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THE PROBABILITY OF GENERATING THE SYMMETRIC

GROUP

SEAN EBERHARD AND STEFAN-CHRISTOPH VIRCHOW

Abstract. We consider the probability p(Sn) that a pair of random permu-
tations generates either the alternating group An or the symmetric group Sn.

Dixon (1969) proved that p(Sn) approaches 1 as n → ∞ and conjectured that
p(Sn) = 1− 1/n+ o(1/n). This conjecture was verified by Babai (1989), using
the Classification of Finite Simple Groups. We give an elementary proof of
this result; specifically we show that p(Sn) = 1− 1/n+O(n−2+ǫ). Our proof
is based on character theory and character estimates, including recent work
by Schlage-Puchta (2012).

1. Introduction

Let G = An or G = Sn. We consider the probability

p(G) :=
#{(π, σ) ∈ G×G : 〈π, σ〉 > An}

|G|2

of ordered pairs (π, σ) ∈ G ×G generating either the alternating group An or the
symmetric group Sn.

E. Netto [16, p. 90] conjectured that almost all pairs of elements from Sn will
generate either An or Sn. J. D. Dixon [6] was the first to prove Netto’s conjecture.
More precisely, he established that

p(Sn) > 1− 2

(log logn)2

for all sufficiently large n. Dixon conjectured that the term 2/(log logn)2 can be
replaced by one of order 1/n. J. Bovey and A. Williamson [3] improved Dixon’s
estimate to

p(Sn) > 1− exp(−
√

logn).

This was subsequently amended by Bovey [2] to

p(Sn) > 1− n−1+o(1).

Finally, L. Babai [1] proved Dixon’s conjecture and showed that

p(Sn) = 1− 1

n
+O(n−2)

for all sufficiently large n.
In 2005, Dixon [5] established an even better asymptotic formula for p(Sn) and for
p(An). For m ∈ N the asymptotic formula is

p(Sn) = 1 +
c1
n

+
c2
n2

+ . . .+
cm
nm

+O(n−(m+1)),

1
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where the coefficients cm are effectively computable. The same expansion holds for
p(An). The expansion begins

p(Sn) = 1− 1

n
− 1

n2
− 4

n3
− 23

n4
− 171

n5
− 1542

n6
+O(n−7).

See [20] for more terms.
Babai’s proof of Dixon’s conjecture and Dixon’s preceding asymptotic formulas

for p(Sn) and p(An) rest on consequences of the Classification of Finite Simple
Groups (CFSG). Babai points out [1, Remark 1] that it would be desirable to find
an elementary proof of Dixon’s conjecture. Our aim is to give such an elementary
proof. Our methods are based on character estimates and recent work by J.-C.

Schalge-Puchta [19] and do not need the Classification of Finite Simple Groups.

Our main results are

Theorem 1.1. Let ǫ > 0. Then we have

p(Sn) = 1− 1

n
+O

(

n−2+ǫ
)

for all sufficiently large n.

Theorem 1.2. Let ǫ > 0. Then we get

p(An) = 1− 1

n
+O

(

n−2+ǫ
)

for all sufficiently large n.

The main challenge in proving these Theorems is bounding the probability that
a pair of random permutations generates a primitive subgroup other than An or
Sn. In [5] Dixon gave an asymptotic series for the proportion of pairs generating a
transitive subgroup, and in [6] he proved that the proportion of pairs generating a
transitive, imprimitive subgroup is 6 n2−n/4, so all that is left is to bound

P2(n) = P ({(π, σ) ∈ S2
n : π, σ ∈ H for some primitive H 6> An}),

where P denotes the uniform distribution on Sn×Sn. Using CFSG, Babai [1] proved

that P2(n) 6 n
√
n/n!. Without CFSG, Bovey [2] proved that P2(n) 6 n−1+o(1).

We will improve this to P2(n) 6 n−2+o(1): once we have this then Theorems 1.1
and 1.2 follow from the above mentioned results and [5, Theorem 2].

Theorem 1.3. P2(n) 6 n−2+o(1) as n → ∞.

Let us briefly outline the proof. The main insight, borrowed from Schlage-
Puchta [19], is that if π and σ are random then the N elements π, πσ, . . . , πσN−1

are approximately pairwise independent. Thus we can use the second moment
method to show that there is some i such that πσi ∈ C, where

C = {π ∈ Sn : ∃ p ∈ Πn such that π contains a p-cycle},
and Πn is the set of all primes p in the range n/2 < p < 3n/5. Some power of πσi

is then a p-cycle, and we can apply the following classical result of C. Jordan (see
[7, Theorem 3.3E] or [21, Theorem 13.9]).

Lemma 1.4. Let H be a primitive subgroup of Sn. Suppose that H contains at

least one permutation which is a p-cycle for a prime p 6 n−3. Then either H = Sn

or H = An.
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Additionally, as something of technical trick, we will use the concept of minimal
degree. Recall that the minimal degree m(H) of a non-trivial subgroup H 6 Sn is
the minimal number of points moved by a non-identity element of H . The following
bound is due to Babai (see [7, Theorem 5.3A and Theorem 5.4A]).

Lemma 1.5. Let H < Sn be a primitive permutation group not containing An.

Then m(H) >
√
n/2.

This Lemma allows us to restrict σ to the set

M = {σ ∈ Sn : m(〈σ〉) >
√
n/2},

which slightly boosts the approximate pairwise independence of π, πσ, . . . , πσN−1.
(A bound of the form m(H) > c

√
n/ logn due to Jordan would also suffice for us.)

To bound the variance in the second moment method we use character theory, and
thus the proof comes down to a certain bound in terms of characters. Finally, we
apply a character bound due to Müller and Schlage-Puchta [14] to conclude.

We can use basically the same method to bound

P3(n) = P ({(π, σ, τ) ∈ S3
n : π, σ, τ ∈ H for some primitive H 6> An}),

and in this case we have significantly more leverage as we can consider the collection
of all words of the form πw(σ, τ) with w a short word in two letters. Again we
have approximate pairwise independence, so again we can use the second moment
method. This idea leads to the following bound.

Theorem 1.6. P3(n) 6 exp(−cn1/3) as n → ∞.

By combining this with [5, Section 4] we have

P (〈π, σ, τ〉 > An) = 1− 1

n2
− 3

n4
− 6

n5
+O(n−6)

(and more terms can be mechanically computed).
Finally, we should mention

P1(n) = P ({π ∈ Sn : π ∈ H for some primitive H 6> An}).
On CFSG it is known that P1(n) 6 n−1+o(1) (see [8, Theorem 1.3]), and this is the
best possible bound which depends only on the crude size of n. The best CFSG-free
bound is still P1(n) 6 |M|/n! = n−1/2+o(1) due to Bovey [2].

2. Some character theory

In this section we review some results from character theory which are essential
for our proof. We denote by Irr(Sn) the set of irreducible characters of Sn. For a
conjugacy class C of Sn and χ ∈ Irr(Sn) we write χ(C) to denote χ(π) for π ∈ C.
We write 〈·, ·〉 for the usual inner product on the space CSn , i.e.,

〈f, g〉 = 1

n!

∑

π∈Sn

f(π)g(π).

Lemma 2.1. Let C1 and C2 be conjugacy classes of Sn and let τ ∈ Sn. Then

#{(x, y) ∈ C1 × C2 : xy = τ} =
|C1||C2|

n!

∑

χ∈Irr(Sn)

χ(C1)χ(C2)χ(τ
−1)

χ(1)
.
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Thus if C1, C2, and C3 are conjugation-invariant subsets of Sn we have

#{(x, y) ∈ C1 × C2 : xy ∈ C3} = n!2
∑

χ∈Irr(Sn)

〈χ,1C1〉〈χ,1C2〉〈χ,1C3〉
χ(1)

.

Proof. For the first equation, see [4, Proposition 9.33] or [12, Theorem 6.3.1]. The
second equation follows from partitioning C1 and C2 into conjugacy classes and
adding. �

Recall that the irreducible characters of Sn are explicitly parameterized by par-

titions of n, or sequences λ = (λ1, λ2, . . . , λl), where λ1 > · · · > λl are positive
integers such that λ1+ · · ·+λl = n. We write λ ⊢ n to indicate that λ is a partition
of n, and we write χλ for the irreducible character of Sn corresponding to λ. The
Ferrers diagram of λ is an array of n boxes having l left-justified rows with row i
containing λi boxes for 1 6 i 6 l. We write (i, j) ∈ λ to indicate that (i, j) is a box
in row i and column j in the Ferrers diagram of λ.

We shall apply the Murnaghan–Nakayama rule.

Definition 2.2. Let λ ⊢ n be a partition. A rim hook h is an edgewise connected

part of the Ferrers diagram of λ, obtained by starting from a box at the right end of

a row and at each step moving downwards or leftwards only, which can be removed

to leave a proper Ferrers diagram denoted by λ\h. An r-rim hook is a rim hook

containing r boxes.

The leg length of a rim hook h is

ll(h) := (the number of rows of h)− 1.

Let π ∈ Sn be a permutation with cycle type (1α1 , . . . , qαq , . . . , nαn) and αq > 1.
Denote π\q ∈ Sn−q a permutation with cycle type (1α1 , . . . , qαq−1, . . . , (n− q)αn−q).

Lemma 2.3 (Murnaghan–Nakayama Rule). Let λ ⊢ n be a partition. Suppose that

π ∈ Sn is a permutation which contains a q-cycle. Then we have

χλ(π) =
∑

h
q-rim hook

of λ

(−1)ll(h)χλ\h(π\q).

Proof. See [15, §9] or [18, Theorem 4.10.2]. �

The dimension χλ(1) of the irreducible representation associated with λ can be
computed via the hook formula.

Definition 2.4. Let λ ⊢ n be a partition. The hook of (i, j) ∈ λ is

Hi,j(λ) := {(i, j′) ∈ λ : j′ > j} ∪ {(i′, j) ∈ λ : i′ > i}.

Lemma 2.5 (Hook Formula). Let λ ⊢ n be a partition. Then

χλ(1) =
n!

∏

(i,j)∈λ

|Hi,j(λ)|
.

Proof. See [10, Theorem 1] or [18, Theorem 3.10.2]. �

We combine the Murnaghan–Nakayama rule and hook formula to show that χ(1)
is exponentially large whenever χ is nontrivial and 〈χ,1C〉 6= 0.
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Note that C is the union of conjugacy classes from Sn, since a conjugacy class
consists of all permutations with the same cycle type. For fixed p ∈ Πn let C1, ..., Cs

denote all conjugacy classes of C which contain a p-cycle. By removing a p-cycle
from Ci we obtain a conjugacy class Ci\p from Sn−p. Apparently, we have Sn−p =
˙⋃
i=1,...sCi \ p. In addition, computing the cardinality of Ci and Ci \ p (see [18,

Formula (1.2)]) we obtain

|Ci| =
n!

(n− p)!p
|Ci\ p|.

Let λ ⊢ n, λ 6= (n). We now apply the Murnaghan–Nakayama rule (Lemma 2.3):

∑

16i6s

|Ci|χλ(Ci) =
∑

16i6s

n!

(n− p)!p
|Ci\ p|

∑

h
p-rim hook

of λ

(−1)ll(h)χλ\h(Ci\ p)

=
∑

h
p-rim hook

of λ

(−1)ll(h) · n!
p

· 〈χ(n−p), χλ\h〉

=

{

(−1)ll(h) n!p , if ∃ p-rim hook h of λ with λ\h = (n− p),

0, otherwise.

Thus we can have 〈χλ,1C〉 6= 0 only if λ ∈ Λn,p for some p ∈ Πn, where

Λn,p = {λ ⊢ n : λ 6= (n) and ∃ p-rim hook h such that λ\h = (n− p)}.

Lemma 2.6. Let n be sufficiently large. If p ∈ Πn and λ ∈ Λn,p then

χλ(1) > exp(n/4).

Proof. First, we investigate the set Λn,p. We claim the following: Let p ∈ Πn and

λ ∈ Λn,p. Then we have λ ∈ Λn,p if and only if λ = (λ1, λ2, 1
n−λ1−λ2), where either

(a) λ1 = n− p and 1 6 λ2 6 n− p , or (b) n− p < λ1 6 p− 1 and λ2 = n− p+1.
(See Figure 1.)

You can see this as follows: Let λ ∈ Λn,p. Then the Ferrers diagram of λ has a
block of n− p boxes in the first row and around this block there is a p-rim hook h.
If the rim hook h does not contain a box from the first row of λ, then λ1 = n − p
and 1 6 λ2 6 n − p, i.e., (a) is satisfied. If h contains a box from the first row,
then since λ 6= (n) it follows immediately that n − p < λ1 and λ2 = n − p + 1.
As h is a p-rim hook, we also have λ1 6 p − 1. So (b) is fulfilled. Conversely, if
λ = (λ1, λ2, 1

n−λ1−λ2) such that (a) or (b) is satisfied, then there obviously exists
a p-rim hook h such that λ\h = (n− p). Thus λ ∈ Λn,p.

Second, let p ∈ Πn and λ ∈ Λn,p. Using the above description of Λn,p yields, for
the product of hook lengths of λ,

T :=
∏

(i,j)∈λ

|Hi,j(λ)| 6 nλ1!p(λ2 − 1)!(n− λ1 − λ2)!.

We can bound this expression as follows:
Case (a): T 6 n(n− p)!p(λ2 − 1)!(p− λ2)! 6 n(n− p)!p!.
Case (b): T 6 nλ1!p(n− p)!(p− 1− λ1)! 6 n(n− p)!p!.
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(a)

(b)

Figure 1. The two cases of λ\h = (n− p), λ 6= (n) for n = 10, p = 7

Thus it follows from the hook formula (Lemma 2.5) for sufficiently large n that

χλ(1) >
1

n

(

n

p

)

>
1

n

(

n

p

)p

> exp(14n). �

Finally, we will use the following estimate, due to T. W. Müller and J.-C. Schlage-
Puchta [14, Theorem 1], which improves the trivial bound |χ(σ)| 6 χ(1) for an
irreducible character χ of Sn, if the number f(σ) of fixed points of σ ∈ Sn is not
too large.

Lemma 2.7. Let χ ∈ Irr(Sn) be an irreducible character, let σ ∈ Sn be a permu-

tation and let n be sufficiently large. Then we have

|χ(σ)| 6 χ(1)1−δ(σ)

where

δ(σ) :=

{

1
13 , if f(σ) = 0
log(n/f(σ))

32 logn , if 1 6 f(σ) 6 n.

3. Two permutations

If σ ∈ H for some primitive H 6> An, then we know from Lemma 1.5 that σ ∈ M.
Suppose then that we pick (π, σ) ∈ Sn×M uniformly at random, and let X be the
number of i ∈ {0, . . . , N − 1} such that πσi ∈ C. If X > 0 then by Lemma 1.4 we
cannot have π, σ ∈ H for any primitive H 6> An. Thus by Chebyshev’s inequality
we get

(1) P2(n) 6
|M|
n!

Q(X = 0) 6
|M|
n!

VarX

(EX)2
,

where Q denotes the uniform distribution on Sn×M. Now since we are still taking
π uniformly at random from Sn we clearly have

EX = N
|C|
n!

,
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while

VarX = N
|C|
n!

(

1− |C|
n!

)

+ 2
∑

06i<j<N

(

Q(πσi, πσj ∈ C)−
( |C|
n!

)2
)

.

Now we express Q(πσi, πσj ∈ C) in terms of characters. Define

rν(τ) = #{σ ∈ M : σν = τ}.

Then by Lemma 2.1 we have

Q(πσi, πσj ∈ C) =
1

n!|M|
∑

(π,σ)∈Sn×M

1C(πσ
i)1C(πσ

j)

=
1

n!|M|
∑

x,y∈Sn

1C(x)1C(y)rj−i(x
−1y)

=
n!

|M|
∑

χ∈Irr(Sn)

〈χ,1C〉2〈χ, rj−i〉
χ(1)

.

The contribution from the trivial character χ = 1 is precisely (|C|/n!)2, since
〈1, rj−i〉 = |M|/n!. Thus it follows

(2) VarX = N
|C|
n!

(

1− |C|
n!

)

+
2n!

|M|

N
∑

ν=1

(N − ν)
∑

χ6=1

〈χ,1C〉2〈χ, rν〉
χ(1)

.

Note that

〈χ, rν〉 =
1

n!

∑

σ∈M

χ(σν).

Therefore we obtain

|〈χ, rν〉|
χ(1)

6
1

n!

∑

σ∈M

|χ(σν)|
χ(1)

6
#{σ : σν = 1}

n!
+ max

σ∈M:σν 6=1

|χ(σν)|
χ(1)

.

By Lemma 2.6 we know that χ(1) > exp(n/4) whenever 〈χ,1C〉 6= 0, and by
definition of M we know that σν has at most n − n1/2/2 fixed points whenever
σν 6= 1, so Lemma 2.7 yields

max
σ∈M:σν 6=1

|χ(σν)|
χ(1)

6 exp(n/4)−δ,

where

δ =
log(n/(n− n1/2/2))

32 logn
>

n−1/2

64 logn
.

Thus

max
σ∈M:σν 6=1

|χ(σν)|
χ(1)

6 exp

(

− n1/2

28 logn

)

.
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By orthogonality of characters it follows that

N
∑

ν=1

(N − ν)
∑

χ6=1

〈χ,1C〉2〈χ, rν〉
χ(1)

6 N
N
∑

ν=1

∑

χ∈Irr(Sn)

|〈χ,1C〉|2
(

#{σ : σν = 1}
n!

+ exp

(

− n1/2

28 logn

))

= N
|C|
n!

(

N
∑

ν=1

#{σ : σν = 1}
n!

+N exp

(

− n1/2

28 logn

)

)

.(3)

To finish we need to count pairs (σ, ν) such that σν = 1.
We will need the following simple bound for the number of permutations with-

out long cycles. (See [13, 17] for more precise estimates involving the Dickman
function.)

Lemma 3.1. Let r and m be positive integers such that r 6 m/2. Then the number

of π ∈ Sm all of whose cycles have length at most r is bounded by
(

2r

m

)
m
2r

m!.

Proof. Let p(m, r) be the probability that a random π ∈ Sm has no cycle of
length greater than r. Recall that we can sample π as follows: First we choose
the length j of the cycle containing 1 uniformly from {1, . . . ,m}, then we choose
the set {π(1), . . . , πj−1(1)} uniformly from all possible (j−1)-subsets of {2, . . . ,m},
and then we choose (inductively) a random permutation of {1, π(1), . . . , πj−1(1)}c.
Since the probability that j 6 r is clearly r/m, we deduce the recurrence

p(m, r) 6
r

m
max
16j6r

p(m− j, r).

Let q(m, r) = maxm′>m p(m′, r). Then we have

q(m, r) 6
r

m
q(m− r, r),

whenever m > r, while of course q(m, r) = 1 if m 6 r. Thus provided r 6 m/2 we
have

q(m, r) 6
r

m

r

m− r
· · · r

m− ⌊m/(2r)⌋ r 6

(

2r

m

)1+⌊m
2r ⌋

6

(

2r

m

)
m
2r

. �

Lemma 3.2. Assume N > n. Then we have

k(N) := #{(ν, σ) : 1 6 ν 6 N, σ ∈ Sn, σν = 1} = N1+o(1)n!n−2.

for all sufficiently large n.

In the proof we will find it convenient to use the Vinogradov notation X ≪ Y
familiar from analytic number theory, which means simply X 6 CY for some
implicit constant C, or in other words X 6 O(Y ).

Proof. First, we establish that k(N) ≫ Nn!n−2: Let D be the conjugacy class of
n-cycles in Sn. Obviously, |D| = n!

n and ord(σ) = n for σ ∈ D. Thus we obtain

k(N) >
n!

n
·
⌊

N

n

⌋

>
1

2
Nn!n−2.



THE PROBABILITY OF GENERATING THE SYMMETRIC GROUP 9

Second, we prove that k(N) 6 N1+o(1)n!n−2: For a permutation π ∈ Sm and
1 6 j 6 m denote by cj(π) the number of j-cycles of π. Let m be sufficiently large

and let r(m) :=
⌊

m
logm

⌋

. By the previous Lemma we have

A1(m) := #{σ ∈ Sm : cj(σ) = 0 ∀ j > r(m)}

6

(

2r(m)

m

)
m

2r(m)

m!

6

(

2

logm

)

log m

2

m!

≪ m!

m2
.

In addition, we consider for a given positive integer ν the number of permutations
σ ∈ Sm having at least one cycle of length > r(m) such that σν = 1:

A2(m, ν) := #
{

σ ∈ Sm : σν = 1 ∧
(

∃j > r(m) : cj(σ) 6= 0
)}

6
∑

j|ν
j>r(m)

m!

j
6

m!

r(m)
· d(ν),

where d(ν) denotes the number of divisors of ν. Combining the previous two results
yields

A3(m, ν) := #{σ ∈ Sm : σν = 1} 6 A1(m) +A2(m, ν) ≪ m!

r(m)
· d(ν).

Furthermore, we give an upper bound for the sum
∑

16ν6N A2(n, ν). Applying the
preceding estimate we get for all sufficiently large n

∑

16ν6N

A2(n, ν) 6
∑

16ν6N

∑

r(n)<j6n
j|ν

(

n

j

)

j!

j
A3(n− j, ν)

≪ Nn!n−2 +
∑

r(n)<j<n

∑

16ν6N
j|ν

n! log(n− j)

j(n− j)
· d(ν).

As d(ν) ≪ ν1/ log log ν (see [11, Theorem 317]) we have d(ν) 6 No(1) for ν 6 N .
Therefore, it follows that

∑

16ν6N

A2(n, ν) ≪ Nn!n−2 +N1+o(1)n!
∑

r(n)<j<n

log(n− j)

j2(n− j)

= N1+o(1)n!n−2.

Thus, we conclude

k(N) 6
∑

16ν6N

(A1(n) +A2(n, ν)) 6 N1+o(1)n!n−2. �

Combining the preceding Lemma with (2) and (3) we get

VarX 6 N
|C|
n!

+N2+o(1) |C|
|M|n

−2.
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For each p ∈ Πn there are
(

n
p

)

(p − 1)!(n − p)! = n!
p elements of Sn containing a

p-cycle. Therefore we have |C| > n!
n |Πn| and (a weak version of) the prime number

theorem yields

|C| > n!

2 logn

for sufficiently large n. Thus it follows from (1) that

P2(n) 6
1

N

|M|
|C| +No(1) n!

|C|n
−2 6

2 logn

N
+No(1) logn

n2
.

Putting N = n2 we get

P2(n) 6 n−2+o(1),

as required.

4. Three permutations

In this last section we consider

P3(n) = P ({(π, σ, τ) ∈ S3
n : π, σ, τ ∈ H for some primitive H 6> An}).

The proof is much like that of the previous section, except that we use the collection
of words of the form πw(σ, τ) in place of π, πσ, . . . , πσN−1.

Let

M2 = {(σ, τ) ∈ S2
n : m(〈σ, τ〉) >

√
n/2}.

By Lemma 1.5 we know that if σ, τ ∈ H for some primitive H 6> An then (σ, τ) ∈
M2, so we may assume that we pick (σ, τ) randomly from M2. Let WN be the
set of all words w ∈ F2 of length at most N . Supposing we pick π ∈ Sn and
(σ, τ) ∈ M2 at random, let X be the number of w ∈ WN of length at most N such
that πw(σ, τ) ∈ C. Then

P3(n) 6
|M2|
n!2

Q(X = 0) 6
|M2|
n!2

VarX

(EX)2
,

where Q denotes the uniform distribution on Sn ×M2. Now

EX = |WN | |C|
n!

and

VarX =
∑

w,w′∈WN

(

Q(πw(σ, τ), πw′(σ, τ) ∈ C)− |C|2
n!2

)

= |WN | |C|
n!

(

1− |C|
n!

)

+
∑

w,w′∈WN

w 6=w′

(

Q(πw(σ, τ), πw′(σ, τ) ∈ C)− |C|2
n!2

)

.

For w ∈ F2 and x ∈ Sn, let

rw(x) = #{(σ, τ) ∈ M2 : w(σ, τ) = x}.
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Then

|M2|
n!2

Q(πw(σ, τ), πw′(σ, τ) ∈ C) =
1

n!3

∑

π∈Sn

∑

(σ,τ)∈M2

1C(πw(σ, τ))1C(πw
′(σ, τ))

=
1

n!3

∑

x,y∈Sn

1C(x)1C(y)rw−1w′(x−1y),

=
1

n!

∑

χ∈Irr(Sn)

〈χ,1C〉2〈χ, rw−1w′〉
χ(1)

.

The contribution from the trivial character χ = 1 is precisely

|M2||C|2
n!4

.

To bound the other terms note that

1

n!

〈χ, rw〉
χ(1)

=
1

n!2

∑

(σ,τ)∈M2

χ(w(σ, τ))

χ(1)

=
#{(σ, τ) ∈ M2 : w(σ, τ) = 1}

n!2
+

1

n!2

∑

(σ,τ)∈M2

w(σ,τ) 6=1

χ(w(σ, τ))

χ(1)
,

so
1

n!

|〈χ, rw〉|
χ(1)

6
#{(σ, τ) ∈ S2

n : w(σ, τ) = 1}
n!2

+ max
(σ,τ)∈M2

w(σ,τ) 6=1

|χ(w(σ, τ))|
χ(1)

.

Provided that χ 6= 1 and 〈χ,1C〉 6= 0, the second term is bounded by

exp(−cn1/2/ logn),

just as in the previous section. The first term is also small, by the following Lemma
(see [9, Lemma 2.2]).

Lemma 4.1. Let w ∈ F2 be a non-trivial word of length at most k 6
√

n/2. If

σ, τ ∈ Sn are chosen uniformly at random then the probability that w(σ, τ) = 1 is

bounded by exp(−cn/k2).

Thus provided w 6= 1 and N 6 cn1/3 we have

1

n!

|〈χ, rw〉|
χ(1)

6 exp(−cn1/3).

Therefore, it follows for w 6= w′ that
∣

∣

∣

∣

∣

∣

∣

∣

1

n!

∑

χ∈Irr(Sn)
χ6=1

〈χ,1C〉2〈χ, rw−1w′〉
χ(1)

∣

∣

∣

∣

∣

∣

∣

∣

6
∑

χ∈Irr(Sn)

|〈χ,1C〉|2 exp(−cn1/3)

=
|C|
n!

exp(−cn1/3)

6 exp(−cn1/3).

Thus
|M2|
n!2

VarX 6 |WN | |C|
n!

+ |WN |2 exp(−cn1/3),
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so we deduce

P3(n) 6
O(logn)

|WN | + exp(−cn1/3).

Note that |WN | = 4 · 3N−1. Taking N = ⌊cn1/3⌋, we conclude

P3(n) 6 exp(−cn1/3).
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[13] E. Manstavičius, R. Petuchovas: Permutations without long or short cycles, Electron.
Notes Discrete Math. 49 (2015), 153-158.

[14] T. W. Müller, J.-C. Schlage-Puchta: Character theory of symmetric groups, subgroup
growth of Fuchsian groups, and random walks, Adv. Math. 213 (2007), 919-982.

[15] T. Nakayama: On some modular properties of irreducible representations of a symmetric
group, I, Jap. J. Math. 17 (1940), 165-184.

[16] E. Netto: The Theory of Substitutions and its Applications to Algebra, The Inland Press,
Ann Arbor (1892).

[17] R. Petuchovas: Asymptotic analysis of the cyclic structure of permutations,
arXiv:1611.02934 (2016), 1-77.

[18] B. E. Sagan: The Symmetric Group, Springer, New York (2001).
[19] J.-C. Schlage-Puchta: Applications of character estimates to statistical problems for the

symmetric group, Combinatorica 32 (2012), 309-323.
[20] N. J. A. Sloane: The On-Line Encyclopedia of Integer Sequences, http://oeis.org. Sequence

A113869.
[21] H. Wielandt: Finite Permutation Groups, Academic Press, New York (1964).



THE PROBABILITY OF GENERATING THE SYMMETRIC GROUP 13

Author information

Sean Eberhard, London, UK
E-mail: eberhard.math@gmail.com

Stefan-Christoph Virchow, Institut für Mathematik, Universität Rostock
Ulmenstr. 69 Haus 3, 18057 Rostock, Germany
E-mail: stefan.virchow@uni-rostock.de


	1. Introduction
	2. Some character theory
	3. Two permutations
	4. Three permutations
	Acknowledgements
	References

