A remark on the paper "Properties of intersecting families of ordered sets" by O. Einstein

Sang-il Oum ${ }^{* \dagger}$ and Sounggun Wee ${ }^{\ddagger}$
Department of Mathematical Sciences, KAIST, Daejeon, South
Korea.

July 18, 2018

Abstract

O. Einstein (2008) proved Bollobás-type theorems on intersecting families of ordered sets of finite sets and subspaces. Unfortunately, we report that the proof of a theorem on ordered sets of subspaces had a mistake. We prove two weaker variants.

1 Introduction

The following theorem generalizing the theorem of Bollobás [2] is well known and proved by using the wedge product method (see [1]).

Theorem 1 (Lovász [6] skew version). Let a, b be positive integers. Let $U_{1}, U_{2}, \ldots, U_{m}, V_{1}, V_{2}, \ldots, V_{m}$ be subspaces satisfying the following:
(i) $\operatorname{dim} U_{i} \leq a$ and $\operatorname{dim} V_{i} \leq b$ for all $i=1,2, \ldots, m$.
(ii) $U_{i} \cap V_{i}=\{0\}$ for all $i=1,2, \ldots, m$.
(iii) $U_{i} \cap V_{j} \neq\{0\}$ for all $1 \leq i<j \leq m$.

Then $m \leq\binom{ a+b}{a}$.

[^0]Ori Einstein [3] published a paper on a generalization of the above theorem and its consequence on finite sets by Frankl 4]. We will show that his proof of Theorem 2.7 in [3] is incorrect and so we state it as a conjecture.

Conjecture 1 (Theorem 2.7 of [3]). Let $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ be positive integers. Let U be a linear space over a field \mathbb{F}. Consider the following matrix of subspaces:

$$
\begin{array}{cccc}
U_{11} & U_{12} & \cdots & U_{1 k} \\
U_{21} & U_{22} & \cdots & U_{2 k} \\
\cdots & \cdots & \vdots & \cdots \\
U_{m 1} & U_{m 2} & \cdots & U_{m k}
\end{array}
$$

If these subspaces satisfy:
(i) for every $1 \leq j \leq k, 1 \leq i \leq m$, $\operatorname{dim} U_{i j} \leq \ell_{j}$;
(ii) for every fixed i, all subspaces $U_{i j}$ are pairwise disjoint;
(iii) for each $i<i^{\prime}$, there exist some $j<j^{\prime}$ such that $U_{i j} \cap U_{i^{\prime} j^{\prime}} \neq\{0\}$;
then

$$
m \leq \frac{\left(\sum_{r=1}^{k} \ell_{r}\right)!}{\prod_{r=1}^{k} \ell_{r}!}
$$

Here is the overview of this note. In the next section, we will sketch the reason why the proof of Theorem 2.7 in [3] is incorrect and present a weaker theorem (Theorem 3) obtained by tightening condition (ii). In Section 3, we prove another weaker theorem (Theorem 4), by providing a weaker upper bound for m instead of modifying any assumptions. Section 4 will discuss the threshold versions.

2 The mistake and its first remedy

Let us first point out the mistake in the proof of Conjecture 1 in [3]. As it is typical in the wedge product method, we take $v_{i}=\bigwedge_{j=1}^{k-1} \wedge T_{j}\left(U_{i j}\right)$ and $w_{i}=\bigwedge_{j=1}^{k-1} \bigwedge_{r=j+1}^{k} \wedge T_{j}\left(U_{i r}\right)$ for some linear transformations T_{1}, T_{2}, \ldots, T_{k-1}. Then the following claim is made:

Claim (Page 41 in [3]). For every $i \leq i^{\prime}, v_{i} \wedge w_{i^{\prime}} \neq 0$ if and only if $i=i^{\prime}$.
This claim is false in general. For instance, if $U_{11} \cap\left(U_{12}+U_{13}+\cdots+\right.$ $\left.U_{1, k-1}\right) \neq\{0\}$, then $\wedge T_{1}\left(U_{11}\right) \wedge \bigwedge_{r=2}^{k} \wedge T_{1}\left(U_{1 r}\right)=0$ and therefore $v_{1} \wedge w_{1}^{\prime}=0$.

The crucial mistake is that condition (ii) in Conjecture 1 does not imply that $\operatorname{dim}\left(U_{i 1}+U_{i 2}+\cdots+U_{i k}\right)=\sum_{j=1}^{k} \operatorname{dim} U_{i j}$. (For instance the spans of $\binom{1}{0}$, $\binom{0}{1}$, and $\binom{1}{1}$ are pairwise disjoint and yet their sum has dimension 2 only.)

If $\operatorname{dim}\left(U_{i 1}+U_{i 2}+\cdots+U_{i k}\right)=\sum_{j=1}^{k} \operatorname{dim} U_{i j}$, then the claim is true and so we can recover the following weaker theorem by the proof in [3].

Theorem 2. Let $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ be positive integers. Let U be a linear space over a field \mathbb{F}. Consider the following matrix of subspaces:

$$
\begin{array}{cccc}
U_{11} & U_{12} & \cdots & U_{1 k} \\
U_{21} & U_{22} & \cdots & U_{2 k} \\
\cdots & \cdots & \vdots & \cdots \\
U_{m 1} & U_{m 2} & \cdots & U_{m k}
\end{array}
$$

If these subspaces satisfy:
(i) for every $1 \leq j \leq k, 1 \leq i \leq m$, $\operatorname{dim} U_{i j} \leq \ell_{j}$;
(ii) for every fixed $i, \operatorname{dim}\left(\sum_{j=1}^{k} U_{i j}\right)=\sum_{j=1}^{k} \operatorname{dim} U_{i j}$;
(iii) for each $i<i^{\prime}$, there exist some $j<j^{\prime}$ such that $U_{i j} \cap U_{i^{\prime} j^{\prime}} \neq\{0\}$; then

$$
m \leq \frac{\left(\sum_{r=1}^{k} \ell_{r}\right)!}{\prod_{r=1}^{k} \ell_{r}!}
$$

Though Theorem 2 is weaker than Conjecture [1t allows us to recover Theorem 2.8 of [3].

Theorem 3 (Theorem 2.8 of [3]). Let $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ be positive integers. Consider the following matrix of sets:

$$
\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
A_{21} & A_{22} & \cdots & A_{2 k} \\
\cdots & \cdots & \vdots & \cdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m k}
\end{array}
$$

If these sets satisfy:
(i) for every $1 \leq j \leq k, 1 \leq i \leq m,\left|A_{i j}\right| \leq \ell_{j}$;
(ii) for every fixed i, all sets $A_{i j}$ are pairwise disjoint;
(iii) for each $i<i^{\prime}$, there exist some $j<j^{\prime}$ such that $A_{i j} \cap A_{i^{\prime} j^{\prime}} \neq \emptyset$;
then

$$
m \leq \frac{\left(\sum_{r=1}^{k} \ell_{r}\right)!}{\prod_{r=1}^{k} \ell_{r}!}
$$

Note that Theorem 3implies that Conjecture 1 is true when $\ell_{1}=\ell_{2}=$ $\cdots=\ell_{k}=1$.

3 Second remedy

Naturally we ask whether Conjecture 1 can be proven with some upper bound on m. Here we show that this is possible, while generalizing Theorem 1 .

Theorem 4. Under the same assumptions of Conjecture 1, we have

$$
m \leq \frac{\prod_{1 \leq a<b \leq k}\left(\ell_{a}+\ell_{b}\right)!}{\left(\prod_{r=1}^{k} \ell_{r}!\right)^{k-1}}
$$

Proof. We may assume that $\operatorname{dim} U_{i j}=\ell_{j}$ for all i, j and \mathbb{F} is infinite. Let $V=V_{1,2} \oplus V_{1,3} \oplus \cdots \oplus V_{1, k} \oplus \cdots \oplus V_{2,3} \oplus \cdots \oplus V_{k-1, k}=\bigoplus_{a=1}^{k-1} \bigoplus_{b=a+1}^{k} V_{a, b}$ be a $\sum_{a=1}^{k-1} \sum_{b=a+1}^{k}\left(\ell_{a}+\ell_{b}\right)$-dimensional vector space over \mathbb{F}, decomposed into the direct sum of subspaces $V_{a, b}$, each of dimension $\ell_{a}+\ell_{b}$. By Corollary 3.14 of [1], for all $i<j$, there exists a linear transformation $T_{a b}: U \rightarrow V_{a, b}$ such that for all $1 \leq i \leq m, \operatorname{dim} T_{a b}\left(U_{i a}\right)=\ell_{a}, \operatorname{dim} T_{a b}\left(U_{i b}\right)=\ell_{b}$, and $\operatorname{dim} T_{a b}\left(U_{i a}\right) \cap$ $T_{a b}\left(U_{j b}\right)=\operatorname{dim} U_{i a} \cap U_{j b}$ for all $1 \leq i, j \leq m$. Finally, for each $1 \leq i \leq m$, let $v_{i}=\bigwedge_{a=1}^{k-1} \bigwedge_{b=a+1}^{k} \wedge T_{a b}\left(U_{i a}\right)$ and $w_{i}=\bigwedge_{a=1}^{k-1} \bigwedge_{b=a+1}^{k} \wedge T_{a b}\left(U_{i b}\right)$.

We claim that for $i \leq i^{\prime}, v_{i} \wedge w_{i^{\prime}} \neq 0$ if and only if $i=i^{\prime}$. If $i<i^{\prime}$, then there exist $1 \leq j<j^{\prime} \leq k$ such that $U_{i j} \cap U_{i^{\prime} j^{\prime}} \neq\{0\}$. By the choice of $T_{j j^{\prime}}$, $T_{j j^{\prime}}\left(U_{i j}\right) \cap T_{j j^{\prime}}\left(U_{i^{\prime} j^{\prime}}\right) \neq\{0\}$ and so $\left(\wedge T_{j j^{\prime}}\left(U_{i j}\right)\right) \wedge\left(\wedge T_{j j^{\prime}}\left(U_{i^{\prime} j^{\prime}}\right)\right)=0$, which implies that $v_{i} \wedge w_{i^{\prime}}=0$. If $i=i^{\prime}$, then $v_{i} \wedge w_{i^{\prime}}$ is the wedge product of disjoint subspaces and so $v_{i} \wedge w_{i^{\prime}} \neq 0$.

Therefore $v_{1}, v_{2}, \ldots, v_{m}$ are linearly independent in the space $\bigwedge_{a=1}^{k-1} \bigwedge_{b=a+1}^{k} \Lambda^{\ell_{a}} V_{a, b}$, whose dimension is $\prod_{a=1}^{k-1} \prod_{b=a+1}^{k}\binom{\ell_{a}+\ell_{b}}{\ell_{a}}=\frac{\prod_{1 \leq a<b \leq k}\left(\ell_{a}+\ell_{b}\right) \text { ! }}{\left(\prod_{i=1}^{k} \ell_{i}!\right)^{k-1}}$. This proves that $m \leq \frac{\prod_{1 \leq a<b \leq k}\left(\ell_{a}+\ell_{b}\right)!}{\left(\prod_{i=1}^{k} \ell_{i}!\right)^{k-1}}$.

4 Threshold versions

The paper [3] uses Conjecture 1 to deduce the threshold versions (Lemma 2.9 and Theorem 2.10) to generalize a result of Füredi [5]. We do not know
how to prove Lemma 2.9 and Theorem 2.10 of [3] and so we leave them as conjectures. It is not clear how one can relax conditions in Lemma 2.9 and Theorem 2.10 of [3], while avoiding ugly conditions from (ii) of Theorem 3, (A necessary condition $\ell_{i} \geq t$ was missing in [3].)

Conjecture 2 (Lemma 2.9 of [3]). Let $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ be positive integers such that $\ell_{i} \geq t$ for all i. Let U be a linear space over a field \mathbb{F}. Consider the following matrix of subspaces:

$$
\begin{array}{cccc}
U_{11} & U_{12} & \cdots & U_{1 k} \\
U_{21} & U_{22} & \cdots & U_{2 k} \\
\cdots & \cdots & \vdots & \cdots \\
U_{m 1} & U_{m 2} & \cdots & U_{m k}
\end{array}
$$

If these subspaces satisfy:
(i) for every $1 \leq j \leq k, 1 \leq i \leq m, \operatorname{dim} U_{i j} \leq \ell_{j}$;
(ii) for every fixed $i, \operatorname{dim}\left(U_{i j} \cap U_{i j^{\prime}}\right) \leq t$;
(iii) for each $i<i^{\prime}$, there exists some $j<j^{\prime}$ such that $\operatorname{dim}\left(U_{i j} \cap U_{i^{\prime} j^{\prime}}\right)>t$; then

$$
m \leq \frac{\left[\left(\sum_{r=1}^{k} \ell_{r}\right)-k t\right]!}{\prod_{r=1}^{k}\left(\ell_{r}-t\right)!}
$$

Conjecture 3 (Theorem 2.10 of [3). Let $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ be positive integers such that $\ell_{i} \geq t$ for all i. Consider the following matrix of sets:

$$
\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
A_{21} & A_{22} & \cdots & A_{2 k} \\
\cdots & \cdots & \vdots & \cdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m k}
\end{array}
$$

If these sets satisfy:
(i) for every $1 \leq j \leq k, 1 \leq i \leq m,\left|A_{i j}\right| \leq \ell_{j}$;
(ii) for every i, j and $j^{\prime},\left|A_{i j} \cap A_{i j^{\prime}}\right| \leq t$;
(iii) for each $i<i^{\prime}$, there exists some $j<j^{\prime}$ such that $\left|A_{i j} \cap A_{i^{\prime} j^{\prime}}\right|>t$;
then

$$
m \leq \frac{\left[\left(\sum_{r=1}^{k} \ell_{r}\right)-k t\right]!}{\prod_{r=1}^{k}\left(\ell_{r}-t\right)!}
$$

By using Theorem 4 we can prove the following weaker variants of Conjectures 2 and 3 by the same reduction in [3].

Theorem 5. Under the same assumptions of Conjecture 园, we have

$$
m \leq \frac{\prod_{1 \leq a<b \leq k}\left(\ell_{a}+\ell_{b}-2 t\right)!}{\left(\prod_{r=1}^{k}\left(\ell_{r}-t\right)!\right)^{k-1}} .
$$

Theorem 6. Under the same assumptions of Conjecture 园, we have

$$
m \leq \frac{\prod_{1 \leq a<b \leq k}\left(\ell_{a}+\ell_{b}-2 t\right)!}{\left(\prod_{r=1}^{k}\left(\ell_{r}-t\right)!\right)^{k-1}} .
$$

Acknowledgement

The author would like to thank students attending the graduate course on combinatorics in the spring semester of 2017; they pointed out the difficulty, when they were given Conjecture 1 for $k=3$ as a homework problem. We also like to thank the anonymous referees for their helpful comments.

References

[1] L. Babai and P. Frankl. Linear algebra methods in combinatorics. Department of Computer Science, The University of Chicago, September 1992.
[2] B. Bollobás. On generalized graphs. Acta Math. Acad. Sci. Hungar, 16:447-452, 1965.
[3] O. Einstein. Properties of intersecting families of ordered sets. Combinatorica, 28(1):37-44, 2008.
[4] P. Frankl. An extremal problem for two families of sets. European J. Combin., 3(2):125-127, 1982.
[5] Z. Füredi. Geometrical solution of an intersection problem for two hypergraphs. European J. Combin., 5(2):133-136, 1984.
[6] L. Lovász. Flats in matroids and geometric graphs. In Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), pages 45-86. Academic Press, London, 1977.

[^0]: *sangil@kaist.edu
 ${ }^{\dagger}$ Supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2017R1A2B4005020).
 ${ }^{\ddagger}$ tjdrns2704@kaist.ac.kr

