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THE RAMSEY NUMBERS

FOR A TRIPLE OF LONG CYCLES

AGNIESZKA FIGAJ AND TOMASZ  LUCZAK

Abstract. We find the asymptotic value of the Ramsey number
for a triple of long cycles, where the lengths of the cycles are large
but may have different parity.

1. Introduction

If G1, G2, . . . , Gk are graphs, then the Ramsey number R(G1, . . . , Gk)
is the smallest number N such that each coloring of the edges of the
complete graph KN on N vertices with k colors leads to a monochro-
matic copy of Gi in the ith color for some i, 1 ≤ i ≤ k. The exact
value of R(G1, . . . , Gk) is known only when all (or most) of Gi’s are
either small, or of a very special kind (cf. Radziszowski’s ‘dynamic sur-
vey’ [12]). In this paper we consider the case in which k = 3 and all
graphs are long cycles.

The value of the Ramsey number R(Cm1
, Cm2

) for a pair of cycles was
determined independently by Faudree and Schelp [5], and Rosta [13]
(see also [8]). A few years later Erdős et al. [3] found the value of
R(Cm1

, Cm2
, Cm3

) and R(Cm1
, Cm2

, Cm3
, Cm4

) when one of the cycles
is much longer than the others. Bondy and Erdős [1] (see also [2])
conjectured that if m is odd, then the value of R(Cm, Cm, Cm) is equal
to 4m − 3.  Luczak [11] used the Regularity Lemma to show that an
‘asymptotic version’ of this conjecture holds, i.e., for a large odd m we
have R(Cm, Cm, Cm) = (4 + o(1))m. Then, Kohayakawa, Simonovits
and Skokan [10] employed the Regularity Lemma to show that Bondy-
Erdős’ conjecture holds for large values of m. The asymptotic value of
the Ramsey number for a triple of long even cycles was found by Figaj
and  Luczak [6] (see Theorem 1(i) below). A similar result was proved
independently by Gyárfás et al. [7], who also found an exact solution
for a closely related problem of finding the Ramsey number for a triple
of long paths of the same length.
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Below we establish the asymptotic value of the Ramsey number for
a triple of long cycles in the non-diagonal case. As in the case of the
pair of cycles, it turns out that the value of R(Cm1

, Cm2
, Cm3

) strongly
depends on the parity of mi’s. Thus, let 〈x〉 be the maximum odd
number not larger than x and 〈〈x〉〉 denote the maximum even number
not larger than x. Then the main result of this paper can be stated as
follows.

Theorem 1. Let α1, α2, α3 > 0.

(i) R(C〈〈α1n〉〉, C〈〈α2n〉〉, C〈〈α3n〉〉) =
(0.5α1+0.5α2 +0.5α3+0.5 max{α1, α2, α3}+o(1))n ,

(ii) R(C〈〈α1n〉〉, C〈〈α2n〉〉, C〈α3n〉) =
(max{2α1 + α2, α1 + 2α2, 0.5α1 + 0.5α2 + α3} + o(1))n ,

(iii) R(C〈〈α1n〉〉, C〈α2n〉, C〈α3n〉) =
(max{4α1, α1 + 2α2, α1 + 2α3} + o(1))n ,

(iv) R(C〈α1n〉, C〈α2n〉, C〈α3n〉) = (4 max{α1, α2, α3} + o(1))n .

Let us note that the first part of the above theorem is just a reformu-
lation of the result of Figaj and  Luczak [6], while the forth one follows
rather easily from the result of  Luczak [11] (see the end of Section 2).
Thus, our main task will be to verify (ii) and (iii).

The structure of the paper is the following. In the next section
we briefly sketch our approach to the problem which follows the idea
introduced in [11]. It is based on a simple observation that, because of
the Regularity Lemma, finding large monochromatic cycles in k-colored
graphs is not much harder than finding matchings in monochromatic
components in k-colored graphs. Thus, in order to show Theorem 1,
one needs to prove a Ramsey-like result for matchings. To this end, in
Section 3 we state two structural results characterizing graphs without
large matchings. In the next section we briefly describe the way we
approach this problem and give a few technical lemmas needed for our
argument. Finally, in the next two parts of the paper, Sections 5 and
6, we prove the second and the third parts of Theorem 1, respectively.

All graphs considered in this paper are simple, without loops and
multiple edges. For a graph G = (V,E), and disjoint subsets A, B
of V , by e(A,B) = eG(A,B) we mean the number of edges {u, v} with
u ∈ A and v ∈ B. By G[A] we denote the subgraph of G induced by
A ⊆ V . Throughout the paper d(v) = dG(v) stands for the degree of
a vertex v ∈ V in a graph G = (V,E), while d(G) = 2|E|/|V | is the
average degree of (vertices in) a graph G.
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2. Cycles and matchings

Let us recall that the proof of Theorem 1 relies on a simple observa-
tion from [11] that finding a matching contained in a monochromatic
component in a ‘cluster graph’ covering an α-fraction of vertices leads
to a monochromatic cycle covering (1 + o(1))α vertices in the original
graph. Below we state this connection in a formal way. The main
technical nuisance here is that the ‘cluster graph’ used in the Regular-
ity Lemma is not complete: it lacks a small fraction of edges which,
however, can be made arbitrarily small.

In order to make our argument precise we introduce two relations
σt,s and τt,s defined in the following way. Let t, s be nonnegative inte-
gers and let a1, . . . , at+s, c be positive real numbers. Then the relation
σt,s(a1, . . . , at+s; c) holds if for every δ > 0 there exists ǫ > 0 and n0

such that for every n > n0 and any graph G on N > (1 + δ)cn vertices,
with at least N > (1− ǫ)

(

N

2

)

edges, every edge coloring of G using t+s
colors results in either an even cycle of length 〈〈ain〉〉 in the i-th color,
for some i = 1, . . . , t, or an odd cycle of length 〈ajn〉 in the j-th color,
for some j = t + 1, . . . , t + s.

In a similar way we define the relation τt,s(a1, . . . , at+s; c) which holds
if for every δ > 0 there exists ǫ > 0 and n0 such that for every n > n0

and any graph G on N > (1+δ)cn vertices, with at least N > (1−ǫ)
(

N

2

)

edges, every edge coloring of G using t + s colors results in either a
matching contained in a component of the i-th color, for some i =
1, . . . , t, saturating at least ain vertices, or a matching contained in a
non-bipartite component of the j-th color, for some j = t+1, . . . , t+s,
saturating at least ajn vertices.

Notice that if σt,s(a1, . . . , at+s; c) holds then

R(C〈〈a1n〉〉, . . . , C〈〈atn〉〉, C〈at+1n〉, . . . , C〈at+sn〉) ≤ (c + o(1))n. (1)

Indeed, inequality (1) says that the condition in definition of σt,s holds
for ǫ = 0. The following simple fact is a straightforward consequence
of the definitions of σt,s and τt,s.

Lemma 2. (i) If σt,s(a1, . . . , at+s; c) then τt,s(a1, . . . , at+s; c).
(ii) If t ≤ t′, t + s = t′ + s′, ai ≥ a′i for i = 1, . . . , t + s, and

τt,s(a1, . . . , at+s; c) holds, then we have also τt′,s′(a
′
1, . . . , a

′
t+s; c).

�

The next result, crucial for our argument, states that the relation
from Lemma 2(i) can be reversed.

Lemma 3. If τt,s(a1, . . . , at+s; c) then σt,s(a1, . . . , at+s; c).
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The proof of Lemma 3 is based on the Szemerédi’s Regularity Lemma.
Let us first recall some definition related to this result. Let G = (V,E)
be a graph and let A, B be disjoint subsets of V . We say that a pair
(A,B) is (ǫ, G)-regular for some ǫ > 0 if for every A′ ⊆ A, |A′| ≥ ǫ|A|,
and B′ ⊆ B, |B′| ≥ ǫ|B|, we have

∣

∣

∣

∣

e(A′, B′)

|A′||B′| − e(A,B)

|A||B|

∣

∣

∣

∣

< ǫ.

A partition Π = (Vi)
k
i=0 of the vertex set V of G is (ǫ, k)-equitable if

|V0| ≤ ǫ|V | and |V1| = · · · = |Vk|. An (ǫ, k)-equitable partition Π =
(Vi)

k
i=0 is (k, ǫ, G)-regular if at most ǫ

(

k

2

)

of the pairs (Vi, Vj), 1 ≤ i <
j ≤ k, are not (ǫ, G)-regular. Szemerédi’s Regularity Lemma [14] (see
also [9]) states that every graph G admits an (k, ǫ, G)-regular partition
for some k, where 1/ǫ ≤ k ≤ K0, and the constant K0 depends only
on ǫ but not on the choice of G. Below we use the following general
version of this result.

Lemma 4. For every ǫ > 0, k, and ℓ, there exists K0 = K0(ǫ, k0, ℓ)
such that the following holds. For all graphs, G1, G2, . . . , Gℓ, with
V (G1) = V (G2) = . . . = V (Gℓ) = V and |V | ≥ k0, there exists a
partition Π = (V0, V1, . . . , Vk) of V such that k0 ≤ k ≤ K0 and Π is
(k, ǫ, Gr)-regular for all r = 1, 2, . . . , ℓ. �

We shall also need the following simple property of (ǫ, G)-regular
pairs (for a similar result see, for instance, [11]).

Lemma 5. Let T ≥ 2, 0 < ǫ < 1/(100T ), and let G = (V,E) be
a bipartite graph with bipartition {V1, V2} such that |V1| = |V2| = n >
10Tǫ−2. Furthermore, let e(V1, V2) ≥ |V1||V2|/T and let the pair (V1, V2)
be (ǫ, G)-regular. Then, for every ℓ, 1 ≤ ℓ ≤ n − 5ǫn, and every pair
of vertices v′ ∈ V1, v

′′ ∈ V2, where d(v′), d(v′′) ≥ n/(5T ), G contains a
path of length 2ℓ + 1 connecting v′ and v′′. �

Now we can show Lemma 3.

Proof of Lemma 3. Let ai ≥ a′i for all i = 1, . . . , t + s and let G be a
graph with N > (1 + δ)cn vertices and at least (1− ǫ4τ (δ/2))

(

N

2

)

edges,
where ǫτ (δ/2) is a constant defined as in relation τt,s(a1, . . . , at+s; c).
Let us assume that (G1, G2, . . . , Gt+s) is a t + s-coloring of the edges
of G.

Now let ǫ = min{δ/4, ǫ4τ(δ/2)}. Apply Lemma 4 to find a partition
Π = {V0, V1, . . . , Vk} of vertices of G such that 1/ǫτ (δ/2) ≤ k ≤ K0

and Π is (k, ǫ, Gℓ)-regular for all ℓ = 1, 2, . . . , t + s.
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Let G = (V, E) be the graph with vertex set V = {V1, V2, . . . , Vk}
and

E = {{Vi, Vj} : (Vi, Vj) is (ǫ, Gℓ)-regular for ℓ = 1, 2, . . . , t + s,

and dG(Vi, Vj) ≥
1

2
|Vi||Vj|} .

Then |E| ≥ (1−ǫ2τ (δ/2))
(

k

2

)

. Construct a t+s-coloring (G1,G2, . . . ,Gt+s)
of E by coloring an edge {Vi, Vj} with the lexicographically first color
ℓ for which

eGℓ
(Vi, Vj) ≥

|Vi||Vj|
2(t + s)

.

Let k = (1 + δ/2)ck′. Then there is a color ℓ0, 1 ≤ ℓ0 ≤ t + s, such
that G contains a matching M = {e1, e2, . . . , eq} saturating 2q ≥ aℓ0k

′

vertices of G in the monochromatic component of G in the ℓ0th color;
furthermore, if ℓ0 ≥ t + 1, then this component is non-bipartite. Note
that since for every i, i = 1, 2, . . . , k, we have

|Vi| ≥
(1 + δ)cn− ǫn

k
=

(1 + δ)cn− ǫn

(1 + δ/2)ck′
≥ (1 + δ/4)

n

k′
,

the total number of vertices of G contained in the sets Vi saturated by
M is at least

aℓ0k
′|Vi| ≥ aℓ0k

′(1 + δ/4)
n

k′
= (1 + δ/4)aℓ0n ≥ (1 + 6ǫ)aℓ0n . (2)

We shall show that the subgraph spanned in G by these vertices con-
tains a monochromatic cycle in the ℓ0th color on precisely 〈〈aℓ0n〉〉 ver-
tices if 1 ≤ ℓ0 ≤ t, and with 〈aℓ0n〉 vertices if t + 1 ≤ ℓ0 ≤ t + s.

Let us assume first t + 1 ≤ ℓ0 ≤ t + s. Let us recall that G con-
tains a monochromatic component F in the ℓ0th color which con-
tains a matching M = {e1, e2, . . . , eq}, 2q ≥ aℓ0k

′, and an odd cy-

cle C = W1W2 . . .Wp′ V̂1. Observe that F contains a closed walk

W = V̂1V̂2 . . . V̂pV̂1 of an odd length, containing all edges of M. In-
deed, it is easy to see that the minimum connected subgraph of F
which contains all edges of M and a vertex V̂1 of C is a tree T . Since
clearly there is an (even) walk W ′ which traverses each edge of T pre-
cisely two times, in order to get W it is enough to enlarge W ′ by edges
of C.

Now, using elementary properties of (ǫ, G)-regular pairs, it is easy

to find in G an odd cycle C = v̂1v̂2 . . . v̂pv̂1 such that v̂i ∈ V̂i for

i = 1, . . . , p, and whenever the pair (V̂i, V̂i+1) belongs to a matching

M then both dGℓ0
({v̂i}, V̂i+1) ≥ |V̂i+1|

4(t+s)
, and dGℓ0

(V̂i, {v̂i+1}) ≥ |V̂i|
4(t+s)

.

Now we can apply Lemma 5 and replace all edges {v̂i, v̂i+1}, such that
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{V̂i, V̂i+1} belongs to M, by long paths not containing any other vertices
of C. Since, by (2), the number of vertices of G contained in Vi’s
saturated by M is larger than (1 + 6ǫ)aℓ0n, we can do it in such a way
that the resulting monochromatic cycle in the ℓ0th color has length
〈aℓ0n〉.

If 1 ≤ ℓ0 ≤ t then the argument is basically the same. Here we start
with a closed walk W in G of an even length which contains all edges
of M and, based on W, we construct an even cycle C in G. Then, as
in the previous case, one can use Lemma 5 to enlarge C to a cycle of
length 〈〈aℓ0n〉〉. �

From Lemma 2 and 3 we get the following corollary.

Corollary 6. If t ≤ t′, t + s = t′ + s′ and ai ≥ a′i for i = 1, . . . , t + s
and σt,s(a1, . . . , at+s; c) holds then we have σt′,s′(a

′
1, . . . , a

′
t+s; c). �

Let us comment that, unlike the relation σt,s(a1, . . . , at+s), we do not
know any simple proof that the Ramsey number for cycles is monotone,
e.g., although most certainly we have

R(C20, C20, C20) ≤ R(C22, C20, C20) ≤ R(C21, C20, C20)

it is by no means clear how to verify it directly (i.e., without estimat-
ing the Ramsey numbers above). However, using Corollary 6, we can
deduce Theorem 1(iv) from  Luczak’s result on R(Cn, Cn, Cn).

Proof of Theorem 1(iv). Let us assume that α1 ≥ α2 ≥ α3 > 0.  Luczak [11]
showed that σ0,3(α1, α1, α1; 4α1) holds. Thus, by Corollary 6, σ0,3(α1, α2, α3; 4α1)
holds as well and, consequently,

R(C〈α1n〉, C〈α2n〉, C〈α3n〉) ≤ (4α1 + o(1))n .

In order to show the lower bound for R(C〈α1n〉, C〈α2n〉, C〈α3n〉) consider
the following coloring of the complete graph KN on N = 4〈α1n〉 − 4
vertices. Split the vertices of KN into four equal parts V1, V2, V3, and
V4. Color the edges inside each of Vi’s with the first color, the edges
in pairs (V1, V2), (V2, V3), (V3, V4) with the second one, and the edges
in pairs (V1, V3), (V2, V4), (V1, V4) with the third color. Clearly in this
coloring we have no monochromatic cycles longer than 〈α1n〉−1 in the
first color, and no odd cycles in either the second or third color. Hence,

R(C〈α1n〉, C〈α2n〉, C〈α3n〉) ≥ 4〈α1n〉 − 3 ,

and Theorem 1(iv) follows. �
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3. Two structural results

This short section consists of two simple results on the structure of
graphs without large matchings.

Let us start with the following consequence of Tutte’s theorem ob-
served in [6]. Since it is crucial for our approach we recall its proof here
for the completeness of the argument.

Lemma 7. If a graph G = (V,E) contains no matchings saturating at
least n vertices, then there exists a partition {S, T, U} of V such that:

(i) the subgraph induced in G by T has maximum degree at most
√

|V | − 1,
(ii) there are no edges between the sets T and U ,

(iii) |U | + 2|S| < n +
√

|V |.
Proof. From Tutte’s theorem, if a graph G = (V,E) contains no match-
ings saturating at least n vertices, then there exists a subset S such
that the number of odd components in a graph G[V \ S] is larger than
|V | + |S| − n. Split the set of these components into two parts: those

with at most
√

|V | vertices and those larger than
√

|V |. The set of
vertices which belong to the components from the former family we
denote by T , the set of vertices of the component from the latter one
by U . Then, for such a partition V = S ∪ T ∪ U , (i) and (ii) clearly

hold. Moreover, since there are fewer than
√

|V | components larger

than
√

|V |, Tutte’s condition gives

|T | > |V | + |S| − n−
√

|V | ,
so that

|U | = |V | − |S| − |T | < n +
√

|V | − 2|S| ,
which gives (iii). �

Graphs without a large matching contained in a non-bipartite com-
ponent have a rather simple characterization as well (cf.  Luczak [11]).
Let us recall first a classical result of Erdős and Gallai [4].

Lemma 8. Each graph with n vertices and at least (m−1)(n−1)/2+1
edges, where 3 ≤ m ≤ n, contains a cycle of length at least m. In
particular, it contains a component with a matching saturating at least
m− 1 vertices. �

Now our second structural lemma can be stated as follows.

Lemma 9. If no non-bipartite component of a graph G = (V,E) on n
vertices contains a matching saturating at least αn vertices, then there
exists a partition V = V ′ ∪ V ′′ of V such that:
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(i) G contains no edges between sets V ′ and V ′′,
(ii) the graph G′ = G[V ′] induced in G by V ′ is bipartite,

(iii) the graph G′′ = G[V ′′] induced in G by V ′′ contains at most
0.5αn|V (G′′)| edges.

Proof. Denote by H1, . . . , Hr components of G. Let V ′ consist of the
vertices of all the components which are bipartite and V ′′ = V \ V ′.
Then, (i) and (ii) clearly hold. Note also that if any non-bipartite
component Hi has average degree larger than αn, then, by Erdős-Gallai
theorem, it contains a cycle longer than αn and thus also a matching of
size at least αn contradicting our assumption. Thus, every component
of G′′ has average degree at most αn and (iii) follows. �

4. The first look at the matching problem

Let us recall that, in order to show Theorem 1, it is enough to verify
the property τt,s(α1, α2, α3; c) for appropriately chosen t, s, t + s = 3,
and c = c(α1, α2α3, i.e., we need to prove that in every sufficiently large
three-colored ‘nearly complete’ graph G we can find a monochromatic
component containing a large matching. Lemmas 7 and 9 suggest the
following approach. Suppose that a component F = (VF , EF ) of the
subgraph G1 of G induced by the first color contains no large match-
ings. Then, using Lemma 7, one can decompose the set vertices VF of
F into three sets S, T , U . Delete from F all vertices from S. Then in
the remaining graph H = F [T ∪ U ], all edges joining T and U , as well
as all but a negligible fraction of edges contained in T , are colored with
either the second or the third color. Consequently, to study match-
ings in three-colored ‘nearly complete’ graphs, one should first study
matchings in two-colored ‘nearly complete’ graphs with ‘holes’ (in our
case the hole is the set U).

Lemma 9 suggests a similar approach. Suppose that in a ’nearly
complete’ three-colored G = (V,E) on n vertices the graph G1 induced
by the first color has average degree d(G1) = ρn > α1n yet it contains
no non-bipartite component with a matching saturating at least α1n
vertices. Then, there is a partition of the set of vertices of G3 in the
form V = W1 ∪ W2 ∪ R, where {W1,W2} is a bipartition of G′, R is
the set of vertices of G′′, and G′ and G′′ are the graphs described in
Lemma 9. Note that since d(G′′) ≤ α1n, so we must have d(G′) ≥ ρn,
and so the larger of the sets W1, W2, say W1, must have at least ρ(n)
vertices and |R| ≤ (1 − 2ρ)n. Thus, in this case, the graph F =
G[W1 ∪ R] is a ’nearly complete’ graph with nearly all of the edges,
except those contained in the hole R, colored with just two colors.
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Since our proof of Theorem 1 is based on the above idea here we state
two results, Lemmas 12 and 13, which determine the size of the largest
matchings when the edges of a ‘nearly complete graph with a hole’ are
colored with two colors. We begin however with two technical results
from [6] we state without proofs: the first one characterizes match-
ings in a ‘nearly complete’ bipartite graphs, the second one describes
matchings in ‘nearly complete’ bipartite graphs with two holes.

Lemma 10. Let G = (V,E) be a bipartite graph with bipartition
{V1, V2}, where |V1| ≥ |V2|, and at least (1 − ǫ)|V1||V2| edges, where
0 < ǫ < 0.01. Then there is a component in G of at least (1 −
3ǫ)(|V1| + |V2|) vertices which contains a matching of cardinality at
least (1 − 3ǫ)|V2|. �

Lemma 11. Let 0 ≤ ν1 ≤ ν2 ≤ 1, 0 < ǫ < 0.01ν1, N ≥ 4/ǫ, and let
U1, U2 be two, not necessarily disjoint, subsets of [N ] = {1, 2, . . . , N}
of ν1N and ν2N vertices respectively. Let G = ([N ], E) be a graph
obtained from the complete graph on the set [N ] vertices by removing
all edges contained in Ui, i = 1, 2, and, possibly, at most ǫ3

(

N

2

)

other
edges. Then G contains a component with a matching saturating at
least:

(i) (1 − 5ǫ)N vertices if |U2| ≤ N/2;
(ii) (2 − 7ǫ)N − 2|U2| vertices if |U2| ≥ N/2. �

Before we state and prove two main results of this section on match-
ings in two-colored ‘nearly complete’ graphs with holes, let us make
a simple observation we shall often use in the proof. Suppose that a
graph GW = (V,E) is obtained from the complete graph with vertex
set V by removing all edges contained in W ⊆ V . Let us color edges of
GW by two colors, and let G1, G2 be spanning subgraphs of G induced
by the first and the second color respectively. Then, either one of these
graphs is connected, or there is a partition of W = W1 ∪W2 into two
non-empty sets W1, W2 such that all edges with one end in Wi, i = 1, 2,
are colored with the ith color.

Lemma 12. For every α, β > 0, ν ≥ 0, max{α, β, ν} = 1, and 0 <
ǫ < 0.01 min{α, β}, there exists n0, such that for every n > n0 the
following holds.
Let G = (V,E) be a graph obtained from the complete graph on

N = (0.5α + 0.5β + max{ν, 0.5α, 0.5β} + 3
√
ǫ)n

vertices by removing all edges contained in a subset W ⊆ V of size νN
and no more than ǫ3n2 other edges. Then, every coloring of the edges of
G with two colors leads to either a monochromatic component colored
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with the first color containing a matching saturating at least (α + ǫ)n
vertices, or a monochromatic component of the second color containing
a matching saturating at least (β + ǫ)n vertices.

Proof. Let us consider a two-coloring of edges of a graph G which fulfills
the assumption of the lemma, and denote graphs induced by the edges
of the first and the second colors by G1 and G2 respectively. Let F
denote the largest monochromatic component in this coloring. Without
loss of generality we can assume that F is colored with the first color.
We consider two following cases.

Case 1. |F | ≥ N −√
ǫn.

Let us assume that F contains no matching saturating (α + ǫ) ver-
tices. Then one can use Lemma 7 to find a partition of the set of
vertices of F into sets S, T, U such that there are no edges of the first
color between T and U , there are at most

√
N |T | edges of the first

color contained in T , and furthermore

2|S| + |U | ≤ αn + ǫn +
√
N. (3)

Now let us consider the graph G′ = G2[T ∪ U ]. We shall show that
it contains a component with a matching saturating at least (β + ǫ)n
vertices. Since G′ is a ‘nearly complete’ graph on |T | + |U | ≥ N −√
ǫN − |S| ≥ N − 0.5αn− 2

√
ǫn. with two holes, U and W , we apply

Lemma 11. Thus, if |W |, |U | ≤ (N − |S|)/2, Lemma 11(i) implies that
there exists a component of the second color with a matching saturating
at least

N − 0.5αn− 2
√
ǫn− 5ǫN

≥ 0.5βn + max{ν, 0.5α, 0.5β} + 3
√
ǫn− 5ǫn− 2

√
ǫn

≥ βn + ǫn,

(4)

vertices. In the case in which max{|U |, |W |} ≥ (N − |S|)/2, from
Lemma 11(ii) we infer that there exists a component of the second
color with a matching saturating at least

2N − 4
√
ǫn− 7ǫN − 2|S| − 2 max{|U |, |W |}

≥ 2N − 2|S| − 2 max{|U |, |W |} − 5
√
ǫN

(5)

vertices. Thus, if |W | ≥ |U |, then using (3) we can estimate the right
hand side of (5) by

2N − 2|S| − 2|W | − 5
√
ǫN ≥ 2N − αn− ǫn−

√
N − 2νN − 5ǫN

≥ βn +
√
ǫn− 2ǫN > βn + ǫn,

(6)
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while for |U | ≥ |W | (3) gives

2N − 2|S| − 2|U | − 5
√
ǫN ≥ 2N − 2αn− 2ǫn− 2

√
N − 5ǫN

≥ βn +
√
ǫn− 6ǫN > βn + ǫn.

(7)

This completes the proof in this case.

Case 2. |F | < N −√
ǫn.

As we have already noticed in the remark preceding the statement of
the lemma, every two-coloring which does not lead to a large monochro-
matic component must have a rather special structure. Thus, let us
denote by W1 the set of vertices w1 of W such that all but at most
ǫn edges adjacent to w1 are colored with the first color, by W2 the
set of vertices w2 of W such that all but at most ǫn edges adjacent
to w2 are colored with the second color, and W0 = W \ (W1 ∪ W2).
Since in the graph G lacks at most ǫ3n2 edges joining W with V \W
we must have |W0| ≤ ǫn. Furthermore, |F | ≤ N − √

ǫn implies that
max{|W1|, |W2|} ≥ 0.5

√
ǫn.

Let us set |W1| = α′n, |W2| = β ′n. Note that |V \W | ≥ max{0.5α, 0.5β}+
3
√
ǫn, so if either α′ ≥ 0.5α + 7ǫ or β ′ ≥ 0.5β + 7ǫ, then we are done

by Lemma 10. More generally, if the graph H = G[V \ W ] contains
either a monochromatic component in the first color with a matching
saturating at least α′′n = αn − 2α′n + 15ǫn vertices, or a monochro-
matic component in the second color with a matching saturating at
least β ′′n = βn − 2β ′n + 15ǫn vertices, the assertion follows as well.
Indeed, observe first that because |W1|, |W2| > 0, all vertices of H ex-
cept at most 2ǫn belong to the component of the first color and, in
the same way, there are at most 2ǫn vertices of H which do not belong
to the large component of the second color. Thus, we can first find a
large monochromatic matching in the large component of the ith color,
i = 1, 2, and then match unsaturated vertices of this component to
vertices of Wi using Lemma 10.

Now note that every two coloring of a ‘nearly complete’ graph leads
to a large monochromatic component in one of the colors, so the Case 1
considered above covers all cases in which ν = 0. Furthermore,

0.5α′′+0.5β ′′ + max{0.5α′′, 0.5β ′′} + 3
√
ǫ

≤ 0.5α + 0.5β + max{0.5α, 0.5β} − 0.5
√
ǫ− ν + 20ǫ + 3

√
ǫ

≤ 0.5α + 0.5β + max{ν, 0.5α, 0.5β} − ν + 2.9
√
ǫ < N − ν .

Thus, Case 1 we have just proved implies that H contains either a
large component in the first color with a matching saturating at least
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α′′n vertices, or a monochromatic component in the second color with a
matching saturating at least β ′′n vertices, and the assertion follows. �

If we wish to have one of the matching in a non-bipartite monochro-
matic component, then the condition becomes slightly more compli-
cated.

Lemma 13. Let α, β > 0, ν ≥ 0, max{α, β, ν} = 1, 0 < ǫ <
0.01 min{α, β}, and let

ξ = ξ(α, β, ν) = max
{

0.5α + 0.5β + max{0.5α, 0.5β, ν},

1.5α + max{0.5α, ν}
}

.
(8)

Then, there exists n0, such that for every n > n0 the following holds.
Let G = (V,E) be a graph obtained from the complete graph on

N = (ξ + 5
√
ǫ)n vertices by removing all edges contained in a subset

W ⊆ V of size νN and no more than ǫ3n2 other edges. Then, every col-
oring of the edges of G with two colors leads to either a monochromatic
component colored with the first color containing a matching saturating
at least (α+ ǫ)n vertices, or a non-bipartite monochromatic component
of the second color containing a matching saturating at least (β + ǫ)n
vertices.

Proof. Consider a two-coloring of edges of a graph G = (V,E) which
fulfills the assumption of the lemma and let Gi, i = 1, 2, denote the
graph spanned by edges of the ith color. Since

ξ(α, β, ν) ≥ 0.5α + 0.5β + max{0.5α, 0.5β, ν},
from Lemma 12 it follows that either there exists a component of G1

which contains a matching saturating at least (α+ǫ)n vertices, or there
exists a component F2 in G2 which contains a matching saturating at
least (β + ǫ)n vertices. Thus, the assertion follows unless the compo-
nent F2 is bipartite. Hence, we shall assume that F2 is bipartite with
bipartition {Z1, Z2} and split the proof into the following two cases.

Case 1. |F2| ≥ N −√
ǫn.

Since in this case

|Z1| + |Z2| ≥ (1.5α + max{0.5α, ν} + 4
√
ǫ)n ,

for some i0 = 1, 2, we have both |Zi0 | ≥ (α + 2
√
ǫ)n and |Zi0 \W | ≥

(0.5α+
√
ǫ)n. But then, due to Lemma 10, the graph G1[Zi0 ] contains

a component with a matching saturating at least (α + ǫ)n vertices.

Case 2. |F2| < N −√
ǫn.
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Let F1 denote the largest component of G1. Let us consider first
the case when |F1| < N − √

ǫn. Then, by the remark preceding the
statement of Lemma 12, all but at most

√
ǫn vertices of V \ W are

contained in one of the sets of the bipartition of F2, say, in Z1. But
then all edges of G with both ends in Z1 are colored with the first
color and |Z1| ≥ (3α/2 +

√
ǫ)n. Consequently, by Lemma 10, there is a

component in G1 with a matching saturating at least (αn+ǫ)n vertices
and the assertion follows.

Thus, we may and shall assume that the largest component F1 =
(V1, E1) of G1 has at least N −√

ǫn vertices. Suppose that it contains
no matchings saturating at least (α + ǫ)n vertices. Let S, T, U be the
sets whose existence is assured by Lemma 7; in particular we have

2|S| + |U | ≤ αn + ǫn +
√
N. (9)

Note that the subgraph H2 = G2[T ∪U ] contains a component F ′
2 with

a matching saturating at least (β + 1.1ǫ)n vertices. Indeed, consider

graph Ĝ with the same set of vertices as F1, obtained from G by deleting
all edges of G1 with both ends in T . Then Ĝ fulfills assumptions of
Lemma 12 with ǫ′ = 1.1ǫ. On the other hand, if we color with the first
color all edges of Ĝ which have either one end in S, or both ends in U ,
we create no matching in this color saturating more than (α + 1.1ǫ)n
vertices. Hence, by Lemma 12, there must be component F ′

2 in the
second color which contains a matching saturating at least (β + 1.1ǫ)n
vertices, and, because of our construction, F ′

2 ⊆ H2.
If F ′

2 is non-bipartite we are done, so let us assume that F ′
2 is bi-

partite. Since H2 contains all edges of G joining T and U and all but
|T |

√
N edges contained in T , it is easy to see that if a graph G[T ] con-

tains a component of size, say, 10ǫn, then all but at most
√
ǫn vertices

of H2 lie in the same giant component which clearly is not bipartite.
Thus, because of Lemma 10, in order to keep F ′

2 bipartite the set T
cannot be much larger than the hole W , i.e.

|T | ≤ |W | + 10ǫn ≤ (ν + 10ǫ)n . (10)

However, from (9) and (10) it follows that

|F1| = |T | + |U | + |S| ≤ (α + ǫ + ν + 10ǫ)n +
√
N

≤ (α + ν + 2
√
ǫ)n < (1.5α + ν + 3

√
ǫ)n

< N −
√
ǫn ,

while as, we have seen, |F1| > N − √
ǫn. Thus, the component F ′

2 is
non-bipartite and the assertion follows. �
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Remark. It is easy to construct colorings which shows that the es-
timates given by Lemmas 12 and 13 are, up to epsilon terms, best
possible.

5. Triple of cycles: one odd, two even

In this part of the paper we prove Theorem 1(ii), i.e., we estimate
the Ramsey number for three long cycles, in which one is odd and the
other two have even length. Let us start however with the following
consequence of Lemma 12.

Lemma 14. Let α1 ≥ α2 > 0, 0 < ǫ < 0.01α2 and let G = (V,E) be
a graph obtained from the complete graph on |V | ≥ (2α1 + α2 + 9

√
ǫ)n

vertices by deleting at most |E| ≤ ǫ4n2 of its edges. Then there exists
n0 such that for every n ≥ n0 the following holds.
Let us suppose that the edges of G are colored with three colors which

spans graphs G1, G2, and G3, and that the graph G′ which is a union of
the bipartite components of G3 has at least (1.5α1 + 0.5α2 + 8

√
ǫ)n ver-

tices. Then, there exists either a monochromatic component of the first
color which contains a matching saturating at least (α1 + ǫ)n vertices,
or a monochromatic component of the second color with a matching
saturating at least (α2 + ǫ)n vertices.

Proof. Observe first that it is enough to prove the lemma for ‘nearly
complete’ graphs G = (V,E) with precisely |V | = (2α1 + α2 + 5

√
ǫ)n

vertices. Let G1, G2, G3 denote the graphs spanned in G by the first,
the second, and the third color, respectively. Furthermore, let G′ de-
note the bipartite graph with bipartition {X, Y }, where |X| ≥ |Y |,
which is the union of all bipartite components of G3. Let us consider a
subgraph H = (V̂ , Ê) of G whose vertex set is the set V \ Y and edges
are all edges of G which are colored with either the first or the second
color. Thus, H is a ‘nearly complete’ graph on |V̂ | = |V \ Y | vertices
with a hole W = V \ (X ∪ Y ) of size |W | = νn. Thus, to complete
the proof we need to verify if the assumptions of Lemma 12 hold for
two-colored H . To this end note that

ν ≤ 0.5α1 + 0.5α2 +
√
ǫ ,

and so

0.5ν + 0.5α1 ≥ ν − 0.5
√
ǫ .
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Thus, for the number of vertices of H we get

|V̂ | ≥ (2α1 + α2 + 9
√
ǫ)n− νn

2
+ νn

≥ (0.5α1 + 0.5α2 + 0.5ν + 0.5α1 + 4.5
√
ǫ)n

≥ (0.5α1 + 0.5α2 + max{ν, 0.5α1, 0.5α2} + 4
√
ǫ)n ,

and the assertion follows from Lemma 12. �

Now we can find the asymptotic value of R(C〈〈α1n〉〉, C〈〈α2n〉〉, C〈α3n〉).

Proof of Theorem 1(ii). Let us first estimate R(C〈〈α1n〉〉, C〈〈α2n〉〉, C〈α3n〉)
from above. From Lemma 3 it follows that to prove the upper bound in
Theorem 1(ii) it is enough to verify that for α1, α2, α3 > 0, α1 ≥ α2, and
c = max{2α1 +α2, 0.5α1 +0.5α2 +α3}, we have τ2,1(α1, α2, α3; c) holds.
Observe that we may and shall assume that max{α1, α2, α3} = 1.

Let ǫ > 0 and let G = (V,E) be a graph obtained from the complete
graph on N = (c + 10

√
ǫ)n vertices by removing at most |E| ≥ ǫ5n2

edges. Let us color edges of G with three colors and denote the sub-
graph spanned by the ith color by Gi, i = 1, 2, 3. Let us consider the
two following cases.

Case 1. α1 ≥ α3.

Then the number of vertices in G is |V | = (2α1 + α2 + 10
√
ǫ). If the

average density d(G3) of G3 is smaller than (α1 + 8
√
ǫ)n, then either

d(G1) ≥ (α1 + ǫ)n, or d(G2) ≥ (α2 + ǫ)n and the assertion follows from
Lemma 8. Thus, let us consider the case d(G3) > (α1+8

√
ǫ)n. Assume

that G3 contains no component with a matching saturated as least α3n
vertices and let G′ and G′′ be two subgraphs of G3 whose existence is
assured by Lemma 9. Note that

d(G′′) ≤ α3n < (α1 + 8
√
ǫ)n < d(G3)

and so
d(G′) ≥ d(G3) > (α1 + 8

√
ǫ)n . (11)

Since each bipartite graph with the average degree m must have at
least 2m vertices, from (11) we infer that G′ contains at least

2α1 + 16
√
ǫ > 1.5α1 + 0.5α2 + 8

√
ǫ

vertices. Now the existence of a monochromatic component with large
matching in one of the first two colors follows from Lemma 14.

Case 2. α1 ≤ α3.

In this case G has |V | = (0.5α1 +0.5α2 +α3 +10
√
ǫ)n vertices. Figaj

and  Luczak [6] (cf. Theorem 1(i)) showed that then either there exists
i0, i0 = 1, 2, such that Gi0 contains a monochromatic component in the
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i0th color with a matching saturating at least αi0n vertices, so we are
done, or there exists a component G′ in the third color which contains
a matching saturating at least

|V | − (0.5α1 + 0.5α2 +
√
ǫ)n ≥ (max{1.5α1 + 0.5α3, α3} + 9

√
ǫ)n

≥ (1.5α1 + 0.5α2 + 9
√
ǫ)n

vertices. If G′ is non-bipartite we are done again, if not then one
can apply Lemma 14 to find a monochromatic component with large
matching in one of the first two colors.

Thus, we have showed that

R(C〈〈α1n〉〉, C〈〈α2n〉〉, C〈α3n〉)

≤ (max{2α1 + α2, α1 + 2α2, 0.5α1 + 0.5α2 + α3} + o(1))n .

In order to complete the proof of Theorem 1 we need to specify
colorings which result in the matching lower bound.

Again we may and shall assume that α1 ≥ α2. Let us consider the
complete graph on

N = 2〈〈α1n〉〉 + 〈〈α2n〉〉 − 4

vertices whose vertex set is partitioned into four disjoint sets V1, V2,
V3, V4, where |V1| = |V2| = 〈〈α1n〉〉 − 1 and |V3| = |V4| = 0.5〈〈α2n〉〉 − 1.
Let us color all edges contained in one of the sets Vi’s with the first
color, all edges joining V1 and V3, and those joining V2 and V4, with
the second color, and all other edges with the third color. It is easy to
see that this coloring gives neither a cycle longer than 〈〈α1n〉〉 − 1 in
the first color, nor a cycle longer than 〈〈α2n〉〉 − 2 in the second color.
It also leads to no odd cycles in the third color. Consequently,

R(C〈〈α1n〉〉, C〈〈α2n〉〉, C〈α3n〉) ≥ 2〈〈α1n〉〉 + 〈〈α2n〉〉 − 3 .

Finally, let us consider the complete graph on

N̄ = 0.5〈〈α1n〉〉 + 0.5〈〈α2n〉〉 + 〈α3n〉 − 3

vertices whose set of vertices V̄ is split into three parts V̄1, V̄2, V̄3, where
|V̄1| = 0.5〈〈α1n〉〉 − 1, |V̄2| = 0.5〈〈α2n〉〉 − 1, and |V̄3| = 〈α3n〉 − 1. Let
us color edges of KN̄ by coloring all edges contained in V̄3 with the
third color, all edges with at least one end in V̄2 with the second color,
and all other edges with the first color. In this coloring there are no
cycles longer then 〈〈α1n〉〉 − 2 in the first color, no cycles longer then
〈〈α2n〉〉 − 2 in the second color, and no cycles longer then 〈α3n〉 − 1
colored in the third color. Thus,

R(C〈〈α1n〉〉, C〈〈α2n〉〉, C〈α3n〉) ≥ 0.5〈〈α1n〉〉 + 0.5〈〈α2n〉〉 + 〈α3n〉 − 2 .
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This completes the proof of Theorem 1(ii). �

6. Triple of cycles: two odd, one even

In this section we shall complete the proof of Theorem 1, showing
the estimates for R(C〈〈α1n〉〉, C〈α2n〉, C〈α3n〉).

Proof of Theorem 1(iii). The proof of the upper bound for R(C〈〈α1n〉〉, C〈α2n〉, C〈α3n〉)
is, again, based on Lemma 3, which states that it is enough to check
that for α1, α2, α3 > 0, where c = max{4α1, α1 + 2α2, α1 + 2α3}, we
have τ1,2(α1, α2, α3; c) holds. Note that we may and shall assume that
α2 = α3, and max{α1, α2} = 1.

Thus, for a small ǫ > 0 consider a graph G = (V,E) obtained from
the complete graph on N = (c + 15

√
ǫ)n vertices by removing at most

|E| ≥ ǫ5n2 edges. Let G1, G2, G3 be a partition of G induced by a
three-coloring of its edges. If the average degree d(G1) of G1 is larger
than (α1 + ǫ)n then, by Theorem 8, it contains also a cycle longer than
α1n+1 and so we are done. Thus, let us assume that d(G1) < (α1+ǫ)n.
Observe that c ≥ α1 + 2α2, so in this case one of the graphs G2 and
G3, say, G2, has the average degree larger than

θn = 0.5|V | − (α1 + ǫ)n ≥ (α2 + 7
√
ǫ)n .

Suppose that G2 contains no non-bipartite component saturating at
least (α2 + ǫ)n vertices. Then, one can apply to G2 Lemma 9 and
decompose it into two subgraphs G′ and G′′, where G′ is bipartite with
bipartition (X, Y ), |X| ≥ |Y | and d(G′′) ≤ α2n. Since d(G′′) ≤ α2n <
d(G2), we must have d(G′) ≥ d(G2) ≥ θn, and so |X|+ |Y | ≥ 2θn, and
|X| ≥ θn. Let us consider the graph H = (V ′, E ′) with the vertex set
V \ Y whose edges are all edges of G which are colored with the first
or the third color and either are contained in X , or join X to V \ Y .
Then H is ‘nearly complete’ graph with the hole W = V \ (X ∪ Y ),
|W | = νn, colored with two colors. We shall show that H fulfills
assumptions of Lemma 13 so that it contains either a component in the
first color containing a matching saturating at least α1n vertices, or a
non-bipartite component in the third color with a matching saturating
at least α3n vertices.

Let us consider two cases.

Case 1. α2 ≤ 1.5α1.

In this case we have |V | = (4α1 + 15
√
ǫ)n, θ ≥ 1.5α1 + 7

√
ǫ,

ν ≤ |V |/n− 2θ ≤ α1 +
√
ǫ
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and

|V ′| ≥ |V | − νn

2
+ νn = (2α1 + 0.5ν + 7

√
ǫ)n .

Thus, we have to verify that if α2 ≤ 1.5α1, and ν ≤ α1 +
√
ǫ, then for

the function ξ(α1, α2, ν) defined by (8), i.e.

ξ(α1, α2, ν) = max{α1 + 0.5α2, 0.5α1 + α2,

0.5α1 + 0.5α2 + ν, 2α1, 1.5α1 + ν} ,

we have

ξ(α1, α2, ν) ≤ 2α1 + 0.5ν +
√
ǫ .

However, the above fact follows from the definition of ξ(α1, α2, ν) and
the following five inequalities:

α1 + 0.5α2 ≤ α1 + 0.75α1 ≤ 2α1 + 0.5ν ,

0.5α1 + α2 ≤ 2α1 ≤ 2α1 + 0.5ν ,

0.5α1 + 0.5α2 + ν = 0.5α1 + 0.75α1 + 0.5ν + 0.5ν

≤ 2α1 + 0.5ν +
√
ǫ ,

2α1 ≤ 2α1 + 0.5ν ,

1.5α1 + ν = 1.5α1 + 0.5ν + 0.5ν ≤ 2α1 + 0.5ν +
√
ǫ .

Thus, the existence of a monochromatic component which contains
a large matching in either the first or the second color follows from
Lemma 13.

Case 2. α2 ≥ 1.5α1.

Here |V | = (α1+2α2+15
√
ǫ)n, θ ≥ α2+7

√
ǫ, ν ≤ α1+

√
ǫ ≤ 2

3
α2+

√
ǫ,

and

|V ′| ≥ |V | − νn

2
+ νn = (0.5α1 + α2 + 0.5ν + 7

√
ǫ)n .

Again, we check that in this case

ξ(α1, α2, ν) ≤ 0.5α1 + α2 + 0.5ν +
√
ǫ , (12)
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by the direct inspection:

α1 + 0.5α2 ≤ 0.5α1 + 5
6
α2 ≤ 0.5α1 + α2 + 0.5ν ,

0.5α1 + α2 ≤ 0.5α1 + α2 + 0.5ν ,

0.5α1 + 0.5α2 + ν = 0.5α1 + 0.5α2 + 0.5ν + 0.5ν

≤ 0.5α1 + α2 + 0.5ν +
√
ǫ ,

2α1 ≤ 0.5α1 + α2 + 0.5ν ,

1.5α1 + ν ≤ α2 + 0.5ν + 0.5ν ≤ 0.5α1 + α2 + 0.5ν +
√
ǫ .

Now we can employ Lemma 13 to complete the proof of the lower bound
for R(C〈〈α1n〉〉, C〈α2n〉, C〈α3n〉).

In order to show the lower bound for R(C〈〈α1n〉〉, C〈α2n〉, C〈α3n〉) let us
observe that the same coloring we have employed for estimating the
Ramsey number for three odd cycles in the proof of Theorem 1(iv) can
be used to show that

R(C〈〈α1n〉〉, C〈α2n〉, C〈α3n〉) ≥ 4〈α1n〉 − 3 .

Finally, let us consider the complete graph on

Ñ = 〈〈α1n〉〉 + 2〈α2n〉 − 4

vertices whose vertex set is partitioned into four parts Ṽ1, Ṽ2, Ṽ3, Ṽ4,
such that |Ṽ1| = |Ṽ2| = 0.5〈〈α1n〉〉 − 1, and |Ṽ3| = |Ṽ4| = 〈α2n〉 − 1. Let
us color all edges of KÑ contained in either Ṽ1 or Ṽ2, with the first color,

and use the same color to color all edges between the pairs Ṽ1 and Ṽ3,
and between Ṽ2 and Ṽ4, all edges contained in either Ṽ3 or Ṽ4 we color
with the second color, and all other edges with the third color. It can
be easily seen that in this coloring no cycle longer than 0.5〈〈α1n〉〉 − 2
is colored with the first color, no cycle longer than 〈α2n〉− 1 is colored
with the second color, and no odd cycle is colored with the third color.
Consequently,

R(C〈〈α1n〉〉, C〈α2n〉, C〈α3n〉) ≥ 〈〈α1n〉〉 + 2〈α2n〉 − 3 .

An analogous construction gives

R(C〈〈α1n〉〉, C〈α2n〉, C〈α3n〉) ≥ 〈〈α1n〉〉 + 2〈α3n〉 − 3 .

This completes the proof of (iii) and Theorem 1. �
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