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IMPROVED BOUNDS FOR ROTA’S BASIS

CONJECTURE

SALLY DONG AND JIM GEELEN

Abstract. We prove that, if B1, . . . , Bn are disjoint bases of a
rank-n matroid, then there are at least n

7 log n
disjoint transversals

of (B1, . . . , Bn) that are also bases.

1. Introduction

A transversal basis of a collection (B1, . . . , Bn) of sets of elements in
a rank-n matroid is a basis containing exactly one element from each
of B1, . . . , Bn. Rota’s Basis Conjecture, which first appeared in [1], is
receiving renewed interest as the topic of Polymath 12 [2].

Conjecture 1.1 (Rota’s Basis Conjecture). Given disjoint bases

B1, . . . , Bn of a rank-n matroid, there exist n disjoint transversal bases.

Geelen and Webb [3] showed that it is possible to get ⌈
√
n− 1⌉

disjoint transversal bases; our main result improves on their bound.

Theorem 1.2. Given disjoint bases B1, . . . , Bn of a rank-n matroid,

where n ≥ 2, there are at least
⌊

n
6⌈logn⌉

⌋

disjoint transversal bases.

Throughout the paper we use the natural logarithm. Using the same
methods, but taking more care with the calculations, it should be pos-

sible to improve on our bound of
⌊

n
6⌈logn⌉

⌋

; however, new ideas will be

needed to beat n
logn

. The bound of n
7 logn

, claimed in the abstract, is

obtained by combining the bound ⌈
√
n− 1⌉, when n ≤ 3000, with the

bound
⌊

n
6⌈logn⌉

⌋

, when n > 3000.

We present the central ideas of the proof here in the introduction,
leaving the technical details for the next section. We deduce Theo-
rem 1.2 from the following key result.
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Theorem 1.3. Let B1, . . . , Bn be disjoint bases of a rank-n matroid,

where n ≥ 2, and let α = 3⌈log n⌉. If we choose α-element subsets

S1, . . . , Sn independently and uniformly at random from B1, . . . , Bn,

respectively, then (S1, . . . , Sn) contains a transversal basis with proba-

bility at least 1/2.

We start by showing that Theorem 1.3 implies Theorem 1.2.

Proof of Theorem 1.2. Let m =
⌊

n
6⌈logn⌉

⌋

. For each i ∈ {1, . . . , n},
let Si,1, . . . , Si,2m be disjoint α-element subsets of Bi chosen at ran-
dom. For each j ∈ {1, . . . , 2m}, the sets S1,j , . . . , Sn,j are subsets of
B1, . . . , Bn that are chosen independently and uniformly at random,
so, by Theorem 1.3, (S1,j, . . . , Sn,j) contains a transversal basis with
probability at least 1/2. By the linearity of expectation, the expected
number of disjoint transversal bases of (B1, . . . , Bn) is at least

1
2
· 2m.

So there exist at least m disjoint transversal bases. �

To prove Theorem 1.3, we use the following result of Rado [4] which
characterizes the existence of a transversal basis.

Theorem 1.4 (Rado’s Theorem). Let (S1, . . . , Sn) be sets of elements

in a rank-n matroid. Then there is a transversal basis of (S1, . . . , Sn)
if and only if r(∪i∈XSi) ≥ |X| for all X ⊆ {1, . . . , n}.

In order to prove Theorem 1.3, we will focus on the probability of
failure of each of the conditions in Rado’s Theorem. Let B1, . . . , Bk

be bases (not necessarily disjoint) of a rank-n matroid and let α =
3⌈logn⌉. We let Q(B1, . . . , Bk) denote the probability that, when α-
element subsets S1, . . . , Sk are chosen independently and uniformly at
random from B1, . . . , Bk, respectively, we have r(S1 ∪ · · · ∪ Sk) < k.
Note that we do not require the sets B1, . . . , Bk to be disjoint. In fact,

the case that B1 = · · · = Bk is interesting and plays an important role
in the proof. In this case we have r(S1∪ · · ·∪Sk) = |S1∪ · · ·∪Sk|, and
hence the failure probability Q(B1, . . . , Bk) depends only on k and n;
we let Qk,n = Q(B1, . . . , Bk). Thus Qk,n denotes the probability that,
when α-element sets S1, . . . , Sk are chosen independently and uniformly
at random from the set {1, . . . , n} we have |S1 ∪ · · · ∪ Sk| < k.
The following key lemma shows that the failure probability

Q(B1, . . . , Bk) is worst when B1 = · · · = Bk; we postpone the proof of
this result until Section 2.

Lemma 1.5. Let n and k be positive integers with k ≤ n and let

B1, . . . , Bk be bases of a rank-n matroid. Then Q(B1, . . . , Bk) ≤ Qk,n.
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Computing Qk,n is closely related to the Coupon Collector’s Prob-
lem, as well as a bipartite matching problem considered by Erdős and
Renyi [5].

Lemma 1.6. Let n and k be positive integers with k ≤ n and let

α = 3⌈logn⌉. Then

Qk,n ≤
(

n

k − 1

)

(

(

k−1
α

)

(

n
α

)

)k

.

Proof. There are
(

n
α

)k
ways to choose α-element sets S1, . . . , Sk from

{1, . . . , n}. To bound the number of such (S1, . . . , Sk) with |S1 ∪ · · · ∪
Sk| < k, we sum, over all (k − 1)-element subsets X of {1, . . . , n}, the
number of ways to choose (S1, . . . , Sk) from X . �

Combining the above results gives us an upper bound on the failure
probability in Theorem 1.3.

Lemma 1.7. Let B1, . . . , Bn be disjoint bases of a rank-n matroid,

where n ≥ 2, and let α = 3⌈log n⌉. If we choose α-element sets

S1 ⊆ B1, . . . , Sn ⊆ Bn independently and uniformly at random, then

the probability that (S1, . . . , Sn) does not contain a transversal basis is

at most
n
∑

k=1

(

n

k

)(

n

k − 1

)(

k − 1

n

)kα

.

Proof. By the union bound, the failure probability is at most the sum
of the failure probabilities of each of the conditions in Rado’s Theorem,
so, by Lemmas 1.5 and 1.6, the probability that (S1, . . . , Sn) does not
contain a transversal basis is at most

n
∑

k=1

(

n

k

)(

n

k − 1

)

(

(

k−1
α

)

(

n
α

)

)k

.

Moreover
(

k−1
α

)

(

n
α

) =

(

k − 1

n

)(

k − 2

n− 1

)

· · ·
(

k − α

n− α + 1

)

≤
(

k − 1

n

)α

,

since k − 1 ≤ n. �

Theorem 1.3 follows via a routine technical calculation which we
complete in Section 2.
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2. Technical details

We start with the proof of Lemma 1.5.

Proof of Lemma 1.5. Let B1, . . . , Bk be bases of a rank-n matroid and
let α = 3⌈log n⌉. Recall Qk(B1, . . . , Bk) is the probability that r(S1 ∪
· · · ∪ Sk) < k in an experiment E where we choose α-element subsets
S1 ⊂ B1, . . . , Sk ⊂ Bk independently and uniformly at random. We
obtain a lower bound on r(S1∪· · ·∪Sk) by constructing an independent
set in a naive way. Given an outcome (S1, . . . , Sk) of E , we construct
bases B′

1, . . . , B
′
k and independent sets I1, . . . , Ik iteratively, such that:

• B′
1 = B1, I1 = S1, and

• for each i ∈ {2, . . . , k}, the set B′
i is an arbitrary basis with Ii−1 ⊆

B′
i ⊆ Bi ∪ Ii−1, and Ii = Ii−1 ∪ (Si ∩B′

i).

Observe that the independent set Ii−1 can be extended to a basis B′
i

with Ii−1 ⊆ B′
i ⊆ Bi ∪ Ii−1 and that Ii = Ii−1 ∪ (Si ∩B′

i) ⊆ B′
i, so Ii is

independent. Thus, given (S1, . . . , Sk), the required bases B′
1, . . . , B

′
k

and independent sets I1, . . . , Ik exist. Note that r(S1∪ · · · ∪Sk) ≥ |Ik|.
It suffices to prove that |Ik| < k with probability equal to Qk,n. To
see this we will describe an equivalent random process for generating
B′

1, . . . , B
′
k and I1, . . . , Ik based on a collection (S ′

1, . . . , S
′
k) of α-element

sets chosen independently and uniformly at random from {1, . . . , n}
such that |Ik| = |S ′

1 ∪ · · · ∪ S ′
k|.

We start with an observation regarding the construction of the sets
B′

1, . . . , B
′
k and I1, . . . , Ik. Suppose, for some i ≥ 2, we have already

created B′
1, . . . , B

′
i−1 and I1, . . . , Ii−1. We construct B′

i by extending
Ii−1 to a basis within Ii−1 ∪ Bi. Up to this point we have not used
the set Si, so we may suppose that it is randomly generated at this
time. Moreover we claim that, for the purpose of constructing Ii, we
may choose Si randomly from B′

i instead of Bi. To see this, consider a
bijection from Bi to B

′
i that fixes the elements in Bi ∩ B′

i, and let S ′′
i

denote the image of Si under this bijection. Since B′
i − Bi ⊆ Ii−1, we

have Ii−1 ∪ (Si ∩ B′
i) = Ii−1 ∪ (S ′′

i ∩ B′
i), so the set Ii, considered as a

random variable, has the same distribution when we choose Si from Bi

as it does when we choose Si from B′
i.

In the following process, we will assume that sets (S ′
1, . . . , S

′
k) are

only generated upon request. Initially we set B′
1 = B1 and choose an

arbitrary bijection ψ1 : {1, . . . , n} → B′
1. Now request S ′

1. Note that
ψ1(S

′
1) is chosen uniformly at random from the α-element subsets of

B′
1. Set S1 = ψ1(S

′
1) and I1 = S1. For some i ≥ 2, suppose that

we have already created B′
1, . . . , B

′
i−1, ψ1, . . . , ψi−1, S1, . . . , Si−1 and

I1, . . . , Ii−1. As before, we construct B′
i by extending Ii−1 to a basis
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within Ii−1 ∪ Bi. Construct a bijection ψi : {1, . . . , n} → B′
i such that

ψ−1
i (e) = ψ−1

i−1(e) for all e ∈ Ii−1. Now request S ′
i. Note that ψi(S

′
i)

is chosen uniformly at random from the α-element subsets of B′
i. Set

Si = ψi(S
′
i) and Ii = Ii−1 ∪ Si.

A simple inductive argument shows that |Ii| = |S ′
1∪· · ·∪S ′

i| for each
i ∈ {1, . . . , n}. In particular, |Ik| = |S ′

1 ∪ · · · ∪ S ′
k|, as required. �

It remains to prove Theorem 1.3.

Proof of Theorem 1.3. Let

qn =
n
∑

k=1

(

n

k

)(

n

k − 1

)(

k − 1

n

)kα

.

By Lemma 1.7, it suffices to prove that qn ≤ 1/2. We have verified
this numerically for all n ∈ {2, . . . , 59} using Maple, so we may assume
that n ≥ 60.
Now we split the sum in two parts, change the index of summation

in the second part, and apply the inequality 1 + x ≤ ex, after which
the terms in the two parts become identical.

qn =

⌊n/2⌋
∑

k=1

(

n

k

)(

n

k − 1

)(

k − 1

n

)kα

+

n
∑

k=⌊n/2⌋+1

(

n

k

)(

n

k − 1

)(

k − 1

n

)kα

=

⌊n/2⌋
∑

k=1

(

n

k

)(

n

k − 1

)(

k − 1

n

)kα

+

⌈n/2⌉
∑

k=1

(

n

n− k + 1

)(

n

n− k

)(

n− k

n

)(n−k+1)α

=

⌊n/2⌋
∑

k=1

(

n

k

)(

n

k − 1

)(

1− n− k + 1

n

)kα

+

⌈n/2⌉
∑

k=1

(

n

k − 1

)(

n

k

)(

1− k

n

)(n−k+1)α

≤
⌈n/2⌉
∑

k=1

(

n

k

)2

e−
n−k+1

n
·kα +

⌈n/2⌉
∑

k=1

(

n

k

)2

e−
k
n
·(n−k+1)α
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≤ 2

⌈n/2⌉
∑

k=1

(en

k

)2k

e−
n−k+1

n
·kα,

as
(

n
k

)

≤
(

en
k

)k
. This bound is decreasing as a function of α, so we can

replace α with 3 logn; after simplifying we get

qn ≤ 2

⌈n/2⌉
∑

k=1

( e

k

)2k

n−k+
3k(k−1)

n .

Let tk =
(

e
k

)2k
n−k+ 3k(k−1)

n .

Claim. For each k ∈ {1, . . . , ⌈n
2
⌉} we have tk ≤ (1

2
)k+2.

Proof of claim. We have numerically verified, for k ∈ {1, 2, 3} and n =

60, that tk ≤
(

1
2

)k+2
(the k = 1 case is where we require n ≥ 60). Since

tk is non-increasing as a function of n, the claim holds for k ∈ {1, 2, 3}.
Now consider the claim for 4 ≤ k ≤ n

3
. Note that when k ≥ 4, the

term
(

e
k

)2
can be bounded above by 1

2
. Furthermore, when k ≤ n

3
, we

have −k + 3k(k−1)
n

≤ −1. Hence,

tk ≤
( e

k

)2k 1

n
≤
(

1

2

)k
1

60
<

(

1

2

)k+2

.

It remains to prove the claim for n
3
< k ≤ n

2
+1. Observe that 9e2

n3/2−3/n

is decreasing in n when n ≥ 2, so it is routine to verify that 9e2

n3/2−3/n <
1
2

for all n ≥ 60. Now,

tk =

(

( e

k

)2

n−1+ 3k
n

)k

n− 3k
n

≤
(

(

e
n/3

)2

n−1+
3(n/2+1)

n

)k

n−1

=

(

9e2

n3/2−3/n

)k

n−1

≤
(

1

2

)k
1

60

<

(

1

2

)k+2

,

as required. �
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By the above claim,

qn ≤ 2

⌈n/2⌉
∑

k=1

tk ≤ 2
∑

k≥1

(

1

2

)k+2

=
1

2
,

which completes the proof of Theorem 1.3. �
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