
ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS
ON GRAPHS WITH GEOMETRIC REPRESENTATIONS

TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

Abstract. The main goal of this paper is to formalize and explore a connection be-
tween chromatic properties of graphs with geometric representations and competitive
analysis of on-line algorithms, which became apparent after the recent construction
of triangle-free geometric intersection graphs with arbitrarily large chromatic number
due to Pawlik et al. We show that on-line graph coloring problems give rise to classes
of game graphs with a natural geometric interpretation. We use this concept to esti-
mate the chromatic number of graphs with geometric representations by finding, for
appropriate simpler graphs, on-line coloring algorithms using few colors or proving
that no such algorithms exist.

We derive upper and lower bounds on the maximum chromatic number that
rectangle overlap graphs, subtree overlap graphs, and interval filament graphs (all
of which generalize interval overlap graphs) can have when their clique number is
bounded. The bounds are absolute for interval filament graphs and asymptotic of
the form (log logn)f(ω) for rectangle and subtree overlap graphs, where f(ω) is a
polynomial function of the clique number and n is the number of vertices. In particular,
we provide the first construction of geometric intersection graphs with bounded clique
number and with chromatic number asymptotically greater than log logn.

We also introduce a concept of Kk-free colorings and show that for some geometric
representations, K3-free chromatic number can be bounded in terms of clique number
although the ordinary (K2-free) chromatic number cannot. Such a result for segment
intersection graphs would imply a well-known conjecture that k-quasi-planar geometric
graphs have linearly many edges.

1. Introduction

Graphs represented by geometric objects have been attracting researchers for many
reasons, ranging from purely aesthetic to practical ones. A problem which has been
extensively studied for this kind of graphs is proper coloring: given a family of objects,
one wants to color them with few colors so that any two objects generating an edge
of the graph obtain distinct colors. The off-line variant of the problem, in which the
entire graph to be colored is known in advance, finds practical applications in areas like
channel assignment, map labeling, and VLSI design. The on-line variant, in which the
graph is being revealed piece by piece and the coloring agent must make irrevocable
decisions without knowledge of the entire graph, is a common model for many scheduling
problems. A natural connection between the two variants, which is discussed in this

A journal version of this paper appeared in Combinatorica, in press.
A preliminary version of this paper appeared as: Coloring relatives of interval overlap graphs via

on-line games, in: Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (eds.), 41st
International Colloquium on Automata, Languages, and Programming (ICALP 2014), part I, vol. 8572
of Lecture Notes Comput. Sci., pp. 738–750, Springer, Berlin, 2014.

Tomasz Krawczyk and Bartosz Walczak were partially supported by National Science Center of
Poland grant 2011/03/B/ST6/01367. Bartosz Walczak was partially supported by Swiss National
Science Foundation grant 200020-144531.

1

ar
X

iv
:1

40
2.

24
37

v4
 [

cs
.D

S]
 2

9
D

ec
 2

01
6

http://doi.org/10.1007/s00493-016-3414-x
http://doi.org/10.1007/978-3-662-43948-7_61
http://doi.org/10.1007/978-3-662-43948-7_61
http://doi.org/10.1007/978-3-662-43948-7_61
http://doi.org/10.1007/978-3-662-43948-7_61

2 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

paper, allows us to establish new bounds on the chromatic number in various classes of
graphs by analyzing the on-line problem in much simpler classes of graphs.

We write χ, ω and n to denote the chromatic number, the clique number (maximum
size of a clique), and the number of vertices of a graph under consideration, respectively.
If χ = ω holds for a graph G and all its induced subgraphs, then G is perfect. A class of
graphs G is χ-bounded or near-perfect if there is a function f : N→ N such that every
graph in G satisfies χ 6 f(ω). All graphs that we consider are finite.

Geometric intersection and overlap graphs. Any finite family of sets F gives
rise to two graphs with vertex set F : the intersection graph, whose edges connect
pairs of intersecting members of F , and the overlap graph, whose edges connect pairs
of members of F that overlap, that is, intersect but are not nested. In this paper,
we do not want to distinguish isomorphic graphs, and hence we call a graph G an
intersection/overlap graph of F if there is a bijective mapping µ : V (G)→ F such that
uv ∈ E(G) if and only if µ(u) and µ(v) intersect/overlap. Depending on the context,
we call the mapping µ or the family F an intersection/overlap model or representation
of G. Ranging over all representations of a particular kind, for example, by sets
with a specific geometric shape, we obtain various classes of intersection and overlap
graphs. Prototypical examples are interval graphs and interval overlap graphs, which
are intersection and overlap graphs, respectively, of closed intervals in R. Interval
overlap graphs are the same as circle graphs—intersection graphs of chords of a circle.

Interval graphs are well known to be perfect. Interval overlap graphs are no longer
perfect, but they are near-perfect: Gyárfás [17] proved that every interval overlap
graph satisfies χ = O(ω24ω), which was improved to χ = O(ω22ω) by Kostochka [21],
and further to χ = O(2ω) by Kostochka and Kratochvíl [23] (specifically, they proved
χ 6 50 ·2ω−32ω−64, which was later improved to χ 6 21 ·2ω−24ω−24 by Černý [7]).
Currently the best lower bound on the maximum chromatic number of an interval overlap
graph with clique number ω is Ω(ω logω), due to Kostochka [21]. The exponential gap
between the best known upper and lower bounds remains open for over 30 years. For
triangle-free interval overlap graphs, the bound is χ 6 5 [21], and it is tight [3].

An overlap model is clean if it has no three sets such that two overlapping ones
both contain the third one. An overlap graph is clean if it has a clean overlap model.
Clean overlap graphs are often much easier to color than general (non-clean) ones. For
example, Kostochka and Milans [24] proved that clean interval overlap graphs satisfy
χ 6 2ω − 1. In this paper, several upper bounds on the chromatic number are proved
first for clean overlap graphs and then (with weaker bounds) for general overlap graphs.

Intervals in R are naturally generalized by axis-parallel rectangles in R2 and by
subtrees of a tree, which give rise to the following classes of graphs:

• chordal graphs—intersection graphs of subtrees of a tree, originally defined as graphs
with no induced cycles of length greater than 3, see [14],
• subtree overlap graphs—overlap graphs of subtrees of a tree, introduced in [15],
• rectangle graphs—intersection graphs of axis-parallel rectangles in the plane,
• rectangle overlap graphs—overlap graphs of axis-parallel rectangles in the plane.

Chordal graphs are perfect. Rectangle graphs are near-perfect: Asplund and Grün-
baum [4] proved that every rectangle graph satisfies χ = O(ω2) (specifically, they
proved χ 6 4ω2 − 3ω, which was later improved to χ 6 3ω2 − 2ω − 1 by Hendler [19]).

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 3

Kostochka [22] claimed existence of rectangle graphs with chromatic number 3ω, and
no better construction is known.

Rectangle overlap graphs are no longer near-perfect: Pawlik et al. [29] presented a con-
struction of triangle-free rectangle overlap graphs with chromatic number Θ(log logn).
This construction works also for a variety of other geometric intersection graphs [29, 30]
and is used in all known counterexamples to a conjecture of Scott on graphs with an
excluded induced subdivision [8]. Actually, it produces graphs that we call interval
overlap game graphs, which form a subclass of rectangle overlap graphs, segment inter-
section graphs, and subtree overlap graphs. This implies that subtree overlap graphs
are not near-perfect either. Interval overlap game graphs play an important role in this
paper, but their definition requires some preparation, so it is postponed until Section 6.
It is proved in [25] that triangle-free rectangle overlap graphs have chromatic number
O(log logn), which matches the above-mentioned lower bound. It is worth noting that
intersection graphs of axis-parallel boxes in R3 are not near-perfect either: Burling [6]
constructed such graphs with no triangles and with chromatic number Θ(log logn). We
reprove Burling’s result in Section 3.

Interval filament graphs are intersection graphs of interval filaments, which are
continuous non-negative functions defined on closed intervals with value zero on the
endpoints. Interval filament graphs were introduced in [15] as a generalization of
interval overlap graphs, polygon-circle graphs, chordal graphs and co-comparability
graphs. Every interval filament graph is a subtree overlap graph [9], and the overlap
graph of any collection of subtrees of a tree T intersecting a common path in T is an
interval filament graph [9]. We comment more on this in Section 6. An interval filament
graph is domain-non-overlapping if it has an intersection representation by interval
filaments whose domains are pairwise non-overlapping intervals.

Outerstring graphs are intersection graphs of curves in a halfplane with one endpoint
on the boundary of the halfplane. Every interval filament graph is an outerstring graph.

String graphs are intersection graphs of arbitrary curves in the plane. Every graph
of any class considered above is a string graph. For example, a rectangle overlap graph
can be represented as an intersection graph of boundaries of rectangles, and a subtree
overlap graph defined by subtrees of a tree T can be represented as the intersection
graph of closed curves encompassing these subtrees in a planar drawing of T . The best
known upper bound on the chromatic number of string graphs is (logn)O(logω), due to
Fox and Pach [13].

The following diagram illustrates the inclusions between most of the classes defined
above:

interval overlap graphs = circle graphs

interval overlap game graphs interval filament graphs

rectangle overlap graphs subtree overlap graphs outerstring graphs

string graphs

Results. Here is the summary of the results of this paper. In what follows, we write
Oω and Θω to denote asymptotics with ω fixed as a constant.

4 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

Theorem 1.1.
(1) Every interval filament graph satisfies χ 6 g(ω)

(ω+1
2

)
, where g(ω) denotes the upper

bound on the chromatic number of interval overlap graphs with clique number ω.
(2) Every domain-non-overlapping interval filament graph satisfies χ 6

(ω+1
2

)
.

(3) There are domain-non-overlapping interval filament graphs with χ =
(ω+1

2
)
.

Theorem 1.2.
(1) Every subtree overlap graph satisfies χ = Oω((log logn)(

ω
2)).

(2) Every clean subtree overlap graph satisfies χ = Oω((log logn)ω−1).
(3) There are clean subtree overlap graphs with χ = Θω((log logn)ω−1). Consequently,

there are string graphs with χ = Θω((log logn)ω−1).

Theorem 1.3.
(1) Every rectangle overlap graph satisfies χ = Oω((log logn)ω−1).
(2) Every clean rectangle overlap graph satisfies χ = Oω(log logn).

The aforementioned result of Pawlik et al. [29] complements Theorem 1.3 in line with
Theorems 1.1 and 1.2, showing that its statement (2) is asymptotically tight:

(3) ([29]) There are clean rectangle overlap graphs with ω = 2 and χ = Θ(log logn).

The special case of Theorem 1.3 (1)–(2) for ω = 2 was proved in [25]. The Pawlik
et al. result (3) above implies Theorem 1.2 (3) for ω = 2, which we comment on in
Section 6. Theorem 1.2 (3) provides the first construction of string graphs with bounded
clique number and with chromatic number asymptotically greater than log logn.

Theorem 1.1 (1) asserts in particular that the class of interval filament graphs is
χ-bounded. This is also implied by a recent result of Rok and Walczak [32] that the
class of outerstring graphs is χ-bounded, which is proved using different techniques
leading to an enormous bound on the chromatic number. Here, by contrast, the bound
is pretty good. For instance, it follows that triangle-free interval filament graphs have
chromatic number at most 15. The fact that the class of interval filament graphs is
χ-bounded implies that it is a proper subclass of the class of subtree overlap graphs, as
the latter is not χ-bounded. However, we are not aware of any reasonably small graph
witnessing proper inclusion between these two classes. The example resulting from the
bounds on the chromatic number (for ω = 2) has more than 2214 vertices.

A Kk-free coloring of a graph G is a coloring of the vertices of G such that every color
class induces a Kk-free subgraph of G. A K2-free coloring is just a proper coloring. The
Kk-free chromatic number, denoted by χk, is the minimum number of colors sufficient
for a Kk-free coloring of the graph. Our interest in Kk-free colorings comes from an
attempt to prove the so-called quasi-planar graph conjecture, which is discussed at the
end of this section. The proof of Theorem 1.3 (2) gives the following as a by-product.

Theorem 1.4. Every clean rectangle overlap graph satisfies χ3 = Oω(1).

On the other hand, Theorem 1.2 (2)–(3) implies that for every k > 2, there are clean
subtree overlap graphs (and thus string graphs) with ω = k and χk = Θk(log logn). To
see this, consider any Kk-free coloring of a clean subtree overlap graph with ω = k

and χ = Θk((log logn)k−1) guaranteed by Theorem 1.2 (3). Every color class induces a
clean subtree overlap graph with ω 6 k − 1 and therefore, by Theorem 1.2 (2), with
χ = Ok((log logn)k−2). Hence, there must be at least Θk(log logn) color classes.

The proofs of the upper bounds in Theorems 1.1–1.4 are constructive—they can be
used to design polynomial-time coloring algorithms that use the claimed number of

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 5

colors. These algorithms require that the input graph is provided together with its
geometric representation. Constructing a representation is at least as hard as deciding
whether a representation exists (the recognition problem), which is NP-complete for
interval filament graphs [31], and whose complexity is unknown for subtree overlap
graphs and rectangle overlap graphs.

Methods. All our proofs heavily depend on a correspondence between on-line graph
coloring problems and off-line colorings of so-called game graphs, which originates from
considerations in [25, 29] and which we formalize in the next section. It allows us to
reduce problems of estimating the maximum possible chromatic number in classes of
geometric intersection graphs to designing coloring algorithms or adversary strategies for
the on-line coloring problem in much simpler classes of graphs. For classes of geometric
intersection graphs with bounded clique number and unbounded chromatic number,
this is the only approach known to give upper bounds on the chromatic number better
than single logarithmic (with respect to n).

In Section 3, we illustrate the concept of game graphs on two short examples. First,
we construct rectangle graphs with chromatic number 3ω − 2, which is only less by 2
than Kostochka’s claimed but unpublished lower bound of 3ω. Second, we reproduce
Burling’s construction of triangle-free intersection graphs of axis-parallel boxes in R3

with χ = Θ(log logn). Later sections contain the proofs of Theorems 1.1–1.4.
The proof of Theorem 1.1 relies on a result of Felsner [11], which determines precisely

the competitiveness of the on-line coloring problem on incomparability graphs of up-
growing partial orders. The proofs of Theorems 1.2 and 1.3 rely on the coloring
algorithm and the adversary strategy for the on-line coloring problem on forests. A
well-known adversary strategy due to Bean [5], later rediscovered by Gyárfás and Lehel
[18], forces any on-line coloring algorithm to use at least c colors on a forest with at
most 2c−1 vertices. This is tightly matched by the algorithm called First-fit, discussed
in Section 7, which colors every n-vertex forest on-line using at most blog2 nc+ 1 colors.
A reduction to on-line coloring of forests is a final step in the proofs of Theorem 1.2 (2)
and Theorem 1.3 (2). Bean’s adversary strategy underlies the results of [29, 30], in
particular, Theorem 1.3 (3), whereas a generalization of Bean’s strategy, which is
presented in Section 8, underlies Theorem 1.2 (3).

An important ingredient in the proofs of Theorem 1.2 (1) and Theorem 1.3 (1) is a
generalized breadth-first search procedure, which we call k-clique breadth-first search
and which may be of independent interest. It allows us to reduce the respective coloring
problem to clean overlap graphs in a similar way as the ordinary breadth-first search
does when ω = 2 [17, 25]. This is discussed in detail in Section 5.

Problems. The following problem, posed in [30], remains open: estimate (asymptoti-
cally with respect to n) the maximum possible chromatic number for triangle-free seg-
ment intersection graphs or, more generally, segment intersection graphs with bounded
clique number. We believe the answer is Oω((log logn)c) for some constant c > 1. For
the analogous problem for string graphs, we believe the answer is Oω((log logn)f(ω))
for some function f : N→ N with f(ω) > ω − 1. The first step of the proof of Theorem
1.3 (2) is a reduction from clean rectangle overlap graphs to interval overlap game
graphs (see Lemma 6.1). The main challenge in applying the on-line approach to the
problems above lies in devising an analogous reduction from segment or string graphs
to game graphs of an appropriate on-line graph coloring problem.

6 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

An exciting open problem related to geometric intersection graphs concerns the
number of edges in k-quasi-planar graphs. A graph drawn in the plane is k-quasi-
planar if no k edges cross each other in the drawing. Pach, Shahrokhi and Szegedy
[28] conjectured that k-quasi-planar graphs have Ok(n) edges. For k = 2, this asserts
the well-known fact that planar graphs have O(n) edges. The conjecture is also proved
for k = 3 [2, 27] and k = 4 [1], but it remains open for k > 5. The best known upper
bounds on the number of edges in a k-quasi-planar graph with k > 5 are n(logn)O(log k)

in general [12, 13] and Ok(n logn) if the edges are drawn as straight-line segments
[35] or 1-intersecting curves [34]. If we can prove that the intersection graph of the
edges of a k-quasi-planar graph G satisfies χ3 = Ok(1) (or χ4 = Ok(1)), then it will
follow that G has Ok(n) edges, as each color class in a K3-free (K4-free) coloring of
the edges of G is itself a 3-quasi-planar (4-quasi-planar) graph and therefore has O(n)
edges. The construction of triangle-free segment intersection graphs with arbitrarily
large chromatic number [30] implies that such an approach cannot succeed when we
ask for a proper coloring of the edges instead of a K3-free (K4-free) coloring. In view
of the remark after Theorem 1.4, neither can it succeed for Kk-free colorings when
the edges of G are allowed to cross arbitrarily many times. Nevertheless, Theorem 1.4
suggests a substantial difference between proper and triangle-free colorings of geometric
intersection graphs, which makes this approach appealing for k-quasi-planar graphs
whose edges are drawn as straight-line segments or, more generally, 1-intersecting curves.

Finally, an interesting challenge is to close the asymptotic gap between the up-
per bounds of Oω((log logn)(

ω
2)) and Oω((log logn)ω−1) and the lower bounds of

Ωω((log logn)ω−1) and Ω(log logn), respectively, on the maximum chromatic number
of subtree and rectangle overlap graphs. We believe that the lower bounds are cor-
rect. A problem of similar flavor is to prove the analogue of Theorem 1.4 for rectangle
overlap graphs that are not clean.

2. On-line graph coloring games and game graphs

The on-line graph coloring game is played by two deterministic players: Presenter
and Algorithm. It is played in rounds. In each round, Presenter adds a new vertex to
the graph and declares whether or not it has an edge to each of the vertices presented
before. As a response, in the same round, Algorithm colors this vertex keeping the
property that the coloring is proper. Imposing additional restrictions on Presenter’s
moves gives rise to many possible variants of the on-line graph coloring game. Typical
kinds of such restrictions look as follows:
(i) The graph G being built by Presenter keeps belonging to a specific class of graphs
G. It is reasonable to require that the class G is hereditary (closed under taking
induced subgraphs).

(ii) In addition to G, Presenter builds a mapping µ : V (G)→ C called a representation
of G in some class of objects C, and the edges of G are defined in terms of µ.

(iii) In addition to G, Presenter builds relations R1, . . . , Rr on V (G), and the edges of
G are defined in terms of R1, . . . , Rr.

(iv) There can be some further restrictions relating µ, R1, . . . , Rr, and the order in
which the vertices are presented.

The final graph to be built by Presenter is not fixed in advance and can depend
on the decisions taken by Algorithm when coloring vertices. However, the decisions
of both players are irrevocable: Presenter cannot change the part of the graph, the

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 7

representation, or the relations after they have been presented, and Algorithm cannot
change the colors after they have been assigned. The goal of Algorithm is to keep using
as few colors as possible, while Presenter wants to force Algorithm to use as many colors
as possible. The value of such a game is the minimum number c such that Algorithm
has a strategy to color any graph that can be presented in the game using at most c
colors or, equivalently, the maximum number c such that Presenter has a strategy to
force Algorithm to use at least c colors regardless of how Algorithm responds.

We call any variant of the on-line graph coloring game simply an on-line game, and
any coloring strategy of Algorithm simply an on-line algorithm. We let ≺ denote the
order in which the vertices are presented. It is envisioned as going from left to right.

Now, we explain the crucial concept of our paper—game graphs. Let G be an on-line
game with representation µ in a class C and with relations R1, . . . , Rr. If a graph G, a
particular representation µ : V (G)→ C, and particular relations R1, . . . , Rr on V (G)
are allowed to be presented in n rounds of the game G in such a way that the vertices are
presented in a particular order ≺ on V (G), then we call the tuple G,µ,R1, . . . , Rr,≺ an
n-round presentation scenario in G. We define the class of game graphs associated with
G as follows. A graph G is a game graph of the on-line game G if there exist a rooted
forest F on V (G), a mapping µ : V (G)→ C, and relations R1, . . . , Rr on V (G) such that
(a) for every v ∈ V (G), the subgraph G[V (Pv)] of G induced on the vertices of the

path Pv in F from a root to v, the representation µ restricted to V (Pv), the
relations R1, . . . , Rr restricted to V (Pv), and the order ≺ of vertices along Pv form
a valid |V (Pv)|-round presentation scenario in G,

(b) if uv ∈ E(G), then u is an ancestor of v or v is an ancestor of u in F .
For any two distinct vertices u and v of a game graph, we let u ≺ v denote that u
is an ancestor of v in F . Therefore, the order of presentation ≺ in the on-line game
and the relation ≺ in the game graph correspond to each other in the same way as
the relations R1, . . . , Rr do in the on-line game and in the game graph. A game graph
can be envisioned as a union of several presentation scenarios in which some (but not
necessarily all) common prefixes of these scenarios have been identified.

All the games that we will consider are closed under taking induced subgraphs, in the
sense that any induced subgraph of any presentation scenario (where the representation,
the relations, and the order ≺ are restricted to the vertices of the subgraph) is again a
valid presentation scenario. It easily follows from the definition that the game graphs
of such games are also closed under taking induced subgraphs.

It follows from (b) that ω(G) = max{ω(G[V (Pv)]) : v ∈ V (G)}. In particular, if one
of the restrictions on the game G requires that the presented graph has clique number
at most k, then all game graphs of G also have clique number at most k.

Lemma 2.1. If there is an on-line algorithm using at most c colors in an on-line game
G, then every game graph of G has chromatic number at most c.

Proof. Intuitively, to color a game graph properly, it is enough to run the on-line
algorithm separately on the subgraph induced on each path in F from a root to a leaf.

More formally, let G be a game graph of G with underlying forest F , representation
µ, and relations R1, . . . , Rr. For every u ∈ V (G), the condition (a) of the definition
of a game graph gives us a presentation scenario of the graph G[V (Pu)]. Color the
vertex u in G with the color assigned to u by Algorithm in this scenario. For every
descendant v of u in F , the presentation scenario of G[V (Pu)] is the initial part of the

8 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

presentation scenario of G[V (Pv)] up to the point when u is presented, so Algorithm
assigns the same color to u in both scenarios. Therefore, since Algorithm colors every
G[V (Pv)] properly, the coloring of G defined this way is also proper. �

We say that a strategy of Presenter in an on-line game G is finite if the total number
of presentation scenarios that can occur in the game when Presenter plays according to
this strategy, for all possible responses of Algorithm, is finite.

Lemma 2.2. If Presenter has a finite strategy to force Algorithm to use at least c colors
in an on-line game G, then there exists a game graph of G with chromatic number at
least c. Moreover, the number of vertices of this graph is equal to the total number of
presentation scenarios that can occur with this strategy.

Proof. Consider a finite strategy of Presenter forcing Algorithm to use at least k colors
in G. Let S be the set of presentation scenarios that can occur when Presenter plays
according to this strategy. Hence, S is finite. Define a forest F on S so that
• if s ∈ S is a scenario that presents only one vertex, then s is a root of F ,
• otherwise, the parent of s in F is the scenario with one vertex less, describing the
situation in the game before the last vertex is presented in the scenario s.

For a scenario s ∈ S, let v(s) denote the last vertex presented in the scenario s. We
define a graph G on S so that s1s2 is an edge of G if s1 is an ancestor of s2 and v(s1)v(s2)
is an edge in the graph presented in the scenario s2 or vice versa. We define relations
R1, . . . , Rr on S in the same way: s1 Ri s2 if s1 is an ancestor of s2 and v(s1) Ri v(s2)
in the scenario s2 or vice versa. Finally, for s ∈ S, we define µ(s) = µ(v(s)) in the
scenario s. It clearly follows that the graph G thus obtained is a game graph of G with
underlying forest F , representation µ, and relations R1, . . . , Rr.

It remains to prove that χ(G) > c. Suppose to the contrary that there is a proper
coloring of G using c− 1 colors. Consider the following strategy of Algorithm against
Presenter’s considered strategy in G. When a new vertex is presented, Algorithm looks
at the presentation scenario s of the structure presented so far. Since Presenter is
assumed to play according to the strategy that gives rise to the game graph G, the
scenario s is a vertex of G. Algorithm colors the new vertex v(s) in the game with
the color of s in the assumed coloring of G using c − 1 colors. This way, Algorithm
uses only c − 1 colors against Presenter’s considered strategy, which contradicts the
assumption that this strategy forces Algorithm to use at least c colors. �

Here is how Lemmas 2.1 and 2.2 are typically applied. To provide an upper bound
on the chromatic number of graphs of some class G, we show that each graph in G is a
game graph of an appropriately chosen on-line game, and we find an on-line algorithm
for this game using few colors. To construct graphs of some class G with large chromatic
number, we show that every game graph of an appropriately chosen on-line game
belongs to G, and we find a finite strategy of Presenter in this game forcing Algorithm
to use many colors. We use this approach to prove the results of the paper. First, we
reduce Theorems 1.1–1.4 to claims about game graphs of appropriately chosen on-line
games. Then, to prove these claims, we devise strategies for Algorithm or Presenter in
these games and apply Lemmas 2.1 and 2.2 accordingly.

3. Two simple examples

To illustrate the concept developed in the previous section, we prove the following.

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 9

A

s1

A B
?

s2

A B

C

s3

A B

D
s4

A B

D
E s5

s1 s2

s3

s4
s5

A B

C

D

E

µ(s1) = A

µ(s2) = B

µ(s3) = C

µ(s4) = D

µ(s5) = E

Figure 1. A strategy of Presenter forcing 3 colors in the game INT(2).
In the first two rounds, Presenter introduces two disjoint intervals A and
B. If they receive different colors, then Presenter forces a third color
in the next round by presenting C. If A and B receive the same color,
then Presenter forces a third color in the next two rounds by presenting
D and E. The five presentation scenarios s1, . . . , s5 that can occur form
a game graph of INT(2), illustrated as an abstract graph (on the left)
and with representation by the intervals A,B,C,D,E (on the right).

Proposition 3.1. There are rectangle graphs with chromatic number 3ω − 2.

Let I denote the set of all closed intervals in R. Consider an on-line game INT(k) on
the class of interval graphs with clique number at most k presented with their interval
representation. That is, Presenter builds an interval graph G and a representation
µ : V (G)→ I so that
(i) µ is an intersection model of G, that is, uv ∈ E(G) if and only if µ(u) ∩ µ(v) 6= ∅,
(ii) ω(G) 6 k,
and Algorithm properly colors G on-line. For this game, the definition of a game graph
comes down to the following: a graph G is a game graph of INT(k) if there exist a
rooted forest F on V (G) and a mapping µ : V (G)→ I such that
(a) for every v ∈ V (G) and for the path Pv in F from a root to v, the following holds:

(i) µ restricted to V (Pv) is an intersection model of G[V (Pv)],
(ii) ω(G[V (Pv)]) 6 k,

(b) if uv ∈ E(G), then u is an ancestor of v or v is an ancestor of u in F .
Recall that the ancestor-descendant order of F is denoted by ≺. The above can be
simplified to the following two conditions, which correspond to the two conditions in
the definition of the game INT(k):
(i) uv ∈ E(G) if and only if u ≺ v or v ≺ u and µ(u) ∩ µ(v) 6= ∅,
(ii) ω(G) 6 k.
Now, we derive Proposition 3.1 from a known result on the game INT(k).

10 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

aa b

c

d e

xa

ya

xb

yb

xc

yc

xd

yd

xe

ye

µ(a) µ(b)
µ(c)

µ(d)
µ(e)

Figure 2. Representation of a game graph of INT(2) as an intersection
graph of axis-parallel rectangles.

Theorem 3.2 (Kierstead, Trotter [20]). The value of the game INT(k) is 3k − 2. In
particular, Presenter has a finite strategy to force Algorithm to use at least 3k−2 colors
in INT(k).

Proof of Proposition 3.1. By Theorem 3.2 and Lemma 2.2, there are game graphs of
INT(k) with chromatic number 3k − 2 (see Figure 1). It remains to show that every
game graph of INT(k) has an intersection model by axis-parallel rectangles.

Let G be a game graph of INT(k) with underlying forest F on V (G) and with
representation µ : V (G)→ I. For u ∈ V (G), let F (u) denote the set of vertices of the
subtree of F rooted at u, inclusive. We run depth-first search on F and record, for each
u ∈ V (G), the times xu, yu ∈ Z at which F (u) is entered and left, respectively, so that
• xu < yu for every u ∈ V (G),
• if v ∈ F (u) r {u}, then xu < xv < yv < yu,
• if v /∈ F (u) and u /∈ F (v), then [xu, yu] ∩ [xv, yv] = ∅.
For every vertex u ∈ V (G), let Ru be the rectangle in R2 defined by Ru = µ(u)× [xu, yu]
(see Figure 2). Consider any two vertices u, v ∈ V (G). If v ∈ F (u) or u ∈ F (v), then
[xv, yv] ⊂ [xu, yu] or [xu, yu] ⊂ [xv, yv], respectively; hence, Ru and Rv intersect if and
only if µ(u) and µ(v) intersect, that is, if and only if uv ∈ E(G). If v /∈ F (u) and
u /∈ F (v), so that uv /∈ E(G), then [xu, yu] ∩ [xv, yv] = ∅, and thus Ru ∩Rv = ∅. This
shows that the mapping u 7→ Ru is an intersection model of G. �

In an analogous way, we can reprove the result of Burling [6] that there exist triangle-
free intersection graphs of axis-parallel boxes in R3 with chromatic number Θ(log logn).
To this end, we use the result of Erlebach and Fiala [10] that Presenter can force the
use of arbitrarily many colors in the on-line coloring game on the class of triangle-
free rectangle graphs presented with their representation by axis-parallel rectangles.

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 11

Their strategy (a geometric realization of the strategy for forests mentioned in the
introduction) forces the use of c colors in 2c−1 rounds with 22O(c) presentation scenarios.
Hence, Lemma 2.2 gives us a triangle-free game graph with chromatic number c and
with 22O(c) vertices. The same argument as in the proof of Proposition 3.1, using an
additional dimension to encode the branching structure of the game graph, shows that
this graph is an intersection graph of axis-parallel boxes in R3. The graphs obtained this
way are the same as the graphs constructed by Burling and isomorphic to the triangle-
free rectangle overlap graphs with chromatic number Θ(log logn) constructed in [29].

4. Interval filament graphs

This section is devoted to the proof of Theorem 1.1. Let dom(f) denote the domain
of an interval filament f , that is, the closed interval on which the function f is defined.
We will assume, without loss of generality, that in any interval filament intersection
model, the domains are in general position, that is, no two of their endpoints coincide.

The following lemma allows us to reduce the general problem of coloring interval
filament graphs to the problem for domain-non-overlapping interval filament graphs.

Lemma 4.1. Let g : N→ N be a non-decreasing function with the property that every
interval overlap graph satisfies χ 6 g(ω). Then the vertices of every interval filament
graph can be partitioned into at most g(ω) classes so that the subgraph induced on each
class is a domain-non-overlapping interval filament graph.

Proof. Let G be a graph with an interval filament intersection model u 7→ fu. Let G′
be the graph with V (G′) = V (G) such that uv ∈ E(G′) if and only if dom(fu) and
dom(fv) overlap. It follows that G′ is a subgraph of G and G′ is an interval overlap
graph with overlap model u 7→ dom(fu). The definition of g implies that G′ can be
properly colored using at most g(ω(G′)) colors, which is at most g(ω(G)) colors due
to the monotonicity of g. The model u 7→ fu restricted to each color class consists of
interval filaments with non-overlapping domains. �

The incomparability graph of a partial order < on a set P is the graph with vertex
set P and edge set consisting of the pairs of <-incomparable elements of P . A graph
G is a co-comparability graph if it is the incomparability graph of some partial order
on V (G). Consider an on-line game COCO(k) on the class of co-comparability graphs
with clique number at most k presented with their order relation in the up-growing
manner. That is, Presenter builds a co-comparability graph G declaring, in each round,
the order relation < between the vertices presented before and the new vertex so that
(i) G is the incomparability graph of the order < on V (G),
(ii) every vertex of G is maximal in the order < at the moment it is presented,
(iii) ω(G) 6 k, that is, the width of the order < is at most k,
and Algorithm properly colors G on-line.

Lemma 4.2. A graph G is a game graph of COCO(k) if and only if G is a domain-
non-overlapping interval filament graph and ω(G) 6 k.

Proof. Let G be a graph with a domain-non-overlapping interval filament intersection
model u 7→ fu and with ω(G) 6 k. The inclusion order on the domains of the interval
filaments fu defines a forest F on V (G) so that for each v ∈ V (G),
• if there is no u ∈ V (G) such that dom(fu) ⊃ dom(fv), then v is a root of F ,

12 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

• otherwise, the parent of v in F is the unique u ∈ V (G) such that dom(fu) ⊃ dom(fv)
and dom(fu) is minimal with this property.

It follows that u is an ancestor of v in F if and only if dom(fu) ⊃ dom(fv). We define
a relation < on V (G) so that u < v if and only if dom(fu) ⊃ dom(fv) and fu ∩ fv = ∅.
Clearly, < is a partial order. Consider the path Pv in F from a root to a vertex v. The
graph G[V (Pv)], the order < restricted to V (Pv), and the order ≺ of vertices along Pv
form a valid |V (Pv)|-round presentation scenario in COCO(k). Indeed, the condition (i)
of COCO(k) holds, because if u ≺ v, then dom(fu) ⊃ dom(fv), so u < v if and only if
uv /∈ E(G); (ii) holds, because if u < v, then dom(fu) ⊃ dom(fv), so u ≺ v; and (iii)
follows from the assumption that ω(G) 6 k. Moreover, if uv ∈ E(G), then fu ∩ fv 6= ∅,
which implies dom(fu) ⊂ dom(fv) or dom(fu) ⊃ dom(fv), by the assumption that the
model u 7→ fu is domain-non-overlapping. Hence, if uv ∈ E(G), then u is an ancestor
of v or v is an ancestor of u. This shows that G is indeed a game graph of COCO(k).

For the converse implication, we use a result due to Golumbic, Rotem and Urrutia
[16] and Lovász [26], which asserts that every partial order is isomorphic to the order
< on some family of continuous functions [0, 1] → (0,∞), where f < g means that
f(x) < g(x) for every x ∈ [0, 1]. Let G be a game graph of COCO(k) with underlying
forest F and relation <. For u ∈ V (G), let F (u) denote the set of vertices of the
subtree of F rooted at u, including u itself. As in the proof of Proposition 3.1, we use
depth-first search to compute, for each u ∈ V (G), numbers xu, yu ∈ Z such that

• xu < yu for every u ∈ V (G),
• if v ∈ F (u) r {u}, then xu < xv < yv < yu,
• if v /∈ F (u) and u /∈ F (v), then [xu, yu] ∩ [xv, yv] = ∅.

Let L denote the set of leaves of F , and let L(u) = L ∩ F (u) for u ∈ V (G).
For v ∈ L, let Pv denote the path in F from a root to v. The graph G[V (Pv)] is
the incomparability graph of the order < restricted to V (Pv). Hence, by the above-
mentioned result of [16, 26], it has an intersection representation by continuous functions
[xv, yv] → (0,∞). Specifically, every vertex u ∈ V (Pv) can be assigned a continuous
function fu,v : [xv, yv] → (0,∞) so that u1 < u2 if and only if fu1,v > fu2,v for any
u1, u2 ∈ V (Pv) (note that the order is reversed). Now, for every vertex u ∈ V (G), we
define an interval filament fu as the union of the following curves:

• the functions fu,v for all v ∈ L(u),
• the segment connecting points (xu− 1

3 , 0) and (xv, fu,v(xv)) for the first leaf v ∈ L(u)
in the depth-first search order,
• the segments connecting points (yv1 , fu,v1(yv1)) and (xv2 , fu,v2(xv2)) for any two
leaves v1, v2 ∈ L(u) consecutive in the depth-first search order,
• the segment connecting points (yv, fu,v(yv)) and (yu + 1

3 , 0) for the last leaf v ∈ L(u)
in the depth-first search order.

See Figure 3 for an illustration. It follows that dom(fu) = [xu − 1
3 , yu + 1

3] for every
u ∈ V (G), so the domains of the interval filaments fu do not overlap.

It remains to prove that u 7→ fu is an intersection model of G. Fix u, v ∈ V (G).
First, suppose v ∈ F (u) and u < v, so that uv /∈ E(G). By the definition of fu and
fv, we have dom(fu) ⊃ dom(fv), and fu lies entirely above fv. Hence fu ∩ fv = ∅.
Now, suppose v ∈ F (u) and u 6< v. We also have v 6< u, by the condition (ii) of the
definition of COCO(k). Hence uv ∈ E(G). For any leaf w ∈ L(v), the functions fu,w
and fv,w intersect, so fu∩fv 6= ∅. The case that u ∈ F (v) is analogous. Finally, suppose

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 13

a a b a b

c
?

a b

c e

a b

cd

xa ya
xb yb

xc yc
xd yd xe ye

a

b
cd

e

Figure 3. Top: A strategy of Presenter forcing 3 colors in 4 rounds
of the game COCO(2). If a, b, c receive distinct colors, then Presenter
wins in 3 rounds. Otherwise, the color of c is the same as the color of a
or b, and depending on Algorithm’s choice, Presenter forces a 3rd color
in the 4th round. Bottom: A domain-non-overlapping interval filament
model of the game graph arising from the strategy on the top.

u /∈ F (v) and v /∈ F (u), so that uv /∈ E(G). It follows that [xu, yu] ∩ [xv, yv] = ∅, so
dom(fu) ∩ dom(fv) = ∅. Hence fu ∩ fv = ∅. This shows that u 7→ fu is indeed an
intersection model of G. �

Theorem 4.3 (Felsner [11]). The value of the game COCO(k) is
(k+1

2
)
. That is, there

is an on-line algorithm using at most
(k+1

2
)
colors, and there is a finite strategy of

Presenter forcing Algorithm to use at least
(k+1

2
)
colors in COCO(k).

Theorem 1.1 (2)–(3) follows from Theorem 4.3, Lemma 4.2, and Lemmas 2.1 and 2.2
(respectively). Theorem 1.1 (1) follows from Theorem 1.1 (2) and Lemma 4.1.

5. Reduction to clean overlap graphs

Recall that an overlap graph is clean if it has an overlap model such that no two
overlapping sets both contain a third set. The goal of this section is to establish the
following reduction of the general problem of coloring overlap graphs to the problem
for clean overlap graphs.

Theorem 5.1. Let G be an overlap graph. If every clean induced subgraph H of G with
ω(H) 6 j satisfies χ(H) 6 αj for 2 6 j 6 ω(G), then χ(G) 6 2ω(G)−1α2 · · ·αω(G).

It is proved in [25] that every triangle-free overlap graph can be partitioned into two
clean graphs: the union of odd levels and the union of even levels in the breadth-first
search forest. This proves Theorem 5.1 for graphs with clique number 2. However,
such a simple partition is insufficient for graphs with clique number greater than 2. We
will need the following generalization of breadth-first search, which we call k-clique
breadth-first search.

14 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

v1 v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v1 v2

v3

v4

v9 v10

v11

v12 v5 v6 v7 v8

L1 L2 L3 L4 L5 L6 L7 L8

Figure 4. An illustration of the 3-clique breadth-first search applied
to the rectangle overlap graph above. The sets L1, L2, L6 and L8 are
determined by the else statement of the main loop.

k-clique breadth-first search
input : a graph G with vertices ordered as v1, . . . , vn
output : a partition of {v1, . . . , vn} into sets Ld with d > 0
V := {v1, . . . , vn}; d := 0;
while V 6= ∅ do

if there is a k-clique K with |K ∩ V | = 1 then
Ld := {vj ∈ V : there is a k-clique K with K ∩ V = {vj}};

else
pick vi ∈ V with minimum index i;
Ld := {vi};

V := V r Ld; d := d+ 1;

See Figure 4 for an illustration of the algorithm. It is clear that it terminates after
time polynomial in n (for fixed k). The 2-clique breadth-first search is just the ordinary
breadth-first search: every connected component of G is the union of some consecutive
sets Ld, . . . , Ld+t, of which Ld+i is the set of vertices at distance i from the vertex with
minimum index in that connected component. The following two properties of the
k-clique breadth-first search generalize those of the ordinary breadth-first search.

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 15

Lemma 5.2. Let Ld be the sets computed by the k-clique breadth-first search on a
graph G. Then every k-clique in G has two of its vertices in one set Ld or in two
consecutive sets Ld and Ld+1.

Proof. Let K be a k-clique in G. Let Ld be the set such that |K ∩ V | > 2 before and
|K ∩ V | 6 1 after the algorithm performs the assignment V := V r Ld. It follows that
K∩Ld 6= ∅. If |K∩Ld| > 2, then Ld satisfies the conclusion of the lemma. If |K∩Ld| = 1,
then |K∩V | = 1 after the assignment V := V rLd, so the vertex remaining inK∩V will
be taken to Ld+1 in the next iteration of the algorithm, which yields K ∩Ld+1 6= ∅. �

Lemma 5.3. Let G be an overlap graph with overlap model µ, with vertices v1, . . . , vn
ordered so that µ(vi) 6⊂ µ(vj) for i < j, and with ω(G) 6 k. Then every set Ld computed
by the k-clique breadth-first search on G induces a clean overlap subgraph of G.

Proof. First, we prove the following:

(∗) if vi ∈ Ld, vr ∈ Ld′ , and µ(vr) ⊂ µ(vi), then d 6 d′.

Let vi ∈ Ld, let d′ be the minimum index such that Ld′ contains a vertex vr with
µ(vr) ⊂ µ(vi), and suppose to the contrary that d′ < d. Consider the set V at the
point when the algorithm computes Ld′ . It follows that vi, vr ∈ V . If there was no
k-clique K with |K ∩ V | = 1, then the algorithm would not set Ld′ to {vr}, because
vi is a candidate with smaller index. Hence, there is a k-clique K with |K ∩ V | = 1,
which implies that there is a k-clique K with K ∩ V = {vr}. For every vs ∈ K r {vr},
we have s < r, and therefore µ(vs) and µ(vi) overlap: µ(vs) ⊂ µ(vi) would contradict
the choice of d′, and µ(vs) ⊃ µ(vi) ⊃ µ(vr) would contradict the fact that vr, vs ∈ K.
Hence, K ′ = (K r {vr}) ∪ {vi} is a k-clique with K ′ ∩ V = {vi}, which yields vi ∈ Ld′ .
This contradiction completes the proof of (∗).

Now, suppose that G[Ld] is not clean. This means that there are vi, vj , vr ∈ Ld
such that µ(vi) overlaps µ(vj) and µ(vr) ⊂ µ(vi) ∩ µ(vj). Consider the set V at the
point when the algorithm computes Ld. It follows that there is a k-clique K with
K ∩ V = {vr}. By (∗), for every vs ∈ K r {vr}, µ(vs) is not contained in either of
µ(vi) and µ(vj) and thus overlaps both of them. Hence, (K r {vr}) ∪ {vi, vj} is a
(k + 1)-clique in G, which contradicts the assumption that ω(G) 6 k. �

Proof of Theorem 5.1. Let µ be an overlap model of G, and let k = ω(G). The proof
goes by induction on k. The theorem is trivial for k = 1, so assume that k > 2 and the
theorem holds for graphs with ω 6 k − 1. Order the vertices of G as v1, . . . , vn so that
µ(vi) 6⊂ µ(vj) for i < j, and run the k-clique breadth-first search to obtain a partition
of {v1, . . . , vn} into sets Ld. By Lemma 5.3, every Ld induces a clean subgraph of G,
so χ(G[Ld]) 6 αk. Color each G[Ld] properly with the same set of αk colors, thus
obtaining a partition of the vertices of G into color classes C1, . . . , Cαk

. Each set of the
form Ci∩Ld is an independent set in G. Let Lodd be the union of all sets Ld with d odd
and Leven be the union of all sets Ld with d even. If there is a k-clique in G[Ci ∩ Lodd],
then, by Lemma 5.2, it must contain an edge connecting vertices in one set Ld or two
consecutive sets Ld and Ld+1. The former is impossible, as Ci ∩ Ld is independent,
while the latter contradicts the definition of Lodd. Hence, ω(G[Ci ∩ Lodd]) 6 k − 1.
Similarly, ω(G[Ci ∩ Leven]) 6 k − 1. It follows from the induction hypothesis that
χ(G[Ci∩Lodd]) 6 2k−2α2 · · ·αk−1 and χ(G[Ci∩Leven]) 6 2k−2α2 · · ·αk−1. This implies
χ(G) 6 2k−1α2 · · ·αk, as the 2αk sets Ci ∩ Lodd and Ci ∩ Leven for 1 6 i 6 αk form a
partition of the entire set of vertices of G. �

16 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

The inductive nature of Theorem 5.1 is the main obstacle to generalizing the upper
bounds of Theorem 1.2 (2) and Theorem 1.3 (2) from clean to non-clean overlap graphs
(keeping the same asymptotic bounds). Furthermore, if we replace χ by χ3 in the proof
of Theorem 5.1, then it does no longer work. This is why we are unable to provide the
analogue of Theorem 1.4 for non-clean rectangle overlap graphs. We wonder whether a
reduction similar to Theorem 5.1 but avoiding induction is possible.

6. Rectangle and subtree overlap graphs

In this section, we define two on-line games and relate their game graphs to rectangle
and subtree overlap graphs. These relations will be used for the proofs of Theorems
1.2–1.4 in Sections 7 and 8. In view of Theorem 5.1, we can restrict our consideration
to clean rectangle and subtree overlap graphs.

First, we introduce the on-line game corresponding to clean rectangle overlap graphs,
we define clean interval overlap game graphs, and we describe their relation to clean
rectangle overlap graphs that has been established in [25, 29]. Recall that I denotes the
set of closed intervals in R. Let `(x) and r(x) denote the left and the right endpoints of
an interval x ∈ I, respectively. Consider an on-line game CIOV(k), in which Presenter
builds a clean interval overlap graph G and its representation µ : V (G)→ I so that
(i) µ is an overlap model of G, that is, xy ∈ E(G) if and only if µ(x) overlaps µ(y),
(ii) if x, y ∈ V (G) and x is presented before y, then `(µ(x)) < `(µ(y)),
(iii) µ is clean, that is, there are no x, y, z ∈ V (G) such that µ(x) and µ(y) overlap

and µ(z) ⊂ µ(x) ∩ µ(y),
(iv) ω(G) 6 k,
and Algorithm properly colors G on-line. We will assume, without loss of generality,
that in any representation µ presented in the game, the intervals are in general position,
that is, no two of their endpoints coincide. As a consequence of the definition of a game
graph, a graph G is a game graph of CIOV(k) if there exist a rooted forest F on V (G)
and a mapping µ : V (G)→ I such that the following conditions, corresponding to the
four above, are satisfied (where ≺ denotes the ancestor-descendant relation of F):
(i) xy ∈ E(G) if and only if x ≺ y or y ≺ x and µ(x) overlaps µ(y),
(ii) if x, y ∈ V (G) and x ≺ y, then `(µ(x)) < `(µ(y)),
(iii) there are no x, y, z ∈ V (G) with x ≺ y ≺ z such that µ(x) and µ(y) overlap and

µ(z) ⊂ µ(x) ∩ µ(y),
(iv) ω(G) 6 k.
A graph is a clean interval overlap game graph if it is a game graph of CIOV(k) for
some k. The conditions (i)–(iii) of the characterization above were used in [25] as the
definition of clean interval overlap game graphs (called overlap game graphs therein).

Lemma 6.1 (Krawczyk, Pawlik, Walczak [25]). Every clean interval overlap game
graph is a clean rectangle overlap graph. The vertices of every clean rectangle overlap
graph can be partitioned into Oω(1) classes so that the subgraph induced on each class
is a clean interval overlap game graph.

As it is explained in [25], the correspondence analogous to Lemma 6.1 holds between
rectangle overlap graphs and interval overlap game graphs, which are defined like clean
interval overlap game graphs above but omitting the cleanness condition (iii).

It is proved in [25] that triangle-free clean interval overlap game graphs (and hence, by
Lemma 6.1, triangle-free clean rectangle overlap graphs) satisfy χ = O(log logn). That

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 17

proof essentially comes down to an on-line algorithm using O(log r) colors in r rounds
of the game CIOV(2), a trick with heavy-light decomposition that we explain later, and
the application of Lemma 2.1. We will generalize this to game graphs of CIOV(k) and
thus to clean rectangle overlap graphs with clique number bounded by any constant.
On the other hand, it is proved in [29] that Presenter has a strategy to force Algorithm
to use c colors in 2c−1 rounds of the game CIOV(2). This strategy (again a realization of
the strategy for forests mentioned in the introduction) has 22O(c) presentation scenarios.
Hence, by Lemma 2.2, there are triangle-free clean interval overlap game graphs (and
thus triangle-free clean rectangle overlap graphs) with chromatic number Θ(log logn).

We also define an on-line game CIOV3(k), a variant of CIOV(k) in which Algorithm
is required to produce a triangle-free coloring instead of a proper coloring. The rules
for Presenter’s moves are the same in CIOV(k) and CIOV3(k), and therefore the classes
of game graphs of CIOV(k) and CIOV3(k) are also the same.

Now, we introduce the on-line game corresponding to clean subtree overlap graphs.
Let G be a clean subtree overlap graph with a clean overlap model x 7→ Sx by subtrees
of a tree T . To avoid confusion with vertices of G, we call vertices of T nodes. We make
T a rooted tree by choosing an arbitrary node r as the root. We can assume without
loss of generality that r belongs to none of the subtrees Sx, as a node with this property
can always be added to T . For every x ∈ V (G), we define rx to be the unique node
of Sx that is closest to r in T . We call the nodes rx subtree roots. If several subtrees
Sx0 , . . . , Sxm with Sxi 6⊃ Sxj for i < j (without loss of generality) have common subtree
root p = rx0 = · · · = rxm , then the following transformation preserves overlaps and
proper inclusions between the subtrees, thus keeping x 7→ Sx a clean overlap model of G:

• replace the edge pq by a path pp1 · · · pmq, where q is the other end of the tree edge
at p going towards r and p1, . . . , pm are new nodes,
• add p1, . . . , pm to every subtree containing both p and q,
• for 1 6 i 6 m, add p1, . . . , pi to Sxi and let rxi = pi.

Applying this transformation repeatedly if necessary, we can assume without loss of
generality that all the subtree roots are pairwise distinct. We construct a rooted forest
F on V (G) as follows. A vertex x ∈ V (G) is a root of F if the path from r to rx in T
contains no subtree roots other than rx. Otherwise, the parent of x in F is the vertex
y ∈ V (G) such that ry is the last subtree root before rx on the path from r to rx in T .

Consider a path P in F from a root to a leaf. The overlap graph of the subtrees
Sx with x ∈ V (P) is an interval filament graph [9]. Its interval filament intersection
model can be constructed as follows. The roots of all the subtrees Sx with x ∈ V (P)
lie on a common path Q = q1 · · · qm in T . For 1 6 i 6 m, let Ti denote the connected
component of T containing qi after removing all edges of Q. We represent the nodes of
T by points in R2, as follows. Each node qi is represented by the point (i, 0). Each node
t in Ti other than qi is represented by a point (xt, 1), where xt ∈ (i, i+ 1) and all the xt
are distinct. Now, we can represent each vertex x ∈ V (P) such that the intersection of
Sx and Q is the subpath qi · · · qj of Q by an interval filament that starts in the interval
(i−1, i), ends in the interval (j, j+1), and goes above the points representing the nodes
in Sx and no other points representing nodes. Moreover, we can do this so that the
interval filaments representing non-adjacent vertices (with nested or disjoint subtrees)
do not intersect. This yields an interval filament intersection model of G[V (P)].

In view of the above, a natural attempt is to define the on-line game corresponding
to clean subtree overlap graphs just like the game CIOV(k) but with representation by

18 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

a

b

c

d

e

f

g

h

i

j

a b

i j

c d

g h

e f

a b

i j

c d

e f

g h

Figure 5. A subtree overlap graph (left) and interval filament repre-
sentations of its subgraphs induced on the subtrees intersecting abcdef
(top right) and abcdgh (bottom right). The domains of the interval fila-
ments representing the subtrees cdeg and def overlap in the scenario
abcdef but are nested in the scenario abcdgh.

interval filaments instead of intervals. However, this is not correct for the following
reason. We want to color the clean subtree overlap graph G properly using the on-line
approach of Lemma 2.1. For each path P in F starting at a root, we will simulate an
on-line algorithm on G[V (P)] presenting the vertices in their order along P . This way,
we will present an interval filament graph. The on-line approach will work correctly
if the algorithm always assigns the same color to each vertex x ∈ V (G), regardless of
the choice of P . This will be the case when the presentation scenarios up to the point
when u is presented are identical for all paths passing through x. However, this cannot
be guaranteed using the model of G[V (P)] by interval filaments described above. For
example, for some two adjacent vertices x, y ∈ V (G) lying on the common part of
two paths P1 and P2, we may need to represent x and y by interval filaments whose
domains are nested if we continue along P1 but overlap if we continue along P2. See
Figure 5 for such an example. If the algorithm makes use of the representation, then
the colorings it generates on P1 and P2 may be inconsistent.

To overcome the difficulty explained above, we provide a more abstract description
of G, which we then use to define the on-line game. For distinct vertices x, y ∈ V (G),
let x ≺ y denote that x is an ancestor of y in F . We define relations ⊃◦ , G and ‖ on
V (G) as follows:
• x ⊃◦ y if x ≺ y and the subtree Sx contains the subtree Sy,
• x G y if x ≺ y and the subtrees Sx and Sy overlap,
• x ‖ y if x ≺ y and the subtrees Sx and Sy are disjoint.
It follows that the relations ⊃◦ , G and ‖ partition the relation ≺, that is, they are
pairwise disjoint sets of pairs and their union gives the entire ≺. Furthermore, the
following conditions are satisfied for any x, y, z ∈ V (G):
(A1) if x ⊃◦ y and y ⊃◦ z, then x ⊃◦ z,
(A2) if x ⊃◦ y and y G z, then x ⊃◦ z or x G z,
(A3) if x G y and y ⊃◦ z, then x G z or x ‖ z (because of cleanness),
(A4) if x ‖ y and y ≺ z, then x ‖ z.
We define an on-line game CABS(k) in which Presenter builds a graph G together with
relations ⊃◦ , G and ‖ declaring, in each round, the relations ⊃◦ , G and ‖ between the
vertices presented before and the new vertex so that

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 19

a b

a ⊃◦ b

a b a b

a G b

a b

a ‖ b

Figure 6. Interval filament representations of a ⊃◦ b, a G b, and a ‖ b.
The two drawings of a G b distinguish whether the domains of the interval
filaments representing a and b are nested or overlap. Other drawings of
a G b can be obtained by letting a and b cross many times.

(i) ⊃◦ , G and ‖ partition the order of presentation ≺ and satisfy (A1)–(A4),
(ii) xy ∈ E(G) if and only if x G y or y G x,
(iii) ω(G) 6 k,
and Algorithm properly colors G on-line. No interval filament intersection model is
revealed by Presenter in the game CABS(k). See Figure 6 for an illustration of possible
representations of the relations ⊃◦ , G and ‖ in the game.

Lemma 6.2. A graph G is a game graph of CABS(k) if and only if G is a clean
subtree overlap graph. If G is a game graph of CABS(k) and the relation ≺ (as defined
for a game graph) is a total order on V (G), then G is an interval filament graph.

Proof. We have argued above that every clean subtree overlap graph with clique number
at most k is a game graph of CABS(k). Now, suppose that G is a game graph of
CABS(k). This means that there exist a rooted forest F on V (G) and relations ⊃◦ , G
and ‖ on V (G) such that
(i) ⊃◦ , G and ‖ partition the ancestor-descendant order ≺ of F and satisfy (A1)–(A4),
(ii) xy ∈ E(G) if and only if x G y or y G x,
(iii) ω(G) 6 k.
Let T be a tree with

V (T) = {r} ∪ {ux : x ∈ V (G)} ∪ {vx : x ∈ V (G)},
E(T) = {rux : x is a root of F} ∪ {uxuy : xy ∈ E(F)} ∪ {uxvx : x ∈ V (G)}.

For x ∈ V (G), let Sx = {ux, vx} ∪ {uy : x ⊃◦ y or x G y} ∪ {vy : x ⊃◦ y}. We show that
x 7→ Sx is a clean overlap model of G by subtrees of T .

If x ≺ y and uy /∈ Sx, then x ‖ y, so it follows from (A4) that y ≺ z implies x ‖ z
and thus uz /∈ Sx for every z. Hence, every set Sx is the node set of a subtree of T . If
x ⊃◦ y, then y ⊃◦ z implies x ⊃◦ z, by (A1), and y G z implies x ⊃◦ z or x G z, by (A2),
and hence Sy ⊂ Sx. If x G y, then ux, vx ∈ Sx r Sy, uy ∈ Sx ∩ Sy, and vy ∈ Sy r Sx,
and hence Sx and Sy overlap. Finally, if x ‖ y, then it follows from (A4) that y ≺ z

implies x ‖ z for every z, and hence Sx ∩ Sy = ∅. This shows that x 7→ Sx is indeed an
overlap model of G. Moreover, by (A3), there are no x, y, z with x G y ⊃◦ z and x ⊃◦ z,
so the model is clean. This completes the proof of the first statement.

For the proof of the second statement, assume that the underlying forest F of
the game graph G consists of just one root-to-leaf path. It follows directly from the
construction that all sets Sx for x ∈ V (G) intersect the set {ux : x ∈ V (G)}, which
forms a path in T . As it has been explained earlier in this section, an overlap graph of
subtrees of T all of which intersect some path in T is an interval filament graph. �

20 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

The game CIOV(k) is more restrictive for Presenter than the game CABS(k), in the
sense that every presentation scenario in the former can be translated into a presentation
scenario in the latter. Indeed, let G be a graph presented in CIOV(k) together with
its representation µ : V (G)→ I, and let ≺ be its order of presentation. We can define
relations ⊃◦ , G and ‖ on V (G) just like before:
• x ⊃◦ y if x ≺ y and the interval µ(x) contains the interval µ(y),
• x G y if x ≺ y and the intervals µ(x) and µ(y) overlap,
• x ‖ y if x ≺ y and the intervals µ(x) and µ(y) are disjoint.
Clearly, the relations ⊃◦ , G and ‖ thus defined satisfy the conditions (i)–(iii) of the
definition of CABS(k). This and Lemma 6.2 imply that every clean interval overlap
game graph is a clean subtree overlap graph.

7. Coloring algorithm for rectangle and subtree overlap graphs

In this section, we will prove that game graphs of CABS(k) have chromatic number
Ok((log logn)k−1), while game graphs of CIOV(k) (which are the same as game graphs
of CIOV3(k)) have chromatic number Ok(log logn) and triangle-free chromatic number
Ok(1). Then, the same bounds on the chromatic number of clean subtree overlap
graphs and (respectively) the chromatic number and triangle-free chromatic number of
rectangle overlap graphs will follow from Lemmas 6.2 and 6.1 (respectively).

The general idea is to provide on-line algorithms in CABS(k), CIOV(k) and CIOV3(k)
using few colors, and then to use Lemma 2.1 to derive upper bounds on the (triangle-free)
chromatic number of their game graphs. However, since Presenter has a strategy to force
Algorithm to use Ω(log r) colors in r rounds of the game CIOV(2), a direct application
of Lemma 2.1 to the game graph cannot succeed for CABS(k) and CIOV(k) if the rooted
forest F underlying the game graph contains long paths. To overcome this problem,
we use the technique of heavy-light decomposition due to Sleator and Tarjan [33].

Let G be a game graph of CABS(k) or CIOV(k) with n vertices and with an underlying
forest F . Thus ω(G) 6 k. We call an edge xy of F , where y is a child of x, heavy if the
subtree of F rooted at y contains more than half of the vertices of the subtree of F
rooted at x, and we call it light otherwise. The following is proved by an easy induction.

Lemma 7.1 (Sleator, Tarjan [33]). Every path in F from a root to a leaf contains at
most blog2 nc light edges.

Every vertex of F has a heavy edge to at most one of its children, so the heavy edges
form a collection of paths in F , called heavy paths. For each heavy path P , by the second
statement of Lemma 6.2, the graph G[V (P)] is an interval filament graph, and therefore,
by Theorem 1.1 (1), it can be colored properly using Ok(1) colors. In the special case
that G is a game graph of CIOV(k), the result of Kostochka and Milans [24] implies
that 2k − 1 colors even suffice. We start with a preliminary coloring of the vertices of
G that colors each heavy path as it is described above using the same set of colors,
thus using Ok(1) colors in total. Note that this is not an on-line coloring—the color of
a vertex depends on the subgraph induced on the whole heavy path that contains it.

Let b = blog2 nc+ 1. By Lemma 7.1, every root-to-leaf path in F is subdivided by
its light edges into at most b blocks, each being a subpath of some heavy path of F .
The subgraph of G induced on each color class in the preliminary coloring is itself a
game graph of CABS(k) or CIOV(k), respectively, and contains no edges within any
of the blocks. We will color each such subgraph separately by an appropriate on-line

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 21

a b c d e f g h i j

Figure 7. A presentation scenario of an interval filament graph in the
game CABS(3) and one of its possible representations. The representa-
tion is for illustration only and is not revealed by Presenter in the game.
The primary vertices are a, b, c, e, h. We have S(a) = {a}, S(b) = {b},
S(c) = {c, d, g}, S(e) = {e, f}, and S(h) = {h, i, j}.

algorithm using Ok((log b)k−1) colors in CABS(k) and Ok(log b) colors in CIOV(k). To
achieve this formally, we define on-line games CABS(k, b) and CIOV(k, b) like CABS(k)
and CIOV(k), respectively, but with one additional constraint:
(iv/v) there is a partition of the vertices into at most b blocks of vertices consecutive in

the order of presentation ≺ such that no edge connects vertices in the same block.
It follows from the discussion above that the subgraph of G induced on each color class
in the preliminary coloring is a game graph of CABS(k, b) or CIOV(k, b), respectively.

The rest of this section is devoted to the proofs of the following three lemmas. In
view of the discussion above, combining them with the results of previous sections will
then give us Theorems 1.2 (1)–(2), 1.3 (1)–(2), and 1.4.

Lemma 7.2. There is an on-line Ok((log b)k−1)-coloring algorithm in CABS(k, b).

Lemma 7.3. There is an on-line Ok(log b)-coloring algorithm in CIOV(k, b).

Lemma 7.4. There is an on-line Ok(1)-coloring algorithm in CIOV3(k).

For the next part of this section, we forget the preceding context (in particular, the
previous meaning of G) and adopt the setting of Lemma 7.2: a graph G with relations
⊃◦ , G and ‖ is being presented in the game CABS(k, b), and we are to color G properly
using Ok((log b)k−1) colors on-line. Whatever we show for CABS(k, b) applies also to
CIOV(k, b), as the latter is more restrictive for Presenter. The proof of Lemma 7.3 will
differ from the proof of Lemma 7.2 only in one part, where the use of a direct argument
instead of induction will allow us to reduce the number of colors to Ok(log b). The last
part of that proof, which raises the number of colors from Ok(1) to Ok(log b), can be
omitted when we aim only at a triangle-free coloring, whence Lemma 7.4 will follow.

As a new vertex z of G is presented, we classify it as primary or secondary according
to the following on-line rule: if there are x, y ∈ V (G) such that y is primary, x G y,
x G z, and y ⊃◦ z, then z is secondary, otherwise z is primary. Let P denote the set of
primary vertices, being built on-line during the game. For every y ∈ P , let S(y) be the
set containing y and all secondary vertices z such that y ⊃◦ z and there is x with x G y
and x G z, also being built on-line during the game. See Figure 7 for an illustration.
The following lemma will be used implicitly throughout the rest of this section.

Lemma 7.5. For every z ∈ V (G), there is a unique vertex p ∈ P with z ∈ S(p).

Proof. It follows directly from the primary-secondary classification rule that there is
p ∈ P such that z ∈ S(p). To see that such a vertex p is unique, suppose to the

22 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

contrary that there are p, q ∈ P such that p ≺ q and z ∈ S(p) ∩ S(q). It follows that z
is secondary, p ⊃◦ z, and q ⊃◦ z. We can have neither p G q, as this would contradict
(A3), nor p ‖ q, as this would contradict (A4). Hence p ⊃◦ q. Since z ∈ S(p), there is
x ∈ V (G) such that x G p and x G z. Since x G p ⊃◦ q, we have x G q or x ‖ q, by (A3).
However, we cannot have x ‖ q, as this and q ⊃◦ z would contradict (A4). Hence x G q.
This contradicts the hypothesis that q is primary. �

The next lemma will allow us to construct an on-line coloring of G from on-line
colorings of G[P] and of all G[S(p)] with p ∈ P .

Lemma 7.6. The vertices in P can be 2-colored on-line so that if p, q ∈ P have the
same color and pq /∈ E(G[P]), then xy /∈ E(G) for any x ∈ S(p) and y ∈ S(q).

Proof. We make the following two observations:
(i) If p, q ∈ P , p ≺ q, pq /∈ E(G), x ∈ S(p), y ∈ S(q), and xy ∈ E(G), then x G q.
(ii) For every q ∈ P , there is at most one vertex p ∈ P with the following properties:

p ≺ q, pq /∈ E(G), and there is x ∈ S(p) with x G q.
Once they are established, we can argue as follows. By (ii), P can be colored on-line
using two colors so as to distinguish any p, q ∈ P such that p ≺ q, pq /∈ E(G), and there
is x ∈ S(p) with x G q. It follows from (i) that if p, q ∈ P , p ≺ q, pq /∈ E(G), x ∈ S(P),
y ∈ S(q), and xy ∈ E(G), then x G q and therefore p and q have distinct colors.

It remains to prove (i) and (ii). First, we prove the following property:
(iii) If p, q ∈ P , p ≺ q, pq /∈ E(G), x ∈ S(p), q ⊃◦ y, and xy ∈ E(G), then p ⊃◦ q and

x G q.
Suppose p ‖ q. We cannot have q ≺ x, as this would imply p ‖ x, by (A4). Hence

x ≺ q. It follows from (A4) that p ‖ y. But p ⊃◦ x and x G y imply p ⊃◦ y or p G y, by
(A2), thus contradicting p ‖ y. Therefore, we cannot have p ‖ q. We cannot have p G q
either, as pq /∈ E(G). So we have p ⊃◦ q. Since x ∈ S(p), there is some u with u G p and
u G x. We cannot have u ⊃◦ q, because this would contradict (A3). We cannot have
u G q, because then q would be secondary. Hence u ‖ q. This implies x ≺ q, whence we
have p ⊃◦ x ≺ q ⊃◦ y and x G y. We cannot have x ⊃◦ q, because this would imply x ⊃◦ y.
We cannot have x ‖ q either, by (A4). Hence x G q.

Now, (i) follows immediately from (iii). To see (ii), suppose there are p1, p2, q ∈ P
such that p1 ≺ p2 ≺ q, p1q /∈ E(G), p2q /∈ E(G), and there are x1 ∈ S(p1) and
x2 ∈ S(p2) with x1 G q and x2 G q. By (iii), we have p1 ⊃◦ q and p2 ⊃◦ q. We cannot
have p1 G p2, as this would contradict (A3) for p1, p2 and q. Hence p1p2 /∈ E(G). We
apply (iii) to p1, p2, x1 and q to conclude that x1 G p2. Now, since x1 G p2 ⊃◦ q and
x1 G q, we conclude that q is secondary, which is a contradiction. �

The following lemma will allow us to color G[S(p)] for every p ∈ P .

Lemma 7.7. For every p ∈ P , there is x ∈ V (G) with x G y for all y ∈ S(p).

Proof. Let p ∈ P . Let z be the latest presented vertex in S(p). It follows that there is
x ∈ V (G) such that x G p and x G z. Now, take any y ∈ S(p)r {z}. We have x G p and
p ⊃◦ y, so x G y or x ‖ y, by (A3). We cannot have x ‖ y, as this would imply x ‖ z, by
(A4). Hence x G y. �

It follows from Lemma 7.7 that ω(G[S(p)]) 6 k − 1 for every p ∈ P . This will allow
us to use induction to color every G[S(p)] in the abstract overlap game. For the clean
interval overlap game, instead of induction, we will use the following direct argument.

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 23

Lemma 7.8. If G is a clean interval overlap graph presented on-line in the game
CIOV(k, b) or CIOV3(k), then, for every p ∈ P , the graph G[S(p)] can be properly
colored on-line using at most

(k
2
)
colors.

Proof. Let µ denote the clean interval overlap representation of G presented in the game
together with G. Consider one of the sets S(p) being built during the game. By Lemma
7.7, there is x ∈ V (G) such that `(µ(x)) < `(µ(y)) < r(µ(x)) < r(µ(y)) for every
y ∈ S(p). Define a partial order < on S(p) so that y < z whenever `(µ(y)) < `(µ(z))
and r(µ(y)) > r(µ(z)). It follows that G[S(p)] is the incomparability graph of S(p) with
respect to <. Moreover, the set S(p) is built in the up-growing manner with respect to
<, that is, every vertex is maximal with respect to < at the moment it is presented.
Since ω(G[S(p)]) 6 k − 1, it follows from Theorem 4.3 that the graph G[S(p)] can be
properly colored on-line using

(k
2
)
colors. �

To prove Lemmas 7.2 and 7.3, we will color the graph G[P] in two steps, expressed
by Lemmas 7.9 and 7.11. Only the first step is needed for the proof of Lemma 7.4.

Lemma 7.9. The graph G[P] can be colored on-line using k colors so that the following
holds for any x, y, z ∈ P of the same color:

(∗) if x G y ≺ z, then x ‖ z or y ‖ z;

in particular, the coloring of G[P] is triangle-free.

Proof. We use the following two observations:
(i) If x, y, z do not satisfy (∗), then neither do x, y, y′ for any y′ with y ≺ y′ ≺ z.
(ii) If x, y, z are in P and do not satisfy (∗), then y G z.
To see (i), suppose that x G y ≺ y′ ≺ z and x, y, y′ satisfy (∗), that is, x ‖ y′ or y ‖ y′.
By (A4), this yields x ‖ z or y ‖ z, respectively, so x, y, z satisfy (∗). To see (ii), suppose
x G y ⊃◦ z. By (A3), this yields x G z or x ‖ z. We cannot have x G z, as then z would
be secondary. Hence x ‖ z, so x, y, z satisfy (∗).

The coloring of G[P] is constructed as follows. At the time when a vertex z ∈ P is
presented, consider the set Y of all vertices y ∈ P for which there is x ∈ P such that
x, y, z do not satisfy (∗). By (i), for any y, y′ ∈ Y ∪ {z} with y ≺ y′, there is x ∈ P
such that x, y, y′ do not satisfy (∗). This and (ii) imply that Y ∪ {z} is a clique in
G[P], and hence |Y | 6 k − 1. Therefore, at least one of the k colors is not used on any
vertex from Y , and we use such a color for z. It is clear that the coloring of G[P] thus
obtained satisfies the condition of the lemma. �

First-fit is the on-line algorithm that colors the graph properly with positive integers
in a greedy way: when a new vertex v is presented, it is assigned the least color that
has not been used on any of the neighbors of v presented before v.

Theorem 7.10 (folklore). First-fit uses at most blog2 nc+ 1 colors on any forest with
n vertices presented in any order.

Let P ′ be a subset of P being built on-line during the game so that any x, y, z ∈ P ′
satisfy the condition (∗) of Lemma 7.9. For the proofs of Lemmas 7.2 and 7.3, we apply
First-fit to obtain a proper coloring of G[P ′].

Lemma 7.11. First-fit colors the graph G[P ′] properly on-line using O(log b) colors.

24 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

Proof. Let R denote the set of vertices in P ′ that have no neighbor to the right in
G[P ′]. We show that each member of P ′ rR has at most one neighbor to the right in
G[P ′ rR]. Suppose to the contrary that there are x, y, z ∈ P ′ rR with x G y ≺ z and
x G z. Since y ∈ P ′ r R, there is z′ ∈ P ′ such that y G z′. Since x G z, we have y ‖ z,
and since y G z′, we have x ‖ z′, because x, y, z and x, y, z′ satisfy the condition (∗) of
Lemma 7.9. However, we have z ≺ z′ or z′ ≺ z, which implies either y ‖ z′ or x ‖ z, by
(A4). This contradiction shows that each member of P ′ rR has at most one neighbor
to the right in G[P ′ rR]. In particular, G[P ′ rR] is a forest.

By the definition of R, the colors assigned by First-fit to the vertices in P ′ rR do
not depend on the colors assigned to the vertices in R. In particular, if we ran First-fit
only on the graph G[P ′ r R], then we would obtain exactly the same colors on the
vertices in P ′ rR. Let a be the maximum color used by First-fit on G[P ′]. Since there
is a vertex in P ′ with color a, there must be a vertex in P ′ rR with color a− 1. This,
the fact that G[P ′ rR] is a forest, and Theorem 7.10 yield a 6 blog2 |P ′|c+ 2.

We apply a similar reasoning to show a 6 blog2 bc+ 3. Recall the assumption that
there is a partition of V (G) into at most b blocks of ≺-consecutive vertices such that no
edge of G[P ′] connects vertices in the same block. Let Q be the set obtained from P ′rR
by removing all vertices with color 1. If we ran First-fit only on G[Q], then each vertex
in Q would get the color less by 1 than the color it has received in the first-fit coloring of
G[P ′rR]. Therefore, our hypothetical run of First-fit on G[Q] uses at least a−2 colors,
which yields a 6 blog2 |Q|c+ 3, by Theorem 7.10. Now, it is enough to prove that each
block B of ≺-consecutive vertices of G such that G[B] has no edge can contain at most
one vertex of Q, as this will imply |Q| 6 b. Suppose to the contrary that there are two
vertices y1, y2 ∈ Q ∩B with y1 ≺ y2. By the assumption that G[B] has no edge, we do
not have y1 G y2. Each member of Q has a neighbor to the left and a neighbor to the
right in G[P ′], neither of which can belong to B. Therefore, there are x, z ∈ P ′ such that
x ≺ y1 ≺ y2 ≺ z, x G y2, and y1 G z. We cannot have y1 ‖ y2, as this and y2 ≺ z would
imply y1 ‖ z, by (A4). Hence y1 ⊃◦ y2. We cannot have x ‖ y1, as this and y1 ≺ y2 would
imply x ‖ y2, by (A4). Neither can we have x ⊃◦ y1, as this and y1 ⊃◦ y2 would imply
x ⊃◦ y2, by (A1). Hence x G y1. This, y1 ⊃◦ y2, and x G y2 contradict the assumption
that y2 is primary. We have thus shown a = O(log b), which completes the proof. �

Proof of Lemma 7.2. The proof goes by induction on k. The case k = 1 is trivial. Now,
assume that k > 2 and the lemma holds for k− 1. By Lemma 7.9, G[P] can be colored
on-line using colors 1, . . . , k so as to guarantee the condition (∗) for any x, y, z ∈ P .
For p ∈ P , let φ(p) denote the color of p in such a coloring. For i ∈ {1, . . . , k}, let
Pi = {p ∈ P : φ(p) = i}. By Lemma 7.11, each G[Pi] can be properly colored on-line
using colors 1, . . . , `, where ` = O(log b). For p ∈ Pi, let ψ(p) denote the color of p in
such a coloring. For i ∈ {1, . . . , k} and j ∈ {1, . . . , `}, let Pi,j = {p ∈ Pi : ψ(p) = j}.
By Lemma 7.6, each set Pi,j can be further 2-colored on-line so as to distinguish any
p, q ∈ Pi,j for which there is some edge between S(p) and S(q). Let ζ be such a 2-
coloring of each Pi,j using colors 1 and 2. For each p ∈ P , it follows from Lemma 7.7
that ω(G[S(p)]) 6 k − 1 and therefore, by the induction hypothesis, G[S(p)] can be
properly colored on-line using colors 1, . . . ,m, where m = Ok((log b)k−2). For p ∈ P
and x ∈ S(p), let ξ(x) denote the color of x in such a coloring. We color each vertex
x ∈ S(p) by the quadruple (φ(p), ψ(p), ζ(p), ξ(x)). This is a proper coloring of G using
at most 2k`m = Ok((log b)k−1) colors. �

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 25

Proof of Lemma 7.3. The proof goes as above with one change: for every p ∈ P , we
apply Lemma 7.8 instead of induction to color G[S(p)] properly using colors 1, . . . ,

(k
2
)
.

This gives a proper coloring of G using at most 2k`
(k

2
)

= Ok(log b) colors. �

Proof of Lemma 7.4. By Lemma 7.9, G[P] can be triangle-free colored on-line using
colors 1, . . . , k. For p ∈ P , let φ(p) denote the color of p in such a coloring. For
i ∈ {1, . . . , k}, let Pi = {p ∈ P : φ(p) = i}. By Lemma 7.6, each set Pi can be further
2-colored on-line so as to distinguish any p, q ∈ Pi such that pq /∈ E(G) and there is
some edge between S(p) and S(q). Let ζ be such a 2-coloring of each Pi using colors 1
and 2. For each p ∈ P , by Lemma 7.8, G[S(p)] can be properly colored on-line using
colors 1, . . . ,

(k
2
)
. For p ∈ P and x ∈ S(p), let ξ(x) denote the color of x in such a

coloring. We color each vertex x ∈ S(p) by the triple (φ(p), ζ(p), ξ(x)). It follows that
if p, q ∈ P , x ∈ S(p), y ∈ S(q), (φ(p), ζ(p), ξ(x)) = (φ(q), ζ(q), ξ(y)), and xy ∈ E(G),
then pq ∈ E(G). Therefore, since φ is triangle-free, the coloring by triples is a triangle-
free coloring of G using at most 2k

(k
2
)
colors. �

Theorems 1.2 (1)–(2) and 1.3 now follow from Theorem 5.1, Lemmas 6.2 and 6.1
(respectively), Lemma 7.1 and the discussion that follows it, Lemmas 7.2 and 7.3
(respectively), and Lemma 2.1. Theorem 1.4 follows from Lemmas 6.1, 7.4 and 2.1.

In the next section, we will prove that the proper coloring algorithm of clean subtree
overlap graphs presented above uses the asymptotically optimal number of colors.

8. Subtree overlap graphs with large chromatic number

In this final section, we will present a construction of clean subtree overlap graphs
with chromatic number Θω((log logn)ω−1) and thus prove Theorem 1.2 (3). To this
end, we will prove the following.

Lemma 8.1. For k,m > 1, Presenter has a finite strategy to force Algorithm to use at
least 2mk−1 − 1 colors in 2Ok(m) rounds of the game CABS(k). Moreover, the number
of presentation scenarios for all possible responses of Algorithm is 22Ok(m).

We will generalize the strategy of Presenter forcing the use of c colors in 2c−1 rounds
of the game CIOV(2), described in [25, 29]. The strategy that we will describe presents
a set of vertices with relations ⊃◦ , G and ‖ that partition the order of presentation ≺
and satisfy the conditions (A1)–(A4). The graph G is defined on these vertices by the
relation G, that is, so that xy ∈ E(G) if and only if x G y or y G x. The strategy ensures
ω(G) 6 k, so that all conditions of the definition of CABS(k) are satisfied.

For convenience, we extend the notation ⊃◦ , G and ‖ to sets of vertices in a natural
way. For example, X ⊃◦ Y denotes that x ⊃◦ y for all x ∈ X and y ∈ Y . The strategy
is expressed in terms of a recursive procedure present, initially called as present(k,
2m, m, ∅, ∅). When a call to present(k, `, m, A1, A2) occurs, the following context
and conditions are assumed:
• some set of vertices, call it P , has been already presented in the game,
• relations ⊃◦ , G and ‖ among the vertices in P have been declared,
• A1 and A2 are disjoint subsets of P such that A1 ⊃◦ A2,
• 2 6 ` 6 2m.
As a result of the call to present(k, `, m, A1, A2) considered, the game is continued
in such a way that the following happens:
• a new set of vertices is presented, call it S,

26 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

• relations ⊃◦ , G and ‖ are declared between P and S in a fixed way—so that A1 ⊃◦ S,
A2 G S, and P r (A1 ∪A2) ‖ S,
• relations ⊃◦ , G and ‖ are declared among the vertices in S,
• an independent set R ⊆ S is picked so that Algorithm has used many (at least
`mk−2 − 1) colors on R.

Here is the procedure; it uses return statements to pass the set R to the caller:

procedure present(k, `, m, A1, A2)
if k = 1 then

present a new vertex y and declare that x ⊃◦ y for every x ∈ A1, x G y for every
x ∈ A2, and x ‖ y for every x /∈ A1 ∪A2 that has been presented before;
return {y};

else if ` = 2 then
return present(k − 1, 2m, m, A1, A2);

else
R1 := present(k, `− 1, m, A1, A2);
R2 := present(k, `− 1, m, A1 ∪R1, A2);
if Algorithm has used at least `mk−2 − 1 colors on R1 ∪R2 then

return R1 ∪R2;
else

R3 := present(k − 1, 2m, m, A1 ∪R1, A2 ∪R2);
return R1 ∪R3;

Before analyzing the details and proving correctness of the procedure, we first
explain its core idea. It lies in the case k > 2 and 3 6 ` 6 2m (the outer else block).
The requirements on the recursive calls to present imply that R1, R2 and R3 are
independent sets, R1 ⊃◦ R2, R1 ⊃◦ R3, R2 G R3, and appropriately many colors have
been used on each of R1, R2 and R3 (the last one considered only when used in the inner
else block). If the number of colors used on R1 ∪R2 is large enough, then R1 ∪R2 is a
good candidate for the set R to be returned by the current call to present. Otherwise,
R1∪R3 is a good candidate, as there are appropriately many common colors used on R1
and R2, and the colors used on R3 must be different. See Figure 8 for an illustration.

Our goal is to show that the initial call to present(k, 2m, m, ∅, ∅) yields a strategy
that obeys the rules of the game CABS(k) and forces the use of at least 2mk−1 − 1
colors. This is achieved by the following lemma.

Lemma 8.2. As a result of a call to present(k, `, m, A1, A2), a set of vertices S is
presented, relations ⊃◦ , G and ‖ are declared, and a set R ⊆ S is returned so that
(i) A1 ⊃◦ S, A2 G S, and P r (A1 ∪A2) ‖ S, where P denotes the set of vertices that

have been presented before the call to present(k, `, m, A1, A2),
(ii) any x, y, z ∈ S satisfy the conditions (A1)–(A4) of the definition of CABS(k),
(iii) any x, y ∈ S satisfy the following conditions:

(B1) if x ≺ y and x, y ∈ R, then x ⊃◦ y,
(B2) if x ⊃◦ y and y ∈ R, then x ∈ R,
(B3) if x ‖ y, then x ∈ S rR,

(iv) the graph defined on S by the relation G has clique number at most k,
(v) Algorithm has used at least `mk−2 − 1 colors on the vertices in R.

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 27

A1

A2

R1
R2

present(k, `− 1, m, A1, A2)
present(k, `− 1, m, A1 ∪R1, A2)

A1

A2

R1

R2
R3

present(k, `− 1, m, A1, A2)
present(k, `− 1, m, A1 ∪R1, A2)
present(k − 1, 2m, m, A1 ∪R1, A2 ∪R2)

Figure 8. A recursion step of present(k, `, m, A1, A2) with k > 2
and 3 6 ` 6 2m illustrated by how an interval filament model of the
resulting graph might look in each of the two cases:
• top—at least `mk−2 − 1 colors have been used on R1 ∪R2,
• bottom—at most `mk−2 − 2 colors have been used on R1 ∪R2.
Thick lines illustrate bundles of pairwise non-intersecting interval fila-
ments, as labeled. Each gray box covers the filaments of the vertices pre-
sented in a direct recursive call to present; these filaments stay inside
the box (unless they belong to the result set Ri) and cross all filaments
piercing the box from left to right (e.g. those in A2). The white box
plays the analogous role for the call to present(k, `, m, A1, A2) itself.

Proof. The recursion tree of calls to present is finite, because every call to present
with first parameter k and second parameter ` makes recursive calls to present with k
smaller by 1 or with k unchanged and ` smaller by 1. The proof of the lemma goes by
induction on the recursion tree. That is, we prove the lemma for a particular call to
present(k, `, m, A1, A2), called the current call henceforth, assuming that the lemma
holds for every recursive call to present triggered as a result of the current call. Even
though the current call occurs in the context of a set of vertices P presented before the
call, only part (i) of the statement of the lemma is concerned about P . In particular,
the lemma considered just for the current call does not assert the conditions (A1)–(A4)
for all triples of vertices in P ∪S; they are to be considered at higher levels of induction.

First, consider the case that the current call is a leaf of the recursion tree, which
happens if and only if k = 1. In that case, (i) is a direct consequence of how the relations
⊃◦ , G and ‖ are declared when a new vertex is presented by the procedure, and (ii)–(v)
hold trivially, because they are concerned about a set S that consists of just one vertex.

28 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

Next, if k > 2 and ` = 2, then (i)–(v) follow directly from the induction hypothesis
applied to the recursive call with k − 1 and 2m in place of k and `.

Finally, for the rest of the proof, consider the case that k > 2 and 3 6 ` 6 2m. The
current call yields two or three recursive calls to present, as a result of which three sets
of vertices S1, S2 and S3 are presented, respectively (we let S3 = ∅ if there is no third
recursive call). Thus A1 ∪ A2 ≺ S1 ≺ S2 ≺ S3 and S = S1 ∪ S2 ∪ S3. The induction
hypothesis (i) applied to the recursive calls implies (i) for S as well as the following:

(∗) R1 ⊃◦ S2 ∪ S3, S1 rR1 ‖ S2 ∪ S3, R2 G S3, S2 rR2 ‖ S3.

To prove (ii) for S, choose any x, y, z ∈ S with x ≺ y ≺ z. If x, y, z ∈ Si, then all
(A1)–(A4) follow directly from the induction hypothesis (ii) for the recursive calls. If
x ∈ Si and y ∈ Sj with i < j, then, by (∗), the relation between x and y is the same as
the relation between x and z, whence all (A1)–(A4) follow. It remains to consider the
case that x, y ∈ Si and z ∈ Sj with i < j. To this end, we use (∗) and the induction
hypothesis (iii) applied to the recursive calls.

(A1) Suppose x ⊃◦ y and y ⊃◦ z. It follows from y ⊃◦ z and (∗) that y ∈ R1 and
z ∈ S2 ∪ S3. This and x ⊃◦ y imply x ∈ R1, by (B2). Hence x ⊃◦ z, by (∗).

(A2) Suppose x ⊃◦ y and y G z. It follows from y G z and (∗) that y ∈ R2 and z ∈ S3.
This and x ⊃◦ y imply x ∈ R2, by (B2). Hence x G z, by (∗).

(A3) Suppose x G y and y ⊃◦ z. It follows from y ⊃◦ z and (∗) that y ∈ R1 and
z ∈ S2 ∪ S3. This and x G y imply x ∈ S1 rR1, by (B1). Hence x ‖ z, by (∗).

(A4) If x ‖ y, then x ∈ SirRi, by (B3). This and z ∈ Sj with i < j imply x ‖ z, by (∗).

To prove (iii) for R, choose any x, y ∈ S with x ≺ y. If x, y ∈ Si, then all (B1)–(B3)
follow directly from the induction hypothesis (iii) applied to the recursive calls and
from the fact that R ∩ Si = Ri or R ∩ Si = ∅. It remains to consider the case that
x ∈ Si and y ∈ Sj with i < j. To this end, we use (∗) and the fact that the procedure
present returns R = R1 ∪R2 or R = R1 ∪R3.

(B1) If x, y ∈ R, then x ∈ R1 and y ∈ Rj , by the definition of R, so x ⊃◦ y, by (∗).
(B2) If x ⊃◦ y, then x ∈ R1, by (∗), so x ∈ R, by the definition of R.
(B3) If x ‖ y, then x ∈ Si rRi, by (∗), so x ∈ S rR, by the definition of R.

We have ω(G[S]) = max{ω(G[S1]), ω(G[S2]), ω(G[S3]) + 1} 6 k, by (∗) and by the
property (B1) of R2. Hence we have (iv) for S.

Finally, we prove (v) for R. If Algorithm has used at least `mk−2 − 1 colors on
R1 ∪R2, then the call returns R = R1 ∪R2, so (v) holds. It remains to consider the
opposite case—that at most `mk−2 − 2 colors have been used on R1 ∪ R2 and the
call returns R = R1 ∪R3. By (v) applied to R1 and R2, Algorithm has used at least
(` − 1)mk−2 − 1 colors on each of R1 and R2. It follows that at least (` − 2)mk−2

common colors have been used on both R1 and R2. By (v) applied to R3, Algorithm
has used at least 2mk−2 − 1 colors on R3. Since R2 G R3, these colors must be different
from the common colors used on both R1 and R2. Therefore, at least `mk−2 − 1 colors
have been used on R1 ∪R3, which proves (v) for R. �

Proof of Lemma 8.1. By Lemma 8.2 (ii), (iv) and (v), the strategy of Presenter de-
scribed by a call to present(k, 2m, m, ∅, ∅) obeys the rules of the game CABS(k) and
forces Algorithm to use at least 2mk−1 − 1 colors in total. It remains to prove that the
number of presentation scenarios for all possible responses of Algorithm is 22Ok(m) .

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 29

The only conditional instruction in the procedure present whose result is not
determined by the values of k, ` andm but depends on the coloring chosen by Algorithm
is the test whether “Algorithm has used at least `mk−2 − 1 colors on R1 ∪R2”. We call
it simply a test.

Let sk,` and ck,` denote the maximum number of vertices that can be presented and
the maximum number of tests that can be performed, respectively, as a result of a call
to present(k, `, m, A1, A2). It easily follows from the procedure that

s1,` = 1, sk,2 = sk−1,2m for k > 2,
c1,` = 0, ck,2 = ck−1,2m for k > 2,

sk,` 6 2sk,`−1 + sk−1,2m for k > 2 and 3 6 ` 6 2m,
ck,` 6 2ck,`−1 + ck−1,2m + 1 for k > 2 and 3 6 ` 6 2m.

This yields the following by straightforward induction:

s1,2m = 1, sk,2m 6 (22m−1 − 1)sk−1,2m for k > 2,

c1,2m = 0, ck,2m 6 (22m−1 − 1)(ck−1,2m + 1)− 1 for k > 2,

sk,2m 6 (22m−1 − 1)k−1,

ck,2m 6 (22m−1 − 1)k−1 − 1.

For fixed k and m, the outcome of the call to present(k, 2m, m, ∅, ∅) (that is,
the sequence of vertices presented and the relations ⊃◦ , G and ‖ declared) is entirely
determined by the outcomes of the tests performed as a result of that call. Since at
most ck,2m tests are performed, the number of possible outcomes of the call is at most
2ck,2m . Since at most sk,2m vertices are presented, each outcome of the call gives rise to
at most sk,2m presentation scenarios, each corresponding to an initial segment of the
sequence of vertices presented. Therefore, the total number of presentation scenarios
possible with this strategy is at most 2ck,2msk,2m, which is 22Ok(m) . �

Lemmas 8.1, 2.2 and 6.2 yield a construction of clean subtree overlap graphs (string
graphs) with χ = Θω((log logn)ω−1). This completes the proof of Theorem 1.2 (3).

The graphs constructed above also satisfy χω = Θω(log logn), because every color
class of a Kω(G)-free coloring of a clean subtree overlap graph G induces a subgraph with
chromatic number Oω(G)((log logn)ω(G)−2), by Theorem 1.2 (2). All intersection models
of the graphs constructed above require that some pairs of curves intersect many times.
This is because these graphs contain vertices whose neighborhoods have chromatic
number Θω((log logn)ω−2), while the neighborhood of every vertex of an intersection
graph of 1-intersecting curves (that is, curves any two of which intersect in at most
one point) has bounded chromatic number [34]. We wonder whether it is possible to
construct intersection graphs of 1-intersecting curves with bounded clique number and
with chromatic number asymptotically greater than log logn (that χ = Θ(log logn) can
be achieved follows from the results of [29, 30]).

Acknowledgments

We thank Martin Pergel for familiarizing us with subtree overlap graphs and interval
filament graphs and for asking whether these classes of graphs are χ-bounded. We also
thank anonymous reviewers for their very helpful corrections and comments.

30 TOMASZ KRAWCZYK AND BARTOSZ WALCZAK

References
[1] Eyal Ackerman, On the maximum number of edges in topological graphs with no four pairwise

crossing edges, Discrete Comput. Geom. 41 (3), 365–375, 2009.
[2] Pankaj K. Agarwal, Boris Aronov, János Pach, Richard Pollack, and Micha Sharir, Quasi-planar

graphs have a linear number of edges, Combinatorica 17 (1), 1–9, 1997.
[3] Alexander A. Ageev, A triangle-free circle graph with chromatic number 5, Discrete Math. 152 (1–3),

295–298, 1996.
[4] Edgar Asplund and Branko Grünbaum, On a colouring problem, Math. Scand. 8, 181–188, 1960.
[5] Dwight R. Bean, Effective coloration, J. Symb. Logic 41 (2), 289–560, 1976.
[6] James P. Burling, On coloring problems of families of prototypes, PhD thesis, University of

Colorado, Boulder, 1965.
[7] Jakub Černý, Coloring circle graphs, Electron. Notes Discrete Math. 29, 457–461, 2007.
[8] Jérémie Chalopin, Louis Esperet, Zhentao Li, and Patrice Ossona de Mendez, Restricted frame

graphs and a conjecture of Scott, Electron. J. Combin. 23 (1), P1.30, 2016.
[9] Jessica Enright and Lorna Stewart, Subtree filament graphs are subtree overlap graphs, Inform.

Process. Lett. 104 (6), 228–232, 2007.
[10] Thomas Erlebach and Jiří Fiala, On-line coloring of geometric intersection graphs, Comput. Geom.

23 (2), 243–255, 2002.
[11] Stefan Felsner, On-line chain partitions of orders, Theor. Comput. Sci. 175 (2), 283–292, 1997.
[12] Jacob Fox and János Pach, Coloring Kk-free intersection graphs of geometric objects in the plane,

European J. Combin. 33 (5), 853–866, 2012.
[13] Jacob Fox and János Pach, Applications of a new separator theorem for string graphs, Combin.

Prob. Comput. 23 (1), 66–74, 2014.
[14] Fănică Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J.

Combin. Theory Ser. B 16 (1), 47–56, 1974.
[15] Fănică Gavril, Maximum weight independent sets and cliques in intersection graphs of filaments,

Inform. Process. Lett. 73 (5–6), 181–188, 2000.
[16] Martin C. Golumbic, Doron Rotem, and Jorge Urrutia, Comparability graphs and intersection

graphs, Discrete Math. 43 (1), 37–46, 1983.
[17] András Gyárfás, On the chromatic number of multiple interval graphs and overlap graphs, Discrete

Math. 55 (2), 161–166, 1985. Corrigendum: Discrete Math. 62 (3), 333, 1986.
[18] András Gyárfás and Jenő Lehel, On-line and first fit colorings of graphs, J. Graph Theory 12 (2),

217–227, 1988.
[19] Clemens Hendler, Schranken für Färbungs- und Cliquenüberdeckungszahl geometrisch repräsentier-

barer Graphen, Master’s thesis, Freie Universität Berlin, 1998.
[20] Henry A. Kierstead and William T. Trotter, An extremal problem in recursive combinatorics,

in: Frederic Hoffman (ed.), 3rd Southeastern International Conference on Combinatorics, Graph
Theory, and Computing (CGTC 1981), vol. 33 of Congressus Numerantium, pp. 143–153, Utilitas
Math. Pub., Winnipeg, 1981.

[21] Alexandr V. Kostochka, On upper bounds for the chromatic numbers of graphs, Trudy Inst. Mat.
10, 204–226, 1988, in Russian.

[22] Alexandr V. Kostochka, Coloring intersection graphs of geometric figures with a given clique
number, in: János Pach (ed.), Towards a Theory of Geometric Graphs, vol. 342 of Contemp. Math.,
pp. 127–138, AMS, Providence, 2004.

[23] Alexandr V. Kostochka and Jan Kratochvíl, Covering and coloring polygon-circle graphs, Discrete
Math. 163 (1–3), 299–305, 1997.

[24] Alexandr V. Kostochka and Kevin G. Milans, Coloring clean and K4-free circle graphs, in: János
Pach (ed.), Thirty Essays on Geometric Graph Theory, pp. 399–414, Springer, New York, 2012.

[25] Tomasz Krawczyk, Arkadiusz Pawlik, and Bartosz Walczak, Coloring triangle-free rectangle overlap
graphs with O(log logn) colors, Discrete Comput. Geom. 53 (1), 199–220, 2015.

[26] László Lovász, Perfect graphs, in: Lowell W. Beineke and Robin J. Wilson (eds.), Selected Topics
in Graph Theory, vol. 2, pp. 55–87, Academic Press, London, 1983.

[27] János Pach, Radoš Radoičić, and Géza Tóth, Relaxing planarity for topological graphs, in: Ervin
Győri, Gyula O. H. Katona, and László Lovász (eds.), More Graphs, Sets and Numbers, vol. 15 of
Bolyai Soc. Math. Stud., pp. 285–300, Springer, Berlin, 2006.

http://doi.org/10.1007/s00454-009-9143-9
http://doi.org/10.1007/s00454-009-9143-9
http://doi.org/10.1007/BF01196127
http://doi.org/10.1007/BF01196127
http://doi.org/10.1016/0012-365X(95)00349-2
http://doi.org/10.1016/0012-365X(95)00349-2
http://www.mscand.dk/index.php/math/article/view/10607
http://doi.org/10.1017/S0022481200051549
http://doi.org/10.1016/j.endm.2007.07.072
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i1p30
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i1p30
http://doi.org/10.1016/j.ipl.2007.07.004
http://doi.org/10.1016/j.ipl.2007.07.004
http://doi.org/10.1016/S0925-7721(02)00089-5
http://doi.org/10.1016/S0925-7721(02)00089-5
http://doi.org/10.1016/S0304-3975(96)00204-6
http://doi.org/10.1016/j.ejc.2011.09.021
http://doi.org/10.1016/j.ejc.2011.09.021
http://doi.org/10.1017/S0963548313000412
http://doi.org/10.1017/S0963548313000412
http://doi.org/10.1016/0095-8956(74)90094-X
http://doi.org/10.1016/0095-8956(74)90094-X
http://doi.org/10.1016/S0020-0190(00)00025-9
http://doi.org/10.1016/S0020-0190(00)00025-9
http://doi.org/10.1016/0012-365X(83)90019-5
http://doi.org/10.1016/0012-365X(83)90019-5
http://doi.org/10.1016/0012-365X(85)90044-5
http://doi.org/10.1016/0012-365X(85)90044-5
http://doi.org/10.1016/0012-365X(86)90224-4
http://doi.org/10.1002/jgt.3190120212
http://doi.org/10.1002/jgt.3190120212
http://page.math.tu-berlin.de/~felsner/Diplomarbeiten/hendler.pdf
http://page.math.tu-berlin.de/~felsner/Diplomarbeiten/hendler.pdf
http://doi.org/10.1090/conm/342/06137
http://doi.org/10.1090/conm/342/06137
http://doi.org/10.1090/conm/342/06137
http://doi.org/10.1016/S0012-365X(96)00344-5
http://doi.org/10.1016/S0012-365X(96)00344-5
http://doi.org/10.1007/978-1-4614-0110-0_21
http://doi.org/10.1007/978-1-4614-0110-0_21
http://doi.org/10.1007/s00454-014-9640-3
http://doi.org/10.1007/s00454-014-9640-3
http://doi.org/10.1007/978-3-540-32439-3_12
http://doi.org/10.1007/978-3-540-32439-3_12
http://doi.org/10.1007/978-3-540-32439-3_12

ON-LINE APPROACH TO OFF-LINE COLORING PROBLEMS 31

[28] János Pach, Farhad Shahrokhi, and Mario Szegedy, Applications of the crossing number, Algorith-
mica 16 (1), 111–117, 1996.

[29] Arkadiusz Pawlik, Jakub Kozik, Tomasz Krawczyk, Michał Lasoń, Piotr Micek, William T. Trotter,
and Bartosz Walczak, Triangle-free geometric intersection graphs with large chromatic number,
Discrete Comput. Geom. 50 (3), 714–726, 2013.

[30] Arkadiusz Pawlik, Jakub Kozik, Tomasz Krawczyk, Michał Lasoń, Piotr Micek, William T. Trotter,
and Bartosz Walczak, Triangle-free intersection graphs of line segments with large chromatic
number, J. Combin. Theory Ser. B 105, 6–10, 2014.

[31] Martin Pergel, Recognition of polygon-circle graphs and graphs of interval filaments is NP-complete,
in: Andreas Brandstädt, Dieter Kratsch, and Haiko Müller (eds.), 33rd International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2007), vol. 4769 of Lecture Notes Comput.
Sci., pp. 238–247, Springer, Berlin, 2007.

[32] Alexandre Rok and Bartosz Walczak, Outerstring graphs are χ-bounded, in: Siu-Wing Cheng
and Olivier Devillers (eds.), 30th Annual Symposium on Computational Geometry (SoCG 2014),
pp. 136–143, ACM, New York, 2014.

[33] Daniel D. Sleator and Robert E. Tarjan, A data structure for dynamic trees, J. Comput. System
Sci. 26 (3), 362–391, 1983.

[34] Andrew Suk and Bartosz Walczak, New bounds on the maximum number of edges in k-quasi-
planar graphs, Comput. Geom. 50, 24–33, 2015.

[35] Pavel Valtr, On geometric graphs with no k pairwise parallel edges, Discrete Comput. Geom.
19 (3), 461–469, 1998.

Department of Theoretical Computer Science, Faculty of Mathematics and Computer Science, Jagiel-
lonian University, Kraków, Poland
E-mail: krawczyk@tcs.uj.edu.pl, walczak@tcs.uj.edu.pl

http://doi.org/10.1007/BF02086610
http://doi.org/10.1007/BF02086610
http://doi.org/10.1007/s00454-013-9534-9
http://doi.org/10.1007/s00454-013-9534-9
http://doi.org/10.1007/s00454-013-9534-9
http://doi.org/10.1016/j.jctb.2013.11.001
http://doi.org/10.1016/j.jctb.2013.11.001
http://doi.org/10.1016/j.jctb.2013.11.001
http://doi.org/10.1007/978-3-540-74839-7_23
http://doi.org/10.1007/978-3-540-74839-7_23
http://doi.org/10.1007/978-3-540-74839-7_23
http://doi.org/10.1007/978-3-540-74839-7_23
http://doi.org/10.1145/2582112.2582115
http://doi.org/10.1145/2582112.2582115
http://doi.org/10.1145/2582112.2582115
http://doi.org/10.1016/0022-0000(83)90006-5
http://doi.org/10.1016/0022-0000(83)90006-5
http://doi.org/10.1016/j.comgeo.2015.06.001
http://doi.org/10.1016/j.comgeo.2015.06.001
http://doi.org/10.1007/PL00009364
http://doi.org/10.1007/PL00009364
mailto:krawczyk@tcs.uj.edu.pl
mailto:walczak@tcs.uj.edu.pl

	1. Introduction
	Geometric intersection and overlap graphs
	Results
	Methods
	Problems

	2. On-line graph coloring games and game graphs
	3. Two simple examples
	4. Interval filament graphs
	5. Reduction to clean overlap graphs
	6. Rectangle and subtree overlap graphs
	7. Coloring algorithm for rectangle and subtree overlap graphs
	8. Subtree overlap graphs with large chromatic number
	Acknowledgments
	References

