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Abstract

In 1940 Fisher famously showed that if there exists a non-trivial (v, k, λ)-design then

λ(v−1) > k(k−1). Subsequently Bose gave an elegant alternative proof of Fisher’s result.

Here, we show that the idea behind Bose’s proof can be generalised to obtain new bounds

on the number of blocks in (v, k, λ)-coverings and -packings with λ(v − 1) < k(k − 1).

1 Introduction

Let v, k and λ be positive integers and let (V,B) be a pair where V is a v-set of points and B
is a collection of k-subsets of V , called blocks. If each pair of points occur together in at least

λ blocks, then (V,B) is a (v, k, λ)-covering. If each pair of points occur together in at most

λ blocks, then (V,B) is a (v, k, λ)-packing. If each pair of points occur together in exactly λ

blocks, then (V,B) is a (v, k, λ)-design. We refer to parameter sets (v, k, λ) that do not satisfy

3 6 k < v, and designs with such parameter sets, as trivial.

Usually we are interested in finding coverings with as few blocks as possible and packings

with as many blocks as possible. The covering number Cλ(v, k) is the minimum number of

blocks in any (v, k, λ)-covering and the packing number Dλ(v, k) is the maximum number of

blocks in any (v, k, λ)-packing. When λ = 1 we omit the subscripts. For a given k and λ, it is

obvious that Dλ(v, k) 6 Dλ(v
′, k) and Cλ(v, k) 6 Cλ(v

′, k) when v 6 v′. The classical bound

for covering numbers is the Schönheim bound [21] which states that

Cλ(v, k) >
⌈

vr

k

⌉

where r =
⌈

λ(v − 1)

k − 1

⌉

.

The classical bound for packing numbers is the Johnson bound [16] which states that

Dλ(v, k) 6
⌊

vr

k

⌋

where r =
⌊

λ(v − 1)

k − 1

⌋

.

These bounds are easily proved by observing that each point in a (v, k, λ)-covering occurs

in at least ⌈λ(v−1)
k−1

⌉ blocks and each point in a (v, k, λ)-packing appears in at most ⌊λ(v−1)
k−1

⌋
blocks. A simple proof allows each of these bounds to be improved by 1 in the case where
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λ(v − 1) ≡ 0 (mod k − 1) and λv(v − 1) ≡ 1 (mod k) (see [19], for example). Keevash’s recent

breakthrough result [17, Theorem 6.5] implies that, for a fixed k and λ, Cλ(v, k) and Dλ(v, k)

equal the improved Schönheim and Johnson bounds for all sufficiently large v. This represents

the culmination of a large amount of work on the asymptotic behaviour of covering and packing

numbers (see, for example, [6, 7, 8, 9, 10, 20]).

For packings with λ = 1 we also have the second Johnson bound [16] which states that

D(v, k)(D(v, k)−1) > x(x−1)v+2xy where x and y are the integers such that D(v, k) = xv+y

and 0 6 y < v. This implies the slightly weaker statement that

D(v, k) 6
⌊

v(k − 1)

k2 − v

⌋

.

A number of results have been proved which improve on the Schönheim bound in various

cases in which k is a significant fraction of v [1, 3, 4, 12, 25, 24]. Exact covering and packing

numbers are known for k ∈ {3, 4}. Also, exact covering numbers have been determined when

λ = 1 and v 6
13
4
k [15, 18]. For surveys on coverings and packings see [14, 19, 22]. Gordon

maintains a repository for small coverings [13].

One of the most fundamental results in the study of block designs is Fisher’s inequality [11]

which states that any non-trivial (v, k, λ)-design has at least v blocks (or, equivalently that

if there exists a non-trivial (v, k, λ)-design, then λ(v − 1) > k(k − 1)). Designs with exactly

v blocks (equivalently, those with λ(v − 1) = k(k − 1)) are called symmetric designs. Many

families of symmetric designs are known to exist, the most famous example being projective

planes.

In [2], Bose gave an elegant alternative proof of Fisher’s inequality. In this paper we show

that the idea behind Bose’s proof can be generalised to obtain new bounds on covering and

packing numbers for parameter sets with λ(v − 1) < k(k − 1). The most easily stated of our

results are as follows.

Theorem 1. Let v, k and λ be positive integers such that 3 6 k < v, and let r and d be the

integers such that λ(v − 1) = r(k − 1)− d and 0 6 d < k − 1. If d < r − λ, then

Cλ(v, k) >
⌈

v(r + 1)

k + 1

⌉

.

Theorem 2. Let v, k and λ be positive integers such that 3 6 k < v, and let r and d be the

integers such that λ(v − 1) = r(k − 1) + d and 0 6 d < k − 1. If d < r − λ, then

Dλ(v, k) 6
⌊

v(r − 1)

k − 1

⌋

.

When the hypotheses of these theorems are satisfied, the bounds they give are at least as

good as the Schönheim bound and the first Johnson bound if r < k and never improve on them

otherwise. It can be seen that each of these theorems implies Fisher’s inequality by observing

that, if there exists a (v, k, λ)-design, then Cλ(v, k) = Dλ(v, k) =
vr
k
and r = λ(v−1)

k−1
. Theorem 1

also subsumes various results from [3] and [4]. In the discussion following its proof we show that,

when k is large in comparison with i and λ, the bound of Theorem 1 exceeds the Schönheim

bound by i or more for almost half of the possible parameter sets for which r < k. In contrast,
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previous results yield improvements for only an insignificant fraction of the possible parameter

sets for which r < k.

Theorem 2 and the other theorems concerning packings in this paper are only of interest for

λ > 2, because they are invariably weaker than the second Johnson bound in the case λ = 1.

Because of this, and in order to avoid repetition, we concentrate on the case of coverings when

discussing our results.

In Section 2 we introduce the notation and preliminary results that we require, and in Section

3 we prove and discuss Theorems 1 and 2. In Section 4 we prove some results concerning m-

independent sets in edge-weighted graphs, and then in Sections 5 and 6 we use these to prove

extensions of and improvements on Theorems 1 and 2.

2 Notation and preliminary results

For a positive integer v, let [v] denote the set {1, . . . , v}. Let Ji denote the i× i all-ones matrix.

Let G be a multigraph. All multigraphs in this paper are loopless. For distinct u, w ∈ V (G),

we denote by µG(uw) the multiplicity of the edge uw. For S ⊆ V (G), we denote by G[S] the

sub-multigraph of G induced by S. The adjacency matrix A(G) of a multigraph G with vertex

set [v] is the v × v matrix whose uw entry is µG(uw) if u 6= w and 0 if u = w.

Let D be a (v, k, λ)-covering or -packing on point set [v]. For u ∈ [v], define rD(u) to

be the number of blocks of D containing u. Define a multigraph G on vertex set [v] with

µG(uw) = |rD(uw) − λ| for all distinct u, w ∈ [v], where rD(uw) is the number of blocks of

D containing both u and w. If D is a (v, k, λ)-covering then G is called the excess of D,

and if D is a (v, k, λ)-packing then G is called the leave of D. Let R be the diagonal matrix

diag(rD(1)−λ, rD(2)−λ, . . . , rD(v)−λ) and define M(D) = R+A(G) if D is a (v, k, λ)-covering

and M(D) = R−A(G) if D is a (v, k, λ)-packing. Define M∗(D) = M(D) + λJv×v.

We begin with the following observation which is a simple extension of the argument given

in the note [2].

Lemma 3. If D is a (v, k, λ)-covering or -packing on point set [v], then D has at least

rank(M∗(D)) blocks.

Proof. Let b be the number of blocks of D. Index the blocks of D with the elements of [b] and

let X = (xuy) be the v×b matrix such that xuy = 1 if point u is in block y and xuy = 0 otherwise

(X is known as the incidence matrix of D). It is not difficult to see that XXT = M∗(D). Thus,

we have

b > rank(X) > rank(XXT ) = rank(M∗(D)).

We now have a bound on the number blocks in a covering or packing D in terms of the

rank of M∗(D). In order to bound the rank of M∗(D), we shall employ Lemma 5. Lemma 5 is

an easy consequence of the following well-known generalisation the Levy-Desplanques theorem

(see [23, Theorem IV], for example).
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Lemma 4 ([23]). If B = (buw) is a t× t matrix with real entries such that, for each u ∈ [t],

∑

w∈[t]\{u}

|buw| < buu,

then det(B) > 0.

Lemma 5. If A = (auw) is a symmetric s× s matrix with real entries and there exist positive

real numbers c1, . . . , cs such that, for each u ∈ [s],

∑

w∈[s]\{u}

cw|auw| < cuauu,

then A is positive definite.

Proof. By Sylvester’s criterion it suffices to show that each leading principal minor of A has

positive determinant. Let t 6 s be a positive integer and let At be the tth leading principal

minor of A. We show that det(At) > 0. Let B = (buw) be the matrix obtained from At by

multiplying column u by cu for each u ∈ [t] and note that det(B) = c1 · · · cs det(At). Using our

hypotheses, for each u ∈ [t], we have

∑

w∈[s]\{u}

|buw| =
∑

w∈[s]\{u}

cw|auw| < cuauu = buu.

So it follows from Lemma 4 that det(B) > 0 and hence that det(At) > 0.

Note that the hypotheses of Lemma 5 can be weakened. In fact we only need to require

strict inequality for one row in each irreducible component of the matrix (see [23] for details).

In certain specific cases this strengthening can be useful. To give a small example, it can be

used to show there does not exist a (12, 4, 1)-packing with nine blocks whose leave is a 12-cycle

(if such a packing D existed then the matrix obtained from M(D) by deleting a row would be

positive definite and we could use an argument similar to the proof of Lemma 6 below to show

that D had at least eleven blocks). We will not require the stronger version for our purposes

here, however.

3 Basic bounds

We introduce some more notation and note some basic facts about coverings and packings that

we will use tacitly throughout the remainder of the paper.

Let D be a (v, k, λ)-covering or -packing on point set [v] and let G be the excess or leave

of D. Define b = b(D) to be the number of blocks of D. If D is a (v, k, λ)-covering, define

r = r(D) and d = d(D) to be the integers such that λ(v− 1) = r(k− 1)− d and 0 6 d < k− 1,

and define a = a(D) = bk − rv. If D is a (v, k, λ)-packing, define r = r(D) and d = d(D) to be

the integers such that λ(v−1) = r(k−1)+d and 0 6 d < k−1, and define a = a(D) = rv−bk.

Define Vi = Vi(D) = {u ∈ [v] : degG(u) = d + i(k − 1)} for each nonnegative integer i. The

following hold.
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• For each nonnegative integer i and each u ∈ Vi, rD(u) = r + i if D is a (v, k, λ)-covering

and rD(u) = r − i if D is a (v, k, λ)-packing.

• {V0, V1, . . .} is a partition of [v].

•
∑

u∈[v] degG(u) = dv + a(k − 1).

• |[v] \ V0| 6 a and |V0| > v − a.

All of the results in this paper are based on the following lemma. It employs Lemma 5 to

obtain a bound on the number of blocks in a covering or packing based on the structure of its

excess or leave.

Lemma 6. Let v, k and λ be positive integers such that 3 6 k < v, let D be a (v, k, λ)-covering

or -packing on point set [v], and let G be the excess or leave of D. If there is a subset S of [v]

and positive real numbers (cu)u∈S such that, for each u ∈ S,

∑

w∈S\{u}

cwµG[S](uw) < cu(rD(u)− λ)

then D has at least |S| blocks.

Proof. Let M(D) = (muw), let s = |S|, and let A be the s× s submatrix of M(D) containing

only those rows and columns indexed by S. Note that A is symmetric because M(D) is

symmetric by definition. By Lemma 5 A is positive definite because, for each u ∈ S, we have

∑

w∈S\{u}

cw|muw| =
∑

w∈S\{u}

cwµG[S](uw) < cu(rD(u)− λ) = cumuu.

Thus the matrix A + λJs is also positive definite, because the matrix Js is well known to be

positive semi-definite. So rank(A + λJs) = s and, since A + λJs is a submatrix of M∗(D),

rank(M∗(D)) > s. The result now follows from Lemma 3.

In what follows we often choose cu = 1 for each u ∈ S when applying Lemma 6, and in these

cases we will not make explicit mention of this choice when invoking the lemma. Note that a

(r′ − λ)-independent set S ′ in G where r′ 6 min({rD(u) : u ∈ S ′}) is always a valid choice for

S (m-independence is defined in the next section).

It is now a relatively simple matter to prove Theorems 1 and 2 which we restate here for

convenience.

Theorem 1. Let v, k and λ be positive integers such that 3 6 k < v, and let r and d be the

integers such that λ(v − 1) = r(k − 1)− d and 0 6 d < k − 1. If d < r − λ, then

Cλ(v, k) >
⌈

v(r + 1)

k + 1

⌉

.

Theorem 2. Let v, k and λ be positive integers such that 3 6 k < v, and let r and d be the

integers such that λ(v − 1) = r(k − 1) + d and 0 6 d < k − 1. If d < r − λ, then

Dλ(v, k) 6
⌊

v(r − 1)

k − 1

⌋

.
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Proof of Theorems 1 and 2. Suppose that D is a (v, k, λ)-covering or -packing and let G

be the excess or leave of D. Note that r = r(D) and d = d(D). Let b = b(D), a = a(D) and

V0 = V0(D). For each u ∈ V0 we have

∑

w∈V0\{u}

µG[V0](uw) 6 degG(u) = d < r − λ = rD(u)− λ.

Thus we can apply Lemma 6 with S = V0 to establish that b > |V0|. Recall that |V0| > v − a,

so b > v − a. Applying the definition of a and solving the resulting inequality for b produces

the required result.

We compare the bound given by Theorem 1 to the Schönheim bound. For a positive integer

i, the bound given by Theorem 1 will exceed the Schönheim bound by at least i whenever

d < r − λ, k > 4iλ+ 5 and 2iλ+ 1 6 r 6 k − 2iλ. To see that this is the case, observe that

v(r + 1)

k + 1
− rv

k
=

v(k − r)

k(k + 1)
>

(r − 1)(k − r)(k − 1)

λk(k + 1)
>

i(k + 3)(k − 1)

k(k + 1)
=

i(k2 + 2k − 3)

k2 + k

and that this last expression is at least i for k > 3. The first inequality holds because λv >

(r − 1)(k − 1) and the second holds because (r − 1)(k − r) > iλ(k + 3) which follows from

2iλ+1 6 r 6 k−2iλ and k > 4iλ+5 (note that the former implies (r−1)(k−r) > 2iλ(k−2iλ−1)

and the latter implies k − 2iλ− 1 >
k+3
2
).

For a fixed r in the range 2iλ + 1 6 r 6 k − 2iλ, there are at least ⌊ r−λ
λ
⌋ >

r−2λ+1
λ

values

of v such that d < r − λ. From this, it can be seen that for a given k and λ, there are at least

k−2iλ
∑

r=2iλ+1

r − 2λ+ 1

λ
=

(k − 4iλ)(k − 4λ+ 3)

2λ

integer values of v for which Theorem 1 improves the Schönheim bound by at least i. So, when

k is large in comparison with i and λ, we obtain an improvement of i or more for almost half

of the less than k2

λ
possible parameter sets for which r < k.

One interesting special case of Theorem 1 to consider is the case where λv(v − 1) + dv ≡
0 (mod k(k − 1)) and hence a (v, k, λ)-covering meeting the Schönheim bound would necessarily

have the same number of blocks on each point. In this case we have that vr
k
= λv(v−1)+dv

k(k−1)
is an

integer and so the bound of Theorem 1 exceeds the Schönheim bound by at least

⌈

v(r + 1)

k + 1

⌉

− vr

k
=
⌈

v(k − r)

k(k + 1)

⌉

.

In particular, the bound is strictly greater than the Schönheim bound whenever r < k. Setting

d = 0 gives Fisher’s inequality, setting d = 1 yields a result of Bose and Connor [3], and setting

d = 2 yields a result of Bryant, Buchanan, Horsley, Maenhaut and Scharaschkin [4]. Table

1 gives examples of parameter sets for which Theorem 1 strictly improves on the Schönheim

bound. (For all tables in this paper, the maximum value of k considered is determined only by

space considerations.)
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k v

5 17

6 20, 21, 24, 25, 26

7 23, 24, 25, 28, 29, 30, 31, 35, 36, 37

8 27, 282, 292, 33, 34, 352, 36, 39, 402, 41, 42, 43, 48, 49, 50

9 312, 32, 332, 38, 392, 40, 412, 452, 462, 47, 482, 492, 52, 53, 542, 55, 56, 57, 59, 63, 64, 65

10 352, 362, 372, 432, 442, 452, 463, 512, 522, 532, 542, 552, 59, 602, 612, 622, 63, 642, 67, 68, 69,

702, 712, 72, 73, 75, 76, 80, 81, 82

11 392, 402, 413, 482, 492, 502, 512, 572, 582, 592, 602, 612, 662, 672, 682, 692, 702, 712, 752, 76,

772, 782, 792, 80, 812, 84, 85, 86, 87, 882, 892, 90, 91, 93, 94, 95, 99, 100, 101

12 432, 442, 453, 532, 542, 553, 562, 632, 643, 652, 663, 673, 732, 742, 753, 762, 773, 782, 832, 843,

852, 862, 873, 882, 892, 932, 942, 952, 962, 972, 982, 992, 1002, 1032, 104, 105, 106, 107, 1082,

1092, 1102, 111, 113, 114, 115, 116, 120, 121, 122

Table 1: For λ = 1 and each k ∈ {3, . . . , 12}, the values of v > 13
4
k for which Theorem 1 strictly

improves on the Schönheim bound. Values of v for which the Schönheim bound is improved by

i > 2 are marked with a subscript i.

4 m-independent sets

An edge-weighted graph G is a complete (simple) graph whose edges have been assigned non-

negative real weights. We represent the weight of an edge uw in such a graph G by wtG(uw)

and we define the weight of a vertex u of G as wtG(u) =
∑

w∈V (G)\{u} wtG(uw). For S ⊆ V (G),

we denote by G[S] the edge-weighted subgraph of G induced by S. If m is a positive integer

and G is an edge-weighted graph, then a subset S of V (G) is said to be an m-independent

set in G if wtG[S](u) < m for each u ∈ S. An algorithm for finding an m-independent set in

an edge-weighted graph, which we shall call m-MAX, operates by beginning with the graph

and iteratively deleting an (arbitrarily chosen) vertex of maximum weight in the remaining

graph until all the vertex weights in the remaining graph are less than m. The vertices of this

subgraph form an m-independent set in the original graph.

A multigraph can be represented as an edge-weighted graph whose edge and vertex weights

correspond to the multiplicities of edges and degrees of vertices in the original multigraph.

Viewing multigraphs in this way, we recover the usual definitions of an m-independent set and

the algorithm m-MAX from the definitions in the preceding paragraph.

Caro and Tuza [5] established a lower bound on the size of an m-independent set yielded by

an application of m-MAX to a multigraph in terms of the degree sequence of the multigraph.

Lemma 7 below is an adaptation of this result to the setting of edge-weighted graphs. Its proof

requires no new ideas and follows the proof given in [5] closely. For a positive integer m, define

a function fm : {x ∈ R : x > 0} → {x ∈ R : 0 < x 6 1} by

fm(x) =

{

1− x
2m

, if x 6 m;
m+1
2x+2

, if x > m.

It can be seen that fm has the following properties.
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(F1) fm is continuous, convex, and monotonically decreasing.

(F2) fm(x− y)− fm(x) >
y(m+1)
2x(x+1)

for any real numbers x and y with x > m and 1 6 y 6 x.

To see that (F2) holds, observe that from the definition of fm we have

fm(x− y)− fm(x)−
y(m+ 1)

2x(x+ 1)
=











y(m+ 1)

2(x+ 1)(x+ 1− y)
− y(m+ 1)

2x(x+ 1)
, if x− y > m;

(x + 1)(x−m)(m+ y − x) +m(y − 1)(x−m)

2mx(x+ 1)
, if x− y 6 m;

and that this is nonnegative, using the facts that x > m and 1 6 y 6 x.

Lemma 7. Let m be a positive integer and let G be an edge-weighted graph in which any edge

incident with two vertices of weight at least m has weight at least 1. Then any application of

m-MAX to G will yield an m-independent set in G of size at least ⌈
∑

u∈V (G) fm(wtG(u))⌉.

Proof. Let G be a fixed edge-weighted graph and let F =
∑

u∈V (G) fm(wtG(u)). If G has only

one vertex, then F = fm(0) = 1 and the result clearly holds. Suppose by induction that the

result holds for all edge-weighted graphs with fewer vertices than G.

Let w be an arbitrary vertex of maximum weight in G. We may suppose that wtG(w) > m,

for otherwise V (G) is m-independent in G and, since fm(wtG(u)) 6 1 for each u ∈ G, we are

finished immediately. Let G′ be the graph obtained from G by deleting w and all edges incident

with w, and let F ′ =
∑

u∈V (G′) fm(wtG′(u)). If F ′ > F then, applying our inductive hypothesis,

we see that any application of m-MAX to G′ will yield an m-independent set of size at least

⌈F ′⌉ > ⌈F ⌉. Thus, because w was chosen arbitrarily, any application of m-MAX to G will yield

an m-independent set of size at least ⌈F ⌉. So it suffices to show that F ′ > F .

For nonnegative real numbers x and y with y 6 x, let f ∗
m(x, y) = fm(x− y)− fm(x). It can

be seen that

F ′ − F =

(

∑

u∈V (G)\{w}

f ∗
m(wtG(u),wtG(uw))

)

− fm(wtG(w)).

So, noting that fm(wtG(w)) = m+1
2wtG(w)+2

and that wtG(w) =
∑

u∈V (G)\{w} wtG(uw), it in fact

suffices to show that, for each u ∈ V (G),

f ∗
m(wtG(u),wtG(uw)) >

(

wtG(uw)

wtG(w)

)(

m+ 1

2wtG(w) + 2

)

. (1)

If u is a vertex of G with wtG(u) < m, then using the definition of fm we have

f ∗
m(wtG(u),wtG(uw)) = wtG(uw)

2m
and hence (1) holds because wtG(w) > m. If u is a vertex

of G with wtG(u) > m, then wtG(uw) > 1 from our hypotheses and thus, using Property

(F2) of fm, we have f ∗
m(wtG(u),wtG(uw)) > (wtG(uw)

wtG(u)
)( m+1

2wtG(u)+2
). So again (1) holds because

wtG(w) > wtG(u).

Lemma 8. Let m be a positive integer and let G be an edge-weighted graph in which any edge

incident with two vertices of weight at least m has weight at least 1. The following hold

(a) For any nonempty subset S of V (G), any application of m-MAX to G[S] will yield an

m-independent set in G[S] of size at least ⌈|S|fm(x)⌉ where x = 1
|S|

∑

u∈S wtG(u).
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(b) For any two disjoint nonempty subsets S0 and S1 of V (G), any application of m-MAX

to G[S0 ∪ S1] will yield an m-independent set in G[S0 ∪ S1] of size at least ⌈|S0|fm(x0) +

|S1|fm(x1)⌉ where xi =
1

|Si|

∑

u∈Si
wtG(u) for i ∈ {0, 1}.

Proof. We will prove (a). The proof of (b) is similar. From (F1) we know that fm is convex

and monotonically decreasing. Let S be a subset of V (G). By Lemma 7, any application

of m-MAX to G[S] will yield an m-independent set in G[S] of size at least ⌈F ⌉ where F =
∑

u∈S fm(wtG[S](u)). For any u ∈ S we have fm(wtG[S](u)) > fm(wtG(u)) because wtG[S](u) 6

wtG(u) and fm is monotonically decreasing. Thus,

F >
∑

u∈S

fm(wtG(u)) > |S|fm
(

1

|S|
∑

u∈S

wtG(u)

)

where the second inequality follows from the convexity of fm.

5 Bounds for the case d > r − λ

We require some further definitions to state our subsequent bounds concisely. For positive

integers v, k and λ such that 3 6 k < v and nonnegative real numbers α and β such that

α > β, we define

CB(v,k,λ)(α, β) =
rv(α − β) + αv

k(α− β) + 1
, where r =

⌈

λ(v − 1)

k − 1

⌉

;

and, if α > β + 1
k
,

DB(v,k,λ)(α, β) =
rv(α − β)− αv

k(α− β)− 1
, where r =

⌊

λ(v − 1)

k − 1

⌋

.

Note that the bounds given by Theorems 1 and 2 are ⌈CB(v,k,λ)(1, 0)⌉ and ⌊DB(v,k,λ)(1, 0)⌋
respectively. The next two results are technical lemmas that allow us to establish that

Cλ(v, k) > ⌈CB(v,k,λ)(α, β)⌉ and Dλ(v, k) 6 ⌊DB(v,k,λ)(α, β)⌋ for certain values of α and β.

Lemma 9. Let v, k and λ be positive integers such that 3 6 k < v. Suppose that any (v, k, λ)-

covering D has at least α|V0(D)|+β|V1(D)| blocks, where α and β are nonnegative real numbers

such that α > 2β. Then Cλ(v, k) > ⌈CB(v,k,λ)(α, β)⌉.

Lemma 10. Let v, k and λ be positive integers such that 3 6 k < v. Suppose that any (v, k, λ)-

packing D has at least α|V0(D)|+β|V1(D)| blocks, where α and β are nonnegative real numbers

such that α > 2β and α > β + 1
k
. Then Dλ(v, k) 6 ⌊DB(v,k,λ)(α, β)⌋.

Proof of Lemmas 9 and 10. Suppose that D is a (v, k, λ)-covering or -packing on point set

[v] and let G be the excess or leave of D. Let b = b(D), r = r(D), d = d(D), a = a(D),

Vi = Vi(D) for i ∈ {0, 1}, and vi = |Vi| for i ∈ {0, 1}. Note that v1 + 2(v − v0 − v1) 6 a

because degG(u) = d+ i(k − 1) for each u ∈ Vi for i ∈ {0, 1}, degG(u) > d+ 2(k − 1) for each

u ∈ V \ (V0 ∪ V1), and
∑

u∈[v] degG(u) = dv + a(k − 1). It follows that v0 >
1
2
(2v − v1 − a) and

so from our hypotheses we have

b > 1
2
α(2v − v1 − a) + βv1 =

1
2
α(2v − a)− 1

2
(α− 2β)v1.

9



Thus, because α > 2β, it follows from v1 6 |[v] \ V0| 6 a that

b > 1
2
α(2v − a)− 1

2
(α− 2β)a = αv − (α− β)a.

Applying the definition of a and solving the resulting inequality for b produces the required

result (note that α > β + 1
k
if D is a (v, k, λ)-packing).

Theorem 11. Let v, k and λ be positive integers such that 3 6 k < v, let r and d be the

integers such that λ(v − 1) = r(k − 1)− d and 0 6 d < k − 1, let n = r − λ, and suppose that

r < k. If d > n, then

Cλ(v, k) > ⌈CB(v,k,λ)(
n+1
2d+2

, n+1
2(d+k)

)⌉.

Theorem 12. Let v, k and λ be positive integers such that 3 6 k < v, let r and d be the

integers such that λ(v − 1) = r(k − 1) + d and 0 6 d < k − 1, let n = r − λ, and suppose that

r < k. If d > n, then

(a) Dλ(v, k) 6 ⌊DB(v,k,λ)(
n+1
2d+2

, 0)⌋ if k(n + 1) > 2d+ 2; and

(b) Dλ(v, k) 6 ⌊DB(v,k,λ)(
n

2d+2
, n
2(d+k)

)⌋ if nk(k − 1) > 2(d+ 1)(d+ k).

Proof of Theorems 11 and 12. Suppose that D is a (v, k, λ)-covering or -packing and let

G be the excess or leave of D. Note that r = r(D) and d = d(D). Let b = b(D), a = a(D),

Vi = Vi(D) for i ∈ {0, 1} and vi = |Vi| for i ∈ {0, 1}.
Bound 12(a). Observe that if S is an n-independent set in G[V0] then b > |S| by Lemma 6.

By Lemma 8(a), G[V0] has an n-independent set of size at least |V0|fn(d) where fn(d) =
n+1
2d+2

and hence

b >
n+ 1

2d+ 2
|V0|.

Applying Lemma 10 with α = n+1
2d+2

and β = 0 yields the desired bound (note that clearly

α > 2β and that k(n+ 1) > 2d+ 2 implies α > β + 1
k
).

Bounds 11 and 12(b). Let m = n if D is a (v, k, λ)-covering and m = n−1 if D is a (v, k, λ)-

packing. Observe that if S is an m-independent set in G[V0∪V1], then b > |S| by Lemma 6. By

Lemma 8(b), G[V0 ∪ V1] has an m-independent set of size at least |V0|fm(d) + |V1|fm(d+ k− 1)

where fm(d) =
m+1
2d+2

and fm(d+ k − 1) = m+1
2(d+k)

and hence

b >
m+ 1

2d+ 2
|V0|+

m+ 1

2(d+ k)
|V1|.

Applying Lemma 9 or 10 with α = m+1
2d+2

and β = m+1
2(d+k)

yields the appropriate bound (note

that α > 2β because k > d+2 and, if D is a (v, k, λ)-packing, that nk(k− 1) > 2(d+1)(d+ k)

implies α > β + 1
k
).

It is never the case that both Theorems 1 and 11 or both Theorems 2 and 12 apply to the

same parameter set because Theorems 1 and 2 require d < r−λ and Theorems 11 and 12 require

d > r − λ. Note that there are some parameter sets for which the bound of Theorem 12(a) is

smaller than the bound of Theorem 12(b) and others for which the reverse is true. We now
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compare the bound of Theorem 11 to the Schönheim bound. Observe that, for real numbers α

and β such that α > β > 0, we have

CB(v,k,λ)(α, β)−
rv

k
=

v(kα− r)

k(k(α− β) + 1)
. (2)

Note that if Cλ(v, k) > CB(v,k,λ)(α, β), then Cλ(v, k) > CB(v,k,λ)(α, β
′) for any 0 6 β ′ 6 β. This

is because CB(v,k,λ)(α, β) is monotonically increasing in β when kα > r, and CB(v,k,λ)(α, β
′) is

at most the Schönheim bound when kα 6 r. Setting α = n+1
2d+2

and β = n+1
2(d+k)

, we see that the

bound of Theorem 11 will match or exceed the Schönheim bound whenever k(n+1) > 2r(d+1).

Infinite families of parameter sets for which the bounds of Theorem 11 yield arbitrarily large

improvements on the Schönheim bound can be found. Suppose that λ is constant and k → ∞.

When α = n+1
2d+2

and β = n+1
2(d+k)

, (2) implies that

CB(v,k,λ)(α, β)− rv
k
= Ω( r

2

dk
)(k − 2d− 2)− O(1),

noting that v = Θ(kr), and that α − β = O(1) because α 6
1
2
and 2α > β. So, for example,

if k − 2d → ∞, d > r − λ and r = Θ(k), we will obtain arbitrarily large improvements on

the Schönheim bound. Table 2 gives examples of parameter sets for which Theorem 11 strictly

improves on the Schönheim bound.

k v

10 34

11 38

12 41, 422, 52

13 45, 46, 572

14 48, 492, 50, 61, 62, 74

15 52, 53, 542 , 65, 662, 672, 79, 802

16 55, 56, 57, 582 , 70, 71, 722 , 85, 86, 100

17 59, 60, 61, 622 , 74, 76, 772 , 90, 91, 922 , 106, 107

18 62, 63, 64, 652 , 662, 79, 80, 812 , 823, 96, 97, 982 , 113, 1142 , 130

19 66, 67, 68, 692 , 703, 83, 85, 862 , 873, 101, 102, 1032 , 1043, 119, 120, 1212 , 137, 138

20 69, 70, 71, 72, 732 , 743, 88, 89, 902 , 912, 923, 108, 1092 , 1103, 1272, 1283, 145, 1462 , 164

Table 2: For λ = 1 and each k ∈ {3, . . . , 20}, the values of v > 13
4
k for which Theorem 11

strictly improves on the Schönheim bound. Values of v for which the Schönheim bound is

improved by i > 2 are marked with a subscript i.

6 More bounds for the case d < r − λ

Lemma 13. Let v, k and λ be positive integers such that 3 6 k < v, let D be a (v, k, λ)-covering

or -packing, and let G be the excess or leave of D. Let r = r(D), let d = d(D), let Vi = Vi(D)

for i ∈ {0, 1}, and suppose d < r − λ. Let m = r − λ + 1 if D is a (v, k, λ)-covering and

m = r − λ− 1 if D is a (v, k, λ)-packing. Let c be a real number such that d
r−λ

< c < 1 and let

G∗ be the edge-weighted graph on vertex set V0 ∪ V1 such that

• wtG∗(uw) = µG(uw) for all distinct u, w ∈ V1;
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• wtG∗(uw) = cµG(uw) for all u ∈ V0, w ∈ V1; and

• wtG∗(uw) = 0 for all distinct u, w ∈ V0.

If S is an m-independent set in G∗, then D has at least |S| blocks.

We call the graph G∗ in Lemma 13 the c-reduced excess or c-reduced leave of D.

Proof. Let S be an m-independent set in G∗ and let Si = S ∩ Vi for i ∈ {0, 1}. We show that

we can apply Lemma 6 to G[S] choosing cu = c for u ∈ S0 and cu = 1 for u ∈ S1. This will

suffice to complete the proof.

If u ∈ S0, then cu = c, rD(u)− λ = r − λ, and

∑

w∈S\{u}

cwµG[S](uw) 6 degG[S](u) 6 d < c(r − λ) = cu(rD(u)− λ).

If u ∈ S1, then cu = 1, rD(u)− λ = m, and

∑

w∈S\{u}

cwµG[S](uw) =
∑

w∈S1\{u}

µG[S](uw) + c
∑

w∈S0

µG[S](uw) = wtG∗[S](u) < m = cu(rD(u)− λ),

where the inequality follows from the fact that S is an m-independent set in G∗.

Theorem 14. Let v, k and λ be positive integers such that 3 6 k < v, let r and d be the

integers such that λ(v − 1) = r(k − 1)− d and 0 6 d < k − 1, let n = r − λ, and suppose that

r < k. If d < n, then

(a) Cλ(v, k) >
⌈

CB(v,k,λ)

(

1− d2

2n(n+1)
, n+2
2(d+k)

)⌉

;

(b) Cλ(v, k) >
⌈

CB(v,k,λ)

(

1, 1− d(d+k−1)
n(n+1)

)⌉

if d >
n
2
and d(d+ k − 1) < n(n + 1); and

(c) Cλ(v, k) >
⌈

CB(v,k,λ)

(

1,
√

d(n+2)
(n+1)(n−d)

− d(d+k)
2(n+1)(n−d)

)⌉

if d < n
2
and 4(n+1)(n+2)(n−d) >

d(d+ k)2.

Theorem 15. Let v, k and λ be positive integers such that 3 6 k < v, let r and d be the

integers such that λ(v − 1) = r(k − 1) + d and 0 6 d < k − 1, let n = r − λ, and suppose that

r < k. If d < n, then

(a) Dλ(v, k) 6
⌊

DB(v,k,λ)

(

1− d2

2n(n−1)
, n
2(d+k)

)⌋

;

(b) Dλ(v, k) 6
⌊

DB(v,k,λ)

(

1, 1− d(d+k−1)
n(n−1)

)⌋

if d >
n
2
and d(d+ k − 1) < n(n− 1); and

(c) Dλ(v, k) 6

⌊

DB(v,k,λ)

(

1,
√

dn
(n−1)(n−d)

− d(d+k)
2(n−1)(n−d)

)⌋

if d < n
2
and 4n(n − 1)(n − d) >

d(d+ k)2.

Proof. Suppose that D is a (v, k, λ)-covering or -packing and let G be the excess or leave of

D. Note that r = r(D) and d = d(D). Let b = b(D), a = a(D), Vi = Vi(D) for i ∈ {0, 1} and
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vi = |Vi| for i ∈ {0, 1}. Let m = n + 1 if D is a (v, k, λ)-covering and m = n − 1 if D is a

(v, k, λ)-packing. It follows from these definitions and from r < k that k > m+ 1. Let

(αa, βa) =
(

1− d2

2mn
, m+1
2(d+k)

)

, (αb, βb) =
(

1, 1− d(d+k−1)
mn

)

, (αc, βc) =

(

1,
√

d(m+1)
m(n−d)

− d(d+k)
2m(n−d)

)

.

Note that bounds (a), (b) and (c) of the appropriate theorem can be obtained by applying

Lemma 9 or 10 with (α, β) chosen to be (αa, βa), (αb, βb) and (αc, βc) respectively. So it suffices

to show that we can apply Lemma 9 or 10 in these cases.

We first show, for each i ∈ {a, b, c} that αi > 2βi > 0 and that αi > βi +
1
k
if D is a

(v, k, λ)-packing. It is easy to check from the hypotheses and conditions of the appropriate

theorem that βi > 0 for each i ∈ {a, b, c}.
Case (a). Note that

αa − 2βa = 1− d2

2mn
− m+ 1

d+ k
=

2n(k −m− 1)(m− d) + d(n(k − 2)− d2) + dk(n− d)

2mn(d+ k)

and that the latter expression is nonnegative since k > m > d, k > d+ 2 and n > d. Also note

that, if D is a (v, k, λ)-packing,

αa − βa − 1
k
= 1− d2

2mn
− m+ 1

2(d+ k)
− 1

k
=

k(k + d)(mn− d2) + kmn(k −m− 3) + dmn(k − 2)

2kmn(d+ k)

and that the latter expression is positive since n > d and k−3 > m > d (to see that k−3 > m,

note that r 6 k − 1 and that m = n− 1 6 r − 2 since D is a packing).

Case (b). Suppose that d >
n
2
. Using this and the fact that k > m+ 1, we have

βb = 1− d(d+ k − 1)

mn
6 1− (d+ k − 1)

2m
6 1− d+m

2m
<

1

2
.

Thus αb > 2βb and, if D is a (v, k, λ)-packing, αb > βb +
1
k
.

Case (c). Note that d(m+1)
m(n−d)

<
d(d+k)
m(n−d)

because k > m + 1. So, because
√
x − x

2
6

1
2
for any

nonnegative real number x, we have that βc 6
1
2
. Thus αc > 2βc and if D is a (v, k, λ)-packing,

then αc > βc +
1
k
.

It remains to show that D has at least αiv0+βiv1 blocks for each i ∈ {a, b, c} (note that we

have just shown that βi > 0 for each i ∈ {a, b, c}). Let e be the number of edges in G that are

incident with one vertex in V0 and one vertex in V1 and note that e 6 min(v0d, v1(d+ k − 1)).

In particular, e = 0 if any of v0, v1 or d equal 0.

Let c be a real number such that c > d
n
and c is close to d

n
, let G∗ be the c-reduced excess

or c-reduced leave of D and note that
∑

u∈V0
wtG∗(u) = ce and

∑

u∈V1
wtG∗(u) 6 v1(d + k −

1)− (1− c)e. There is an m-independent set S in G∗ such that |S| > sc where, for t ∈ R,

st =







v0fm

(

te

v0

)

+ v1fm

(

d+ k − 1− (1− t)e

v1

)

, if e > 1;

v0 + v1fm(d+ k − 1), if e = 0.
(3)

The e = 0 case follows by applying Lemma 7 directly and using the fact that fm is monotonically

decreasing, and the case e > 1 follows by applying Lemma 8(b) with S0 = V0 and S1 = V1 and

again using the fact that fm is monotonically decreasing (note that v0, v1 > 1 if e > 1). By
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Lemma 13, D has at least sc blocks. So, because fm is continuous (see (F1)) and we can choose

c arbitrarily close to d
n
, D has at least sd/n blocks.

Equivalently, D has at least h(e) blocks where h is the function from the real interval

[0,min(v0d, v1(d+ k − 1))] to R defined by

h(x) =







v0fm

(

dx

nv0

)

+ v1fm

(

d+ k − 1− (n− d)x

nv1

)

, if x > 0;

v0 + v1fm(d+ k − 1), if x = 0.
(4)

Note that h is well defined because its domain is {0} in the case where v0 = 0 or v1 = 0 and

because if v1 6= 0 then x 6 v1(d+ k− 1) implies d+ k− 1− (n−d)x
nv1

> 0. We complete the proof

by showing that h(e) > αiv0 + βiv1 for each i ∈ {a, b, c}.
Observe that h is continuous because fm is continuous (see (F1)) and fm(0) = 1. Also note

that dx
nv0

< m because d < n, x 6 v0d and d 6 m. Let z = nv1(d+k−m−1)
n−d

and observe that, if

v1 6= 0, d + k − 1 − (n−d)x
nv1

6 m is equivalent to x > z. Thus, by applying the definition of fm

and simplifying we obtain

h(x) =































h1(x) = v0 + v1

(

1− d+ k − 1

2m

)

+
(n− 2d)x

2mn
if x > z and x > 0;

h2(x) = v0 +
nv2

1
(m+ 1)

2nv1(d+ k)− 2(n− d)x
− dx

2mn
if 0 < x < z;

h3(x) = v0 + v1

(

m+ 1

2(d+ k)

)

if x = 0.

(5)

We consider h1 as a function from R to R and h2 as a function from the real interval

(−∞,
nv1(d+k)

n−d
) to R. Note that h2 is continuous on this domain and that z 6

nv1(d+k)
n−d

. Differ-

entiating with respect to x we see that

h′
1(x) =

n− 2d

2mn
; and

h′
2(x) =

nv2
1
(m+ 1)(n− d)

2(nv1(d+ k)− (n− d)x)2
− d

2mn
.

So h1 is monotonically increasing if d 6
n
2
and is monotonically decreasing if d >

n
2
. Note

that, if v1, d 6= 0, then h′
2(x) has exactly one root in the domain we specified, namely y =

nv1

(

d+k
n−d

−
√

m(m+1)
d(n−d)

)

. So, if v1, d 6= 0, h2(x) is monotonically decreasing on the interval

(−∞, y] and monotonically increasing on the interval [y, nv1(d+k)
n−d

). Finally, observe that, when

v1, d 6= 0, y < z if and only if d < mn
2m+1

.

Case (a). From (5), we have that h(0) > αav0 + βav1. So we may assume that e > 0 and

hence that v0, v1, d > 1. We have

fm

(

de

nv0

)

= 1− de

2mnv0
> 1− d2

2mn
= αa

where the first equality follows from applying the definition of fm, noting that de
nv0

< m, and

the inequality follows from the fact that e 6 v0d. We also have

fm

(

d+ k − 1− (n− d)e

nv1

)

> fm(d+ k − 1) =
m+ 1

2(d+ k)
= βa

where the inequality follows from the fact that fm is monotonically decreasing (see (F1)), and

the first equality follows by applying the definition of fm, noting that d + k − 1 > m. Thus,

from (4), we have h(e) > αav0 + βav1 as required.
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Case (b). Suppose that d >
n
2
and that d(d+k−1) < mn. Note that when v1 = 0, we have from

(5) that h(0) = v0 = αbv0 + βbv1. So we may assume that v1 > 1. Because d >
n
2
> mn

2m+1
, we

have from our previous discussion of h2 that z < y and hence that h2 is monotonically decreasing

on the interval [0, z]. Because d >
n
2
, we have that h1 is monotonically decreasing. Furthermore,

d(d + k − 1) < mn implies that v1(d + k − 1) > z because v1(d + k − 1) − nv1(d+k−m−1)
n−d

=
v1
n−d

(mn − d(d + k − 1)) > 0. Thus, from (5), it follows that h(e) > h1(v1(d + k − 1)) because

e 6 v1(d+ k − 1). Applying the definition of h1 and simplifying, we have

h(e) > h1(v1(d+ k − 1)) = v0 + v1

(

1− d(d+ k − 1)

mn

)

= αbv0 + βbv1.

Case (c). Suppose that d < n
2
. Note that when v1 = 0 or d = 0, we have from (5), that

h(0) = v0 = αbv0+βbv1. So we may assume that v1, d > 1. Because d < n
2
, h1 is monotonically

increasing. Thus, the global minimum of h is at least the minimum of h2 on the interval [0, z],

and it follows from (5) and our previous discussion of h2 that this minimum is at least h2(y).

Thus we have

h(e) > h2(y) = v0 + v1

(

√

d(m+ 1)

m(n− d)
− d(d+ k)

2m(n− d)

)

= αcv0 + βcv1.

Note that in the special case where d = 0, the bound of Theorem 14(a) will usually be the

strongest of our bounds. We now give examples of infinite families of parameter sets for which

the bounds given by Theorem 14 yield arbitrarily large improvements on the bound of Theorem

1. Let λ be constant and k → ∞. For i ∈ {a, b, c}, let αi and βi be as defined in the proof of

Theorems 14 and 15 and observe that

CB(v,k,λ)(αi, βi)− CB(v,k,λ)(1, 0) =
v(kβi + r(αi − βi − 1) + αi − 1)

(k(αi − βi) + 1)(k + 1)
,

noting that βi > 0. This last expression is

Θ( r
k
)(kβi + r(αi − βi − 1))−O(1) (6)

using the facts that v = Θ(kr) and that, for each i ∈ {a, b, c}, αi 6 1 and αi − βi = Θ(1)

because αi >
1
2
and αi > 2βi. Let ∆ = kβi + r(αi − βi − 1). If r∆

k
→ ∞, then CB(v,k,λ)(αi, βi)

will become arbitrarily larger than the bound of Theorem 1.

• When (αi, βi) = (αa, βa),

∆ =
(k − r)n(n+ 1)(n+ 2)− rd2(d+ k)

Θ(r2k)
.

Thus, when k − r = Θ(k), k = o(r2) and d = o(r) the bound of Theorem 14(a) yields

arbitrarily large improvements on the bound of Theorem 1.

• When (αi, βi) = (αb, βb),

∆ = (k − r)
(

1− d(d+ k − 1)

n(n+ 1)

)

.

So when r = Θ(k), k − r = Θ(k) and n
2
6 d 6

1
2
(
√

(k − 1)2 + (4− ǫ)n2 − (k − 1)) for

some positive constant ǫ, we have 1 − d(d+k−1)
n(n+1)

= Θ(1) and hence Theorem 14(b) yields

arbitrarily large improvements on the bound of Theorem 1.
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• When (αi, βi) = (αc, βc),

∆ =
(k − r)

√
d

Θ(r2)

√

4(n+ 1)(n+ 2)(n− d)− d(d+ k)2.

Observe that when d < min(n
2
, 2n− k), we have

4(n+ 1)(n+ 2)(n− d)− d(d+ k)2 > n
2
(4(n+ 1)(n+ 2)− (d+ k)2) = Θ(r2)

where the inequality follows because d < n
2
implies (n− d) > n

2
, and the equality follows

from d < 2n− k. So when k− r = Θ(k), d < min(n
2
, 2n− k) and d → ∞, Theorem 14(c)

yields arbitrarily large improvements on the bound of Theorem 1.

Table 3 gives examples of parameter sets for which one of the bounds of Theorem 14 strictly

improves on Theorem 1.

k v

6 21

7 24, 25, 30c

8 27, 36, 41, 42, 43, 48c

9 32, 33, 40, 41, 47, 48, 49, 55, 56, 57, 62c, 63c, 64, 65

10 35, 37, 44, 45, 53, 54, 55, 63, 64, 72, 73, 77b, 78b, 79c, 80c, 81, 82

11 40, 50, 51, 60, 61, 69, 70, 71, 78c, 79c, 80, 81, 90, 91, 96b, 97c, 98c, 99c, 100, 101

12 44, 54, 55, 56, 65, 66, 67, 76, 77, 782, 86
c, 87c, 88, 89, 96b, 97c, 98, 99, 1002, 107

c, 108c,

111, 117b, 118c, 119c, 120, 121, 122

13 47, 49, 60, 70, 71, 72, 73, 82, 83, 84, 85, 95c, 96, 97, 105, 106, 107, 108, 1092, 117
c, 118,

119, 120, 121, 128b, 129c, 130c, 132, 1332, 140
c, 141c, 142c, 143, 144, 145

Table 3: For λ = 1 and each k ∈ {3, . . . , 13}, the values of v > 13
4
k for which one of the bounds

of Theorem 14 strictly improves on Theorem 1. Values of v for which the bound of Theorem

1 is improved by i > 2 are marked with a subscript i and values of v for which the bound

of Theorem 14(b) or Theorem 14(c) is strictly greater than the bound of Theorem 14(a) are

marked with a superscript b or c respectively.

7 Some exact covering numbers

This paper has focussed on establishing new lower bounds on covering numbers, but we conclude

by showing that for some parameter sets our new bounds are tight and yield exact covering

numbers. For our purposes, an affine plane of order q is a (q2, q, 1)-design. It is well known

that an affine plane of order q exists whenever q is a prime power. The following result is based

on a simple method for obtaining coverings from affine planes used in [24].

Lemma 16. Let q be an integer such that an affine plane of order q exists and let s be a positive

integer, then C(sq2, sq) 6 q2 + q.

Proof. Let (U,A) be an affine plane of order q. Obviously A has q2+q blocks. Let V = U× [s]

and let B = {A× [s] : A ∈ A}. Then (V,B) is an (sq2, sq, 1)-covering with q2 + q blocks.
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Let q be the order of an affine plane and let s be a positive integer. By Lemma 16,

C(v, sq) 6 q2+ q for any v 6 sq2. For parameter sets (v, sq, 1) where sq2− q+2 6 v 6 sq2 and

s > q− 1, the Schönheim bound is q2 + q and so we have C(v, sq) = q2 + q. For parameter sets

(v, sq, 1) where v 6 sq2 − q + 1, however, the Schönheim bound is at most q2. In the following

result we show that Theorem 1 and Theorem 11(a) allow us to conclude that C(v, sq) = q2 + q

for some parameter sets (v, sq, 1) where v 6 sq2 − q + 1.

Theorem 17. Let q > 2 be an integer such that an affine plane of order q exists and let

s be an integer such that s > 2q + 1. Then C(v, sq) = q2 + q for each integer v such that

sq2 − q + 1− z < v 6 sq2, where

z =











min
(

q − 1,
q(s− 2q − 1) + 2

q + 1

)

, if 2q + 1 6 s 6 4q + 1;

q2(s− q − 2)− q + 2

3q2 + 3q − 2
, if s > 4q + 2.

Proof. Let y be the largest integer less than z and let v′ = sq2 − q + 1− y. It suffices to show

that C(v′, sq) > q2 + q, because then, for each integer v such that v′ 6 v 6 sq2, we have

q2 + q 6 C(v′, sq) 6 C(v, sq) 6 C(sq2, sq) 6 q2 + q,

where the final inequality follows from Lemma 16.

Case 1. Suppose that 2q + 1 6 s 6 4q + 1. Then z = min(q − 1, q(s−2q−1)+2
q+1

) and it follows

from s > 2q+1 that z > 0. Observe that v′−1 = q(sq−1)−y and 0 6 y < q−1. So, applying

Theorem 1 with r = q and d = y, we have that C(v′, sq) > ⌈CB(v′,sq,1)(1, 0)⌉ where

CB(v′,sq,1)(1, 0) =
(q + 1)(sq2 − q + 1− y)

sq + 1
.

Routine calculation shows that CB(v′,sq,1)(1, 0) > q2+ q−1 if and only if y <
q(s−2q−1)+2

q+1
. Thus,

by the definition of v′, we have C(v′, sq) > q2 + q.

Case 2. Suppose that s > 4q + 2. Then z = q2(s−q−2)−q+2
3q2+3q−2

and it follows from s > 4q + 2 that

z > q− 1. Observe that v′− 1 = q(sq− 1)− y and q− 1 6 y < sq− 1 (note that y < z and it is

easy to verify that z 6 sq − 1). So, applying Theorem 11 with r = q and d = y, we have that

C(v′, sq) > ⌈CB(v′,sq,1)(
q

2y+2
, q
2(y+sq)

)⌉. Thus, by the discussion following Theorems 11 and 12,

C(v′, sq) > CB(v′,sq,1)(
q

2y+2
, 0) =

q(q + 1)(sq2 − q + 1− y)

sq2 + 2y + 2
.

Routine calculation shows that CB(v′,sq,1)(
q

2y+2
, 0) > q2 + q − 1 if and only if y <

q2(s−q−2)−q+2
3q2+3q−2

.

Thus, by the definition of v′, we have C(v′, sq) > q2 + q.

The results given by Theorem 17 when q = 2 or q = 3 are already established, because exact

covering numbers are known for parameter sets (v, k, 1) with v 6
13
4
k [15, 18]. In Theorem 17,

z = Θ(s) as q → ∞ if s > 4q+2. This constitutes an improvement on a result of Todorov (see

[25, Corollary 4.5]). At the expense of more complication, a stronger result could be obtained

by not making the simplification C(v′, sq) > CB(v′,sq,1)(
q

2y+2
, 0) and by also employing Theorem

14(a). Table 4 gives examples of parameter sets for which Theorem 17 establishes exact covering

numbers.
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k q v k q v k q v k q v

36 4 141 75 5 368, . . . , 371 105 5 518, . . . , 521 128 4 502, . . . , 509

40 4 156, 157 76 4 298, . . . , 301 7 729 130 5 641, . . . , 646

44 4 172, 173 80 4 314, . . . , 317 108 4 424, . . . , 429 132 4 518, . . . , 525

48 4 187, . . . , 189 5 393, . . . , 396 110 5 542, . . . , 546 133 7 922, . . . , 925

52 4 203, . . . , 205 84 4 329, . . . , 333 112 4 439, . . . , 445 135 5 666, . . . , 671

55 5 271 85 5 418, . . . , 421 7 777, 778 136 4 534, . . . , 541

56 4 219, . . . , 221 88 4 345, . . . , 349 115 5 567, . . . , 571 8 1081

60 4 235, . . . , 237 90 5 443, . . . , 446 116 4 455, . . . , 461 140 4 550, . . . , 557

5 295, 296 92 4 361, . . . , 365 119 7 826, 827 5 691, . . . , 696

64 4 251, . . . , 253 95 5 468, . . . , 471 120 4 471, . . . , 477 7 970, . . . , 974

65 5 320, 321 96 4 377, . . . , 381 5 592, . . . , 596 144 4 565, . . . , 573

68 4 267, . . . , 269 100 4 392, . . . , 397 124 4 487, . . . , 493 8 1144, 1145

70 5 344, . . . , 346 5 493, . . . , 496 125 5 616, . . . , 621 145 5 715, . . . , 721

72 4 282, . . . , 285 104 4 408, . . . , 413 126 7 874, . . . , 876 147 7 1018, . . . , 1023

Table 4: For each k ∈ {3, . . . , 147} and each choice of q > 4, the values of v for which Theorem

17 establishes that C(v, k, 1) = q2+q, excluding those for which this is implied by the Schönheim

bound.

8 Conclusion

It is worth noting that, via Lemma 6, improved bounds on the size of m-independent sets in

multigraphs immediately translate to improved bounds on packing and covering numbers. The

techniques employed in this paper may also produce useful results when applied to coverings and

packings with blocks of various sizes. As mentioned in the discussion following it, Lemma 5

need not require strict inequality in every row of the matrix. This raises the possibility of

obtaining stronger results on coverings and packings in the special case where d = r−λ. There

is also the potential to find further examples of coverings and packings meeting the new bounds

and hence to exactly determine more covering and packing numbers. More speculatively, there

is the possibility of attempting to obtain similar results for t-(v, k, λ)-coverings and packings

for t > 3.
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