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Abstract. Archdeacon (1987) proved that graphs embeddable on a fixed sur-

face can be 3-coloured so that each colour class induces a subgraph of bounded

maximum degree. Edwards, Kang, Kim, Oum and Seymour (2015) proved that

graphs with no Kt+1-minor can be t-coloured so that each colour class induces

a subgraph of bounded maximum degree. We prove a common generalisation of

these theorems with a weaker assumption about excluded subgraphs. This result

leads to new defective colouring results for several graph classes, including graphs

with linear crossing number, graphs with given thickness (with relevance to the

earth–moon problem), graphs with given stack- or queue-number, linklessly or

knotlessly embeddable graphs, graphs with given Colin de Verdière parameter,

and graphs excluding a complete bipartite graph as a topological minor.

1. Introduction

A graph G is k-colourable with defect d, or d-improper k-colourable, or simply

(k, d)-colourable, if each vertex v of G can be assigned one of k colours so that at most

d neighbours of v are assigned the same colour as v. That is, each monochromatic

subgraph has maximum degree at most d. Obviously the case d = 0 corresponds

to the usual notion of graph colouring. Cowen et al. [25] introduced the notion

of defective graph colouring, and now many results for various graph classes are

known. This paper presents (k, d)-colourability results for graph classes defined by

an excluded subgraph, subdivision or minor. Our primary focus is on minimising

the number of colours k rather than the degree bound d. This viewpoint motivates

the following definition. The defective chromatic number of a graph class C is the

minimum integer k (if such a k exists) for which there exists an integer d such that

every graph in C is (k, d)-colourable.

Consider the following two examples: Archdeacon [3] proved that for every sur-

face Σ, the defective chromatic number of graphs embeddable in Σ equals 3. And

Edwards, Kang, Kim, Oum, and Seymour [31] proved that the class of graphs con-

taining no Kt+1 minor has defective chromatic number t (which is a weakening of

Hadwiger’s conjecture). This paper proves a general theorem that implies both these
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Figure 1. The graph K∗7,13.

results as special cases. Indeed, our theorem only assumes an excluded subgraph,

which enables it to be applied in more general settings.

For integers s, t > 1, let K∗s,t be the bipartite graph obtained from Ks,t by adding(
s
2

)
new vertices, each adjacent to a distinct pair of vertices in the colour class of s

vertices in Ks,t (see Figure 1). Our main result shows that every graph excluding

K∗s,t as a subgraph is (s, d)-colourable, where d depends on s, t and certain density

parameters, which we now introduce.

For a graph G, the most natural density parameter to consider is the maximum

average degree, denoted mad(G), which is the maximum of the average degrees of

all subgraphs of G; that is,

mad(G) := max
H⊆G

2|E(H)|
|V (H)|

.

Closely related to maximum average degree is degeneracy. A graph G is k-degenerate

if every subgraph of G has a vertex of degree at most k. Every graph is bmad(G)c-
degenerate. It follows that the chromatic number (and even the choice number) of

a graph G is at most bmad(G) + 1c. Bounds on defective colourings have also been

obtained in terms of maximum average degree. In particular, Havet and Sereni [37]

proved that every graph G with mad(G) < k + kd
k+d

is (k, d)-colourable, and that

there exist non-(k, d)-colourable graphs whose maximum average degree tends to

2k when d goes to infinity, which shows the limit of the maximum average degree

approach for defective colouring (see also [9, 12–14, 19, 23, 28, 51]).

In addition to maximum average degree we consider the density of shallow topo-

logical minors (see [65] for more on this topic). A graph H is a minor of a graph

G if a graph isomorphic to H can be obtained from a subgraph of G by contracting

edges. A graph H is a topological minor of a graph G if a subdivision of H is a

subgraph of G. A (6 k)-subdivision of a graph G is a graph obtained from G by

subdividing each edge at most k times, or equivalently replacing each edge by a path

of length at most k + 1. The exact 1-subdivision of G is the graph obtained from

G by subdividing each edge exactly once. For a half integer r (that is, a number r



DEFECTIVE COLOURING OF GRAPHS EXCLUDING A SUBGRAPH OR MINOR 3

such that 2r is an integer), a graph H is a depth-r topological minor of a graph G

if a (6 2r)-subdivision of H is a subgraph of G. For a graph G, let G Õ r be the

set of all depth-r topological minors of G. The topological greatest reduced average

density (or top-grad) with rank r of a graph G is defined as

∇̃r(G) := max
H∈G Õ r

|E(H)|
|V (H)|

.

Note that ∇̃1(G) > ∇̃0(G) = 1
2

mad(G).

The following is our main result (see Theorem 2.3 for a more precise version).

Theorem 1.1. Every graph G with no K∗s,t subgraph has an (s, d)-colouring, where

d depends on s, t, mad(G) and ∇̃1/2(G)

We actually prove this result in the setting of defective list colourings, introduced

by Eaton and Hull [30] and since studied by several authors [16–18, 37, 60, 80, 86,

88, 91–93]. A k-list assignment of a graph G is a function L that assigns a set

L(v) of exactly k colours to each vertex v ∈ V (G). Then an L-colouring of G is a

function that assigns a colour in L(v) to each vertex v ∈ V (G). If an L-colouring

has the property that every vertex v has at most d neighbours having the same

colour as v, then we call it an L-colouring with defect d, or d-defective. A graph

G is k-choosable with defect d, or d-improper k-choosable, or simply (k, d)-choosable

if for every k-list assignment L of G, there exists a d-defective L-colouring of G.

For example, the result of Havet and Sereni [37] mentioned above applies in the

setting of (k, d)-choosability. The defective choice number of a graph class C is the

minimum integer k (if such a k exists) for which there exists an integer d such that

every graph in C is (k, d)-choosable.

The paper is organised as follows. Section 2 presents the proof of our main

result (a choosability version of Theorem 1.1). The subsequent sections present

several applications of this main result. In particular, Section 3 gives results for

graphs with no 4-cycle, and other graph classes defined by an excluded subgraph.

Section 4 presents defective 3-colourability results for graphs drawn on surfaces, even

allowing for a linear number of crossings, thus generalising the result of Archdeacon

mentioned above. Section 5 gives bounds on the defective chromatic number and

defective choice number of graphs with given thickness, and of graphs with given

stack- or queue-number. One result here is relevant to the earth–moon problem,

which asks for the chromatic number of graphs with thickness 2. While it is open

whether such graphs are 11-colourable, we prove they are 11-colourable with defect

2. Section 6 studies the defective chromatic number of minor-closed classes. We

determine the defective chromatic number and defective choice number of linklessly

embeddable graphs, knotlessly embeddable graphs, and graphs with given Colin

de Verdière parameter. We then prove a strengthening of the result of Edwards

et al. [31] mentioned above. Finally, we formulate a conjecture about the defective

chromatic number of H-minor-free graphs, and prove several special cases of it.
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2. Main Proof

An edge e in a graph is `-light if both endpoints of e have degree at most `. There

is a large literature on light edges in graphs; see [8, 10, 15, 46, 48, 49] for example.

Many of our results rely on the following sufficient condition for (k, d)-choosability.

Its proof is essentially identical to the proof of a lemma by Lih et al. [60, Lemma 1].

Škrekovski [80] proved a similar result with k = 1.

Lemma 2.1. For integers ` > k > 1, if every subgraph H of a graph G has a vertex

of degree at most k or an `-light edge, then G is (k + 1, `− k)-choosable.

Proof. Let L be a (k+ 1)-list assignment for G. We prove by induction on |V (H)|+
|E(H)| that every subgraph H of G is L-colourable with defect `−k. The base case

with |V (H)|+ |E(H)| = 0 is trivial. Consider a subgraph H of G. If H has a vertex

v of degree at most k, then by induction H − v is L-colourable with defect ` − k,

and there is a colour in L(v) used by no neighbour of v which can be assigned to v.

Now assume that H has minimum degree at least k+1. By assumption, H contains

an `-light edge xy. By induction, H − xy has an L-colouring c with defect `− k. If

c(x) 6= c(y), then c is also an L-colouring of H with defect `− k. Now assume that

c(x) = c(y). We may further assume that c is not an L-colouring of H with defect

` − k. Without loss of generality, x has exactly ` − k + 1 neighbours (including

y) coloured by c(x). Since degH(x) 6 `, there are at most k − 1 neighbours not

coloured by c(x). Since L(v) contains k colours different from c(x), there is a colour

used by no neighbour of x which can be assigned to x. �

To state our main result, we use the following auxiliary function. For positive

integers s, t and positive reals δ and δ1, let

N1(s, t, δ, δ1) :=


(δ − s)

((bδ1c
s−1

)
(t− 1) + 1

2
δ1

)
+ δ if s > 2,

1
2
(δ − 2)δ1t+ δ if s = 2,

t− 1 if s = 1.

Lemma 2.2. For positive integers s, t, and positive reals δ, δ1, let ` = bN1(s, t, δ, δ1)c.
If every subgraph of a graph G has average degree at most δ and every graph whose

exact 1-subdivision is a subgraph of G has average degree at most δ1, then at least

one of the following holds:

(i) G contains a K∗s,t subgraph,

(ii) G has a vertex of degree at most s− 1,

(iii) G has an `-light edge.

Proof. The case s = 1 is simple: If (i) does not hold, then ∆(G) 6 t − 1, in which

case either G has no edges and (ii) holds, or G has an edge and (iii) holds since

` = t− 1. Now assume that s > 1.

Assume for contradiction that G has no K∗s,t subgraph, that every vertex of G has

degree at least s (thus s 6 δ), and that G contains no `-light edge.
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Let A be the set of vertices in G of degree at most `. Let B := V (G) \ A. Let

a := |A| and b := |B|. Since G has a vertex of degree at most δ and δ 6 `, we

deduce that a > 0. Note that no two vertices in A are adjacent.

Since the average degree of G is at most δ,

(`+ 1)b+ sa 6 2|E(G)| 6 δ(a+ b).

That is,

(1) (`+ 1− δ)b 6 (δ − s)a.

Let G′ be a minor of G obtained from G− E(G[B]) by greedily finding a vertex

w ∈ A having a pair of non-adjacent neighbours x, y in B and replacing w by

an edge joining x and y (by deleting all edges incident with w except xw, yw and

contracting xw), until no such vertex w exists.

Let A′ := V (G′) \ B and a′ := |A′|. Clearly the exact 1-subdivision of G′[B] is

a subgraph of G. So every subgraph of G′[B] has average degree at most δ1. Since

G′[B] contains at least a− a′ edges,

(2) a− a′ 6 1
2
δ1b.

A clique in a graph is a set of pairwise adjacent vertices. Let M be the number

of cliques of size s in G′[B]. Since G′[B] is bδ1c-degenerate,

M 6

(
bδ1c
s− 1

)
b

(see [65, p. 25] or [87]). If s = 2, then the following better inequality holds:

M 6 1
2
δ1b.

For each vertex v ∈ A′, since v was not contracted in the creation of G′, the set

of neighbours of v in B is a clique of size at least s. Thus if a′ > M(t − 1), then

there are at least t vertices in A′ sharing at least s common neighbours in B. These

t vertices and their s common neighbours in B with the vertices in A − A′ form a

K∗s,t subgraph of G, contradicting our assumption. Thus,

(3) a′ 6M(t− 1).

By (1), (2) and (3),

`+ 1 6 (δ − s)
(
M

b
(t− 1) + 1

2
δ1

)
+ δ,

contradicting the definition of `. �

Lemmas 2.1 and 2.2 imply our main result:

Theorem 2.3. For integers s, t > 1, every graph G with no K∗s,t subgraph is (s, d)-

choosable, where d := bN1(s, t,mad(G), 2∇̃1/2(G))c − s+ 1.
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Proof. By definition, every subgraph of G has average degree at most mad(G) and

every graph whose exact 1-subdivision is a subgraph of G has average degree at

most 2∇̃1/2(G). By Lemma 2.2, every subgraph of G has a vertex of degree at most

s−1 or has an `-light edge, where ` := bN1(s, t,mad(G), 2∇̃1/2(G))c. By Lemma 2.1

with k = s− 1, we have that G is (s, `− s+ 1)-choosable. �

The following recursive construction was used by Edwards et al. [31] to show that

their theorem mentioned above is tight. We use this example repeatedly, so include

the proof for completeness. If s = 2, then let G(s,N) := K1,N+1. If s > 2, then

let G(s,N) be obtained from the disjoint union of N + 1 copies of G(s − 1, N) by

adding one new vertex v adjacent to all other vertices. Note that Havet and Sereni

[37] used a similar construction to prove their lower bound mentioned above.

Lemma 2.4 (Edwards et al. [31]). For integers s > 2 and N > 1, the graph

G = G(s,N) has no Ks,s minor and no (s− 1, N)-colouring.

Proof. We proceed by induction on s. In the base case, G = K1,N+1, and every 1-

colouring has a colour class (the whole graph) inducing a subgraph with maximum

degree larger than N . Thus G is not (1, N)-colourable. Now assume that s > 3 and

the claim holds for s− 1. Let v be the dominant vertex in G. Let C1, . . . , CN+1 be

the components of G− v, where each Ci is isomorphic to G(s− 1, N).

If G contains a Ks,s minor, then some component of G − v contains a Ks−1,s−1

minor, which contradicts our inductive assumption. Thus G contains no Ks,s minor.

Suppose that c is an (s− 1)-colouring of G(s,N). We may assume that c(v) = 1.

If Ci has a vertex of colour 1 for each i ∈ {1, 2, . . . , N + 1}, then v has more than

N neighbours of colour 1, which is not possible. Thus some component Ci has no

vertex coloured 1, and at most s − 2 colours are used on Ci. This contradicts the

assumption that Ci has no (s− 2, N)-colouring. �

Of course, for integers t > s > 2, the graph G(s,N) has no Ks,t minor, no Ks,t

topological minor, and no K∗s,t-minor. Thus Lemma 2.4 shows that the number of

colours in Theorem 2.3 is best possible. In other words, Theorem 2.3 states that

defective chromatic number and defective choice number of every class of graphs of

bounded ∇̃1/2 with no K∗s,t subgraph are at most s, and Lemma 2.4 shows that the

number s of colours cannot be decreased.

3. Excluded Subgraphs

This section presents several applications of our main result, in the setting of

graph classes defined by an excluded subgraph. Since K∗s,t contains Ks,t and a

(6 1)-subdivision of Ks+1, Theorem 2.3 immediately implies:

• Every graph G with no Ks,t subgraph is (s, d)-choosable, where d depends

on s, t, mad(G) and ∇̃1/2(G).

• Every graph G with no subgraph isomorphic to a (6 1)-subdivision of Ks+1

is (s, d)-choosable, where d depends on s, mad(G) and ∇̃1/2(G).
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3.1. No 4-Cycles. Since K∗2,1 is the 4-cycle, Theorem 2.3 with s = 2 and t = 1

implies the following.

Corollary 3.1. Every graph G with no 4-cycle is (2, d)-choosable, where d :=

b2((∇̃0(G)− 1)∇̃1/2(G) + ∇̃0(G))− 1c.

Corollary 3.2. Every graph with no Kt minor nor 4-cycle subgraph is (2, O(t2 log t))-

choosable.

For planar graphs, ∇̃0 6 ∇̃1/2 6 3. Indeed ∇̃0 < 3 for planar graphs with at least

three vertices. Corollary 3.1 says that every planar graph with no 4-cycle is (2, 16)-

choosable. However, better degree bounds are known. Borodin et al. [11] proved

that every planar graph with no cycle of length 4 has a vertex of degree at most 1

or a 7-light edge. By Lemma 2.1, planar graphs with no 4-cycle are (2, 6)-choosable.

Note that planar graphs with no 4-cycle are also known to be (3, 1)-choosable [86].

3.2. Edge Partitions. He et al. [38] proved the following theorem on partitioning

a graph into edge-disjoint subgraphs.

Theorem 3.3 (He et al. [38, Theorem 3.1]). If every subgraph of a graph G has a

vertex of degree at most 1 or an N-light edge, then G has an edge-partition into two

subgraphs T and H such that T is a forest and H is a graph with maximum degree

at most N − 1.

This theorem and Lemma 2.2 imply the following.

Theorem 3.4. For an integer t > 2, every graph G with no K2,t subgraph has

an edge-partition into two subgraphs T and H such that T is a forest and H has

maximum degree at most b(∇̃0(G)− 1)∇̃1/2(G)(t− 1) + 2∇̃0(G)c − 1.

3.3. Nowhere Dense Classes. A class C of graphs is nowhere dense [63] if, for

every integer k there is some n such that no (6 k)-subdivision of Kn is a subgraph

of a graph in C. Nowhere dense classes are also characterised [64] by the property

that for every integer r there exists a function fr : N→ [0, 1] with limn→∞ fr(n) = 0

such that every graph G of order n in the class has ∇̃r(G) 6 nfr(n). In other words,

for each integer r every graph G in the class has ∇̃r(G) = |V (G)|o(1).
For nowhere dense classes, there is no hope to find an improper colouring with a

bounded number of colours, since the chromatic number of a nowhere dense class

is typically unbounded (as witnessed by the class of graphs G such that ∆(G) 6
girth(G)). However, by the above characterisation, Theorem 2.3 implies there is

a partition of the vertex set into a bounded number of parts, each with ‘small’

maximum degree.

Corollary 3.5. Let C be a nowhere dense class. Then there exist c ∈ N and a

function f : N→ [0, 1] with limn→∞ f(n) = 0 such that every n-vertex graph in C is

(c, nf(n))-choosable.
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4. 3-Colouring Graphs on Surfaces

This section considers defective colourings of graphs drawn on a surface, possibly

with crossings. First consider the case of no crossings. For example, Cowen et al.

[25] proved that every planar graph is (3, 2)-colourable, improved to (3, 2)-choosable

by Eaton and Hull [30]. Since G(3, N) is planar, by Lemma 2.4 the class of planar

graphs has defective chromatic-number and defective choice number equal to 3.

More generally, Archdeacon [3] proved the conjecture of Cowen et al. [25] that for

every fixed surface Σ, the class of graphs embeddable in Σ has defective chromatic-

number 3. Woodall [89] proved that such graphs have defective choice number 3. It

follows from Euler’s formula that K3,t is not embeddable on Σ for some constant t

(see Lemma 4.3), and that graphs embeddable in Σ have bounded average degree

and ∇̃1/2. Thus Theorem 2.3 implies Woodall’s result. The lower bound follows

from Lemma 2.4 since G(3, N) is planar.

Theorem 4.1 ([3, 89]). For every surface Σ, the class of graphs embeddable in Σ

has defective chromatic-number 3 and defective choice number 3.

While our main goal is to bound the number of colours in a defective colouring,

we now estimate the degree bound using our method for a graph embeddable in a

surface Σ of Euler genus g. The Euler genus of an orientable surface with h handles

is 2h. The Euler genus of a non-orientable surface with c cross-caps is c. The Euler

genus of a graph G is the minimum Euler genus of a surface in which G embeds.

For g > 0, define

dg := max{3, 1
4
(5 +

√
24g + 1)}.

The next two lemmas are well known. We include their proofs for completeness.

Lemma 4.2. Every n-vertex graph G embeddable in a surface of Euler genus g has

at most dgn edges.

Proof. Suppose that |E(G)| > dn, where d := dg. We may assume that n > 3. By

Euler’s Formula, dn < |E(G)| 6 3(n + g − 2), implying (d − 3)n < 3g − 6. Since

dn < |E(G)| 6
(
n
2

)
we have n > 2d+ 1. Since d > 3,

3g − 6 > (d− 3)n > (d− 3)(2d+ 1) = 2d2 − 5d− 3.

Thus 2d2−5d+(3−3g) < 0. By the quadratic formula, d < 1
4
(5+
√

1 + 24g), which

is a contradiction. Hence |E(G)| 6 dn. �

Lemma 4.3 (Ringel [73]). For every surface Σ of Euler genus g, the complete

bipartite graph K3,2g+3 does not embed in Σ.

Proof. By Euler’s formula, every triangle-free graph with n > 3 vertices that embeds

in Σ has at most 2(n+ g − 2) edges. The result follows. �

Lemmas 4.2 and 4.3 and Theorem 2.3 imply that graphs embeddable in Σ are

(3, O(g5/2))-choosable. This degree bound is weaker than the bound of max{15, 1
2
(3g−
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8)} obtained by Archdeacon. However, our bound is easily improved. Results by

Jendro ’l and Tuhársky [47] and Ivančo [43] show that every graph with Euler genus

g has a (2g+ 8)-light edge. Then Lemma 2.1 directly implies that every graph with

Euler genus g is (3, 2g + 6)-choosable. Still this bound is weaker than the subse-

quent improvements to Archdeacon’s result of (3,max{12, 6 +
√

6g})-colourability

by Cowen et al. [24] and to (3,max{9, 2 +
√

4g + 6})-choosability by Woodall [89];

also see [18].

4.1. Linear Crossing Number. We now generalise Theorem 4.1 to the setting of

graphs with linear crossing number. For an integer g > 0 and real number k > 0,

say a graph G is k-close to Euler genus g (resp. k-close to planar) if every subgraph

H of G has a drawing on a surface of Euler genus g (resp. on the plane) with at

most k |E(H)| crossings. This says that the average number of crossings per edge

is at most 2k (for every subgraph). Of course, a graph is planar if and only if

it is 0-close to planar, and a graph has Euler genus at most g if and only if it is

0-close to Euler genus g. Graphs that can be drawn in the plane with at most k

crossings per edge, so called k-planar graphs, are examples of graphs (k
2
)-close to

planar. Pach and Tóth [68] proved that k-planar graphs have average degree O(
√
k).

It follows that k-planar graphs are O(
√
k)-colourable, which is best possible since

Kn is O(n2)-planar. For defective colourings, three colours suffice even in the more

general setting of graphs k-close to Euler genus g.

Theorem 4.4. For all integers g, k > 0 the class of graphs k-close to Euler genus g

has defective chromatic number and defective choice number equal to 3. In particular,

every graph k-close to Euler genus g is (3, O((k + 1)5/2(g + 1)7/2))-choosable.

We prove this theorem by a series of lemmas, starting with a straightforward

extension of the standard probabilistic proof of the crossing lemma. Note that

Shahrokhi et al. [79] obtained a better bound for a restricted range of values for m

relative to n.

Lemma 4.5. Every drawing of a graph with n vertices and m > 2dgn edges on a

surface Σ of Euler genus g has at least m3/(8(dgn)2) crossings.

Proof. By Lemma 4.2, every n-vertex graph that embeds in Σ has at most dgn edges.

Thus every drawing of an n-vertex m-edge graph on Σ has at least m−dgn crossings.

Given a graph G with n vertices and m > 2dgn edges and a crossing-minimal

drawing of G on Σ, choose each vertex of G independently and randomly with

probability p := 2dgn/m. Note that p 6 1. LetG′ be the induced subgraph obtained.

The expected number of vertices in G′ is pn, the expected number of edges in G′

is p2m, and the expected number of crossings in the induced drawing of G′ is p4c,

where c is the number of crossings in the drawing of G. By linearity of expectation

and the above naive bound, p4c > p2m−dg pn. Thus c > (pm−dgn)/p3 = dgn/p
3 =

m3/(8(dgn)2). �

This lemma leads to the following bound on the number of edges.
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Lemma 4.6. If an n-vertex m-edge graph G has a drawing on a surface of Euler

genus g with at most km crossings, then

m 6
√

8k + 4 dgn.

Proof. If m < 2dgn then m <
√

8k + 4 dgn, and we are done. Otherwise, m > 2dgn,

and Lemma 4.5 is applicable. Thus every drawing of G on a surface of Euler genus

g has at least m3/(8(dgn)2) crossings. Hence m3/(8(dgn)2) 6 km, implying m 6√
8k dgn. �

To apply Theorem 2.3 we bound the size of K3,t subgraphs.

Lemma 4.7. Every drawing of K3,t in a surface of Euler genus g has at least

t(t− 1)

(2g + 3)(2g + 2)

crossings.

Proof. By Lemma 4.3, K3,2g+3 does not embed (crossing-free) in a surface of Euler

genus g. Consider a drawing of K3,t in a surface of Euler genus g. There are
(

t
2g+3

)
copies of K3,2g+3 in K3,t. Each such copy has a crossing. Each crossing is in at most(
t−2
2g+1

)
copies of K3,2g+3. Thus the number of crossings is at least(

t

2g + 3

)/(
t− 2

2g + 1

)
=

t(t− 1)

(2g + 3)(2g + 2)
.

�

Lemma 4.8. If a graph G is k-close to Euler genus g and contains K3,t as a sub-

graph, then

t 6 3k(2g + 3)(2g + 2) + 1.

Proof. Suppose that G contains K3,t as a subgraph. Since G is k-close to Euler

genus g, so is K3,t. Thus K3,t has a drawing in a surface of Euler genus g where the

number of crossings is at most 3kt. By Lemma 4.7,

t(t− 1)

(2g + 3)(2g + 2)
6 3kt.

The result follows. �

We now prove the main result of this section.

Proof of Theorem 4.4. Say G is a graph k-close to Euler genus g. By Lemma 4.8,

G contains no K3,t with t = 3k(2g + 3)(2g + 2) + 2. By Lemma 4.6, mad(G) 6
2
√

8k + 4 dg. We now bound ∇̃1/2(G). Consider a subgraph H of G that is a (6 1)-

subdivision of a graph X. Since G is k-close to Euler genus g, so is H. Thus

H has a drawing on a surface of Euler genus g with at most k|E(H)| crossings.

Remove each division vertex and replace its two incident edges by one edge. We

obtain a drawing of X with the same number of crossings as the drawing of H.

Now |E(H)| 6 2|E(X)|. Thus X has a drawing on a surface of Euler genus g with
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at most 2k|E(X)| crossings. By Lemma 4.6, |E(X)| 6
√

16k + 4 dg|V (X)|. Hence

∇̃1/2(G) 6
√

16k + 4 dg. By Theorem 2.3, G is (3, d)-choosable, where

d = bN1(3, 3k(2g + 3)(2g + 2) + 2, 2
√

8k + 4 dg, 2
√

16k + 4 dg)c − 2

6 O((k + 1)5/2(g + 1)7/2). �

5. Thickness Parameters

This section studies defective colourings of graphs with given thickness or other re-

lated parameters. Yancey [90] first proposed studying defective colourings of graphs

with given thickness.

5.1. Light Edge Lemma. Our starting point is the following sufficient condition

for a graph to have a light edge. The proof uses a technique by Bose et al. [15],

which we present in a general form.

Lemma 5.1. Let G be a graph with n vertices, at most an+ b edges, and minimum

degree δ, such that every spanning bipartite subgraph has at most a′n+ b′ edges, for

some a, a′ ∈ R+ and b, b′ ∈ R and δ ∈ Z+ satisfying:

2a > δ > a′,(4)

(δ − a′)` > (2a− a′)δ, and(5)

(δ − a′)`2 −
(
(2a− a′)δ + b′ − δ + a′

)
`− (2a− a′ + 2b− b′)δ > 0.(6)

Then G has an (`− 1)-light edge.

Proof. Let X be the set of vertices with degree at most ` − 1. Since vertices in X

have degree at least δ and vertices not in X have degree at least `,

δ|X|+ (n− |X|)` 6
∑

v∈V (G)

deg(v) = 2|E(G)| 6 2(an+ b).

Thus

(`− 2a)n− 2b 6 (`− δ)|X|.
Suppose on the contrary that X is an independent set in G. Let G′ be the spanning

bipartite subgraph of G consisting of all edges between X and V (G)\X. Since each

of the at least δ edges incident with each vertex in X are in G′,

δ|X| 6 |E(G′)| 6 a′n+ b′.

Since ` > 2a−a′
δ−a′ δ > δ (hence `− δ > 0) and δ > 0,

δ(`− 2a)n− 2bδ 6 δ(`− δ)|X| 6 (`− δ)(a′n+ b′)

⇒
(
δ(`− 2a)− a′(`− δ)

)
n 6 (`− δ)b′ + 2bδ

⇒
(
(δ − a′)`− (2a− a′)δ

)
n 6 b′`+ (2b− b′)δ.

If n 6 ` then every edge is (` − 1)-light. Now assume that n > ` + 1. Since

(δ − a′)`− (2a− a′)δ > 0,(
(δ − a′)`− (2a− a′)δ

)
(`+ 1) 6 b′`+ (2b− b′)δ.
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Thus

(δ − a′)`2 +
(
δ − a′ − (2a− a′)δ − b′

)
` 6 (2a− a′ + 2b− b′)δ,

which is a contradiction. Thus X is not an independent set. Hence G contains an

(`− 1)-light edge. �

Remark. To verify (6), the following approximation can be useful: If α, β, γ are

strictly positive reals, then the larger root of αx2 − βx− γ = 0 is at most

(7)
β +

√
β(β + 4αγ

β
)

2α
6
β + 1

2
(β + (β + 4αγ

β
))

2α
=
β

α
+
γ

β
.

Lemma 2.1 with k = δ−1 and Lemma 5.1 imply the following sufficient condition

for defective choosability. With δ := ba′c+ 1, which is the minimum possible value

for δ, the number of colours only depends on the coefficient of |V (H)| in the bound

on the number of edges in a bipartite subgraph H.

Lemma 5.2. Fix constants a, a′ ∈ R+ and b, b′ ∈ R and `, δ ∈ Z+ satisfying (4), (5)

and (6). Let G be a graph such that every subgraph H of G with minimum degree

at least δ satisfies the following conditions:

(i) H has at most a|V (H)|+ b edges.

(ii) Every spanning bipartite subgraph of H has at most a′|V (H)|+ b′ edges.

Then G is (δ, `− δ)-choosable. In particular, G is (ba′c+ 1, `− 1− ba′c)-choosable.

Lemma 5.1 with a = 3 and b = 3(g−2) and a′ = 2 and b′ = 2(g−2) and ` = 2g+13

implies that every graph G with minimum degree at least 3 and Euler genus g has a

(2g+ 12)-light edge. Note that this bound is within +10 of being tight since K3,2g+2

has minimum degree 3, embeds in a surface of Euler genus g, and every edge has

an endpoint of degree 2g + 2. More precise results, which are typically proved by

discharging with respect to an embedding, are known [8, 43, 47]. Lemma 5.2 then

implies that every graph with Euler genus g is (3, 2g+ 10)-choosable. As mentioned

earlier, this result with a better degree bound was proved by Woodall [89]; also see

[18]. The utility of Lemma 5.2 is that it is immediately applicable in more general

settings, as we now show.

5.2. Thickness. The thickness of a graph G is the minimum integer k such that G

is the union of k planar subgraphs; see [62] for a survey on thickness. A minimum-

degree-greedy algorithm properly 6k-colours a graph with thickness k, and it is an

open problem to improve this bound for k > 2. The result of Havet and Sereni [37]

implies that graphs with thickness k, which have maximum average degree less than

6k, are (3k + 1, O(k2))-choosable, but gives no result with at most 3k colours. We

show below that graphs with thickness k are (2k+ 1, O(k2))-choosable, and that no

result with at most 2k colours is possible. That is, both the defective chromatic

number and defective choice number of the class of graphs of thickness at most k

equal 2k + 1. In fact, the proof works in the following more general setting. For

an integer g > 0, the g-thickness of a graph G is the minimum integer k such that
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G is the union of k subgraphs each with Euler genus at most g. This definition

was implicitly introduced by Jackson and Ringel [44]. By Euler’s Formula, every

graph with n > 3 vertices and g-thickness k has at most 3k(n + g − 2) edges, and

every spanning bipartite subgraph has at most 2k(n+g−2) edges. Lemma 5.1 with

` = 2kg + 8k2 + 4k + 1 (using (7) to verify (6)) implies:

Lemma 5.3. Every graph with minimum degree at least 2k + 1 and g-thickness at

most k has a (2kg + 8k2 + 4k)-light edge.

We now determine the defective chromatic number and defective choice number

of graphs with given g-thickness.

Theorem 5.4. For integers g > 0 and k > 1, the class of graphs with g-thickness at

most k has defective chromatic number and defective choice number equal to 2k+ 1.

In particular, every graph with g-thickness at most k is (2k + 1, 2kg + 8k2 + 2k)-

choosable.

Proof. Lemmas 5.2 and 5.3 imply the upper bound. As usual, the lower bound is

provided by G(2k+ 1, N). We now prove that G = G(2k+ 1, N) has g-thickness at

most k by induction on k (with g fixed). Note that G(3, N) is planar, and thus has

g-thickness 1. Let r be the vertex of G such that G−r is the disjoint union of N +1

copies of G(2k,N). For i ∈ [N + 1], let vi be the vertex of the i-th component Ci of

G − r such that Ci − vi is the disjoint union of N + 1 copies of G(2k − 1, N). Let

H := G− {r, v1, v2, . . . , vN+1}. Observe that each component of H is isomorphic to

G(2k − 1, N) and by induction, H has g-thickness at most k − 1. Since G− E(H)

consists of N+1 copies of K2,N ′ pasted on r for some N ′, G−E(H) is planar and thus

has g-thickness 1. Hence G has g-thickness at most k. By Lemma 2.4, G(2k+ 1, N)

has no (2k,N)-colouring. Therefore the class of graphs with g-thickness at most k

has defective chromatic number and defective choice number at least 2k + 1. �

The case g = 0 and k = 2 relates to the famous earth–moon problem [2, 34, 42, 44,

72], which asks for the maximum chromatic number of graphs with thickness 2. The

answer is in {9, 10, 11, 12}. The result of Havet and Sereni [37] mentioned in Section 1

implies that graphs with thickness 2 are (7, 18)-choosable, (8, 9)-choosable, (9, 5)-

choosable, (10, 3)-choosable, and (11, 2)-choosable because their maximum average

degree is less than 12. But their result gives no bound with at most 6 colours. The-

orem 5.4 says that the class of graphs with thickness 2 has defective chromatic num-

ber and defective choice number equal to 5. In particular, Lemma 5.2 implies that

graphs with thickness 2 are (5, 36)-choosable, (6, 19)-choosable, (7, 12)-choosable,

(8, 9)-choosable, (9, 6)-choosable, (10, 4)-choosable, and (11, 2)-choosable. This fi-

nal result, which is also implied by the result of Havet and Sereni [37], is very close

to the conjecture that graphs with thickness 2 are 11-colourable. Improving these

degree bounds provides an approach for attacking the earth–moon problem.
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5.3. Stack Layouts. A k-stack layout of a graph G consists of a linear ordering

v1, . . . , vn of V (G) and a partition E1, . . . , Ek of E(G) such that no two edges in

Ei cross with respect to v1, . . . , vn for each i ∈ [1, k]. Here edges vavb and vcvd
cross if a < c < b < d. A graph is a k-stack graph if it has a k-stack layout. The

stack-number of a graph G is the minimum integer k for which G is a k-stack graph.

Stack layouts are also called book embeddings, and stack-number is also called book-

thickness, fixed outer-thickness and page-number. The maximum chromatic number

of k-stack graphs is in {2k, 2k + 1, 2k + 2}; see [29]. For defective colourings, k + 1

colours suffice.

Theorem 5.5. The class of k-stack graphs has defective chromatic number and

defective choice number equal to k + 1. In particular, every k-stack graph is (k +

1, 2O(k log k))-choosable.

Proof. The lower bound follows from Lemma 2.4 since an easy inductive argu-

ment shows that G(k + 1, N) is a k-stack graph for all N . For the upper bound,

Kk+1,k(k+1)+1 is not a k-stack graph [5]; see also [26]. Every k-stack graph G has

average degree less than 2k + 2 (see [5, 29, 50]) and ∇̃1/2(G) 6 20k2 (see [66]).

The result follows from Theorem 2.3 with s = k + 1 and t = k(k + 1) + 1, where

bN1(k + 1, k(k + 1) + 1, 2k + 2, 40k2)c − k 6 2O(k log k). �

5.4. Queue Layouts. A k-queue layout of a graph G consists of a linear ordering

v1, . . . , vn of V (G) and a partition E1, . . . , Ek of E(G) such that no two edges in Ei
are nested with respect to v1, . . . , vn for each i ∈ [1, k]. Here edges vavb and vcvd are

nested if a < c < d < b. The queue-number of a graph G is the minimum integer k

for which G has a k-queue layout. A graph is a k-queue graph if it has a k-queue

layout. Dujmović and Wood [29] state that determining the maximum chromatic

number of k-queue graphs is an open problem, and showed lower and upper bounds

of 2k + 1 and 4k. We provide the following partial answer to this question.

Theorem 5.6. Every k-queue graph is (2k + 1, 2O(k log k))-choosable.

Proof. Heath and Rosenberg [40] proved that K2k+1,2k+1 is not a k-queue graph.

Every k-queue graph G has mad(G) < 4k (see [29, 40, 69]) and ∇̃1/2(G) < (2k+ 2)2

(see [66]). The result then follows from Theorem 2.3 with s = 2k+1 and t = 2k+1,

where bN1(2k + 1, 2k + 1, 4k, 2(2k + 2)2)c − 2k 6 2O(k log k). �

Since G(k+1, n) has a k-queue layout, the defective chromatic number of the class

of k-queue graphs is at least k+1 and at most 2k+1 by Lemma 2.4 and Theorem 5.6.

It remains an open problem to determine its defective chromatic number.

5.5. Posets. Consider the problem of partitioning the domain X of a given poset

P = (X,�) into X1, . . . , Xk so that each (Xi,�) has small poset dimension. The

Hasse diagram H(P ) of P is the graph whose vertices are the elements of P and

whose edges correspond to the cover relation of P . Here x covers y in P if y 6= x,

y � x and there is no element z of P such that z 6= y, z 6= x, and y � z � x. A
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linear extension of P = (X,�) is a total order ≤ on X such that x � y implies

x ≤ y for every x, y ∈ X. The jump number of P is the minimum number of

consecutive elements of a linear extension of P that are not comparable in P , where

the minimum is taken over all possible linear extensions of P .

Theorem 5.7. For every integer k there is an integer d such that the domain of

any poset with jump number at most k can be coloured with 2k+3 colours, such that

each colour induces a poset with dimension at most d.

Proof. Heath and Pemmaraju [39] showed that the queue-number of the Hasse dia-

gram of a poset P is at most one more than the jump number of P , and Füredi and

Kahn [33] proved that if the Hasse diagram of a poset has maximum degree ∆, then

its dimension is at most 50∆(log ∆)2. The result then follows from Theorem 5.6. �

6. Minor-Closed Classes

This section shows that for many minor-closed classes, Theorem 2.3 determines

the defective chromatic number and defective choice number. For example, every

outerplanar graph has average degree less than 4 and contains no K2,3 subgraph.

Thus Theorem 2.3 implies that every outerplanar graph is (2, 14)-choosable. A better

degree bound was obtained by Cowen et al. [25], who proved that outerplanar graphs

are (2, 2)-colourable. Since G(1, N) is outerplanar, by Lemma 2.4 the defective

chromatic number and defective choice number of the class of outerplanar graphs

equal 2. As shown in Section 4, the defective chromatic number and defective

choice number of the class of graphs embeddable in any fixed surface equal 3. We

now consider some other minor-closed classes.

6.1. Linklessly and Knotlessly Embeddable Graphs. A graph is linklessly em-

beddable if it has an embedding in R3 with no two topologically linked cycles [75, 77].

Linklessly embeddable graphs form a minor-closed class whose minimal excluded mi-

nors are the so-called Petersen family [76], which includes K6, K4,4 minus an edge,

and the Petersen graph. Since linklessly embeddable graphs exclude K6 minors, they

are 5-colourable [74] and 8-choosable [4]. It is open whether K6-minor-free graphs

or linklessly embeddable graphs are 6-choosable. A graph is apex if deleting at most

one vertex makes it planar. Every apex graph is linklessly embeddable [75]. Since

G(3, N) is planar, G(4, N) is apex, and thus linklessly embeddable. By Lemma 2.4,

the class of linklessly embeddable graphs has defective chromatic number at least 4.

Mader’s theorem [61] for K6-minor-free graphs implies that linklessly embeddable

graphs have average degree less than 8 and minimum degree at most 7. Since lin-

klessly embeddable graphs exclude K4,4 minors, Theorem 2.3 implies the following

result.

Theorem 6.1. The class of linklessly embeddable graphs has defective chromatic

number and defective choice number 4. In particular, every linklessly embeddable

graph is (4, 440)-choosable.
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A graph is knotlessly embeddable if it has an embedding in R3 in which every

cycle forms a trivial knot; see [70] for a survey. Knotlessly embeddable graphs form

a minor-closed class whose minimal excluded minors include K7 and K3,3,1,1 [22, 32].

More than 260 minimal excluded minors are known [35], but the full list of mini-

mal excluded minors is unknown. Since knotlessly embeddable graphs exclude K7

minors, they are 8-colourable [1, 45]. Mader [61] proved that K7-minor-free graphs

have average degree less than 10, which implies they are 9-degenerate and thus

10-choosable. It is open whether K7-minor-free graphs or knotlessly embeddable

graphs are 6-colourable or 7-choosable [4]. A graph is 2-apex if deleting at most

two vertices makes it planar. Blain et al. [6] and Ozawa and Tsutsumi [67] proved

that every 2-apex graph is knotlessly embeddable. Since every block of G(5, N) is

2-apex, G(5, N) is knotlessly embeddable. By Lemma 2.4, the class of knotlessly

embeddable graphs has defective chromatic number at least 5. Since K3,3,1,1 is a

minor of K∗5,3, knotlessly embeddable graphs do not contain a K∗5,3 subgraph. Since

knotlessly embeddable graphs have average degree less than 10, Theorem 2.3 implies

the following result.

Theorem 6.2. The class of knotlessly embeddable graphs has defective chromatic

number and defective choice number 5. In particular, every knotlessly embeddable

graph is (5, 660)-choosable.

6.2. Excluded Complete and Complete Bipartite Minors. Now consider graphs

excluding a given complete graph as a minor. Edwards et al. [31] proved that the

class of Ks+1-minor-free graphs has defective chromatic-number s, which is a weak-

ening of Hadwiger’s conjecture. They also noted that the same method proves the

same result for Ks+1-topological minor-free graphs. We have the following choos-

ability versions of these results.

Theorem 6.3. For each integer s > 2, the class of Ks+1-minor-free graphs has

defective chromatic-number s and defective choice number s. In particular, if δ is

the maximal density of a Ks+1-minor-free graph, then every Ks+1-minor-free graph

is (s, bδ(2δ− s+ 1)c− s+ 1)-choosable. The same result holds replacing “minor” by

“topological minor”.

The lower bound in Theorem 6.3 follows from Lemma 2.4. The upper bound

follows from Theorem 2.3 with t = 1 since K∗s,1 has a Ks+1-topological-minor.

Indeed, in the t = 1 case, the proof of Theorem 2.3 is the same as the proof

of Edwards et al. [31] with essentially the same degree bound. For Ks+1-minor-

free graphs, Kostochka [53, 54] and Thomason [82, 83] proved that the maximum

density δ = Θ(s
√

log s), and thus every Ks+1-minor-free graph is (s,O(s2 log s))-

choosable. For Ks+1-topological-minor-free graphs, Bollobás and Thomason [7] and

Komlós and Szemerédi [52] proved that the maximum density δ = Θ(s2), and thus

every Ks+1-topological-minor-free graph is (s,O(s4))-choosable. Finally, note that
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for Ks+1-minor-free graphs, choice number and defective choice number substan-

tially differ, since Barát et al. [4] constructed Ks+1-minor-free graphs that are not
4
3
(s− 1)-choosable (for infinitely many s).

Now we deduce a theorem for the class of graphs with no Ks,t topological minor.

Theorem 6.4. For integers t > s > 1, the defective chromatic number and the

defective choice number of the class of Ks,t topological minor-free graphs are equal

to s. In particular, every Ks,t topological minor-free graph is (s, 2O(s log t))-choosable.

Proof. The lower bound follows from Lemma 2.4, since G(s,N) contains no Ks,t

topological minor. For the upper bound, Reed and Wood [71] noted that a method

of Diestel [27], which is based on a result about linkages due to Thomas and Wollan

[81], shows that for every graph H with p vertices and q edges, every graph with

average degree at least 4p + 20q contains H as a topological minor. Thus every

Ks,t-topological-minor-free graph G has mad(G) 6 20st + 4(s + t) 6 4(5s + 2)t

and ∇̃1/2(G) 6 2(5s + 2)t. By Theorem 2.3, G is (s, d)-choosable, where d :=

bN1(s, t, 4(5s+ 2)t, 4(5s+ 2)t)− s+ 1c, which is in 2O(s log t). �

Note that Theorem 6.4 implies and is more general than Theorem 6.3, since Ks,t

contains Ks+1 as a minor (for t > s). For Ks,t-minor-free graphs, the degree bound

in Theorem 6.4 can be improved by using known results on the extremal function

for Ks,t-minor-free graphs [36, 55–59].

6.3. Colin de Verdière Parameter. The Colin de Verdière parameter µ(G) is an

important graph invariant introduced by Colin de Verdière [20, 21]; see [78, 84, 85]

for surveys. It is known that µ(G) 6 1 if and only if G is a forest of paths, µ(G) 6 2

if and only if G is outerplanar, µ(G) 6 3 if and only if G is planar, and µ(G) 6 4

if and only if G is linklessly embeddable. A famous conjecture of Colin de Verdière

[20] states that χ(G) 6 µ(G)+1 (which implies the 4-colour theorem, and is implied

by Hadwiger’s Conjecture). For defective colourings one fewer colour suffices.

Theorem 6.5. For k > 1, the defective chromatic number and the defective choice

number of the class of graphs G with µ(G) 6 k are equal to k. In particular, every

graph G with µ(G) 6 k is (k, 2O(k log log k))-choosable.

Proof. Graphs with µ(G) 6 k form a minor-closed class [20, 21]. van der Holst et al.

[85] proved that µ(Ks,t) = s+1 for t > max{s, 3}. Thus, if µ(G) 6 k then G contains

no Kk,max(k,3) minor, and mad(G) 6 2∇̃1/2(G) 6 O(k
√

log k). Theorem 2.3 with

s = k and t = max{k, 3} implies that G is (k, 2O(k log log k))-choosable. Now we prove

the lower bound. van der Holst et al. [85] proved that µ(G) equals the maximum of

µ(G′), taken over the components G′ of G, and if G has a dominant vertex v, then

µ(G) = µ(G − v) + 1. It follows that µ(G(k,N)) = k for N > 2. Lemma 2.4 then

implies that the class of graphs with µ(G) 6 k has defective chromatic number and

defective choice number at least k. �

Theorem 6.5 generalises Theorem 6.1 which corresponds to the case k = 4.
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6.4. H-Minor-Free Graphs. This section considers, for an arbitrary graph H, the

defective chromatic number of the class of H-minor-free graphs, which we denote

by f(H). That is, f(H) is the minimum integer such that there exists an integer

d(H) such that every H-minor-free graph has a (f(H), d(H))-colouring. Obviously,

f is minor-monotone: if H ′ is a minor of H, then every H ′-minor-free graph is

H-minor-free, and thus f(H ′) 6 f(H).

A set S of vertices in a graph H is a vertex cover if E(H − S) = ∅. Let τ(H) be

the minimum size of a vertex cover in H, called the vertex cover number of H. The

tree-depth of a connected graph H, denoted by td(H), is the minimum height of a

rooted tree T such that H is a subgraph of the closure of T . Here the closure of T

is obtained from T by adding an edge between every ancestor and descendent in T .

The height of a rooted tree is the maximum number of vertices on a root–to–leaf

path. The tree-depth of a disconnected graph H is the maximum tree-depth of the

connected components of H.

Proposition 6.6. For every graph H,

td(H)− 1 6 f(H) 6 τ(H).

Proof. Obviously, H is a minor of K∗τ(H),|V (H)|−τ(H). Thus every H-minor-free graph

is K∗τ(H),|V (H)|−τ(H)-free. By Theorem 2.3, f(H) 6 τ(H).

We now establish the lower bound on f(H). Observe that G(s,N) is the closure

of the complete (N + 1)-ary tree of height s, and G(s,N) has tree-depth at most s.

Since tree-depth is minor-monotone [65], every minor of G(s,N) has tree-depth at

most s. Thus a graph H is not a minor of G(td(H)− 1, N). By Lemma 2.4, every

(td(H)−2)-colouring of G(td(H)−1, N) has a colour class that induces a subgraph

with maximum degree at least N . Thus f(H) > td(H)− 1. �

The lower and upper bounds in Proposition 6.6 match in some important cases,

like H = Kt or H = Ks,t (or H = K∗s,t). The Petersen graph P is an example

where they do not match. Proposition 6.6 implies f(P ) ∈ {5, 6}. On the other

hand, every P -minor-free graph is 9-colourable [41] and this is best possible since

K9 is P -minor-free. So our upper bound improves the obvious bound deduced

from chromatic number. Paths provide an interesting example where the bounds in

Proposition 6.6 are far apart. In particular, for a path of order 2t−1, Proposition 6.6

gives

t− 1 6 f(P2t−1) 6 2t−1 − 1.

It is easy to characterise the graphs with f(H) = 1, in which case the lower and

upper bounds in Proposition 6.6 are equal.

Proposition 6.7. f(H) = 1 if and only if H is a star plus some isolated vertices.

Proof. Say H is a k-leaf star plus ` isolated vertices. Consider a graph G. If G has

maximum degree at most k−1, then G is (1, k−1)-colourable. If G has at most k+`

vertices, then G is (1, k + ` − 1)-colourable. Otherwise, G has maximum degree at
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least k and has at least k+1+` vertices, in which case G contains H as a minor. Thus

every H-minor-free graph is (1, k+ `−1)-colourable, and f(H) = 1. Conversely, say

H is not a star plus some isolated vertices. Then H has two disjoint edges. For each

integer d, the (d + 1)-leaf star has no H-minor and is not (1, d)-colourable. Thus

f(H) > 2. �

The upper bound in Proposition 6.6 is not tight in general. For example, if H is

the k-ary tree of height 3, then τ(H) = k but f(H) = 2 (as proved in Theorem 6.9

below). These observations lead to the following conjecture:

Conjecture 6.8. f(H) = td(H) − 1 for every graph H, unless H has distinct

connected components H1 and H2 with td(H) = td(H1) = td(H2), in which case

f(H) = td(H).

We now explain the necessity of the exception in Conjecture 6.8. Suppose H has

connected components H1 and H2 with td(H) = td(H1) = td(H2) = s. If H is a

minor of G(s, n), then only one of H1 and H2 can use the root vertex of G(s, n),

implying one of H1 and H2 is a minor of G(s − 1, n), which contradicts the tree-

depth assumption. Thus, H is not a minor of G(s, n). By Lemma 2.4, the class of

H-minor-free graphs has defective chromatic number at least s = td(H).

Proposition 6.7 confirms Conjecture 6.8 when f(H) = 1. We now prove the first

non-trivial case.

Theorem 6.9. For every graph H with tree-depth 3 and with at most one component

of tree-depth 3, the defective chromatic number of the class of H-minor-free graphs

equals 2.

Proof. The lower bound is proved above. For the upper bound, since at most one

component of H has tree-depth 3, H is a subgraph of G(2, k) for some integer

k 6 |V (H)|. By Lemma 6.10 below with ` = k, every G(2, k)-minor-free graph is

(2, d)-colourable, for some increasing function d = d(k). Every H-minor-free graph is

G(2, k)-minor-free. Since k 6 |V (H)|, every H-minor-free graph is (2, d)-colourable,

where d = d(k) 6 d(|V (H)|). �

Lemma 6.10. Let H be the graph obtained from ` disjoint copies of K1,k by adding

one dominant vertex, for some ` > 2 and k > 1 (as illustrated in Figure 2). Then

every H-minor-free graph G is (2, O(`10k3))-colourable.

Proof. Since H is 2-degenerate, there exists δ < 7(`k + ` + 1) such that every H-

minor-free graph has average degree at most δ by a result of Reed and Wood [71,

Lemma 3.3]. Let r :=
(
`2−1
2

)
(k + 1) + `2 + `. Let X be the set of vertices v ∈ V (G)

such that |NG(v) ∩ NG(w)| > r for some vertex w ∈ V (G) \ {v}. Note that w is

also in X. Let Q be the graph with vertex set V (G) where vw ∈ E(Q) whenever

|NG(v) ∩ NG(w)| > r. For each edge e = vw ∈ E(Q), let N(e) := NG(v) ∩ NG(w).

Thus |N(e)| > r. Let Y := V (G) \X.

Claim 1. Q has maximum degree less than `.
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Figure 2. The graph H.

Proof. Suppose on the contrary that some vertex v in Q is adjacent to distinct

vertices v1, . . . , v` in Q. For i = 1, 2, . . . , `, choose k + 1 common neighbours of v

and vi in G that have not already been chosen and are different from v, v1, . . . , v`.

This is possible, since v and vi have r > (k + 1)` + `− 1 common neighbours in

G. For each i ∈ [`], contract the edge between vi and one of the chosen common

neighbours of v and vi. The chosen vertices along with v, v1, . . . , v` form H as a

minor of G, which is a contradiction. ♦

Claim 2. If R is a set of more than `(` − 1) vertices in X, then Q contains an

`-edge matching, each edge of which has at least one endpoint in R.

Proof. Let Z be the subgraph of Q induced by R ∪ NQ(R). Label vertices in

R red and vertices in NQ(R) \ R blue. If ∆ is the maximum degree of Z, then

∆ 6 `− 1 by Claim 1. The number of red vertices is |R| > (∆ + 1)(`− 1). Every

vertex in R is in X and thus has a neighbour in Q, which is in NQ(R). Hence Z

has no red isolated vertex. Let Z ′ be an edge-minimal spanning subgraph of Z

with no red isolated vertex. By minimality, each edge of Z ′ has a red endpoint

with degree 1. Thus each component of Z ′ is either a blue isolated vertex, a red–

blue edge, or a star with all its leaves coloured red. Since each component of Z ′

has at most ∆ + 1 red vertices, and there are strictly greater than (∆ + 1)(`− 1)

red vertices, Z ′ contains at least ` non-singleton components. Let v1w1, . . . , v`w`
be a matching obtained by choosing one edge from each non-singleton component

of Z ′, where v1, . . . , v` are red and thus in R. ♦

Claim 3. Every vertex is adjacent in G to less than `2 vertices in X.

Proof. Suppose on the contrary that |NG(v)∩X| > `2 for some vertex v ∈ V (G).

If v ∈ X then let R := (NG(v)∩X)\NQ(v), otherwise let R := NG(v)∩X. Then

|R| > `(` − 1) since |NQ(v)| 6 ` − 1 by Claim 1. By Claim 2, Q contains a

matching v1w1, . . . , v`w`, where v1, . . . , v` are in R. By construction, each wi 6= v.

For i = 1, 2, . . . , `, choose k + 1 common neighbours of vi and wi in G that

have not already been chosen and are different from v, v1, w1, . . . , v`, w`. This is

possible, since vi and wi have r > `(k+ 1) + 2`− 1 common neighbours. For each

i ∈ [`], contract the edge vvi into v, and contract the edge between wi and one
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of the chosen common neighbours of vi and wi. The chosen vertices along with

v, w1, . . . , w` form H as a minor of G, which is a contradiction. ♦

Let G′ be the graph obtained from G as follows. For each component C of Q,

identify V (C) into one vertex, and delete resulting loops and parallel edges. Each

vertex of G′ corresponds to a component of Q.

The final step of this proof applies Theorem 2.3 with s = 2 to obtain a defective

2-colouring of G′, from which we obtain a defective 2-colouring of G. To apply

Theorem 2.3 we show that G′ has no large K2,t subgraph, has bounded ∇̃1/2, and

(thus) bounded average degree.

Consider a K2,t subgraph in G′. There are distinct components C,D,A1, . . . , At
of Q, such that for i ∈ [t], some vertex in Ai is adjacent in G to some vertex in C,

and some vertex in Ai is adjacent in G to some vertex in D. Note each Ai is either

a single-vertex component of Q contained in Y or is contained in X with at least

two vertices.

Claim 4. |{i ∈ [t] : Ai ⊆ X}| < `2

Proof. Suppose on the contrary and without loss of generality that A1, . . . , A`2 ⊆
X. The component C is not a single vertex, as otherwise, this vertex would have

at least `2 neighbours in X contradicting Claim 3. Thus C is contained in X

and has at least two vertices. For each i ∈ [`], let vi be a vertex in Ai adjacent

to a vertex in C. Since vi is in Ai ⊆ X, there is an edge ei = uivi ∈ E(Q)

and thus ui is also in Ai. Note that u1, . . . , u` are distinct since they belong to

different components Ai. Let E(C) be the set of edges of Q between vertices in

C. Construct a bipartite graph B with colour classes

B1 := E(C) ∪ {eji : i ∈ [`], j ∈ [k + 1]} and B2 := Y,

where the vertex corresponding to each f ∈ E(C) is adjacent to each vertex in

N(f) \X, and similarly the vertex eji is adjacent to each vertex in N(ei) \X for

each i ∈ [`] and j ∈ [k + 1]. The endpoints of each edge in Q have at least r

common neighbours in G, at most `2 − 1 of which are in X by Claim 3. Thus,

in B, every vertex in B1 has degree at least r − `2 + 1, and every vertex in B2

has degree at most
(
`2−1
2

)
(k + 1) by Claim 3. Consider a subset S ⊆ B1. The

number of edges between S and NB(S) is at least (r − `2 + 1)|S| and at most(
`2−1
2

)
(k + 1)|NB(S)|, implying |NB(S)| > |S| since r − `2 + 1 >

(
`2−1
2

)
(k + 1).

By Hall’s Theorem, B contains a matching with every vertex in B1 matched. For

i ∈ [`] and j ∈ [k + 1], let xji be the vertex in B2 matched with eji . Then xji is

a common neighbour of ui and vi in G. For each edge f ∈ E(C), let xf be the

vertex in B2 matched with f . Then xf is a common neighbour of the endpoints

of f in G. All these x-vertices are distinct and are contained in Y . Hence

V (C) ∪ {xf : f = pq ∈ E(C)} ∪ {v1, v2, . . . , v`} induces a connected subgraph of

G−({u1, u2, . . . , u`}∪{xji : i ∈ [`], j ∈ [k+1]}); contract this connected subgraph

into a vertex z. Now z is adjacent to xji for each i ∈ [`] and j ∈ [k + 1]. Finally,



22 PATRICE OSSONA DE MENDEZ, SANG-IL OUM, AND DAVID R. WOOD

contract the edge uix
k+1
i into ui, for each i ∈ [`]. Now z is adjacent to u1, . . . , u`,

and x1i , . . . , x
k
i are common neighbours of z and ui. Hence H is a minor of G,

which is a contradiction. ♦

Claim 5. |{i ∈ [t] : Ai ⊆ Y }| ≤ `2(`− 1)2(r − 1).

Proof. Define Z :=
⋃
{Ai : i ∈ [t], Ai ⊆ Y }. Note that |Z| = |{i ∈ [t] : Ai ⊆ Y }|

because |Ai| = 1 if Ai ⊆ Y . Let C ′ be the set of vertices in C with some neighbour

in Z. Let D′ be the set of vertices in D with some neighbour in Z. For v ∈ V (C ′)

and w ∈ V (D′), less than r vertices are common neighbours of v and w (since

vw 6∈ E(Q)). Thus |Z| ≤ |C ′| |D′| (r − 1), and we are done if |C ′| ≤ `(`− 1) and

|D′| ≤ `(`− 1).

Suppose for the sake of contradiction and without loss of generality that |C ′| >
`(`− 1). Then V (C) ⊆ X since `(`− 1) > 2. By Claim 2 with R = C ′, there is a

matching e1, . . . , e` in Q, where ei = viui and vi ∈ C ′ for each i ∈ [`]. For i ∈ [`],

let ai be a (not necessarily distinct) neighbour of vi in Z. Let E(D) be the set

of edges in Q between vertices in D. Construct a bipartite graph B with colour

classes

B1 := E(D) ∪ {eji : i ∈ [`], j ∈ [k + 1]} and

B2 := Y \ ({a1, . . . , a`} ∪ V (D)),

where the vertex in B1 corresponding to each edge f ∈ E(D) is adjacent to

each vertex in N(f) \ (X ∪ V (D) ∪ {a1, . . . , a`}), and similarly the vertex in B1

corresponding to each edge eji is adjacent to each vertex in N(ei) \ (X ∪ V (D) ∪
{a1, . . . , a`}). Note that |Y ∩ V (D)| ≤ 1 and if E(D) 6= ∅, then V (D) ⊆ X.

The endpoints of each edge in Q have at least r common neighbours in G, at

most (`2 − 1) + `+ 1 of which are in X ∪ V (D) ∪ {a1, . . . , a`} by Claim 3. Thus,

in B, every vertex in B1 has degree at least r − `2 − `, and every vertex in B2

has degree at most
(
`2−1
2

)
(k + 1) by Claim 3. Consider a subset S ⊆ B1. The

number of edges between S and NB(S) is at least (r − `2 − `)|S| and at most(
`2−1
2

)
(k+ 1)|NB(S)|, implying |NB(S)| > |S| since r− `2− ` >

(
`2−1
2

)
(k+ 1). By

Hall’s Theorem, B contains a matching with every vertex in B1 matched.

For f ∈ E(D), let xf be the vertex in B2 matched with f and for each i ∈ [`]

and j ∈ [k+1], let xji be the vertex in B2 matched with eji . Then xf is a common

neighbour (in G) of the endpoints of f and xji is a common neighbour of ui and

vi in G. Note that all these x-vertices are distinct and are in V (G)\ (X ∪V (D)∪
{a1, . . . , a`}). Each vertex ai has a neighbour in D. Hence {a1, . . . , a`, v1, . . . , v`}∪
V (D)∪{xf : f ∈ E(D)} induces a connected subgraph of G− ({u1, u2, . . . , u`}∪
{xji : i ∈ [`], j ∈ [k + 1]}). Contract this connected subgraph into a vertex z.

Now z is adjacent to xji for each i ∈ [`] and j ∈ [k+ 1]. Finally, contract the edge

uix
k+1
i into ui, for each i ∈ [`]. Now z is adjacent to u1, . . . , u`, and x1i , . . . , x

k
i are

common neighbours of z and ui for each i ∈ [`]. Hence H is a minor of G, which

is a contradiction. ♦
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Claims 4 and 5 show that t < `2 + `2(`− 1)2(r− 1) ≤ `2(`− 1)2r. That is, G′ has

no K2,`2(`−1)2r subgraph.

Claim 6. ∇̃1/2(G
′) 6 δ/2 + `− 1.

Proof. Suppose that a (6 1)-subdivision of some graph G′′ is a subgraph of G′.

Let X ′′ be the set of vertices of G′′ that arise from components of Q contained in

X.

Assume for contradiction that some vertex in G′′ has at least ` neighbours in

X ′′. That is, there are distinct components C,C1, . . . , C` of Q, such that for each

i ∈ [`], Ci is a non-singleton component of Q contained in X, and there exists

an edge joining a vertex of C to a vertex of Ci in G, or a component Di of Q

having a neighbour of C and a neighbour of Ci in G. If C and Ci are joined by an

edge in G, then let Di := C (for convenience). Note that C might be a singleton

component of Q contained in Y or a non-singleton component contained in X,

and similarly for D1, . . . , D`, but C1, . . . , C` are non-singleton components of Q.

Let Y ′ = Y ∩ (V (C)∪ V (D1)∪ · · · ∪ V (D`)). Then |Y ′| 6 `+ 1. For each i ∈ [`],

let vi be a vertex in Ci adjacent to some vertex in V (C)∪V (Di). Since vi is in X,

there is an edge ei = uivi ∈ E(Q) and thus ui is also in Ci. Construct a bipartite

graph B with colour classes

B1 := E(C) ∪ E(D1) ∪ · · · ∪ E(D`) ∪ {eji : i ∈ [`], j ∈ [k + 1]} and

B2 := V (G) \ (X ∪ Y ′),

where the vertex corresponding to each edge f ∈ E(C) ∪E(D1) ∪ · · · ∪E(D`) is

adjacent to each vertex in N(f)\ (X ∪Y ′), and similarly the vertex eji is adjacent

to each vertex in N(ei)\(X∪Y ′). The endpoints of each edge in Q have at least r

common neighbours in G, at most `2−1+ |Y ′| of which are in X ∪Y ′ by Claim 3.

Thus, in B, every vertex in B1 has degree at least r−(`2−1+|Y ′|) > r−`2−`, and

every vertex in B2 has degree at most
(
`2−1
2

)
(k+1) by Claim 3. Consider a subset

S ⊆ B1. The number of edges between S andNB(S) is at least (r−`2−`)|S| and at

most
(
`2−1
2

)
(k+1)|NB(S)|, implying |NB(S)| > |S| since r−`2−` >

(
`2−1
2

)
(k+1).

By Hall’s Theorem, B contains a matching with every vertex in B1 matched.

For i ∈ [`] and j ∈ [k + 1], let xji be the vertex in B2 matched with eji . Then xji
is a common neighbour of ui and vi in G. For each edge f ∈ E(C) ∪ E(D1) ∪
· · · ∪ E(D`), let xf be the vertex in B2 matched with f . Then xf is a common

neighbour (in G) of the endpoints of f . All these x-vertices are distinct and are

contained in V (G) \ (X ∪ Y ′). Hence

V (C) ∪ V (D1) · · · ∪ V (D`) ∪ {v1, v2, . . . , v`}
∪ {xf : f ∈ E(C) ∪ E(D1) ∪ · · · ∪ E(D`)}

induces a connected subgraph of G− ({u1, u2, . . . , u`}∪{xji : i ∈ [`], j ∈ [k+ 1]});
contract this connected subgraph into a vertex z. Now z is adjacent to xji for

each i ∈ [`] and j ∈ [k + 1]. Finally, contract the edge uix
k+1
i into ui for each
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i ∈ [`]. Now z is adjacent to u1, . . . , u`, and x1i , . . . , x
k
i are common neighbours

of z and ui for each i ∈ [`]. Hence H is a minor of G. This contradiction proves

that each vertex in G′′ has less than ` neighbours in X ′′.

Thus G′′ contains at most (` − 1)|V (G′′)| edges with at least one endpoint in

X ′′. Since G′′−X ′′ is a subgraph of G, the average degree of G′′−X ′′ is at most

δ, and |E(G′′ −X ′′)| ≤ δ|Y ′|/2. In total, |E(G′′)| 6 δ|Y ′|/2 + (` − 1)|V (G′′)| 6
(δ/2 + `− 1)|V (G′′)|, and ∇̃1/2(G

′) 6 δ/2 + `− 1. ♦

Note that Claim 6 implies mad(G) = 2∇̃0(G) 6 2∇̃1/2(G) 6 δ + 2` − 2. By

Theorem 2.3, G′ is (2, d′)-colourable, where

d′ = bN1(2, `
2(`− 1)2r, δ + 2`− 2, δ + 2`− 2)c − 1.

Colour each vertex v of G by the colour assigned to the vertex of G′ corresponding

to the component of Q containing v. Then, for each vertex v of C, the number of

neighbours of v having the same colour as v is at most d′ + `2 − 1, because v has at

most `2−1 neighbours in X by Claim 3 and at most d′ neighbours of the same colour

in Y . Therefore G is (2, d′+ `2− 1)-colourable. We now estimate the degree bound.

We have r 6 O(`4k) and δ + 2` − 2 6 O(`k). Thus d′ 6 O((δ + 2`)2`2(` − 1)2r) 6
O(`10k3). Therefore G is (2, O(`10k3))-colourable. �

Our final result provides further evidence for Conjecture 6.8. It concerns graphs

that exclude a fixed tree as a subgraph.

Proposition 6.11. Let T be a tree with n > 2 vertices and radius r > 1. Then

every graph containing no T subgraph is (r, n− 2)-colourable.

Proof. For i = 1, 2, . . . , r− 1, let Vi be the set of vertices v ∈ V (G)\ (V1∪ · · · ∪Vi−1)
that have at most n − 2 neighbours in V (G) \ (V1 ∪ · · · ∪ Vi−1). Let Vr := V (G) \
(V1 ∪ · · · ∪ Vr−1). Then V1 ∪ · · · ∪ Vr is a partition of V (G). For i ∈ [1, r − 1], by

construction, G[Vi] has maximum degree at most n − 2, as desired. Suppose that

G[Vr] has maximum degree at least n − 1. We now show that T is a subgraph of

G, where each vertex v of T is mapped to a vertex v′ of G. Let x be the centre

of T . Map the vertices of T to vertices in G in order of their distance from x in

T , where x is mapped to a vertex x′ with degree at least n − 1 in G[Vr]. The key

invariant is that each vertex v at distance i from x in T is mapped to a vertex

v′ in Vr−i+1 ∪ · · · ∪ Vr. If i = 0 then v = x and by assumption, v′ has at least

n − 1 neighbours in Vr. If i ∈ [1, r − 1] then by construction, v′ has at least n − 1

neighbours in Vr−i ∪ · · · ∪ Vr (otherwise v′ would be in Vr−i). Thus there are always

unmapped vertices in Vr−i ∪ · · · ∪ Vr to choose as the children of v. Hence T is a

subgraph. This contradiction shows that G[Vr] has maximum degree at least n− 2,

and G is (r, n− 2)-colourable. �

Note that Proposition 6.11 is best possible for the complete binary tree T of radius

r, which has tree-depth r + 1 (see [65, Exercise 6.1]). Thus G(r,N) contains no T
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subgraph, and Lemma 2.4 and Proposition 6.11 imply that the defective chromatic

number of the class of graphs containing no T subgraph equals r.

Note that the behaviour shown in Proposition 6.11 is qualitatively different from

the chromatic number of graphs excluding a given tree as a subgraph. Say T is a

tree with n vertices. A well known greedy embedding procedure shows that every

graph with minimum degree at least n− 1 contains T as a subgraph. That is, every

graph containing no T subgraph is (n−2)-degenerate, and is thus (n−1)-colourable.

This bound is tight since Kn−1 contains no T subgraph and is (n − 1)-chromatic.

In short, for the class of graphs containing no T subgraph, the chromatic number

equals n− 1, whereas Proposition 6.11 says that the defective chromatic number is

at most the radius of T .

Conjecture 6.8 suggests similar behaviour for H-minor-free graphs. Say H has

n vertices. Hadwiger’s Conjecture says that the maximum chromatic number of

the class of H-minor-free graphs equals n − 1. It is at least n − 1 since Kn−1 is

H-minor-free, and at most O(n
√

log n) in general. Conjecture 6.8 says that if H is

connected, then the defective chromatic number of the class of H-minor-free graphs

equals the tree-depth of H minus 1.
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[29] V. Dujmović and D. R. Wood. On linear layouts of graphs. Discrete Math.

Theor. Comput. Sci., 6(2):339–358, 2004. http://dmtcs.episciences.org/

317.

[30] N. Eaton and T. Hull. Defective list colorings of planar graphs. Bull. Inst.

Combin. Appl, 25:79–87, 1999.

[31] K. Edwards, D. Y. Kang, J. Kim, S. Oum, and P. Seymour. A relative

of Hadwiger’s conjecture. SIAM J. Discrete Math., 29(4):2385–2388, 2015.

doi: 10.1137/141002177.

[32] J. Foisy. Intrinsically knotted graphs. J. Graph Theory, 39(3):178–187, 2002.

doi: 10.1002/jgt.10017.
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