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5 Maximum scattered linear sets and complete caps in

Galois spaces∗

Daniele Bartoli, Massimo Giulietti, Giuseppe Marino and Olga Polverino

Abstract

Explicit constructions of infinite families of scattered Fq–linear sets in PG(r − 1, qt) of

maximal rank rt

2
, for t even, are provided. When q = 2 and r is odd, these linear sets

correspond to complete caps in AG(r, 2t) fixed by a translation group of size 2
rt

2 . The

doubling construction applied to such caps gives complete caps in AG(r + 1, 2t) of size

2
rt

2
+1. For Galois spaces of even dimension greater than 2 and even square order, this solves

the long-standing problem of establishing whether the theoretical lower bound for the size

of a complete cap is substantially sharp.

Keywords: Galois spaces, linear sets, complete caps.

1 Introduction

Let Λ = PG(V,Fqt) = PG(r − 1, qt), q = ph, p prime, with V vector space of dimension r over

Fqt , and let L be a set of points of Λ. The set L is said to be an Fq–linear set of Λ of rank t if

∗The research was supported by Ministry for Education, University and Research of Italy MIUR (Project

PRIN 2012 ”Geometrie di Galois e strutture di incidenza”) and by the Italian National Group for Algebraic and

Geometric Structures and their Applications (GNSAGA - INdAM)
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it is defined by the non-zero vectors of an Fq-vector subspace U of V of dimension t, i.e.

L = LU = {〈u〉F
qt

: u ∈ U \ {0}}.

We point out that different vector subspaces can define the same linear set. For this reason a

linear set and the vector space defining it must be considered as coming in pair.

Let Ω = PG(W,Fqt) be a subspace of Λ and let LU be an Fq-linear set of Λ. Then Ω ∩ LU

is an Fq–linear set of Ω defined by the Fq–vector subspace U ∩W and, if dimFq (W ∩U) = i, we

say that Ω has weight i in LU . Hence a point of Λ belongs to LU if and only if it has weight at

least 1 and if LU has rank k, then |LU | ≤ qk−1 + qk−2 + · · ·+ q+1. For further details on linear

sets see [18], [11], [12], [13], [14].

An Fq–linear set LU of Λ of rank k is scattered if all of its points have weight 1, or equivalently,

if LU has maximum size qk−1 + qk−2 + · · · + q + 1. A scattered Fq–linear set of Λ of highest

possible rank is a maximum scattered Fq–linear set of Λ; see [3].

In [3] the authors obtain the following result on the rank of a maximum scattered linear set;

see also [9].

Theorem 1.1. ([3, Thms 2.1, 4.3 and 4.2]) If LU is a maximum scattered Fq-linear set of

PG(r − 1, qt) of rank k, then

k =
rt

2
if r is even,

rt− t

2
≤ k ≤ rt

2
if r is odd.

Also, if rt is even and LU is a maximum scattered Fq-linear set of PG(r − 1, qt) of rank rt
2 ,

then LU is a two-intersection set (with respect to hyperplanes) in PG(r−1, qt) with intersection

numbers θ rt
2
−t−1(q) =

q
rt
2 −t−1
q−1 and θ rt

2
−t(q) =

q
rt
2 −t+1

q−1 .

When r is even there always exists an Fq–scattered linear set of rank rt
2 in PG(r − 1, qt)

(see [9, Theorem 2.5.5] for an explicit example) whereas, when r is odd, the upper bound rt
2 is
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attained in the following cases:

• r = 3, t = 2 (Baer subplanes),

• r = 3, t = 4 ([2, Section 3]),

• r > 3, t = 2, q = 2 ([3, Thm. 4.4]),

• r ≥ 3, (t− 1)|r (t even), q > 2 ([3, Thm. 4.4]).

This means that, for a given value of r, examples of maximum scattered linear sets have been

shown to exist only for a small number of t’s. It should be also noted that, differently from what

happens for r even, in the case r odd the proof of Theorem 4.4 in [3] shows the existence of such

maximum scattered linear sets without giving explicit examples.

In the first part of this paper we construct three different families of scattered Fq–linear sets

in PG(2, qt), t ≥ 4 even, of rank 3t
2 , for infinite values of the prime power q. This allows us

to produce for each integer r ≥ 5, scattered Fq–linear sets in PG(r − 1, qt) of rank rt
2 (t even).

More precisely we show that

Theorem 1.2. There exist examples of scattered Fq–linear sets in PG(r−1, qt), t even, of rank

rt
2 in the following cases:

• q = 2 and t ≥ 4;

• q ≥ 2 and t 6≡ 0 mod 3;

• q ≡ 1 mod 3 and t ≡ 0 mod 3.

In the second part of the paper we point out the relationship between maximum scattered

linear sets and complete caps in affine spaces over finite fields of even characteristic. A cap in

an affine or projective Galois space is a set of points no three of which collinear; a cap which is

maximal with respect to set-theoretical inclusion is said to be complete. A long-standing issue
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in Finite Geometry is to ask for explicit constructions of small complete caps in Galois spaces.

The trivial lower bound for the size of a complete cap in a Galois space of dimension n and

order q is
√
2 · √qn−1. (1)

If q is even and n is odd, such bound is substantially sharp: the existence of a complete cap of

size 3q + 2 in PG(3, q) was showed by Segre [19], whose construction was later generalized by

Pambianco and Storme [17] to complete caps of size 2qs in AG(2s+1, q). Otherwise, all known

infinite families of complete caps have size far from (1); see the survey paper [7]. Here we prove

that (1) is essentially sharp also when n ≥ 4 is even, provided that q is an even square.

Theorem 1.3. Let q = 2t, t even, and n ≥ 4 even. Then there exists a complete cap in AG(n, q)

of size 2
√
qn−1.

Theorem 1.3 relies on the fact that F2–linear sets in PG(r − 1, 2t) of maximal rank rt
2 , for t

even and r odd, naturally correspond to complete caps in AG(r, 2t) fixed by a translation group

of size 2
rt
2 . Then the scattered F2–linear sets of maximal rank described in this paper, together

with the doubling construction for translation caps as described in [6], provide complete caps

in AG(r + 1, q) of size 2q
r
2 , for q = 2t. We point out that complete caps in the projective space

PG(r+1, q) with size of the same order of magnitude can also be constructed (see Remark 4.8).

2 Constructions of maximum scattered linear sets in PG(2, q2n)

In this section we want to construct infinite families of scattered Fq–linear sets of rank 3n in the

projective plane PG(2, q2n), with n ≥ 2. Note that, by Theorem 1.1, such scattered linear sets

are two intersection sets (with respect to the lines) of the plane.

Consider the finite field Fq6n as a 3–dimensional vector space over its subfield Fq2n , n ≥ 2,

and let P = PG(Fq6n ,Fq2n) = PG(2, q2n) be the associated projective plane.
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The following proposition can be easily verified.

Proposition 2.1. Let f : Fq3n → Fq3n be an Fq–linear map, ω an element of Fq2n \ Fqn and

consider the subset of Fq6n

U = {f(x) + xω : x ∈ Fq3n}

Then, the set

LU = {〈f(x) + xω〉F
q2n

: x ∈ F
∗
q3n} (2)

is an Fq–linear of rank 3n of the projective plane P = PG(2, q2n). Also, put

Qf :=

{
f(x) + xω

f(y) + yω
: x, y ∈ Fq3n , y 6= 0

}
,

the set LU turns out to be scattered if and only if Qf ∩ Fq2n = Fq.

Proof. We first observe that {1, ω} is an Fqn–basis of Fq2n and an Fq3n–basis of Fq6n , as well.

Also, since f is an Fq–linear map, the subset U = {f(x) + xω : x ∈ Fq3n} of Fq6n is closed

under addition and Fq–scalar multiplication, and hence it is an Fq–vector subspace of Fq6n . This

means that the set LU turns out to be an Fq–linear set of rank 3n of the plane P. Also, LU

is not scattered if and only if there exists a point Px := 〈f(x) + xω〉F
q2n

of LU , with x ∈ F
∗
q3n ,

having weight grater than 1, and hence there exist y ∈ F
∗
q3n and λ ∈ Fq2n \ Fq such that

f(x) + xω = λ(f(y) + yω). (3)

The assertion follows.

Let now

ω2 = A+Bω, (4)

with A,B ∈ Fqn and A 6= 0, and suppose that there exist x, y ∈ F
∗
q3n and λ ∈ Fq2n \Fq satisfying

Equation (3). Such an equation implies that

(
f(x) + xω

f(y) + yω

)q2n

=
f(x) + xω

f(y) + yω
,
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i.e., taking (4) into account, we get

f(x)q
2n
f(y) + xq

2n
yA+ (f(x)q

2n
y + f(y)xq

2n
+ xq

2n
yB)ω =

= f(y)q
2n
f(x) + yq

2n
xA+ (f(y)q

2n
x+ f(x)yq

2n
+ yq

2n
xB)ω.

Since {1, ω} is an Fq3n–basis of Fq6n , the above equality is equivalent to





f(x)q
2n
f(y)− f(y)q

2n
f(x) = (xyq

2n − yxq
2n
)A

f(x)q
2n
y + f(y)xq

2n − f(y)q
2n
x− f(x)yq

2n
= (xyq

2n − yxq
2n
)B

.

The previous arguments allow us to reformulate the previous proposition in the following

way which will be useful in the sequel.

Proposition 2.2. Let f : Fq3n → Fq3n be an Fq–linear map and ω an element of Fq2n \Fqn such

that ω2 = A+Bω, with A,B ∈ Fqn and A 6= 0. The set

LU = {〈f(x) + xω〉F
q2n

: x ∈ F
∗
q3n}

turns out to be a scattered Fq–linear of rank 3n of the projective plane P = PG(2, q2n) if and

only if for each pair (x, y) ∈ F
∗
q3n × F

∗
q3n satisfying the following equations

f(x)q
2n
f(y)− f(y)q

2n
f(x) = (xyq

2n − yxq
2n
)A (5)

f(x)q
2n
y + f(y)xq

2n − f(y)q
2n
x− f(x)yq

2n
= (xyq

2n − yxq
2n
)B, (6)

the quotient

λ :=
f(x) + xω

f(y) + yω
(7)

is an element of F∗
q.

In the sequel we will exhibit examples of Fq–linear maps of Fq3n satisfying the previous

properties. In particular, we face with the monomial and the binomial cases.
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Monomial case: f(x) := axqi, a ∈ F
∗

q3n
and 1 ≤ i ≤ 3n− 1

In such a case we first show that for any value of q ≥ 2, under suitable assumptions on a ∈ F
∗
q3n

and on the integers i and n, we get a scattered Fq–linear set of the projective plane PG(2, q2n)

of rank 3n. Denoting by Nq3n/q3(·) the norm function from Fq3n over Fq3 , we have the following

Theorem 2.3. For any prime power q ≥ 2 and any integer n 6≡ 0 mod 3, the set

LU = {〈axqi + xω〉F
q2n

: x ∈ F
∗
q3n}

satisfying the following assumptions:

(i) gcd(i, 2n) = 1 and gcd(i, 3n) = 3

(ii) Nq3n/q3(a) /∈ Fq

is a scattered Fq–linear set of the projective plane PG(2, q2n) of rank 3n.

Proof. By Proposition 2.2, in order to prove the statement we have first to determine the solu-

tions x, y ∈ F
∗
q3n of Equations (5) and (6), where we have chosen f(x) = axq

i
, with a ∈ F

∗
q3n and

1 ≤ i ≤ 3n − 1 and satisfying Conditions (i) and (ii). With these assumptions, Equations (5)

and (6) become

aq
2n+1(xq

2n
y − xyq

2n
)q

i

= (xyq
2n − yxq

2n
)A (8)

and

aq
2n
(xq

2n+i

y − xyq
2n+i

) + a(xq
2n
yq

i − xq
i

yq
2n
) = (xyq

2n − yxq
2n
)B. (9)

Let s := xyq
2n − yxq

2n
. By (8), if s 6= 0, then s turns out to be a solution in Fq3n of the equation

zq
i−1 = − A

aq2n+1
(10)
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and, from Conditions (i), Equation (10) has solutions if and only if Nq3n/q3

(
− A

aq2n+1

)
= 1,

namely

(−1)nNq3n/q3(A) = (Nq3n/q3(a))
q+1 if 2n ≡ 1 mod 3 (11)

or

(−1)nNq3n/q3(A) = (Nq3n/q3(a))
q2+1 if 2n ≡ −1 mod 3. (12)

Since A ∈ F
∗
qn and since n 6≡ 0 mod 3, we get Nq3n/q3(A) ∈ Fq and from Condition (ii) it follows

that both Equations (11) and (12) cannot be satisfied. This means that s = 0 and hence x = αy,

for some α ∈ F
∗
qn . Substituting in (9), we get

(αqi − α)(aq
2n
yq

2n+i+1 − ayq
2n+qi) = 0. (13)

If αqi 6= α, raising the previous equation to the qn–th power, then

y(q
n−1)(qi−1) = a1−qn ,

i.e.

(ayq
i−1)q

n−1 = 1,

which is verified if and only if yq
i−1 = β

a , for some β ∈ F
∗
qn . This means that y ∈ F

∗
q3n turns out

to be a solution of the equation zq
i−1 = β/a and, from Conditions (i), this happens if and only

if

Nq3n/q3(β) = Nq3n/q3(a).

Since β ∈ Fqn , from Conditions (i) it follows Nq3n/q3(β) ∈ F
∗
q and taking Condition (ii) into

account, we get a contradiction. Hence the element α ∈ Fqn is such that αqi = α, and since

gcd(i, n) = 1, we get α ∈ F
∗
q. Substituting x = αy in (7) we get λ = α ∈ F

∗
q, proving the

assertion by Proposition 2.2.

Observe that the 3n–dimensional Fq–vector subspace U of Fq6n defining the linear set LU

of Theorem 2.3 is also an n–dimensional Fq3–vector subspace. In particular, when n = 2, U is
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a 2–dimensional Fq3–subspace of Fq12 and hence it can be always seen as the set of zeros of a

polynomial

xq
6
+ αxq

3
+ βx ∈ Fq12 [x],

where Nq12/q3(β) = 1 and αq3+1 = βq3 − βq6+q3+1; see [1]. Hence, the examples of scattered Fq–

linear sets of rank 6 constructed in PG(2, q4) by [2] belong to the family presented in Theorem

2.3.

Now, we will construct, for q ≡ 1 mod 3, another family of scattered Fq–linear sets of

PG(2, q2n) of rank 3n defined by an Fq–vector subspace which is not an Fq3–subspace. Indeed,

Theorem 2.4. For any prime power q ≡ 1 mod 3 and any integer n ≥ 2, the set

LU = {〈axqi + xω〉F
q2n

: x ∈ F
∗
q3n}

satisfying the following assumptions

(I) gcd(i, 2n) = gcd(i, 3n) = 1,

(II)
(
Nq3n/q(a)

) q−1
3 6= 1

is a scattered Fq–linear set of the projective plane PG(2, q2n) of rank 3n.

Proof. The first part of the proof is the same as in Theorem 2.3. So, we have to determine the

solutions x, y ∈ F
∗
q3n of Equations (8) and (9). Putting again s := xyq

2n − yxq
2n
, if s 6= 0, from

the previous equality, s turns out to be a solution in F
∗
q3n of (10) and, from Conditions (I).

Equation (10) has solutions if and only if Nq3n/q

(
− A

aq2n+1

)
= 1, namely

(Nq3n/q(a))
2 = (−1)n(Nqn/q(A))

3, (14)

implying ((
Nq3n/q(a)

) q−1
3

)2

= (−1)
n(q−1)

3 . (15)

9



If n(q−1)
3 is even, Condition (II) implies that q is odd and

(
Nq3n/q(a)

) q−1
3

= −1, and raising this

equality to the 3–rd power we get a contradiction. If n(q−1)
3 is odd, then q is even, and hence

(
Nq3n/q(a)

) q−1
3

= 1, again contradicting Condition (II). This means that s = 0 and hence

x = αy, for some α ∈ F
∗
qn , and arguing again as in the previous proof, if αqi 6= α, then y ∈ F

∗
q3n

turns out to be a solution of the equation zq
i−1 = β/a, for some β ∈ F

∗
qn . From Conditions (I),

this happens if and only if

(Nqn/q(β))
3 = Nq3n/q(a),

which means that Nqn/q(β) is a solution in F
∗
q of the equation z3 = Nq3n/q(a), contradicting

Condition (II). Hence the element α ∈ F
∗
qn is such that αqi = α, and since gcd(i, n) = 1, we get

α ∈ F
∗
q, yielding as in the previous proof λ ∈ F

∗
q. By Proposition 2.2, we have the assertion.

Putting together Theorems 2.3 and 2.4 we get the following

Theorem 2.5. • If n 6≡ 0 mod 3, there exist scattered Fq–linear sets in PG(2, q2n) of rank

3n for each prime power q ≥ 2.

• If n ≡ 0 mod 3, there exist scattered Fq–linear sets in PG(2, q2n) of rank 3n for each prime

power q ≡ 1 mod 3.

Binomial case: f(x) := axqi + byq
j

, a, b ∈ F
∗
q3n and 1 ≤ i, j ≤ 3n− 1

With this type of function it is clear that the linear set (2) has Fq as maximum subfield of

linearity when gcd(i, j, 2n) = 1. In particular we will study the case when j = 2n + i and,

obviously gcd(i, 2n) = 1. First of all we need a technical lemma. Denoting by Trq3n/q(·) the

trace function from Fq3n over Fq, we can consider the non–degenerate symmetric bilinear form

of Fq3n over Fq defined by the following rule < x, y >:= Trq3n/q(xy). Then the adjoint map ϕ̄
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of an Fq–linear map ϕ(x) =
∑3n−1

i=0 aix
qi of Fq3n is ϕ̄(x) =

∑3n−1
i=0 aq

3n−i

i xq
3n−i

(see e.g. [15, Sec.

2.2]). Now, we can prove the following

Lemma 2.6. Let ϕ be an Fq-linear map of Fq3n and ϕ̄ the adjoint of ϕ with respect to the

bilinear form <,>. Then the maps defined by ϕ(x)/x and ϕ̄(x)/x have the same image.

Proof. Let V = Fq3n ×Fq3n and let σ : V×V −→ Fq3n be the non-degenerate alternating bilinear

form of V defined by σ((x, y), (u, v)) = xv − yu. Then

σ′((x, y), (u, v)) = Trq3n/q(σ((x, y), (u, v)))

is a non-degenerate alternating bilinear form on V, when V is regarded as a 6n-dimensional

vector space over Fq. Let ⊥ and ⊥′ be the orthogonal complement maps defined by σ and σ′

on the lattices of the Fq3n-subspaces and the Fq-subspaces of V, respectively. Recall that if W

is an Fq3n-subspace of V and U is an Fq-subspace of V then

dimF
q3n

W⊥ + dimF
q3n

W = 2

and

dimFq U
⊥′

+ dimFq U = 6n.

Also, it is easy to see that W⊥ = W⊥′

for each Fq3n-subspace W of V and, since σ is an

alternating form, if W is an 1-dimensional Fq3n-subspace of V, then W⊥ = W . Let Uϕ =

{(x, ϕ(x)) : x ∈ Fq3n}, where ϕ is an Fq-linear map of Fq3n . Then Uϕ is a 3n-dimensional

Fq-subspace of V and a direct calculation shows that U⊥′

ϕ = Uϕ̄. Note that an element t ∈ Fq3n

belongs to the image of the map ϕ(x)/x if and only if the point Pt = 〈(1, t)〉F
q3n

of PG(V,Fq3n) =

PG(1, q3n) belongs to the Fq-linear set LUϕ . Since P⊥
t = P⊥′

t = Pt, by using the Grassmann

formula, we get

Pt ∈ LUϕ ⇔ dimFq(Uϕ ∩ Pt) ≥ 1 ⇔ dimFq (U
⊥′

ϕ ∩ P⊥′

t ) ≥ 1 ⇔ dimFq (Uϕ̄ ∩ Pt) ≥ 1 ⇔ Pt ∈ LUϕ̄ ,

11



i.e., t ∈ Fq3n belongs to the image of the map ϕ(x)/x if and only if t belongs to the image of the

map ϕ̄(x)/x.

Now we can show the following result.

Proposition 2.7. Let f := fi,a,b : x ∈ Fq3n → axq
i

+ bxq
2n+i ∈ Fq3n, with a, b ∈ F

∗
q3n and

gcd(i, 2n) = 1, and let ω be an element of Fq2n \ Fqn such that ω2 = A + Bω, with A,B ∈ Fqn

and A 6= 0. If

fi,a,b(x)

x
/∈ Fqn for each x ∈ F

∗
q3n (16)

then the set

LU = {〈fi,a,b(x) + wx〉F
q2n

: x ∈ F
∗
q3n〉

turns out to be a scattered Fq–linear of rank 3n of the projective plane P = PG(Fq6n ,Fq2n) =

PG(2, q2n).

Proof. By Proposition 2.2, in order to prove the statement we have first to determine the solu-

tions x, y ∈ F
∗
q3n of Equations (5) and (6), with f(x) = fi,a,b(x) fulfilling Condition (16). With

this choice Equation (5) becomes

G(s) := bq
2n+1sq

2n+i − bq
2n
asq

n+i

+ aq
2n+1sq

i

+As = 0,

where s = xyq
2n − yxq

2n
. By (16), fi,a,b(x) 6= 0 for each x ∈ F

∗
q3n and then Nq3n/qn(a) 6=

−Nq3n/qn(b). Hence G(s) = 0 if and only if aq
n
G(s) + bq

2n
G(s)q

n
= 0, i.e.

(Nq3n/qn(a) +Nq3n/qn(b))s
qi +Abq

2n
sq

n

+ aq
n

As = 0. (17)

Let L := Nq3n/qn(a) + Nq3n/qn(b) and note that by (16) L 6= 0. This means that if s0 is a

non-zero solution of (17), then s0 satisfies the following equation

bq
2n−i

sq
n−i

0 + aq
n−i

sq
3n−i

0

s0
=

(−L

A

)q3n−i

,

12



i.e. there exists s0 ∈ F
∗
q3n such that

f
n−i,bq2n−i ,aqn−i (s0)

s0
∈ Fqn ,

and hence (
f
n−i,bq2n−i ,aqn−i (s0)

s0

)q2n

=
f
n−i,bqn−i ,aq3n−i (s

q2n

0 )

sq
2n

0

∈ Fqn .

Now, by Lemma 2.6 the maps fi,a,b(x)/x and f̄i,a,b(x)/x have the same image and a direct

calculation shows that

f̄i,a,b = f
n−i,bqn−i ,aq3n−i ,

hence by (16)
f
n−i,bqn−i ,aq3n−i (x)

x
6∈ Fqn for each x ∈ F

∗
q3n .

This means that Equation (17) only admits the zero solution, i.e. s = xyq
2n − yxq

2n
= 0, which

implies x = αy for some α ∈ F
∗
qn . Now, from Equation (6), substituting fi,a,b(x) = axq

i
+bxq

2n+i

and x = αy, we get

(αqi − α)(fi,a,b(y)
q2ny − fi,a,b(y)y

q2n) = 0.

If αqi 6= α, we get from the previous equation

fi,a,b(y)
q2ny = fi,a,b(y)y

q2n

for some y ∈ F
∗
q3n , i.e. fi,a,b(y)/y ∈ Fqn , a contradiction. Hence the element α ∈ F

∗
qn is such that

αqi = α, and since gcd(i, n) = 1, we get α ∈ F
∗
q. As in Theorems 2.3 and 2.4, putting x = αy,

with x, y ∈ F
∗
q3n and α ∈ F

∗
q in (7) we get λ = α ∈ F

∗
q, proving the assertion by Proposition 2.2.

In what follows we will prove that if q = 2, i = 1 and a = 1, then there exists at least

an element b ∈ F
∗
q3n such that Condition (16) is satisfied. To this end we need the following

preliminary result.
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Lemma 2.8. Set n > 1 and q = 2, consider the function H(t) = (1 − t)/tj defined in F
∗
q3n ,

where j = q2n+1−1
q−1 = 22n+1 − 1. Then there exists at least an element b ∈ F

∗
23n not in the image

of H and such that N23n/2n(b) 6= 1.

Proof. First of all notice that {H(t) | t ∈ F
∗
23n} = {tm + tm−1 | t ∈ F

∗
23n}, with m = 23n − j =

23n − 22n+1 + 1. The function θ : F23n → F23n , defined by θ(x) = xq
n−1

, is an automorphism of

F23n and hence

N23n/2n(x) = 1 ⇐⇒ N23n/2n(θ(x)) = 1.

Therefore

∃ b ∈ F
∗
23n : b /∈ Im(H), N23n/2n(b) 6= 1 ⇐⇒

∃ b ∈ F
∗
23n : b /∈ Im(θ ◦H), N23n/2n(b) 6= 1.

We have that

G(t) = (θ ◦H)(t) = t(2
3n−22n+1+1)2n−1

+ t(2
3n−22n+1)2n−1

= t2
n−1 + t2

n−1−1.

Since n > 1 and G(0) = G(1) = 0, G(t) is not a permutation polynomial and it has degree

2n − 1. Then by [20], its value set has size at most 23n − 23n−1
2n−1 = 23n − (22n + 2n + 1). The

number of elements of F23n having norm over F2n equal to 1 is exactly 22n + 2n + 1. In the

following we will prove that there exist at least 2n + 2 elements in the value set of G having

norm over F2n equal to 1. Note that an element having norm equal to 1 has the form x2
n−1 for

some x ∈ F∗
23n . Consider the curve C defined by

f(x, y) = y2
n−1 + y2

n−1−1 + x2
n−1 = 0.

An affine F23n-rational point of C having x, y 6= 0 corresponds to an element b = x2
n−1 belonging

to the image of G such that N23n/2n(b) = 1. Intersecting the curve C with the lines ℓt : x = ty

we get that the coordinates of the F23n-rational points of C having x, y 6= 0 are of the form

x =
t

(t2n−1 − 1)22n+1 y =
1

(t2n−1 − 1)22n+1 ,

14



where t ∈ F23n \ F2n . Hence C has exactly

23n − 2n

affine F23n-rational points not lying on the two axes. Now, since the same value of x2
n−1

0 is

obtained 2n−1 times and since on the vertical line x = x0 the curve C has at most 2n−1 points,

we have that the same element in the image of G, with norm 1, can be obtained from at most

(2n − 1)2 points of C. Then there are at least

23n − 2n

(2n − 1)2
> 2n + 2

elements in the image of G having norm equal to 1. This proves that there exists at least an

element b ∈ F
∗
23n not in the image of H and of norm different from 1.

Now, we are able to prove

Proposition 2.9. Let fi,a,b be the Fq–linear map of Fq3n as defined in Proposition 2.7 and put

i = a = 1. If q = 2, there exists at least one element b ∈ F
∗
23n such that

f1,1,b(x)

x
/∈ F2n for each x ∈ F

∗
23n . (18)

Proof. Taking q = 2 and i = a = 1 in fi,a,b(x) = ax2
i

+ bx2
2n+i

, Condition (18) reads

x2 + bx2
2n+1

x
= x+ bx2

2n+1−1 /∈ F2n for each x ∈ F
∗
23n . (19)

Let g(x) :=
f1,1,b(x)

x = x+ bx2
2n+1−1 for each x ∈ F

∗
23n . Note that since g(ηx) = ηg(x) for each

η ∈ Fqn , Condition (19) is satisfied if g(x) 6= 0 and g(x) 6= 1 for each x ∈ F
∗
23n . If there is an

element x0 ∈ F
∗
q3n such that g(x0) = 1, then the corresponding b belongs to the image of the

function H defined in Lemma 2.8. If there is an element x0 ∈ F
∗
q3n such that g(x0) = 0, then the

corresponding b has norm equal to 1. By Lemma 2.8 there is an element b0 ∈ F
∗
23n not belonging

to the image of H and having norm different from 1. This implies that Condition (19), for b0,

is satisfied and hence f1,1,b0 satisfies Condition (18).
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Putting together Propositions 2.7 and 2.9 we get the following

Theorem 2.10. For each integer n > 1, the set

LU = {〈x2 + bx2
2n+1

+ xω〉F22n
: x ∈ F

∗
23n},

where b ∈ F
∗
23n with N23n/2n(b) 6= 1 and such that

x+ bx2
2n+1−1 /∈ F2n for each x ∈ F

∗
23n

is a scattered F2–linear set of the projective plane PG(2, 22n) of rank 3n.

Remark 2.11. MAGMA computational results show that for n = 3 and q ∈ {3, 4, 5} there

exist elements b ∈ F
∗
q3n for which the functions f1,1,b satisfy Condition (18) yielding Fq–scattered

linear sets in PG(2, q6), q ∈ {3, 4, 5}, of rank 9. However, taking Theorems 2.5 and 2.10 into

account, the existence of a family of scattered Fq–linear sets in PG(2, q2n) for each n ≡ 0 mod 3,

q 6≡ 1 mod 3 and q > 2, remains an open problem.

3 Constructions in PG(r − 1, qt)

First of all we prove the following

Theorem 3.1. Let P = PG(V, Fqt) = PG(r − 1, qt) be a projective space and let

V = V1 ⊕F
qt

· · · ⊕
F
qt

Vm, (20)

with dimVi = si ≥ 2 and i ∈ {1, . . . ,m}. If LUi
is a scattered Fq–linear set of PG(Vi,Fqt) =

PG(si − 1, qt) then LW , where

W = U1 ⊕Fq
· · · ⊕

Fq
Um, (21)

is a scattered Fq–linear set of P.

Also, LW has maximum rank rt
2 if and only if each LUi

has maximum rank sit
2 .
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Proof. Let ki be the rank of LUi
. By Theorem 1.1 ki ≤ sit

2 for each i ∈ {1, . . . ,m}. It is clear

that LW is an Fq–linear set of P of rank
∑m

i=1 ki ≤
∑m

i=1
sit
2 = rt

2 . If P := 〈w〉 is a point of LW

with weight grater than 1, then there exist w′ ∈ W , w′ 6= 0, and λ ∈ Fqt \Fq such that w = λw′.

By (21), the vectors w and w′ can be uniquely written as

w = u1 + · · · + um and w′ = u′1 + · · · + u′m,

where ui, u
′
i ∈ Ui for each i ∈ {1, . . . ,m}. Taking w = λw′ and (20) into account, from the

previous equalities we get ui = λu′i for each i ∈ {1, . . . ,m}. Suppose that j ∈ {1, . . . ,m} is the

smallest number such that uj 6= 0. Then uj = λu′j , with uj ∈ Uj , and since LUj
is scattered we

get λ ∈ F
∗
q, a contradiction. The last part is obvious.

The previous theorem can be naturally applied when r is even by considering scattered Fq–

linear sets of rank t on r
2 lines, say ℓi, spanning the whole space PG(r− 1, qt). In such a way we

get a scattered Fq–linear set in PG(r − 1, qt) of rank rt
2 . We will call this construction of type

(C1). Some scattered linear sets reflecting this construction are those called of pseudoregulus

type (see [13, Definitions 3.1 and 4.1]), for which each scattered linear set on ℓi is of pseudoregulus

type (see [13, Remark 4.5]). Linear sets of pseudoregulus type have been also studied in [16],

[10], [12] and to this family belongs the first explicit example of scattered linear sets obtained by

Construction (C1) (see proof of [9, Thm. 2.5.5]). Also, from [13, Example 4.6 (i) and (ii)] it is

clear that, by using Construction (C1), we can also obtain scattered linear sets in PG(r− 1, qt),

r even, of rank rt
2 which are not of pseudoregulus type.

Proof of Theorem 1.2

Putting together Theorems 2.3, 2.4 and 2.10 and Theorem 3.1, it follows that when t is even and

r ≥ 5 we have several ways to construct scattered Fq–linear sets in PG(V, Fqt) = PG(r − 1, qt)

of rank rt
2 , by decomposing V as a direct sum over Fqt of vector spaces of dimension 2 and 3,

17



proving in this way Theorem 1.2. Obviously, the greater is the integer r, the wider are these

possible constructions.

Remark 3.2. From Theorem 1.1, each scattered Fq-linear set of PG(r − 1, q2n) of rank rn is

a two–intersection set of the space with respect to the hyperplanes with intersection numbers

θ(r−2)n−1(q) =
q(r−2)n−1

q−1 and θ(r−2)n(q) =
q(r−2)n+1−1

q−1 . Then, LU is a θ(r−2)n−1(q)–fold blocking

set (with respect to hyperplanes) in PG(r − 1, q2n) ([3, Thm. 6.1]) and gives to rise two-weight

linear codes and strongly regular graphs (see [5] and [3, Sec. 5]). As observed in [4], we want

to stress that the parameters of these two–intersection sets are not new. Indeed, sets with the

same parameters can be obtained by taking the disjoint union of qn−1
q−1 Baer subgeometries in

PG(r − 1, q2n) isomorphic to PG(r − 1, qn). This set is called of type I in [4]. Also in [4,

Thm. 2.2], the authors show that a scattered Fq–linear set of maximum rank cannot contain

any Baer subgeometry of PG(r−1, q2n) and hence the corresponding two–intersection set is not

isomorphic to a set of type I.

4 Small complete caps from maximum scattered linear sets

Many links between the theory of linear sets and a large number of geometrical objects are

known. Among them, two-intersection sets, blocking sets or multiple blocking sets, translation

ovoids of polar spaces, translation spreads of the Cayley Generalized Hexagon H(q). Also,

linear sets are widely used in the construction of finite semifields. In this section we describe

a connection between F2–linear sets and another classical object in Finite Geometry: complete

caps in Galois spaces. Such a connection is indeed fruitful; in fact, the results of the previous

section on F2–linear sets provide a solution, for spaces of even square order, to the long-standing

problem of establishing whether the theoretical lower bound for the size of a complete cap is

substantially sharp.

We first recall a Definition from [6, Sec. 2].
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Definition 4.1. Let q = 2t and let G be an additive subgroup of Fr
q. Let

KG := {Pv | v ∈ G} ⊂ AG(r, q),

where Pv is the affine point with coordinates (a1, a2, . . . , ar) corresponding to the vector v =

(a1, a2, . . . , ar) ∈ F
r
q. A translation cap is a cap in AG(r, q) which coincides with KG for some

additive subgroup G of Fr
q.

Translation caps can be characterized as follows.

Theorem 4.2. [6, Lemma 2.1] For an additive subgroup G of F
r
q, q even, the set KG is a

translation cap if and only if any two non-zero distinct vectors in G are Fq-linearly independent.

Proposition 4.3. An F2–scattered linear set in PG(r−1, 2t), t > 1, corresponds to a translation

cap in AG(r, 2t) and viceversa.

Proof. Let U be an F2-vector subspace of V = F
r
2t , t > 1, corresponding to the scattered linear

set LU in PG(V,F2t). Since U in an additive subgroup of V , by Theorem 4.2, KU is a translation

cap if and only if there no two distinct vectors in U are F2t-linearly dependent. This happens

if and only all the elements of U correspond to distinct points of LU , that is LU is a scattered

F2–linear set.

Let SL and T C be the sets of all the scattered linear sets in PG(r − 1, 2t) and all the

translation caps in AG(r, 2t). Form the previous theorem we can deduce the existence of a

bijective function

ϕ : SL → T C

which sends LU to ϕ(LU ) = KU for each F2-vector subspace U of V = F
r
2t.

Proposition 4.4. Let U1 and U2 such that KU1 and KU2 are equivalent under the action of

AΓL(r, 2t). Then ϕ−1(KU1) and ϕ−1(KU2) are equivalent under the action of PΓL(r, 2t).
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Proof. Let f ∈ AΓL(r, 2t) be such that f(KU1) = KU2 . Then f contains no translations, since

it has to fix the 0-vector. Then f = Mτ with M ∈ GL(r, 2t) and τ ∈ Aut(F2t). Let

KU1 = {0, P1, P2, . . . , Pn}, KU2 = {0, Q1, Q2, . . . , Qn},

with f(0) = 0 and f(Pi) = Qi. Also, let ϕ−1(KU1) = {P̃1, P̃2, . . . , P̃n} and ϕ−1(KU2) =

{Q̃1, Q̃2, . . . , Q̃n}, with P̃i = λiPi, Q̃i = µiQi and λi, µi 6= 0 for all i = 1, . . . , n. Consider

g = 1
det(M)Mτ ∈ PΓL(r, 2h). Then

g(P̃i) =

(
1

det(M)
Mτ

)
(P̃i) =

(
1

det(M)
Mτ

)
(λiPi) =

=
τ(λi)

det(M)
(Mτ) (Pi) =

τ(λi)

det(M)
Qi =

τ(λi)

µi det(M)
Q̃i.

Then g sends P̃i to Q̃i and ϕ−1(KU1) is projectively equivalent to ϕ−1(KU2).

By [6, Proposition 2.5] the maximum size of a translation cap in AG(r, q), q = 2t and t > 1,

is q
r
2 ; if the bound is attained then the cap is said to be a maximal translation cap. We recall

two further results from [6].

Lemma 4.5. [6, Proposition 2.8] If KG is a maximal translation cap in AG(r, 2t), and KH a

maximal translation cap in AG(r, 2t), then KG×KH is a maximal translation cap in AG(r+r, 2t).

Lemma 4.6. (Doubling construction) [6, Corollary 2.12] If KG is a maximal translation cap in

AG(r, 2t), then KG×{0,1} is a complete cap in AG(r + 1, 2t).

We are now in a position to prove the key result of this section.

Proposition 4.7. Let q = 2t, t even, and n ≥ 4 even. If there exists a maximum scattered

linear set in PG(2, q), then there exists a complete cap in AG(n, q) with size 2q
n−1
2 .

Proof. Let L be a maximum scattered F2–linear set of PG(2, 2t). Since t is even it has rank 3t
2 .

By Proposition 4.3 it is equivalent to a translation cap K in AG(3, 2t) of size 2
3t
2 =

√
q 3. Since
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the upper bound of [6, Proposition 2.5] is attained, K is a maximal translation cap in AG(3, 2t).

Let n ≥ 4 even and consider in AG(n− 1, 2t) the following cap of size q
n−1
2 :

K =
{(

a, b, c, x1, x
2
1, x2, x

2
2, . . . , xn−4

2
, x2n−4

2

)
: (a, b, c) ∈ K, xi ∈ F2t

}
.

By Lemma 4.5, together with the fact that {(x, x2) : x ∈ F2t)} is a translation cap in AG(2, 2t),

K is a maximal translation cap in AG(n − 1, 2t). Now the cap

K =
{
(a1, . . . , an−1, 0) : (a1, . . . , an−1) ∈ K

}
∪
{
(a1, . . . , an−1, 1) : (a1, . . . , an−1) ∈ K

}

is a complete translation cap in AG(n, 2t) of size 2q
n−1
2 by Lemma 4.6.

The existence of a complete cap in AG(n, q) of size 2q
n−1
2 , for n ≥ 4 even and q an even square,

now follows from Theorems 2.3, 2.4, 2.10 and Proposition 4.7. Theorem 1.3 in Introduction is

then proved.

Remark 4.8. For q an even square and n ≥ 4 even, the trivial lower bound for complete caps

is substantially sharp not only in the affine space AG(n, q) but also in the projective space

PG(n, q). In fact, it is possible to show that in PG(2k+4, q), k ≥ 0 there exists a complete cap

of size at most 3qk+
3
2 + 4qk+1 + 3 qk+1−1

q−1 containing the translation cap of size 2qk+
3
2 obtained

in Theorem 1.3. The lengthy and technical proof is similar to those of [6, Theorem 4.7] and

[8, Propositions 2.5 and 5.3], where a complete translation cap in AG(n, q) is extended to a

complete cap in PG(n, q).
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