, similarly, our quantitative approach should also

provide an upper bound on the hypergraph Folkman numbers fhpk; rq, exponential in a

polynomial of k and r.

References

[1] J. Balogh, R. Morris, and W. Samotij, Independent sets in hypergraphs, J. Amer. Math. Soc. 28 (2015),

no. 3, 669–709, DOI 10.1090/S0894-0347-2014-00816-X. MR3327533 Ò1

[2] D. Conlon and W. T. Gowers, An upper bound for Folkman numbers. Preprint. Ò2, 3

[3] , Combinatorial theorems in sparse random sets, available at arXiv:1011.4310. Submitted. Ò4

http://dx.doi.org/10.1090/S0894-0347-2014-00816-X
http://www.ams.org/mathscinet-getitem?mr=3327533
http://arxiv.org/abs/1011.4310


16 VOJTĚCH RÖDL, ANDRZEJ RUCIŃSKI, AND MATHIAS SCHACHT

[4] A. Dudek and R. Ramadurai, Some remarks on vertex Folkman numbers for hypergraphs, Discrete Math.

312 (2012), no. 19, 2952–2957, DOI 10.1016/j.disc.2012.06.014. MR2946956 Ò4

[5] A. Dudek and V. Rödl, On the Folkman number fp2, 3, 4q, Experiment. Math. 17 (2008), no. 1, 63–67.

MR2410116 (2009a:05132) Ò1

[6] , An almost quadratic bound on vertex Folkman numbers, J. Combin. Theory Ser. B 100 (2010),

no. 2, 132–140, DOI 10.1016/j.jctb.2009.05.004. MR2595697 (2011k:05074) Ò4

[7] P. Erdős, Problems and results on finite and infinite graphs, Recent advances in graph theory (Proc.

Second Czechoslovak Sympos., Prague, 1974), Academia, Prague, 1975, pp. 183–192. (loose errata).

MR0389669 (52 #10500) Ò1

[8] P. Erdős and A. Hajnal, Research problems 2-5, J. Combinatorial Theory 2 (1967), 104-105. Ò1

[9] E. Friedgut, V. Rödl, and M. Schacht, Ramsey properties of random discrete structures, Random Struc-

tures Algorithms 37 (2010), no. 4, 407–436, DOI 10.1002/rsa.20352. MR2760356 (2012a:05274) Ò2,

4

[10] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring., SIAM J. Appl.

Math. 18 (1970), 19–24. MR0268080 (42 #2979) Ò1

[11] A. Frieze and M. Karoński, Introduction to Random Graphs, Cambridge University Press, Cambridge,

2015. Ò3

[12] R. L. Graham, On edgewise 2-colored graphs with monochromatic triangles and containing no complete

hexagon, J. Combinatorial Theory 4 (1968), 300. MR0219443 (36 #2525) Ò1, 1

[13] S. Janson, T. Łuczak, and A. Rucinski, Random graphs, Wiley-Interscience Series in Discrete Mathe-

matics and Optimization, Wiley-Interscience, New York, 2000. MR1782847 (2001k:05180) Ò2, 3

[14] H. Lefmann, A note on Ramsey numbers, Studia Sci. Math. Hungar. 22 (1987), no. 1-4, 445–446.

MR932230 (89d:05132) Ò1

[15] R. Nenadov and A. Steger, A short proof of the random Ramsey theorem, Combin. Probab. Comput.

25 (2016), no. 1, 130–144, DOI 10.1017/S0963548314000832. Ò1, 2, 2.1, 3, 4

[16] N. D. Nenov, An example of a 15-vertex p3, 3q-Ramsey graph with clique number 4, C. R. Acad. Bulgare

Sci. 34 (1981), no. 11, 1487–1489 (Russian). MR654433 (83f:05050) Ò1

[17] J. Nešetřil and V. Rödl, The Ramsey property for graphs with forbidden complete subgraphs, J. Combi-

natorial Theory Ser. B 20 (1976), no. 3, 243–249. MR0412004 (54 #133) Ò1, 4

[18] K. Piwakowski, S. P. Radziszowski, and S. Urbański, Computation of the

Folkman number Fep3, 3; 5q, J. Graph Theory 32 (1999), no. 1, 41–49,

DOI 10.1002/(SICI)1097-0118(199909)32:1<41::AID-JGT4>3.3.CO;2-G. MR1704160 (2000e:05121) Ò1

[19] S. P. Radziszowski and X. Xu, On the most wanted Folkman graph, Geombinatorics 16 (2007), no. 4,

367–381. MR2388276 Ò1

[20] V. Rödl and A. Ruciński, Threshold functions for Ramsey properties, J. Amer. Math. Soc. 8 (1995),

no. 4, 917–942, DOI 10.2307/2152833. MR1276825 (96h:05141) Ò2, 2, 3, 4

[21] , Ramsey properties of random hypergraphs, J. Combin. Theory Ser. A 81 (1998), no. 1, 1–33,

DOI 10.1006/jcta.1997.2785. MR1492867 (98m:05175) Ò4

[22] V. Rödl, A. Ruciński, and M. Schacht, Ramsey properties of random k-partite, k-uniform hypergraphs,

SIAM J. Discrete Math. 21 (2007), no. 2, 442–460, DOI 10.1137/060657492. MR2318677 (2008d:05103)

Ò2, 4

[23] , Ramsey properties of random graphs and Folkman numbers. Submitted. Ò2

http://dx.doi.org/10.1016/j.disc.2012.06.014
http://www.ams.org/mathscinet-getitem?mr=2946956
http://www.ams.org/mathscinet-getitem?mr=2410116
http://www.ams.org/mathscinet-getitem?mr=2410116
http://dx.doi.org/10.1016/j.jctb.2009.05.004
http://www.ams.org/mathscinet-getitem?mr=2595697
http://www.ams.org/mathscinet-getitem?mr=2595697
http://www.ams.org/mathscinet-getitem?mr=0389669
http://www.ams.org/mathscinet-getitem?mr=0389669
http://dx.doi.org/10.1002/rsa.20352
http://www.ams.org/mathscinet-getitem?mr=2760356
http://www.ams.org/mathscinet-getitem?mr=2760356
http://www.ams.org/mathscinet-getitem?mr=0268080
http://www.ams.org/mathscinet-getitem?mr=0268080
http://www.ams.org/mathscinet-getitem?mr=0219443
http://www.ams.org/mathscinet-getitem?mr=0219443
http://www.ams.org/mathscinet-getitem?mr=1782847
http://www.ams.org/mathscinet-getitem?mr=1782847
http://www.ams.org/mathscinet-getitem?mr=932230
http://www.ams.org/mathscinet-getitem?mr=932230
http://dx.doi.org/10.1017/S0963548314000832
http://www.ams.org/mathscinet-getitem?mr=654433
http://www.ams.org/mathscinet-getitem?mr=654433
http://www.ams.org/mathscinet-getitem?mr=0412004
http://www.ams.org/mathscinet-getitem?mr=0412004
http://dx.doi.org/10.1002/(SICI)1097-0118(199909)32:1<41::AID-JGT4>3.3.CO;2-G
http://www.ams.org/mathscinet-getitem?mr=1704160
http://www.ams.org/mathscinet-getitem?mr=1704160
http://www.ams.org/mathscinet-getitem?mr=2388276
http://dx.doi.org/10.2307/2152833
http://www.ams.org/mathscinet-getitem?mr=1276825
http://www.ams.org/mathscinet-getitem?mr=1276825
http://dx.doi.org/10.1006/jcta.1997.2785
http://www.ams.org/mathscinet-getitem?mr=1492867
http://www.ams.org/mathscinet-getitem?mr=1492867
http://dx.doi.org/10.1137/060657492
http://www.ams.org/mathscinet-getitem?mr=2318677
http://www.ams.org/mathscinet-getitem?mr=2318677


AN EXPONENTIAL-TYPE UPPER BOUND FOR FOLKMAN NUMBERS 17

[24] D. Saxton and A. Thomason, Hypergraph containers, Invent. Math. 201 (2015), no. 3, 925–992,

DOI 10.1007/s00222-014-0562-8. MR3385638 Ò1, 1, 2, 2.1, 2.1, 5, 3

[25] Th. Skolem, Ein kombinatorischer Satz mit Anwendung auf ein logisches Entscheidungsproblem, Fun-

dam. Math. 20 (1933), 254–261 (German). Ò1

[26] S. Urbański, Remarks on 15-vertex p3, 3q-Ramsey graphs not containing K5, Discuss. Math. Graph

Theory 16 (1996), no. 2, 173–179, DOI 10.7151/dmgt.1032. MR1446355 (98c:05116) Ò1

Department of Mathematics and Computer Science, Emory University, Atlanta, USA

E-mail address: rodl@mathcs.emory.edu

A. Mickiewicz University, Department of Discrete Mathematics, Poznań, Poland

E-mail address: rucinski@amu.edu.pl

Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany

E-mail address: schacht@math.uni-hamburg.de

http://dx.doi.org/10.1007/s00222-014-0562-8
http://www.ams.org/mathscinet-getitem?mr=3385638
http://dx.doi.org/10.7151/dmgt.1032
http://www.ams.org/mathscinet-getitem?mr=1446355
http://www.ams.org/mathscinet-getitem?mr=1446355

	1. Introduction
	Acknowledgment

	2. Proof of Theorem 1
	2.1. The proof of Lemma 4 – preparations
	2.2. Proof of Lemma 4 – details

	3. Relaxed Folkman numbers
	4. Hypergraph Folkman numbers
	References

