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INTERNALLY 4-CONNECTED BINARY MATROIDS WITH
EVERY ELEMENT IN THREE TRIANGLES

CAROLYN CHUN AND JAMES OXLEY

ABSTRACT. Let M be an internally 4-connected binary matroid with
every element in three triangles. Then M has at least four elements e
such that si(M/e) is internally 4-connected.

1. INTRODUCTION

Terminology in this note will follow [I]. A matroid is internally 4-
connected if it is 3-connected and, for every 3-separation (X,Y") of M, either
X or Y is a triangle or a triad of M.

The purpose of this note is to prove the following technical result.

Theorem 1.1. Let M be a binary internally 4-connected matroid in which
every element is in exactly three triangles. Then M has at least four elements
e such that si(M/e) is internally 4-connected. Morever, if M has fewer than
six such elements, then these elements are in a 4-element cocircuit.

2. PRELIMINARIES

This section introduces some basic material relating to matroid con-
nectivity. For a matroid M, let £ be the ground set of M and r be
its rank function. The connectivity function Ap; of M is defined on all
subsets X of E by Ay(X) = r(X) + (£ — X) — r(M). Equivalently,
A (X) =7r(X)+r"(X)—|X|. We will sometimes abbreviate Ays as A. For a
positive integer k, a subset X or a partition (X, F — X) of FE is k-separating
if \pr(X) < k—1. A k-separating partition (X, F— X) of E is a k-separation
if | X|,|E—X| > k. If n is an integer exceeding one, a matroid is n-connected
if it has no k-separations for all £ < n. Let (X,Y) be a 3-separation in a
matroid M. If |X|,|Y| > 4, then we call X,Y, or (X,Y) a (4,3)-violator
since it certifies that M is not internally 4-connected. For example, if X is
a 4-fan, that is, a 4-element set containing a triangle and a triad, then X is
a (4, 3)-violator provided |Y| > 4.

In a matroid M, a set U is fully closed if it is closed in both M and M*.
The full closure fcl(Z) of a set Z in M is the intersection of all fully closed
sets containing Z. The full closure of Z may be obtained by alternating
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between taking the closure and the coclosure until both operations leave the
set unchanged. Let (X,Y") be a partition of E(M). If (X,Y) is k-separating
in M for some positive integer k, and y is an element of Y that is also in
cl(X) or cl*(X), then it is well known and easily checked that (X Uy, Y —v)
is k-separating, and we say that we have mowved y into X. More generally,
(fcl(X),Y —fcl(X)) is k-separating in M.

The following elementary result will be used repeatedly.

Lemma 2.1. If M is an internally 4-connected binary matroid and e €
E(M), then si(M/e) is 3-connected.

Proof. The result is easily checked if |[E(M)| < 4, so we may assume that
|E(M)| > 4. Since M is 3-connected and binary, |E(M)| > 6 and both M/e
and si(M/e) are 2-connected. If |E(M)| € {6,7}, then M is isomorphic
to M(Ky), Fr, or F¥ and again the result is easily checked. Thus we may
assume that |E(M)| > 8.

Now let M’ = si(M/e) and suppose that M’ has a 2-separation (X,Y).
We may assume that |X| > |Y|. Suppose |Y| = 2. Then Y is a 2-cocircuit
{y1,y2} of M. As {y1,y2} is not a 2-cocircuit of M /e and M is binary, we see
that, in M /e, either one or both of y; and ys is in a 2-element parallel class.
Thus we may assume that M /e has {y1,y}} as a circuit and {y1,y],y2} as a
cocircuit, or M /e has {y1,v]} and {y2, y5} as circuits and has {y1, v}, y2, 5}
as a cocircuit. Hence M has {e, y1,y], y2} as a 4-fan or has {y1, v}, y2, ¥4} as
both a circuit and a cocircuit. Since |E(M )| > 8, each possibility contradicts
the fact that M is internally 4-connected. We conclude that |Y| > 3.

Let (X', Y') be obtained from (X,Y) by adjoining each element of
E(M/e) — E(M') to the side of (X,Y’) that contains an element parallel
to it. Then 7p7/e(X’) = rap(X) and rpze(Y') = rap(Y), so (X', Y') is a
2-separation of M/e. Hence (X', Y'Ue) and (X' Ue,Y’) are 3-separations
of M. As |Y'Ue| >4 and |[E(M) > 8, this gives a contradiction. O

Let n be an integer exceeding one. If M is n-connected, an n-separation
(U, V) of M is sequential if fcl(U) or fcl(V) is E(M). In particular, when
fcl(U) = E(M), there is an ordering (vi,va,...,vy) of the elements of V
such that U U {vm, Um—1,...,v;} is n-separating for all i in {1,2,...,m}.
When this occurs, the set V is called sequential.

3. SMALL MATROIDS

We begin this section by noting two useful results.

Lemma 3.1. Let M be a matroid in which every element is in exactly three
triangles. Then M has exactly |E(M)| triangles.

Proof. Consider the set of ordered pairs (e,T") where e € E(M) and T is a
triangle of M containing e. The number of such pairs is 3| E(M)| since each
element is in exactly three triangles. As each triangle contains exactly three
elements, this number is also three times the number of triangles of M. [
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Lemma 3.2. Let M be an internally 4-connected binary matroid in which
every element is in exactly three triangles. Then M has no cocircuits of odd
size.

Proof. For a cocircuit C* of M, we construct an auxiliary graph G as follows.
Let C* be the vertex set of G, and let cico be an edge exactly when ¢; and
co are members of C* that are contained in a triangle of M. Since every
element in is three triangles of M, every vertex in G has degree three by
orthogonality and the fact that M is binary. Hence |C*|, which equals the
number of vertices of G with odd degree, is even. (]

To prove the next lemma, we shall use the following theorem of Qin and
Zhou [2].

Theorem 3.3. Let M be an internally 4-connected binary matroid with
no minor isomorphic to any of M(K33), M*(K33), M(Ks), or M*(Ks).
Then either M is isomorphic to the cycle matroid of a planar graph, or M
is isomorphic to Fy or F7.

Lemma 3.4. Let M be an internally 4-connected binary matroid in which
every element is in exactly three triangles and |E(M)| < 13. Then M is
isomorphic to F; or M (Ks5). Hence si(M/e) is internally 4-connected for
all elements e of M.

Proof. Assume that M is not isomorphic to F7 or M(Kj5). Suppose first
that M has none of M(Ks33), M*(K33), M(K5), or M*(K5) as a minor.
As F7 has no triangles, it follows that M is isomorphic to the cycle matroid
of a planar graph G. As every edge of G is in exactly three triangles, but
M (G) is internally 4-connected, every vertex has degree at least four. Hence
|E(G)| > 2|V(G)|. Moreover, by Lemma every vertex of G has even
degree. Clearly |V (G)| # 4. Moreover, |V (G)| # 5, otherwise M = M (K5);
a contradiction. As |E(G)| < 13, it follows that |V(G)| = 6 and |E(G)| = 12.
Then G is obtained from Kg by deleting the edges of a perfect matching.
But no edge of this graph is in exactly three triangles.

We may now assume that M has an N-minor for some N in
{M(Kg,g), M* (Kg’g), M(K5), M* (K5)} By the Splitter Theorem for 3-
connected matroids, there is a sequence My, M1, ..., M} of 3-connected ma-
troids such that My = N and M = M, while |E(M;41) — E(M;)| = 1 for
all iin {0,1,...,k — 1}. Since |[E(M) > 9 and |E(M)| < 13, it follows that
ke {0,1,2,3,4}.

Suppose that some M; is obtained from its successor by contracting an
element e. Then M/e has an N-minor. But si(M/e) has at most nine
elements. Thus |E(M)| = 13 and N is M (K3 3) or M*(K33). Since si(M/e)
must contain triangles, N is M*(K33). Now, by Lemma every cocircuit
of M/e is even. Moreover, M /e has exactly three 2-circuits. The union of
these three 2-circuits cannot have rank two in M /e otherwise M has F7 as a
restriction but the remaining six elements of M cannot all be in exactly three
triangles of M. Let a,b and ¢ be the three elements of M*(K33) that are
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in 2-circuits in M/e. Then one easily checks that there are two intersecting
triangles of M* (K3 3) whose union contains exactly two elements of {a, b, c}.
The cocircuit of M /e whose complement is the union of the closure of these
two triangles is odd; a contradiction.

We now know that M is an extension of N by at most four elements.
Let N = M\D. Then |D| > 1 so |E(M)| > 10. Moreover, N has at least
|E(M)| — 3|D| triangles. It is straightforward to check that the last number
is positive, so N cannot be M (K33) or M*(K5). Thus N is M*(K33) or
M(Ks). Each element of M(K5) is in three triangles, so N # M (K35) since
each element of (M) — E(N) must be in a triangle with some element of
M (K5); a contradiction. We deduce that N = M*(K33). Now M*(K33)
has exactly six triangles with each element being in precisely two trian-
gles. Thus, in M, there are six triangles each containing a single element of
M*(K33) and two elements of E(M)—E(N). As |[E(M)|—E(N)| < 4, there
are at most six triangles containing exactly two elements of E(M) — E(N).
We deduce that |E(M)| = 13 so M can be obtained from PG(3,2) by delet-
ing exactly two elements. As PG(3,2) has exactly seven triangles containing
each element, deleting two elements leaves each element in at least five tri-
angles; a contradiction. O

4. SMALL COCIRCUITS

In this section, we move towards proving the main result by dealing with
4-cocircuits and certain special 6-cocircuits in M. Throughout the section,
we will assume that M is an internally 4-connected binary matroid in which
every element is in exactly three triangles, and |E(M)| > 14.

Lemma 4.1. If C* is a 4-element cocircuit of M, then, for all e in C*, the
matroid si(M/e) is internally 4-connected having no triads.

Proof. Suppose that C* = {e, f1, fo, f3} and si(M/e) is not internally 4-
connected. As M is internally 4-connected, 7(C*) = 4. As e is in three trian-
gles of M, there are elements {g1, g2, g3} such that {e, f;, g;} is a triangle for
all 4. As f; is in three triangles for all ¢, by orthogonality and the fact that M
is binary, there are elements {hi, ho, hs} such that {fi, fo, h1},{f1, f3, hs},
and {fa, f3,he} are triangles. This forces {g1,92,h1},{91,93,hs}, and
{92, 93, ha} to be triangles, so g; is in no other triangle of M for all 7.

Let M’ = si(M/e) = M/e\f1, f2, f3. Lemma implies that M’ is
3-connected. The set {g1, 92,93, h1, ha, h3} forms an M (K4)-restriction in
M'. Suppose M’ has a non-sequential 3-separation. Then we may assume
that {g1, 92, g3, h1, ha, h3} is contained in one side of the 3-separation. Since
{fi,gi} is a circuit in M /e, we may add f1, f2, and f3 to the side contain-
ing the M (Ky)-restriction, and then add e to get a (4, 3)-violator of M; a
contradiction. We deduce that a (4, 3)-violator of si(M/e) is a sequential
3-separation.

We show next that
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4.1.1. M/e\f1, f2, f3 has no triads.

Suppose M/e\flaf27f3 has a triad {187775} Then M\f17f27f3
has {8,7v,d} as a cocircuit. By Lemma we may assume that

{B,7,0, f1, f2, f3} or {8,7,9, f1} is a cocircuit of M. By orthogonality, in the
first case, {8,7,0} = {g1,92,93} while, in the second case, g1 € {3,7,d}.
In the first case, let Z = {e, f1, fo, f3,91,92,93}. Then r(Z) < 4 while
|Z| —r*(Z) > 2, s0 \(Z) < 2, a contradiction as |E(M)| > 14.

In the second case, M has a 4-cocircuit D* such that C* N D* = {f;} and
g1 € D*. Apart from {f1,e, g1}, the other triangles containing f; must meet
C* — {f1,e} in distinct elements and must meet D* — {f1, 1} in distinct
elements. Thus r(C* U D*) < 4 and |C* U D*| — r*(C* U D*) > 2, so
A(C* U D*) < 2; a contradiction since |[E(M)| > 14. Thus holds.

By [4.1.1] M/e\fi1, f2, f3 has no 4-fans and so has no sequential 3-
separation that is a (4,3)-violator. This contradiction completes the
proof. O

Lemma 4.2. Take e € E(M) and the three triangles Ty, Ts, and T5 con-
taining e. If (Ty UTy UT3) — e is a cocircuit C*, then si(M/x) is internally
4-connected for every element x of C*.

Proof. Let T; = {e, fi, g;} for each i € {1,2,3}. Note that 71, T>, and T3 are
not coplanar, otherwise their union forms an Fr-restriction, and C* contains
a triangle; a contradiction to the fact that M is binary. Suppose the lemma
fails. Then we may assume that si(M/ f3) is not internally 4-connected.

As fy is in two triangles other than 77, orthogonality and the fact that
M is binary imply that each of these triangles contains an element of
{f2, 92, f3,93}. If {f1, fo} and {f1, g2} are each contained in a triangle, then
the plane containing 77 and 715 is an Fr-restriction, so e is in a fourth triangle;
a contradiction. Hence fi is in a single triangle with an element of { fo, g2}
and a single triangle with an element of { f3, gs}. Without loss of generality,
{f1, 92,21} and { f1, g3, x2} are triangles. By taking the symmetric difference
of these triangles with the circuits { f1, g1, f2, 92} and {f1, g1, f3, 93}, respec-
tively, we see that {g1, fo,x1} and {g1, f3, 22} are also triangles. We have
now identified all three of the triangles containing each element in {fi,g:}.
But, for each element in {fa, g2, f3, 93}, one of the triangles containing the
element remains undetermined.

Either {f2,93,23} and {g¢o, f3, 23} are triangles, or {fo, f3,y3} and
{92, g3, y3} are triangles. In each of these cases, we will obtain the contradic-
tion that si(M/ f3) is internally 4-connected. By Lemmal[2.1, M’ = si(M/ f3)
is 3-connected. Take (U, V) to be a (4, 3)-violator in M.

Let X = {e, f1, f2,91,92,x1}. Clearly the restriction of M/fs to X is
isomorphic to M(K,). We may assume that M’ = M/ f3\Y where Y is
{g3, 72,3} or {g3,72,y3} depending on whether {f3, g2, 73} or {fs, f2, 3}
is a triangle of M. Without loss of generality, we may also assume that U
spans X in M’. Then (U U X,V — X) is 3-separating in M’ and it follows
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that (UUX UY U f3,V — X) is 3-separating in M. Since M has no (4, 3)-
violator, we deduce that V is a sequential 3-separating set in M’. Thus
M’ has a triad {3,~,d}. By Lemma M has a cocircuit D* where D* is
{B,7,0}UY or {S,~,0}Uy for some y in Y. In the first case, by orthogonality,
{B,7,0} € X. The last inclusion also follows by orthogonality in the second
case since {f,7,d} must meet X and M|X = M(K,). Hence X UY U f3
contains at least two cocircuits. Since 7(X UY U f3) = 4, it follows that
AMX UY U f3) < 2; a contradiction as |[E(M)| > 14. O

Lemma 4.3. Let (X,Y) be an exact 4-separation in M with X C fcl(Y'). If
M has no 4-cocircuits, then X is coindependent, r(X) =3, and X C cl(Y).

Proof. If X C cl(Y), then Y contains a basis of M, and X is coindependent.
As r(X) 4+ r*(X) — | X| < 3, the rank of X is at most three, and the result
holds. If X C cl*(Y), then X is independent, so r*(X) = 3. As |X| >4, it
follows that X is a 4-cocircuit; a contradiction.

Beginning with Y, look at cl(Y),cl*(cl(Y)),cl(cl*(cl(Y))),... until the
first time we get E(M). Consider the set Y’ that occurs before E(M) in
this sequence, let X' = E(M) — Y’ and let e be the last element that was
added in taking the closure or coclosure that equals Y’. Then either Y’ is a
hyperplane and X is a cocircuit, or Y is a cohyperplane and X’ is a circuit.

Suppose X' is a circuit. As 7(X') + r*(X’) — |X'| < 3, we see that
r*(X'") < 4. Thus, as X’ does not contain a 4-cocircuit, it is coindependent,
so it has size at most four. We may assume that X’ ; X, otherwise the
lemma holds. Suppose |X’| = 4. Then both (X'Ue,Y' —¢) and (X', Y”’) are
exact 4-separations. Thus e € cI*(X")Ncl*(Y' —e) or e € cl(X')Nel(Y' —e).
The latter holds otherwise M has a 4-cocircuit; a contradiction. But Y’ is
coclosed, so e was added by coclosure; that is, e € cl*(Y — e) and we have
a contradiction to orthogonality since e € cl(X). It remains to consider the
case when |X’| = 3. Then |X’'Ue| = 4. The lemma holds if X' Ue = X,
so there is an element f of Y/ — e that was added immediately before e in
the construction of Y’. Now if f is added via closure, then we can also add
e and X’ via closure, so we violate our choice of Y. Thus f is added via
coclosure so f € cI*(Y' —e — f)Nel* (X' Ue). Hence M has a 4-cocircuit; a
contradiction.

We may now assume that X’ is a cocircuit. Then X’ has at least six
elements. As X' is 4-separating, 3 = r(X') + r*(X') — | X'| = r(X') — 1.
Hence r(X') = 4, so M|X' is a restriction of PG(3,2). As M is binary, X’
contains no triangle and no 5-circuits, so M|X’ is a restriction of AG(3,2).
As X’ has six or eight elements, it follows that X’ is a union of 4-circuits so
fel(Y') cannot contain X'; a contradiction. O

Lemma 4.4. Assume M has no 4-cocircuits. If every exact 4-separation in
M is sequential, then, for every element e € E(M), the matroid si(M/e) is
internally 4-connected with no triads.
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z

FIiGURE 1. A skew plane and line in a binary matroid.
Squares indicate positions that may be occupied by elements
of M.

Proof. Let {e, fi,gi} be a triangle for all i € {1,2,3}. The matroid M’ =
si(M/e) = M/e\fi, fa, f3 is 3-connected by Lemma Let (U,V) be a
(4, 3)-violator in M’. Then |U|,|V| > 4. Add f; to the side of the 3-
separation containing g; for all i € {1,2, 3} to obtain (U’, V"), a 3-separation
in M/e. Neither (U’ Ue, V') nor (U’, V' Ue) is a 3-separation in M. Hence
both are 4-separations in M. Thus, by hypothesis, each is a sequential
4-separation in M. Lemma implies that, without loss of generality,
either U’ U e is coindependent and has rank at most three in M; or both
U’ and V' have rank at most three and are contained in cl(V' U e) and
cl(U" U e), respectively. In the first case, as U’ U e is contained in a plane,
U is contained in a triangle in si(M/e); a contradiction. In the second case,
r(M) = 4, so U and V' span planes in PG(3,2). These planes meet in a
line, so [U"UV’/| <7+ 7—3=11. Hence E(M) < 12; a contradiction.
Suppose M/e\ f1, f2, f3 has a triad {a, b, c}. Then, by Lemma M has
{a,b,c, f1, f2, f3} as a cocircuit, so we may assume that (a, b, c) = (g1, g2, 93)-
Now M has a triangle containing f; and exactly one of fs, g2, f3, or g3. It
follows that si(M/e) has a triangle meeting {g1, g2, g3}, so si(M/e) has a
4-fan; a contradiction. O

The next three lemmas deal with a plane and a line in M.

Lemma 4.5. Suppose M contains a plane P and a line L that are skew
and are labelled as in Figure [1] where not every element in the figure must
be in M. If a,b,c,d,e, f,z,y, and z are in M, and {z,y,a,b,d,e} and
{y,z,b,¢,e, f} are cocircuits in M, then si(M/w) is internally 4-connected
for all w in {a,b,c,d,e, f}.

Proof. By symmetric difference, {z,z,a,c,d, f} is a cocircuit. As z is in
three triangles of M, orthogonality implies that z is in a triangle with c,
say {z,¢,c'}, and a triangle with f, say {z, f, f'}. Likewise, x is in triangles
{z,a,d'} and {x,d,d'}, while y is in triangles {y, b, b’} and {y, e, €'}, for some
elements a’,d’,b',e’. As P and L are skew, all of @', ', c/,d’, €, f' are distinct
and none is in P or L.

By symmetry, it suffices to show that si(M/a) is internally 4-connected.
Let M' = si(M/a) = M/a\d',b, f. Let Z = {c¢,d,e,x,y,z,d b, f'}. The
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restriction of M’ to Z is isomorphic to M*(K33). Suppose (U, V) is a (4, 3)-
violator of M’. Without loss of generality, U spans Z in M’. Thus U spans
{d,€e'}. Hence (UUZU{d,e'}u{d b, f},V—Z—{c,€'}) is 3-separating in
M/a,so (UUZU{d,e'}U{d,b, ftUa,V—Z—{c,e'}) is 3-separating in M.
Thus V is a sequential 3-separating set in M’, so V' contains a triad {3,~, d}.
Thus either {z,c,e,a’,b, f} or {B8,7,0} Ut is a cocircuit of M for some
t in {a’,b, f}. The first possibility gives a contradiction to orthogonality
with {y,b,b'}. Thus {8,v,0,b}, {8,7,0,f}, or {B,7,d,a’} is a cocircuit.
Suppose {3,7,d,b} or {5,7,9, f} is a cocircuit. Then orthogonality implies
that {f,v,0} contains {b,c,d} or {f,e,d} and so we get a contradiction to
orthogonality with at least one of {z,d,d'}, {z,¢,d}, {2, f, f'},{y,b,'} and
{y,e,e'}. Thus {5,7,0,a’} is a cocircuit. This cocircuit also contains x so
either contains y and elements from each of {b,b'} and {e, €'}, or contains z
and elements from each of { f, f’} and {¢, ¢'}. Each case gives a contradiction
to orthogonality. We conclude that si(M/a) is internally 4-connected, so the
lemma holds. (]

Lemma 4.6. Assume M has no 4-cocircuits. Let (U, V') be a non-sequential
4-separation of M where U is closed and V' is contained in the union of a
plane P and a line L of M. Then either V is 6-cocircuit, or |V| = 9
and |P| = 6. Moreover, si(M/v) is internally 4-connected for at least siz
elements v of V.

Proof. By Lemmal[3.2] each cocircuit contained in V has exactly six elements
otherwise it contains a triangle. Suppose (V) =3. Asr(V)+r*(V)—|V| =
3, we know that V is coindependent. Hence it is contained in cl(U); a
contradiction. Evidently r(V) > 4. We use Figure [1| as a guide for the
points that may exist in V. We consider which positions are filled, keeping
in mind that V is the union of circuits and the union of cocircuits.

Suppose V' has rank four and view V' as a restriction of Q = PG(3,2).
Then clg(P)Nclg(L) is a point of @, so we may suppose e = z. Furthermore,
as (V) + r*(V) — |V| = 3, we know that V' contains, and therefore is, a
cocircuit. Thus |V| = 6. As V contains no triangles, |(PUL) Nclg(P)| < 4,
and |[(PUL)Nclg(L)] < 2. Thus e ¢ PU L. Without loss of generality,
the points in V are a,b, f, g, x, and y, and the result follows by Lemma
provided e € E(M).

We assume therefore that e ¢ E(M). We know that V = {z,y,a,b, f, g}.
By orthogonality, without loss of generality, the three triangles of M con-
taining z are {z,a,d’'}, {z, f, f'}, and {z,b,0'}. Thus M has as triangles
each of {y,d, f},{y,a, f'}, and {y,V’,g}. Hence M has no other triangles
containing x or y. Thus the remaining triangles containing ¢ must be in P,
and so contain ¢ and d. But then {a,b,c} and {a, g,d} are triangles of M,
so a is in four triangles; a contradiction.

Suppose that (V) = 5. Then P and L are skew, and V' is the union of
two 6-cocircuits, C* and D*. By orthogonality, each of C* and D* contains
at most four elements of P. Thus, by orthogonality, | P| < 6 so |C*UD*| < 9.
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Hence |C* A D*| = 6 and |V| = 9. Then, without loss of generality, each
of C* and D* meets P in four elements and L in two elements. The result
now follows by Lemma O

Lemma 4.7. If M has a 6-element cocircuit C* = {a,b,c,d, e, f} where
{a,b,c,d} and {a,b,e, f} are circuits, then si(M/x) is internally 4-connected
for all x in C*.

Proof. By symmetric difference, {c,d, e, f} is also a circuit. Thus C* is the
union of three disjoint pairs, {a,b}, {c, d}, and {e, f} such that the union of
any two of these pairs is a circuit. If one of these pairs is in a triangle with
some element x, then each of the pairs is in a triangle with x and the lemma
follows by Lemma Thus we may assume that each of {a,c} and {a,d}
is in a triangle. Hence so are {b,c} and {b,d}. Thus each of a,b,c and d
is in exactly one triangle with an element of {e, f}. Hence e and f cannot
both be in exactly three triangles; a contradiction. O

Lemma 4.8. Let (J, K) be an exact 4-separation of M such that J is closed.
If K| <6, then K is a 6-cocircuit and si(M/k) is internally 4-connected for
all k in K.

Proof. We have r(K) +r*(K) — |K| =3 and |K| > 4. If |K| = 4, then K is
a cocircuit; a contradiction. Thus |K| > 5. Since K is a union of cocircuits
each of which has even cardinality, it follows that |K| > 6. Hence K is a
6-cocircuit. Thus r(K) = 4 so K contains two circuits such that they and
their symmetric difference have even cardinality. Hence K is the union of
two 4-circuits that meet in exactly two elements and the result follows by

Lemma [4.6] O

5. THE PROOF OF THE MAIN RESULT
The next lemma essentially completes the proof of Theorem

Lemma 5.1. Let M be an internally 4-connected binary matroid in which
every element is in exactly three triangles. Suppose M has no 4-cocircuits.
Then M has at least siz elements e such that si(M/e) is internally 4-
connected.

Proof. By Lemma we know that |E(M)| > 14. Assume that the lemma
fails. By Lemma M has a non-sequential 4-separation (X, Y’) where X is
minimal. Then Y is fully closed. By Lemma[4.8 |X| > 7 and X contains an
element « such that si(M/a) is not internally 4-connected. Let {«, fi,gi}
be a triangle for all i € {1,2,3}. Now M’ = si(M/a) = M/a\fi, fa, f3
is not internally 4-connected. By Lemma [2.1} it is 3-connected. Take a
(4,3)-violator (U’, V') in M’'. Then |U’|,|V'| > 4. Hence 7);/,(U’) and
Ta/a(V') exceed two. Add f; to the side containing g; for all i € {1,2,3}
to obtain (U”,V"). Then both (U"” U a, V") and (U”, V" U «) are exact
4-separations of M. Since o € cl(U”) and a € cl(V"), we deduce that
ra(U") > 4 and 7y (V") > 4. Moreover, by Lemma[£.3] both (U” U a, V")
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and (U”, V" U «a) are non-sequential. Without loss of generality, we may
assume that 7(U” N X) > r(V" N X) and, when equality holds, [U" N X| >
V" X|. Let (U,V) = (c(U”), V" = cl(U")). Then

5.1.1. 7y (UNX) > ry(VNX), and, when equality holds, [UNX| > |[VNX]|.
We show next that
51.2. XNU,XNV,YNU, and Y NV are all non-empty.

As a € XNU, the first set is not empty. If the second is empty, then, as «
is in the closure of V.=V NY, we can move a to Y to get (X —a,Y Ua) as
a non-sequential 4-separation of M; a contradiction to our choice of (X,Y).
If the third is empty, then U = X N U, and (X NU,Y U V) contradicts our
choice of (X,Y). Likewise, if the fourth set is empty, then V = X NV,
and (X NV, Y UU) violates our choice of (X,Y). This completes our proof
of £.1.21

By submodularity of the connectivity function, Ay (XUU)+Ap (X NU) <
A (X) + A (U) =3+ 3. We now break the rest of the argument into the
following two cases, which we shall then consecutively eliminate.

(A) MXNU)>4and A(XUU)=XYNV) <2 0r

(B) M(XNnU) <3.

5.1.3. (A) does not hold.

Suppose that (A) holds. As M is internally 4-connected, Y NV is a
triangle, or a triad, or contains at most two elements. Clearly, this set is not
a triad. Suppose A(XNV) > 4. Then, by submodularity again, A(YNU) < 2,
so |Y NU| < 3. Then |Y| <6, so Y contains and so is a cocircuit. As this
cocircuit cannot contain a triangle, it follows that [Y NV| < 2,s0 |Y]| < 5; a
contradiction. Thus A(XNV) < 3. If A\(XNV) <2, then XNV is contained
in a triangle, so V is contained in the union of two lines; a contradiction
since V' contains a cocircuit that must have six elements and so contain
a triangle. We deduce that A(X NV) = 3. Hence X NV C fel(Y UU).
Lemma [4.3|implies that X NV has rank at most three. Thus V is contained
in the union of a line L and a plane P. It now follows by Lemma that
[E.1.3 holds.

Next we show that
5.1.4. (B) does not hold.

Assume that (B) holds. Since A(X NU) < 3 and X N U is properly
contained in X, either X NU C fcl(Y UV)), or A(X NU) < 2. It follows
using Lemma that (X NU) < 3. Thus, by r(XNV) <3 If
r(X NV) < 2, then X is contained in the union of a plane and a line.
Then, arguing as in (A), it follows that |X| =6 or |X| =9 and si(M/x) is
internally 4-connected for all z in X. Each alternative gives a contradiction.
Thus, by p.1.1, (X NV) =3=r(XNU) and [XNV| < |[XNU| < 7. Hence
4<r(X)<6.
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Now view M as a restriction of @ = PG(r — 1,2), where r = r(M). As
(X,Y) is an exact 4-separation, clg(X)Nclg(Y) is a plane P of Q). Because
Y is fully closed, no element of X is in P. It follows by orthogonality, since
X is a union of cocircuits of M, that each triangle that meets an element of
X is either contained in X or contains exactly two elements of X with the
third element being in P.

We show that

5.1.5. r(X) € {5,6}.

Suppose not. Then r(X) =4 and X C clg(X) — P. So X is contained
in an AG(3,2)-restriction of M. As X is a cocircuit, |X| = 6 or |X| = 8.
Since | X NU| # |X NV] and each is at least three, it follows that |X| = 8.
To have a triangle meeting X, there must be an element y of Y in P. But
vy is the tip of a binary spike in X Uy so it is in at least four triangles. This
contradiction proves [5.1.5

We show next that

5.1.6. 7(X) = 5.

Suppose not. Then 7(X) =6. As (X NU) =r(XNV) =3, we deduce
that clo(X NU) Nclg(X NV) = 0, where we recall that Q = PG(r — 1,2)
and P = clg(X) Nclg(Y).

Suppose clg(X NV) meets P. As 3 = ANX) =r(X) +rY) —r(M), we
know that r(Y) = (M) — 3. Then cly/ (Y U (X NV)) is a flat with rank at
most 7(M)—1. Hence its complement, which is contained in X NU, contains
a cocircuit. But this cocircuit contains at least six elements by Lemma [4.1
so it contains a triangle in X N U. We deduce that clg(X NV) avoids P.
By symmetry, so does clg(X NU). It follows that each triangle that meets
X is either contained in X NU or X NV, or contains an element of each of
XNU,XNV,and P. If | X NU| =7, then M|(X NU) = Fr-restriction, so
each element in X NU is in three triangles contained in X N U. Then each
element in XNV is contained in three triangles in XNV, so M|(XNV') = Fy,
and | X NU| = |X NV]; a contradiction to[5.1.1} Thus |[X NU| < 6 and[5.1.1]
implies that [ X NV| < 5. Thus X NV contains an element v that is in at
most one triangle in X NV. Hence v is in triangles {v, u1,p1} and {v, u2, p2}
for some uq and ue in X NU, and p; and py in P. Take ug in X N U such
that {uy,u2,us} is a basis for X NU. Then cl(Y U {v,us}) is a flat of rank
at most (M) — 1 whose complement, which is contained in X NV, contains
a cocircuit. This cocircuit has at most five elements; a contradiction to
Lemma [£3] Hence [5.1.6] holds.

We now know that r(X) = 5. It follows, since r(X NU) =r(XNV) =3,
that clo(X NU)Nclg(XNV) is a point p of Q. Moreover, r(Y) = r(M) -2,
so r(clg(Y)Neclg(X NU)) = 1 since r(clg(Y U (X NU))) =r(M), otherwise
X NV contains a cocircuit of M that either has fewer than six elements or
contains a triangle. Similarly, 7(clo(Y) Neclg(X NV)) = 1.

The following is an immediate consequence of the fact that U is closed.
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51.7. If pe X, thenpe X NU.

Let clg(Y) Nclg(X NU) = {s} and clg(Y) Nclg(X NV) = {t}. Neither
snor tisin X, so

X NU| <6.

Hence | XNV| < |XNU|—-1 < 5. Recall that | X| > 9. As | XNU| > | XNV,
it follows that |X NU| > 5. Hence

5.1.8. | X NU| € {5,6}.

Call a triangle of M special if it contains an element of X NU, an element
of X NV, and an element of P. Construct a bipartite graph H with vertex
classes X NU and X NV with uv being an edge, where v € X N U and
v € X NV, precisely when {u, v} is contained in a special triangle. Clearly

(1) > du(w)= > du(v).

ueXNU veXNV
Next we show the following.

5.1.9. Every vertex x of V(H) — {p} has its degree in {1,2}.

Let {X", X"} ={X NU,X NV} and take z € X' such that x # p. Let 2”
be the element of clg(X"”)NP. Thus 2" € {s,t}. Clearly dy(x) < 3. Assume
di(z) = 3. Then clg(Y U x) contains 2/, at least three distinct elements
of X", and z”. Thus clg(Y U z) contains X”. Hence E(M) — cly (Y Ux)
contains at most five elements of M; a contradiction to the fact that every
cocircuit of M has at least six elements. Thus dy(x) < 3.

Next suppose that dg(z) = 0. Then all three triangles containing x
are contained in cly/(X’). Thus Mlcly (X') = Fr. Hence, for z € X" —
clp(X'), the three triangles containing z are contained in clp/(X”). Thus
Mclpy (X") =2 F;. Hence clp(X') Nelpy(X”) contains a point of M that is
in six triangles; a contradiction. Thus holds.

Now either

(i) s=t=np;or
(ii) s,t, and p are distinct.

Suppose that (i) holds. Assume first that p ¢ Y. By for W €
{U,V'}, every element of M|(XNW) is in a triangle contained in XNW. Thus
either M|(X N W) = M(Ky4) and ), cxqw da(w) = 6; or M|(X NW) =
M(K4\e) and ), cxqp da(w) = 9. Since [ X NU| > [X NV, we obtain a
contradiction using . ThuspeY.

As | XNU| € {5,6} by[5.1.8, we see that | X NU| = 5, otherwise M|((X N
U)Up) = Fy, and dy(z) = 0 for every z € X NV; a contradiction to
We deduce that M[((XNU)Up) = M(Ky4),and 5=y~ du(u). Now p
is in two triangles in (X NU)Up. Thus, of the three triangles in clg(X NV)
containing p, at most one contains two elements of XNV. Hence, using5.1.9
we see that M|cly (X NV) comprises two triangles with a single element,
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not p, in common. Thus )y du(v) = 7; a contradiction to Equation
We conclude that (i) does not hold.
We now know that s,t, and p are distinct. We show next that

5.1.10. p € X.

Suppose p ¢ X. Then [ X NU| =550 [XNV|=4. Thus ), . xny dr(u)
is five when s € Y and nine otherwise. As dy(v) < 3 for each v € X NV
by it follows that ¢ € Y. Then ) .xqy dr(v) is eight or seven
depending on whether M|(X NV) is Us4 or Uz 3 @ Uy 1. Thus, by , we
have a contradiction. Hence [5.1.10] holds.

Suppose |[X NU| = 6. Then s ¢ Y, otherwise there is an element
of (X NU) — p with degree zero in H; a contradiction to Then
> wexnu du(u) = 6. Suppose t € Y. If the line through {p,t} contains
a third point of M, say ¢, then each of the other two lines through p in
clg(X N'V) contains at most one point of M. Thus | X N V| = 3 and, as
r(X NV) =3, we see that {p,q,t} is the unique triangle in M|cly; (X NV)
containing ¢. As this triangle is special, it follows that dg(q) = 3; a con-
tradiction to Evidently the line through {p,t} does not contain a
third point of M. We deduce that M|cly;(X N'V) comprises two triangles
that have one element, not p or ¢, in common. Then ) vy du(v) = 5;
a contradiction. We deduce that ¢ ¢ Y. Then exactly one of the lines
in clpy (X NV) through p contains exactly three points. Since no point of
X NV has degree three in H, it follows that M |cly/(X N'V) comprises two
triangles with a point, not p, in common. As p ¢ X NV, it follows that
Y wexny @r(v) = 7; a contradiction. We conclude that [ X N U| # 6.

It remains to consider the case that |[X NU| = 5 and [X N V| = 4.
Then ), cyny du(u) is five or nine depending on whether or not s is in
Y. From p € X. Thus M|[(X NV)Up| consists of two three-point
lines meeting in a point z. If z = p, then Y v~y dm(v) is four or eight,
depending on whether or not ¢ is in Y; a contradiction. Hence z # p. Thus
the third element on the line containing {p,t} isin X. Again " v~ dur(v)
is seven, if t ¢ Y, or four, if t € Y; a contradiction to . We conclude that
[5.1.4l holds and the lemma follows. O

It is now straightforward to complete the proof of our main result.

Proof of Theorem[I.1 If M has a 4-cocircuit, then the result follows by
Lemma If M has no 4-cocircuits, then the theorem follows by
Lemma [5.11 O

6. A (NON)-EXTENSION

It is natural to ask whether, for an internally 4-connected binary matroid
M with every element in exactly three triangles, si(M/e) is internally 4-
connected for every element e. We now describe an example where this is
not the case.
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Begin with K33 having vertex classes {a1,az,as} and {b1, b2, b3}. Form
the graph G by adjoining three new vertices u, v, and w, each adjacent to all
of a1, a9, as, by, bs, and by but not to each other. The vertex-edge incidence
matrix of G is the matrix A shown below.

ag (1 1.1 0 0 00001 0O0OO0OO0ODO0OT1IO0OO0OO0OOOTI11TO0OO0OO0OO0OO®O
a2 /0 0 01 1 1 0O0O0OO0OT1O0O0O0OO0OOT1IO0O0OO0OOOTLIO0OTQO0OQO0OO
a3 /O 0 0 O0OOOT1 1 10O01O0O0O0O0OO0OT1O0O0O0OO0OOT1ITTQO0OTQO0OTF®O
by 1P 001001O0O0OO0O0O0O0O0OI1IO0O0OOOOLO0OT11IO0OO0OO0OOOOTI1TO0TP®O
bp 0 1 001 0O01O0O0OO0OO0OO0O0D1O0OO0OOOOT11TO0O0OOSO0OTO0OT1O0O0
b3 {0 01 001 0O010O0OO0OO0O0DO0OD1O0OOOOT11IO0O0OO0OTO0O®O0T1
U 0o0o0oo00O0O0O0OOO0OBOOT1TT17111100O0O0O0O0TG0SO0O0OO0OTGO0OO
v 0o0o0O0O0O0O0OO0OO0OO0OO0OO0OOOOOI1II111110O0O0O0TO0OSFO0
w 000O0OOOOOOOOODOOODLOOODODLOOOLDILITIT 1T 1T 11

Then M(G) is an internally 4-connected matroid in which every element is
in exactly three triangles. Now adjoin the matrix B to A where B is shown
below.

a b ¢c d e f
1 01 1 1 O
1 01 1 1 0
1 01 1 1 O
1 1.0 0 1 1
0O 1 1 1 0 1
01 1 1 0 1
1 1 0 0 1 1
1 0 01 0 1
0O 0 1 0 1 1

The matroid N that is represented by [A|B] has each element in M (G) in
exactly three triangles, and each element of {a,b,c,d, e, f} is in exactly two
triangles. To see this, observe that N|{a,b,c,d,e, f} = M(K4). Moreover,
no element of M (G) lies on a line with two elements of {a, b, ¢, d, e, f} and it
is straightforward to check that no element of {a,b,c,d, e, f} is in a triangle
with two elements of M(G).

Now take the generalized parallel connection of M(K5) and N across
{a,b,c,d,e, f} to get an internally 4-connected binary matroid M in which
every element is in exactly three triangles. Evidently si(M/z) is not inter-
nally 4-connected for all z in {a,b,c,d, e, f}.
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