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Abstract
Two subsets A, B of an m-element ground set X are said to be crossing, if none of the four sets
ANB, A\ B, B\ A and X \ (AU B) are empty. It was conjectured by Karzanov and Lomonosov
forty years ago that if a family F of subsets of X does not contain k pairwise crossing elements, then
| F| = Ok(n). For k = 2 and 3, the conjecture is true, but for larger values of k the best known upper
bound, due to Lomonosov, is | F | = Ox(nlogn). In this paper, we improve this bound by showing that
| F| = Ok(nlog™ n) holds, where log* denotes the iterated logarithm function.

1 Introduction

As usual, denote [n] := {1,...,n} and let 2[" be the family of all subsets of [n]. Two sets A, B € 2[" are
said to be crossing, if A\ B, B\ A, AN B and [n]\ (4 U B) are all non-empty.

We say that a family F C 2" is k-cross-free if it does not contain k pairwise crossing sets. The following
conjecture was made by Karzanov and Lomonosov [12], [11] and later by Pevzner [14]; see also Conjecture
3 in [4], Section 9.

Conjecture 1. Let k > 2 and n be positive integers, and let F C 2" be a k-cross-free family. Then
| F'| = Ok(n).

Here and in the rest of this paper, f(n) = Og(n) means that f(n) < ¢xn for a suitable constant ¢, > 0,
which may depend on the parameter k.

It was shown by Edmonds and Giles [3] that every 2-cross-free family F C 2" has at most 4n — 2
members. Pevzner [14] proved that every 3-cross-free family on an n-element underlying set has at most
6n elements, and Fleiner [J] established the weaker bound 10n, using a simpler argument. For k > 3,
Conjecture 1 remains open. The best known general upper bound for the size of a k-cross-free family is
Op(nlogn), which can be obtained by the following elegant argument, due to Lomonosov.

Let F C 2[™ be a maximal k-cross-free family. Notice that for any set A € F, the complement of A also
belongs to F. Thus, the subfamily

F ={AeF:|Al<n/2yUu{Ae F:|Al=n/2and 1€ A}

contains precisely half of the members of F. For every s, 1 < s < n/2, any two s-element members of F’
that have a point in common, are crossing. Since F' has no k pairwise crossing members, every element of
[n] is contained in at most k — 1 members of F of size s. Thus, the number of s-element members is at most
(k—1)n/s, and

n/2

[F'|=|F|/2<1+) (k—1)n/s = Ox(nlogn).
s=1
The main result of the present note represents the first improvement on this 40 years old bound. Let

log ;) n denote the function log...logn, where the log is iterated ¢ times, and let log* n denote the iterated
logarithm of n, that is, the largest positive integer ¢ such that log;yn > 1.
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Theorem 2. Let k > 2 and n be positive integers, and let F C 21" be a k-cross-free family. Then | F| =
Ok (nlog™ n).

Conjecture 1 has been proved in the following special case. Let F be a k-cross-free family consisting of
contiguous subintervals of the cyclic sequence 1,2,...,n. It was shown by Capoyleas and Pach [5] that in

this case o 1
Fl<at-vn-2(*0),

provided that n > 2k — 1. This bound cannot be improved.

A geometric graph G is a graph drawn in the plane so that its vertices are represented by points in general
position in the plane and its edges are represented by (possibly crossing) straight-line segments between these
points. Two edges of G are said to be crossing if the segments representing them have a point in common.

Conjecture 3. Let k > 2 and n be positive integers, and let G be a geometric graph with n vertices,
containing no k pairwise crossing edges. Then the number of edges of G is Ok(n).

The result of Capoyleas and Pach mentioned above implies that Conjecture 3 holds for geometric graphs
G, where the points representing the vertices of G form the vertex set of a convex n-gon. It is also known
to be true for k < 4; see [3], [1], [2]. For k > 4, it was proved by Valtr [16] that if a geometric graph on n
vertices contains no k pairwise crossing edges then it its number of edges is Og(nlogn) edges.

A bipartite variant of Conjecture 1 was proved by Suk [15]. He showed that if F C 2["l does not contain
2k sets Ai,..., Ay and By,. .., By such that A; and B; are crossing for all ¢, j € [k], then | F| < (2k — 1)?n.

The notion of k-cross-free families was first introduced by Karzanov [11] in the context of multicommodity
flow problems. Let G = (V, E) be a graph, X C V. A multiflow f is a fractional packing of paths in G.
We say that f locks a subset A C X in G if the total value of all paths between A and X \ A is equal to
the minimum number of edges separating A from X \ A in G. A family F of subsets of X is called lockable
if for every graph G with the above property there exists a multifiow f that locks every member A € F.
The celebrated locking theorem of Karzanov and Lomonosov [12] states that a set family is lockable if and
only if it is 3-cross-free. This is a useful extension of the Ford-Fulkerson theorem for network flows, and it
generalizes some previous results of Cherkasky [6] and Lovasz [13]; see also [10].

2 The proof of Theorem 2

In this section, we prove our main theorem. Throughout the proof, floors and ceilings are omitted whenever
they are not crucial, and log stands for the base 2 logarithm. Also, for convenience, we shall use the following
extended definition of binomial coefficients: if x is a real number and & is a positive integer,

(x) B —1(171).};!(sz+1) fx>k-1
A ife<k—1.

Let us remark that the function f(z) = (ﬁ) is monotone increasing and convex.

A pair of sets, A, B € 2", are said to be weakly crossing, if A\ B, B\ A and AN B are all non-empty.
Clearly, if A and B are crossing, then A and B are weakly crossing as well. We call a set family F c 2"
weakly k-cross-free if it does not contain k pairwise weakly crossing sets.

As our first step of the proof, we show that if F C 2" is a k-cross-free family, then we can pass to a
weakly k-cross-free family 7' C 21" by losing a factor of at most 2 in the cardinality.

Lemma 4. Let F C 2" be a k-cross-free family. Then there exists a weakly k-cross-free family F' C 2]
such that | F'| > | F|/2.

Proof. Let
F={AeF :1¢AU{n]\A: Ae F 1€ A}

Clearly, we have | F' | > | F|/2.



Note that two sets A, B € [n] are crossing if and only if A and [n] \ B are crossing. Hence, F' does
not contain k pairwise crossing sets. But no set in F’ contains 1, so we cannot have A U B = [n] for any
A,B € F'. Thus, A, B € F are crossing if and only if A and B are weakly crossing. Hence, F' satisfies the
conditions of the lemma. O

Now Theorem 2 follows trivially from the combination of Lemma 4 and the following theorem.

Theorem 5. Let k > 2 and n be positive integers and let F C 2" be a weakly k-cross-free family. Then
| F| = Og(nlog™n).

The rest of this section is devoted to the proof of this theorem. Let us briefly sketch the idea of the proof
while introducing some of the main notation.

Let F be a weakly k-cross-free family. First, we shall divide the elements of F into logn parts according
to their sizes: for i = 0,...,logn, let F; := {X € F : 2" < |X]| < 271}, We might refer to the families F;
as blocks. Next, we show that, as the block F; is weakly k-cross-free, it must have the following property:
a positive proportion of F; can be covered by a collection of chains I'; with the maximal elements of these
chains forming an antichain. These chains are going to be the objects of main interest in our proof.

We show that if 7 has too many elements, then we can find k£ chains C; C I';,,...,Cx C I';, for some
i1 <...<g, and k elements Cj; C ... C Cj in each chain C; such that C;; C Cj p if j < j and [ <V,
and C;; and Cj/ ;r are weakly crossing otherwise. But then we arrive to a contradiction since the k sets
Cik,Cok—1,...,C)1 are pairwise weakly crossing.

Now let us show how to execute this argument precisely.

Proof of Theorem 5. Without loss of generality, we can assume that F does not contain the empty set and
1-element sets, since by deleting them we decrease the size of F by at most n + 1.
Let us remind the reader of the definition of blocks: for ¢ = 0,1, ...,logn, we have

Fi={XeF 2 <|X| <2}

The next claim gives an upper bound on the size of an antichain in F;.

Claim 6. If A C F; is an antichain, then

(k—1)n

<
<=5

Proof. Suppose that there exists x € [n] such that z is contained in k sets from A. Then these k sets are
pairwise weakly crossing. Hence, every element of [n] is contained in at most k — 1 of the sets in .4, which
implies that
(k—1n> " |Al > |A]2".
AcA
O

In the next claim, we show that a positive proportion of F; can be covered by chains whose maximal
elements form an antichain. We shall use the following notation concerning chains. If C is a chain of size [,
denote its elements by C(1) C ... C C(I). Accordingly, let minC = C(1) and maxC = C(I).

Claim 7. For every i > 0, there exists a collection T'; of chains in F; such that {maxC : C € T';} is an

antichain and 7
> il
> lcI= =
cel';

Proof. Let M be the family of maximal elements of F; with respect to containment. For each M € M, let
Har C F; be a family of sets contained in M such that the system {H s} aresm forms a partition of F;.
Note that any two sets in Hjs have a nontrivial intersection, as every A € Hjs satisfies A C M and
|A| > |M]/2. Hence, Has cannot contain an antichain of size k, otherwise, these k sets would be pairwise
weakly crossing. Therefore, by Dilworth’s theorem [7], H s contains a chain Cjs of size at least |[Has|/(k—1).
The collection T'; = {Cas : M € M} meets the requirements of the Claim. O



Let T'; be a collection of chains in F; satisfying the conditions in Claim 7. As the maximal elements of
the chains in I'; form an antichain, Claim 6 gives the following upper bound on the size of T';:

(k—1)n
5 (1)
From now on, fix some positive real numbers a,b with a < b < logn and consider the union of blocks

Fap = Ua<i<b Fi. Analogously, let I'gp = Ua<i<b I';. Allowing a and b to be not necessarily integers will

serve as a slight convenience. In what follows, we bound the size of F ;.

For each chain C € Ty, define a set Y(C) by picking an arbitrary element from each of the difference
sets C(j + 1)\ C(j) for j =1,...,|C| — 1, and from Cy, as well. Clearly, we have |Y(C)| = |C|. For every

y € [n], let d(y) be the number of chains C in I'y ; such that y € Y'(C). Note that

Sy = yel= Y jefz Lol (@)
kE—1

y€E[n] Celap Celap

;] <

where the last inequality holds by Claim 7.

We will bound the size of F,; by arguing that one cannot have k different elements of [n] appearing in
Y (C) for many different sets C € Ty, without violating the condition that F is weakly k-cross-free. Thus,
>_yein) d(y) must be small. For this, we need the following definition.

Definition 8. Let y € [n]. Consider a k-tuple of chains (C1,...,Cx) in Tqyp, where C; € Ty, for a strictly
increasing sequence j1 < ... < ji. We say that (C1,...,Cy) is good fory if

(1) y e Y(Cy) fori € [K],
(ii) if C; € C; is the smallest set such that y € C;, then C; C ... C Cj.

Next, we show that if d(y) is large, then y is good for many k-tuples of chains. Let g(y) denote the
number of good k-tuples for y.

Claim 9. For every y € [n], we have

o= (" 1)2)'

Proof. Let d = d(y) and let Cy,...,Cq € 'y be the chains such that y € Y(C;). Also, for i = 1,...,d, let
C; be the smallest set in C; containing y, and let H = {C1,...,Cy}.

The family # is intersecting. Therefore, it cannot contain an antichain of size k, as any two elements of
such an antichain are weakly crossing. Applying Dilworth’s theorem [7], we obtain that H contains a chain
of size at least s = [d/(k — 1)]. Without loss of generality, let C; C ... C C be such a chain.

For any a < ¢ < b, F; contains at most k — 1 members of the sequence Ci,...,Cs. Otherwise, if
Cjyy...,C4, €Ty for some 1 < j; < ... < jr < s, the maximal elements maxCj,,...,maxCj, are pairwise
weakly crossing, because these sets form an antichain and contain y.

This implies that the sets C1,...,Cs are contained in at least r = [s/(k — 1)] > d/(k — 1)? different
blocks. Thus, we can assume that there exist i1 < ... <14, and j; < ... < j, such that C;, € F;, for [ € [r].

Then any k-element subset of {C;,,...,C;, } is a good k-tuple for y, resulting in at least

(;) > (d(y)/(/];_ 1)2)

good k-tuples for y. O

Now we give an upper bound on the total number of k-tuples that may be good for some y € [n]. A
k-tuple of chains in T', is called nice if it is good for some y € [n]. Let N be the number of nice k-tuples.

Claim 10. We have ( )k
2(k—1)n b
N < —a (k _ 1).



Proof. Let C € T'yp. Let us count the number of nice k-tuples (C1,...,Cy) for which C = C;. Note that in a
nice k-tuple (Cy,...,Ck), the set minC; is contained in maxCy, ..., maxCy.

But then, for any positive integer ¢ satisfying a < ¢ < b, there are at most k — 1 chains in I'; that can
belong to a nice k-tuple with first element C. Indeed, suppose that there exist k chains Dj, ..., Dy in I'; that
all appear in a nice k-tuple with their first element being C. Then {max Dy, ..., max Dy} is an intersecting
antichain: it is intersecting because max D; contains minC for j € [k], and it is an antichain, by the definition
of I';. Thus, any two sets among max D1, ..., max Dj, are weakly crossing, a contradiction.

Hence, the number of nice k-tuples (C1,...,C) for which C; = C is at most (kﬁl)(k — 1)*~1, as there

are at most (kﬁl) choices for jo < ... < ji < bsuch that C; € I';, for [ = 2,...,k, and there are at most
k — 1 further choices for each chain Cj in I';,.

Clearly, the number of choices for C = C; is at most the size of I, 5, which is

k—1n 2(k—1)n
Pal= Y o< Y B 20 Un,

2(1
a<i<b a<i<b

see (1) for the first inequality. Hence, the total number of nice k-tuples is at most

2(k ;a1)’fn (kﬁ 1>'

The next claim is the key observation in our proof. It tells us that a k-tuple of chains cannot be good
for k different elements of [n].

O

Claim 11. There are no k different elements y1, ..., yx € [n] and a k-tuple (C1,...,Cy) such that (Cy,...,Ck)
is good for yi,...,Yk.

Proof. Suppose that there exist such a k-tuple (C1,...,Cx) and k elements y1,...,yx. For i,j € [k], let C; ;
be the smallest set in C; that contains y;. By the definition of a good k-tuple, we have C ; C ... C Cy; for
j € [k]. Also, the sets Cy1,...,C4 1 are distinct elements of the chain Cy, so, without loss of generality, we
can assume that Ch; CCi2 C ... C Cy .

First, we show that this assumption forces C;1 C ... C C;, for all ¢ € [k], as well. To this end, it is
enough to prove that we cannot have C; j» C C; ; for some 1 < j < j" < k. Indeed, suppose that C; j; C C; ;.
Then y; € C; j, but y; & C; jo. However, y; € Cyj and Cy ; C Cy,;» C C; 4, contradiction.

Next, we show that any two sets in the family

H = {Oi.,kJrlfi 11 € [k]}

are weakly crossing. Every element of H contains C 1, so H is an intersecting family. Our task is reduced
to showing that H is an antichain. Suppose that C; p11-; C Cy g+1—i+ for some 7,4 € [k], i # ¢’. Then we
must have i < i’. Otherwise, |Oi,k+1—i| > |O¢/7k+171‘/|, as Cj p+1—i € Fj;, and Cy pp1-4 € ]:ji’ hold for some
Jir < ji. But if 1 < i/, we have Yk+1—i € Ci,kJrlfi and Yka1—i Q Ci/,kJrlfi/; S0 Ci,kJrlfi ¢ Ci/.,kJrlfi/-

Thus, any two sets of the k-element family H are weakly crossing, which is a contradiction. O

Let M be the number of pairs (y, (C1,...,C)) such that (Cy,...,Cf) is a good k-tuple for y € [n]. Let
us double count M.

On one hand, Claim 11 implies that M < (k — 1)N. Plugging in our upper bound of Claim 10 for N, we
get

— 1)kt _ 1)k+1pk—1
MS(k—l)N<2(k 1) n<kb )_2n(k 1)1

2a 1 2a(k — 1)]
For simplicity, write ¢;(k) = 2(k — 1)**1/(k — 1)!, then our inequality becomes

c1(k)nbF—1

M <
= 9a



On the other hand, we have

M= g(y),
y€[n]

where g(y), as before, stands for the number of good k-tuples for y. Applying Claim 9, we can bound the
right-hand side from below, as follows.

y€[n] y€[n]

Exploiting the convexity of the function (i), Jensen’s inequality implies that the right-hand side is at least

n<Zy€[n] d(yli/(k — 1)2n> |

Finally, using (2), we obtain

k
Suppose that | Fp| > 2k(k — 1)3n. In this case, we have

(7 ()

Writing co(k) = 1/2F(k —1)3*k!, we can further bound the right-hand side of (4) and arrive at the inequality

ca(k)| Fap |k
a> BTl )

170V 1), 0

Comparing (3) and (5), we obtain
c1(k)nbE =t co(k)| Fawp |*
2a > nk-1 ’

which yields the following upper bound for the size of Fj 4:

c1 (k) 1/k p(k—=1)/k
Cg(k) 2a/k

Recall that (5) and the last inequality hold under the assumption that | F, 5| > 2k(k — 1)3n. Hence, writing
cs(k) = (c1(k)/ca(k))V/*, we get that

|]:a,b| <n (

(6)

(k—=1)/k
| Fab| < max {Qk(k —1)°n, %}

2a/k

holds without any assumption.

We finish the proof by choosing an appropriate sequence {a;}{_, and applying the bound (6) for the
families Fa; a4 -

Define the sequence {a;}i—o 1. such that ag = 0, a; = k2 and a;; = 2%/*=1 for i = 1,2,.... Let s be
the smallest positive integer such that as > logn. Clearly, we have s = O (log*(n)). Also,

ok?

k—1)n
|]:¢lo,¢l1| = |]:0,/€2| < ; % - Ok(’ﬂ),
as F has at most (k — 1)n/l elements of size [ for [ € [n], by the weakly k-cross-free property. Finally, for
i=1,...,5—1, (6) yields that

g k= D7k
| Farans,| < max {2k(k: ~1)n, % — max{2k(k — 1), e3(k)}n.



The proof of Theorem 5 can be completed by noting that
s—1
| F| = Z | Faisarsr| < Ok(n) + smax{2k(k — 1), c3(k)}n = Ox(nlog* n).
i=0
O
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