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Abstract

A large body of research in graph theory concerns the induced subgraphs of graphs with large
chromatic number, and especially which induced cycles must occur. In this paper, we unify and
substantially extend results from a number of previous papers, showing that, for every positive
integer k, every graph with large chromatic number contains either a large complete subgraph or
induced cycles of all lengths modulo k. As an application, we prove two conjectures of Kalai and
Meshulam from the 1990’s connecting the chromatic number of a graph with the homology of its
independence complex.



1 Introduction

All graphs in this paper are finite and have no loops or parallel edges. We denote the chromatic
number of a graph G by χ(G), and its clique number (the cardinality of its largest clique) by ω(G).
A hole in G means an induced subgraph which is a cycle of length at least four.

What can we say about the hole lengths in a graph G with large chromatic number? If G is
a complete graph then it has no holes at all, and the question becomes trivial. But if we bound
the clique number of G then the question becomes much more interesting, and much deeper. In an
influential paper written thirty years ago, Gyárfás [8] made a number of conjectures about induced
subgraphs of graphs with large chromatic number and bounded clique number. Three of these
conjectures, concerning holes, are particularly well-known:

1.1 For all κ ≥ 0

• there exists c such that every graph with chromatic number greater than c contains either a
complete subgraph on κ vertices or a hole of odd length;

• for all ℓ ≥ 0 there exists c such that every graph with chromatic number greater than c contains
either a complete subgraph on κ vertices or a hole of length at least ℓ;

• for all ℓ ≥ 0 there exists c such that every graph with chromatic number greater than c contains
either a complete subgraph on κ vertices or a hole whose length is odd and at least ℓ.

All three conjectures are now known to be true: the first was proved by the authors in [13] (see
[12] for earlier work); the second jointly with Maria Chudnovsky in [3]; and the third (which is a
strengthening of the first two) jointly with Chudnovsky and Sophie Spirkl in [5]. The analogous
result for long even holes is also known (it is enough to find two vertices joined by three long paths
with no edges between them, and this follows from results of [15]).

Another intriguing result on holes was shown by Bonamy, Charbit and Thomassé [1], who proved
a conjecture of Kalai and Meshulam by showing the following.

1.2 Every graph with sufficiently large chromatic number contains either a triangle or a hole of
length 0 modulo 3.

In this paper we prove the following theorem, which contains all the results mentioned above as
special cases.

1.3 For all κ, ℓ ≥ 0 there exists c such that every graph G with χ(G) > c and ω(G) ≤ κ contains
holes of every length modulo ℓ.

Note that this result allows us to demand a long hole of length i modulo j by taking ℓ = Nj for
large N and then choosing a suitable residue. Thus it implies all three Gyárfás conjectures; and it
extends 1.2 in several ways, allowing us to ask for any size of clique, and a hole of any residue and
as long as we want. (Though we cannot demand a hole of any specific length: it is well-known that
there are graphs with arbitrarily large girth and chromatic number.)

We will in fact prove an even stronger statement. We say A, B ⊆ V (G) are anticomplete if
A ∩ B = ∅ and no vertex in A has a neighbour in B; and subgraphs P, Q of G are anticomplete if
V (P ), V (Q) are anticomplete. We prove the following.
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1.4 Let κ, n ≥ 0 be integers, and for 1 ≤ i ≤ n let pi ≥ 0 and qi ≥ 1 be integers. Then there
exists c ≥ 0 with the following property. Let G be a graph such that χ(G) > c and ω(G) ≤ κ. Then
there are n holes H1, . . . , Hn in G, pairwise anticomplete, such that Hi has length pi modulo qi for
1 ≤ i ≤ n.

Let us restate this in slightly different language. An ideal of graphs is χ-bounded if there is a
function f such that χ(G) ≤ f(ω(G)) for every graph G in the class. Thus 1.4 can be reformulated
as:

1.5 Let n ≥ 0 be an integer, and for 1 ≤ i ≤ n let pi ≥ 0 and qi ≥ 1 be integers. Let C be the ideal
of all graphs that do not contain n pairwise anticomplete holes H1, . . . , Hn where Hi has length pi

modulo qi for 1 ≤ i ≤ n. Then C is χ-bounded.

1.5 (or equivalently 1.4) implies 1.3, and also implies the main theorem of [16], which is the case
of 1.4 when pi = 1 and qi = 2 for each i. But it also has applications to further conjectures of Kalai
and Meshulam [10], connecting graph theory with topology, and in particular with the homology of
the independence complex of G. We discuss these in the final section.

Let us say a hole H in G is d-peripheral if χ(G[X]) > d, where X is the set of vertices of G that
are not in V (H) and have no neighbours in V (H). 1.4 follows easily from the following version of
1.3, which will therefore be our main objective:

1.6 For all κ, ℓ, d ≥ 0 there exists c such that every graph G with χ(G) > c and ω(G) ≤ κ contains
d-peripheral holes of every length modulo ℓ.

Proof of 1.4, assuming 1.6. Let κ, n and pi, qi (1 ≤ i ≤ n) be as in 1.4. We may assume that
n ≥ 1 and κ ≥ 2, and we proceed by induction on n, for fixed κ. Choose d such that for every graph
G with χ(G) > d and ω(G) ≤ κ, there are n − 1 holes H1, . . . , Hn−1 in G, pairwise anticomplete,
where Hi has length pi modulo qi for 1 ≤ i ≤ n − 1. Let c satisfy 1.6 with ℓ replaced by qn. We
claim that c satisfies 1.4; for let G be a graph such that χ(G) > c and ω(G) ≤ κ. By 1.4, G has
a d-peripheral hole Hn of length pn modulo qn. Let X be the set of vertices of G not in Hn and
with no neighbour in Hn. Thus χ(G) > d. From the inductive hypothesis, G[X] has n − 1 holes
H1, . . . , Hn−1 in G, pairwise anticomplete, where Hi has length pi modulo qi for 1 ≤ i ≤ n − 1. But
then H1, . . . , Hn satisfy the theorem.

In this paper, we are also interested in holes of nearly equal length. In the triangle-free case, a
result is known that is even stronger than 1.3: we proved in [14] that

1.7 For all ℓ ≥ 0 there exists c such that every triangle-free graph with chromatic number greater
than c contains holes of ℓ consecutive lengths.

We conjectured in [14] that the same should be true if we exclude larger cliques:

1.8 Conjecture: For all integers κ, ℓ ≥ 0, there exists c ≥ 0 such that every graph with chromatic
number greater than c contains either a complete subgraph on κ vertices or holes of ℓ consecutive
lengths.

This conjecture remains open. However, we make a small step towards it: we will show that under
the same hypotheses, there are (long) holes of two consecutive lengths.
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1.9 For each κ, ℓ ≥ 0 there exists c ≥ 0 such that every graph with chromatic number greater than c
contains either a complete subgraph on κ vertices or holes of two consecutive lengths, both of length
more than ℓ.

We have convinced ourselves that with a great deal of work, which we omit, we could get three
consecutive “long” holes, but so far that is the best we can do.

As in several other papers of this series, the proof of 1.6 examines whether there is an induced
subgraph of large chromatic number such that every ball of small radius in it has bounded chromatic
number. Let us make this more precise. If X ⊆ V (G), the subgraph of G induced on X is denoted
by G[X], and we often write χ(X) for χ(G[X]). The distance or G-distance between two vertices
u, v of G is the length of a shortest path between u, v, or ∞ if there is no such path. If v ∈ V (G)
and ρ ≥ 0 is an integer, Nρ

G(v) or Nρ(v) denotes the set of all vertices u with G-distance exactly
ρ from v, and Nρ

G[v] or Nρ[v] denotes the set of all u with G-distance at most ρ from v. If G is a
nonnull graph and ρ ≥ 1, we define χρ(G) to be the maximum of χ(Nρ[v]) taken over all vertices v
of G. (For the null graph G we define χρ(G) = 0.) Let N denote the set of nonnegative integers,
and let φ : N → N be a non-decreasing function. For ρ ≥ 1, let us say a graph G is (ρ, φ)-controlled
if χ(H) ≤ φ(χρ(H)) for every induced subgraph H of G. Roughly, this says that in every induced
subgraph H of G with large chromatic number, there is a vertex v such that H[Nρ

H [v]] has large
chromatic number. Let C be a class of graphs. We say C is an ideal if every induced subgraph of
each member of C also belongs to C. If ρ ≥ 2 is an integer, an ideal C is ρ-controlled if there is a
nondecreasing function φ : N → N such that every graph in C is (ρ, φ)-controlled. For ℓ ≥ 4, an
ℓ-hole means a hole of length exactly ℓ. The proof of 1.6 breaks into two parts, the 2-controlled case
and the ρ-controlled case when ρ > 2 (because if we can be sure that all 2-balls have small chromatic
number then it is easier to piece together paths to make holes of any desired length.) We will prove
the following two complementary results, which together imply 1.6:

1.10 Let ρ ≥ 2 be an integer, and let C be a ρ-controlled ideal of graphs. Let ℓ ≥ 24 if ρ = 2, and
ℓ ≥ 8ρ2 + 6ρ if ρ > 2. Then for all κ, d ≥ 0, there exists c ≥ 0 such that every graph G ∈ C with
ω(G) ≤ κ and χ(G) > c has a d-peripheral ℓ-hole.

1.11 For all integers ℓ ≥ 2 and τ, d ≥ 0 there is an integer c ≥ 0 with the following property. Let G
be a graph such that χ8(G) ≤ τ , and every induced subgraph J of G with ω(J) < ω(G) has chromatic
number at most τ . If χ(G) > c then there are ℓ d-peripheral holes in G with lengths of all possible
values modulo ℓ.

Proof of 1.6, assuming 1.10 and 1.11. Let κ, ℓ, d ≥ 0, and let C be the ideal of graphs with
clique number at most κ and with no d-peripheral hole of some length modulo ℓ. By 1.11, for each
τ ≥ 0 there exists cτ such that every G ∈ C with χ8(G) ≤ τ satisfies χ(G) ≤ cτ , and so C is
8-controlled. By 1.10 the theorem follows. This proves 1.6.

We prove the 2-controlled case of 1.10 in the next section, and the ρ > 2 case in section 3,
deducing 1.10 at the end of section 3. We prove 1.11 in section 4, completing the proof of 1.6; and
prove the theorem about two consecutive long holes in section 5.
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2 2-control

First we handle the 2-controlled case. The proof here is very much like part of the proof of theorem
4.8 of [5]; the main difference is a strengthening of theorem 4.5 of that paper. First we need some
definitions. If G is a graph and B, C ⊆ V (G), we say that B covers C if B ∩ C = ∅ and every vertex
in C has a neighbour in B. Let G be a graph, let x ∈ V (G), let N be some set of neighbours of x,
and let C ⊆ V (G) be disjoint from N ∪ {x}, such that x is anticomplete to C and N covers C. In
this situation we call (x, N) a cover of C in G. For C, X ⊆ V (G), a multicover of C in G is a family
(Nx : x ∈ X) such that

• X is stable;

• for each x ∈ X, the pair (x, Nx) is a cover of C;

• for all distinct x, x′ ∈ X, the vertex x′ is anticomplete to Nx (and in particular all the sets
{x} ∪ Nx are pairwise disjoint).

Its length is |X|, and the multicover (Nx : x ∈ X) is stable if each of the sets Nx (x ∈ X) is stable.

C

x1 x2

Nx1
Nx2

Figure 1: A multicover of length two (the wiggle indicates possible edges)

Let (Nx : x ∈ X) be a multicover of C, let X ′ ⊆ X, and for each x ∈ X ′ let N ′
x ⊆ Nx; and let

C ′ ⊆ C be covered by each of the sets N ′
x (x ∈ X ′). Then (N ′

x : x ∈ X ′) is a multicover of C ′, and
we say it is contained in (Nx : x ∈ X).

Again, let (Nx : x ∈ X) be a multicover of C. Let P be an induced path of G with the following
properties:

• P has length three or five;

• the ends of P are in X;

• no vertex of X not an end of P belongs to or has a neighbour in V (P ); and

• every vertex of P belongs to X ∪
⋃

x∈X Nx ∪ C.

Let us call such a path P an oddity for the multicover.
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Figure 2: Oddities

If (Nx : x ∈ X) is a multicover of C, with an oddity P , and (N ′
x : x ∈ X ′) is a multicover of

C ′ ⊆ C contained in (Nx : x ∈ X), and V (P ) is anticomplete to X ′ ∪
⋃

x∈X′ N ′
x ∪ C ′, we say that

(N ′
x : x ∈ X ′) is a multicover of C ′ compatible with P . Let H be the subgraph induced on

⋃
x∈X Nx;

we call the clique number of H the cover clique number of (Nx : x ∈ X).
First we need to show the following:

2.1 Let τ, κ, m′, c′ ≥ 0 be integers, and let 0 ≤ κ′ ≤ κ be an integer. Then there exist integers
m, c ≥ 0 with the following property. Let G be a graph such that

• ω(G) ≤ κ;

• χ(H) ≤ τ for every induced subgraph H of G with ω(H) < κ; and

• G admits a stable multicover (Nx : x ∈ X) with length m, of a set C with χ(C) > c, with cover
clique number at most κ′.

Then there is an oddity P for the multicover, and a multicover (N ′
x : x ∈ X ′) of C ′ ⊆ C contained

in (Nx : x ∈ X) and compatible with P , such that |X ′| = m′ and χ(C ′) > c′.

We proceed by induction on κ′, with τ, κ, m′, c′ fixed. Thus, inductively, there exist m0, c0 ≥ 0
such that the theorem holds if m, c are replaced by m0, c0 respectively, and κ′ is replaced by any κ0

with 0 ≤ κ0 < κ′. (Note that possibly κ′ = 0, when this statement is vacuous; in that case take
m0 = c0 = 0.)

Let m = 4 + 4m0 + 2m′. Define cm = 4τ + 2m(c0 + c′), and for i = m − 1, . . . , 1 let ci = 2ci+1 + τ .
Let c = 2c1 + τ ; we will show that m, c satisfy the theorem.

Let G, (Nx : x ∈ X) and C be as in the theorem, where |X| = m, χ(C) > c and the cover clique
number of (Nx : x ∈ X) is at most κ′. We may assume (because otherwise the theorem follows from
the inductive hypothesis) that:

(1) There is no multicover (N ′
x : x ∈ X ′) of C ′ ⊆ C contained in (Nx : x ∈ X) with cover clique

number less than κ′, and with |X ′| = m0 and χ(C ′) > c0.

Let X = {x1, . . . , xm}, and let us write Ni for Nxi
for 1 ≤ i ≤ m.

(2) For 1 ≤ i ≤ m, there exist disjoint Ci, Di ⊆ C with χ(Ci), χ(Di) > ci, and Ah ⊆ Nh for
1 ≤ h ≤ i, such that each Ah covers one of Ci, Di and is anticomplete to the other.
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If A ⊆ N1 ∪ · · · ∪ Nm, let f(A) denote the set of vertices in C with a neighbour in A. Since
χ(C) > c, there exists A1 ⊆ N1 minimal such that f(A1) has chromatic number more than c1.
Let C1 = f(A1) and D1 = C \ C1. From the minimality of A1, it follows that χ(C1) ≤ c1 + τ .
Consequently χ(D1) > χ(C) − (c1 + τ) ≥ c1. Thus (2) holds for i = 1. Now we assume that
i > 1 and Ci−1, Di−1 and the sets A1, . . . , Ai−1 satisfy (2) for i − 1. Choose Ai ⊆ Ni minimal
such that one of χ(f(Ai) ∩ Ci−1), χ(f(Ai) ∩ Di−1) is more than ci; say the first (without loss of
generality). Let Ci = f(Ai) ∩ Ci−1. Now χ(f(Ai) ∩ Di−1) ≤ ci + τ , from the minimality of Ai, so
χ(Di) > ci−1 − ci − τ ≥ ci, where Di = Di−1 \ f(Ai). Thus Ai covers Ci and is anticomplete to Di.
This proves (2).

From (2) with i = m, each Ai covers one of Cm, Dm and is anticomplete to the other. By
exchanging Cm, Dm if necessary, we may assume that for at least m/2 values of i, Ai covers Cm

and is anticomplete to Dm. We may assume (by reordering x1, . . . , xm) that Ai covers Cm and is
anticomplete to Dm for 1 ≤ i ≤ m/2. Let Bi = Ni \ Ai for 1 ≤ i ≤ m/2.

(3) There is an oddity P for (Nx : x ∈ X) with ends x1, x2 and with interior in B1 ∪ B2 ∪ Dm.

Since χ(Dm) > cm ≥ τ , there is a clique Z ⊆ Dm with |Z| = κ. Now N1 covers Dm, but A1

is anticomplete to Dm, so B1 covers Dm. Similarly B2 covers Dm. Choose a vertex y1 ∈ B1 ∪ B2

with as many neighbours in Z as possible; and we may assume that y1 ∈ B1. Not every vertex of Z
is incident with y1 since ω(G) ≤ κ; let z2 ∈ Z be nonadjacent to y1. Choose y2 ∈ B2 adjacent to z2.
From the choice of y1, there exists z1 ∈ Z adjacent to y1 and not to y2. If y1, y2 are nonadjacent,
then x1-y1-z1-z2-y2-x2 is an oddity, and if y1, y2 are adjacent then x1-y1-y2-x2 is an oddity. This
proves (3).

Now there are at most four vertices of P that have neighbours in Cm, and so there exists F ⊆ Cm

with χ(F ) > cm − 4τ = 2m(c0 + c′) that is anticomplete to V (P ). There are two vertices of P in
N1 ∪ N2, and those are the only vertices of P that might have neighbours in Ai for 3 ≤ i ≤ m/2. Let
these vertices be p, q, and for 3 ≤ i ≤ m/2 let Pi be the set of vertices in Ai adjacent to p, and Qi

the set adjacent to q.
For each v ∈ F , let I(v) be the set of i with 3 ≤ i ≤ m/2 such that v has a neighbour in Pi.

For each subset I ⊆ {3, . . . , m/2} with |I| = m0, the chromatic number of the set of v ∈ F with
I ⊆ I(v) is at most c0, by (1). Since there are at most 2m−1 such subsets I, the set of vertices v ∈ F
with |I(f)| ≥ m0 has chromatic number at most 2m−1c0; and similarly the set of vertices adjacent
to neighbours of q in at least m0 sets Ai has chromatic number at most 2m−1c0. Consequently there
exists F ′ ⊆ F with

χ(F ′) ≥ χ(F ) − 2mc0 > 2mc′

such that for each v ∈ F ′, there are at most 2m0 values of i ∈ {3, . . . , m/2} such that v is adjacent
to a neighbour of p or q in Ai. There are only at most 2m possibities for the set of these values, so
there exists C ′ ⊆ F ′ with χ(C ′) ≥ χ(F ′)2−m > c′ such that all vertices in C ′ have the same set of
values, and in particular there exists I ⊆ {3, . . . , m/2} with |I| = m/2 − 2 − 2m0 = m′ such that no
vertex in C ′ has a neighbour adjacent to p or q in any Ai(i ∈ I). For each i ∈ I, let N ′

xi
be the set of

vertices in Ai nonadjacent to both p, q. Then (N ′
x : x ∈ {xi : i ∈ I}) is a multicover of C ′, contained

in (Nx : x ∈ X), and compatible with P . This proves 2.1.
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By three successive applications of 2.1 (one for each oddity), we deduce:

2.2 For all integers τ, κ ≥ 0, there exist integers m, c ≥ 0 with the following property. Let G be a
graph such that

• ω(G) ≤ κ;

• χ(H) ≤ τ for every induced subgraph H of G with ω(H) < κ; and

• G admits a stable multicover (Nx : x ∈ X) of a set C, where |X| = m and χ(C) > c.

Then there are three oddities P1, P2, P3 for the multicover, where V (P1), V (P2), V (P3) are pairwise
anticomplete.

(The same is true with “three” replaced by any other positive integer, but we only need three.) Next
we need:

2.3 Let ℓ ≥ 24 be an integer. Take the complete bipartite graph Kℓ,ℓ, with bipartition A, B. Add
three more edges joining three disjoint pairs of vertices in A. Now subdivide every edge between A
and B once, and subdivide each of the three additional edges either two or four times. The graph we
produce has a hole of length ℓ.

We leave the proof to the reader (use the fact that if x, y, z ∈ {3, 5} then ℓ is expressible as a sum of
some or none of x, y, z and at least three 4’s).

A multicover (Nx : x ∈ X) of C is said to be stably k-crested if there are vertices a1, . . . , ak and
vertices aix (1 ≤ i ≤ k, x ∈ X) of G, all distinct, with the following properties:

• a1, . . . , ak and the vertices aix (1 ≤ i ≤ k, x ∈ X) do not belong to X ∪ C ∪
⋃

x∈X Nx;

• for 1 ≤ i ≤ k and each x ∈ X, aix is adjacent to x, and there are no other edges between the
sets {a1, . . . , ak} ∪ {aix : 1 ≤ i ≤ k, x ∈ X} and X ∪ C ∪

⋃
x∈X Nx;

• for 1 ≤ i ≤ k and each x ∈ X, aix is adjacent to ai, and there are no other edges between
{a1, . . . , ak} and {aix : 1 ≤ i ≤ k, x ∈ X}

• a1, . . . , ak are pairwise nonadjacent;

• for all i, j ∈ {1, . . . , k} and all distinct x, y ∈ X, aix is nonadjacent to ajy.

(Thus the “crest” part is obtained from Kk,|X| by subdividing every edge once.) We deduce:

2.4 Let ℓ ≥ 24, and let τ, κ ≥ 0. Then there exist m, c ≥ 0 with the following property. Let G be a
graph such that

• ω(G) ≤ κ;

• χ(J) ≤ τ for every induced subgraph H of G with ω(H) < κ; and

• G admits a stably ℓ-crested stable multicover (Nx : x ∈ X) of a set C, where |X| = m and
χ(C) > c.

Then G has a hole of length ℓ.

Proof. Let m, c satisfy 2.2, choosing m ≥ ℓ (note that if m, c satisfy 2.2 then so do m′, c for m′ ≥ m.)
By 2.2, there are three oddities, pairwise anticomplete; and the result follows from 2.3. This proves
2.4.
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Theorem 4.4 of [5] says:

2.5 For all m, c, k, κ, τ ≥ 0 there exist m′, c′ ≥ 0 with the following property. Let G be a graph with
ω(G) ≤ κ, such that χ(H) ≤ τ for every induced subgraph H of G with ω(H) < κ. Let (N ′

x : x ∈ X ′)
be a multicover in G of some set C ′, such that |X ′| ≥ m′ and χ(C ′) > c′. Then there exist X ⊆ X ′

with |X| ≥ m, and C ⊆ C ′ with χ(C) > c, and a stable multicover (Nx : x ∈ X) of C contained in
(N ′

x : x ∈ X ′) that is stably k-crested.

Combining 2.4 and 2.5, we deduce the following (a strengthening of theorem 4.5 of [5]):

2.6 Let ℓ ≥ 24, and let τ, κ ≥ 0. Then there exist m, c ≥ 0 with the following property. Let G be a
graph such that

• ω(G) ≤ κ;

• χ(H) ≤ τ for every induced subgraph H of G with ω(H) < κ; and

• G admits a multicover with length m, of a set C with χ(C) > c.

Then G has a hole of length ℓ.

We need the following, a consequence of theorem 9.7 of [4]. That involves “trees of lamps”, but
we do not need to define those here; all we need is that a cycle of length ℓ is a tree of lamps. (Note
that what we call a “multicover” here is called a “strongly-independent 2-multicover” in that paper,
and indexed in a slightly different way.)

2.7 Let m, κ, c′, ℓ ≥ 0, and let C be a 2-controlled ideal, such that for every G ∈ C:

• ω(G) ≤ κ;

• G does not admit a multicover of length m of a set with chromatic number more than c′; and

• G has no hole of length ℓ.

Then there exists c such that all graphs in C have chromatic number at most c.

Now we prove the main result of this section, that is, 1.10 with ρ = 2.

2.8 Let ℓ ≥ 24 and let C be a 2-controlled ideal of graphs. For all κ, d ≥ 0 there exists c such that
every graph in C with clique number at most κ and chromatic number more than c has a d-peripheral
hole of length ℓ.

Proof. We proceed by induction on κ. The result holds for κ ≤ 1, so we assume that κ ≥ 2 and
every graph in C with clique number less than κ has chromatic number at most τ . Let C′ be the
ideal of graphs G ∈ C such that ω(G) ≤ κ and G has no hole of length ℓ. Choose m, c′ to satisfy
2.6 (with c replaced by c′). Choose c′′ to satisfy 2.7 (with C replaced by C′, and c replaced by c′′).
Let c = max(c′′, d + ℓτ); we claim that c satisfies the theorem. For let G ∈ C with ω(G) ≤ κ and
χ(G) > c. Suppose first that G ∈ C′. By 2.6, G does not admit a multicover with length m of a set
with chromatic number more than c′. From 2.7, χ(G) ≤ c′′, a contradiction.

Thus G /∈ C′, and so G has an ℓ-hole H. For each vertex of H, its set of neighbours has chromatic
number at most τ ; and so the set of all vertices of G that belong to or have a neighbour in H has
chromatic number at most ℓτ . Since χ(G) > d + ℓτ , it follows that H is d-peripheral. This proves
2.8.
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3 The ρ-controlled case for ρ ≥ 3.

Let G be a graph. We say a grading of G is a sequence (W1, . . . , Wn) of subsets of V (G), pairwise
disjoint and with union V (G). If w ≥ 0 is such that χ(G[Wi]) ≤ τ for 1 ≤ i ≤ n we say the grading
is τ -colourable. We say that u ∈ V (G) is earlier than v ∈ V (G) (with respect to some grading
(W1, . . . , Wn)) if u ∈ Wi and v ∈ Wj where i < j.

Let G be a graph, and let B, C ⊆ V (G), where B covers C. Let B = {b1, . . . , bm}. For
1 ≤ i < j ≤ m we say that bi is earlier than bj (with respect to the enumeration (b1, . . . , bm)). For
v ∈ C, let i ∈ {1, . . . , m} be minimum such that bi, v are adjacent; we call bi the earliest parent
of v. An edge uv of G[C] is said to be square (with respect to the enumeration (b1, . . . , bm)) if
the earliest parent of u is nonadjacent to v, and the earliest parent of v is nonadjacent to u. Let
B = {b1, . . . , bm}, and let (W1, . . . , Wn) be a grading of G[C]. We say the enumeration (b1, . . . , bm)
of B and the grading (W1, . . . , Wn) are compatible if for all u, v ∈ C with u earlier than v, the earliest
parent of u is earlier than the earliest parent of v.

A graph H is a ρ-ball if either V (H) = ∅ or there is a vertex z ∈ V (H) such that every vertex of
H has H-distance at most ρ from z; and we call z a centre of the ρ-ball. If G is a graph, a subset
X ⊆ V (G) is said to be a ρ-ball if G[X] is a ρ-ball. (Note that there may be vertices of G not in X
that have G-distance at most ρ from z; and also, for a pair of vertices in X, their G-distance and
their G[X]-distance may be different.)

3.1 Let φ be a nondecreasing function and ρ ≥ 3, and let G be a (ρ, φ)-controlled graph. Let τ ≥ 0
such that χρ−1(G) ≤ τ and χ(J) ≤ τ for every induced subgraph J of G with ω(J) < ω(G). Let
c ≥ 0 and let (W1, . . . , Wn) be a τ -colourable grading of G. Let H be a subgraph of G (not necessarily
induced) with χ(H) > τ +1+φ(c+τ), and such that Wi ∩V (H) is stable in H for each i ∈ {1, . . . , n}.
Then there is an edge uv of H, and a ρ-ball X of G, such that

• u, v are both earlier than every vertex in X;

• v has a G-neighbour in X, and u does not; and

• χ(G[X]) > c.

Proof. Let us say that v ∈ V (G) is internally active if there is a ρ-ball X ∋ v with χ(X) > c + τ
such that no vertex of X is earlier than v. (Note that X ∩ Wi may have more than one element, so
there may be vertices in X that are neither earlier nor later than v.) Let R1 be the set of internally
active vertices. We claim first:

(1) χ(G \ R1) ≤ φ(c + τ).

For suppose not. Then since G is (ρ, φ)-controlled, there is a ρ-ball X ⊆ V (G)\R1 with χ(G) > c+τ ,
which therefore contains an internally active vertex, a contradiction. This proves (1).

Let us say v ∈ V (G) is externally active if there is a ρ-ball X of G with χ(X) > c + τ such that
every vertex of X is later than v, and v has an H-neighbour in X. Let R2 be the set of externally
active vertices. We claim:
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(2) R1 \ R2 is stable in H.

For suppose that uv is an edge of H with both ends in R1 \ R2. Since each Wi ∩ V (H) is sta-
ble in H, we may assume that u is earlier than v. Since v is internally active, there is a ρ-ball X
containing v with χ(X) > c + τ such that no vertex of X is earlier than v; but then u is externally
active, a contradiction. This proves (2).

(3) There is a subset Y ⊆ V (H) such that H[Y ] is connected and has chromatic number more
than τ , and a ρ-ball X of G with χ(G[X]) > c + τ , such that every vertex of Y is earlier than every
vertex of X, and some vertex of Y has a H-neighbour in X.

Since H has chromatic number more than τ + 1 + φ(c + τ), it follows from (1) and (2) that
χ(H[R2]) > τ . Let Y be the vertex set of a component of H[R2] with maximum chromatic number.
Choose v ∈ Y such that no vertex of Y is later than v. Since v is externally active, this proves (3).

Let X, Y be as in (3). If some vertex of Y has no G-neighbour in X, then since H[Y ] is connected,
there is an edge uv of H[Y ] such that v has a G-neighbour in X and u does not, and the theorem
holds. We assume then that every vertex of Y has a G-neighbour in X. For each y ∈ Y , let N(y)
denote its set of G-neighbours in X. Let z be a centre of X, and for 0 ≤ i ≤ ρ let Li be the set of
vertices in X with G[X]-distance i to z. Thus L0 ∪ · · · ∪ Lρ = X. Let Y0 be the set of all y ∈ Y with
N(y) ⊆ Lρ−1 ∪ Lρ.

(4) Y0 6= ∅.

Since χ(H[Y ]) > τ , it follows that χ(G[Y ]) > τ , and so some vertex y ∈ Y has G-distance at
least ρ from z. Consequently N(y) ⊆ Lρ−1 ∪ Lρ. This proves (4).

Choose y ∈ Y0, if possible with the additional property that N(y) ∩ Lρ−1 = ∅. Let U be the set
of vertices in Lρ with a neighbour in N(y) ∩ Lρ−1.

(5) There is a vertex y′ of Y with N(y′) 6⊆ N(y) ∪ U .

For there is a vertex y′ ∈ Y with G-distance at least ρ from y, since χ(G[Y ]) > τ . Since ρ > 2,
N(y) ∩ N(y′) = ∅. If N(y′) ⊆ U , then y′ ∈ Y0 and N(y′) ∩ Lρ−1 = ∅; but then N(y) ∩ Lρ−1 = ∅ from
the choice of y, and so U = ∅, a contradiction. Thus N(y′) 6⊆ U . This proves (5).

Now X \ (N(y) ∪ U) is a ρ-ball X ′ say, and some vertex (namely y′) of Y has a G-neighbour
in it, and another (namely y) has no G-neighbour in it. Since H[Y ] is connected, there is an edge
uv of H[Y ] such that v has a G-neighbour in X ′ and u does not. But χ(X) > c + τ , and every
vertex in N(y) ∪ U has G-distance at most two from y and so χ(N(y) ∪ U) ≤ τ , and consequently
χ(X ′) ≥ χ(X) − τ > c. This proves 3.1.

We also need the following, proved in [5]:

3.2 Let G be a graph, and let B, C ⊆ V (G), where B covers C. Let every induced subgraph J of G
with ω(J) < ω(G) have chromatic number at most τ . Let the enumeration (b1, . . . , bm) of B and the
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grading (W1, . . . , Wn) of G[C] be compatible. Let H be the subgraph of G with vertex set C and edge
set the set of all square edges. Let (W1, . . . , Wn) be τ -colourable; then χ(G[C]) ≤ τ2χ(H).

We deduce:

3.3 Let φ be a nondecreasing function and ρ ≥ 3, and let G be a (ρ, φ)-controlled graph. Let τ ≥ 0
such that χρ−1(G) ≤ τ and χ(J) ≤ τ for every induced subgraph J of G with ω(J) < ω(G). Let
B, C ⊆ V (G), where B covers C. Let the enumeration (b1, . . . , bm) of B and the grading (W1, . . . , Wn)
of G[C] be compatible. Let (W1, . . . , Wn) be τ -colourable, and let χ(G[C]) > τ2(τ + 1 + φ(c + τ)).
Then there is a square edge uv, and a ρ-ball X of G, such that

• u, v are both earlier than every vertex in X;

• v has a neighbour in X, and u does not; and

• χ(X) > c.

Proof. Let H be as in 3.2. By 3.2, χ(G[C]) ≤ τ2χ(H). Since χ(G[C]) > τ2(τ + 1 + φ(c + τ)) and
χ1(G) ≤ τ , it follows that χ(H) > τ + 1 + φ(c + τ). By 3.1 applied to G[C] and H, we deduce that
there is an edge uv of H, and a ρ-ball X of G, satisfying the theorem. This proves 3.3.

A ρ-comet (P, X) in a graph G consists of a set P of induced paths, each with the same pair of
ends x, y say, and a ρ-ball X, such that y has a neighbour in X and no other vertex of any member
of P has a neighbour in X. We call x the tip of the ρ-comet, and χ(X) its chromatic number, and
the set of lengths of members of P its spectrum.

3.4 Let φ be a nondecreasing function, and let ρ ≥ 3 and τ ≥ 0. For all integers c ≥ 1 there exists
c′ ≥ 0 with the following property. Let G be a (ρ, φ)-controlled graph such that χρ−1(G) ≤ τ and
χ(J) ≤ τ for every induced subgraph J of G with ω(J) < ω(G). Let x ∈ V (G), and let V (G) \ {x}
be a ρ-ball, such that x has a neighbour in G \ x. Let χ(V (G) \ {x}) > c′. Then there is a ρ-comet
({P, Q}, C) in G with tip x and chromatic number more than c, where |E(Q)| = |E(P )| + 1, and
|E(P )| ≤ 2ρ + 1.

Proof. Let c′ = 2τ2(τ + 1 + φ(c + τ)), and let G, x be as in the theorem. Since V (G) \ {x} is a
ρ-ball, every vertex of G has G-distance at most 2ρ + 1 from x; for 0 ≤ k ≤ 2ρ + 1 let Lk be the set
of vertices of G with G-distance exactly k from x. Since χ(V (G) \ {x}) > c′, there exists k such that
χ(Lk) > c′/2. Since χ2(G) ≤ τ it follows that k ≥ 3. Let (b1, . . . , bn) be an enumeration of Lk−1,
and for 1 ≤ i ≤ n let Wi be the set of vertices in Lk that are adjacent to bi but not to b1, . . . , bi−1.
Then (W1, . . . , Wn) is a τ -colourable grading of G[Lk], compatible with (b1, . . . , bn).

Since χ(Lk) > τ2(τ + 1 + φ(c + τ)), by 3.3 there is a square edge uv of G[Lk], and a ρ-ball C of
G[Lk], such that

• u, v are both earlier than every vertex in C;

• v has a neighbour in C, and u does not; and

• χ(C) > c.
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Let u′, v′ be the earliest parents of u, v respectively. Let P consist of the union of the path v-v′ and
a path of length k − 1 between v′, x with interior in L1, . . . , Lk−2; and let Q consist of the union
of the path v-u-u′ and a path of length k − 1 between u′, x with interior in L1, . . . , Lk−2. Then
|E(Q)| = |E(P )| + 1 and |E(P )| ≤ 2ρ. Moreover, no vertex in C has a neighbour in P ∪ Q different
from v, since all vertices in C are later than u, v. This proves 3.4.

By repeated application of 3.4 we deduce:

3.5 Let φ be a nondecreasing function, and let ρ ≥ 3, ℓ ≥ ρ(8ρ + 6) and τ ≥ 0. For all integers
c ≥ 1 there exists c′ ≥ 0 with the following property. Let G be a (ρ, φ)-controlled graph such that
χρ−1(G) ≤ τ and χ(J) ≤ τ for every induced subgraph J of G with ω(J) < ω(G). Let x ∈ V (G), and
let V (G)\{x} be a ρ-ball, such that x has a neighbour in G\x. Then there is a ρ-comet (P, X) in G
with tip x and chromatic number more than c, such that its spectrum includes {ℓ+i : 0 ≤ i ≤ 2ρ+3}.

Proof. Let cℓ+1 = c, and for i = ℓ, . . . , 1 let 3.4 be satisfied setting c = ci+1 and c′ = ci. Let c′ = c1.

(1) For all k ≥ 1 there exists pk with 1 ≤ pk ≤ 2ρ and a ρ-comet in G with tip x, chromatic
number more than ck, and spectrum including {p1 + · · · + pk + i : 1 ≤ i ≤ k}.

By hypothesis there is a ρ-comet in G with chromatic number more than c1, tip x and spectrum {1},
so the statement holds when k = 1, setting p1 = 0; and it follows for k ≥ 2 by repeated application
of 3.4. This proves (1).

Now p1, . . . , pℓ exist and sum to at least ℓ, so there exists k ≤ ℓ maximum such that

p1 + · · · + pk ≤ ℓ.

Since p1+· · ·+p4ρ+3 < 2(4ρ+3)ρ ≤ ℓ, it follows that k ≥ 4ρ+3. From the maximality of k, and since
pk+1 ≤ 2ρ, it follows that p1 + · · · + pk > ℓ − 2ρ. Consequently the spectrum of the corresponding
ρ-comet contains {ℓ + i : 0 ≤ i ≤ 2ρ + 3}. This proves 3.5.

3.6 Let φ be a nondecreasing function, and let ρ ≥ 3, ℓ ≥ 8ρ2 +6ρ, and d, τ ≥ 0. Then there exists c
with the following property. Let G be a (ρ, φ)-controlled graph with χ(G) > c such that χρ−1(G) ≤ τ
and χ(J) ≤ τ for every induced subgraph J of G with ω(J) < ω(G). Then there is a d-peripheral
ℓ-hole in G.

Proof. Define c4 = ℓ(2ρ + 4)τ . Choose c3 such that 3.5 is satisfied replacing c, c′, ℓ by c4, c3, ℓ − 6ρ
respectively. Let c2 = ρτ + φ(c3), c1 = τφ(c2), and let c = max(φ(c1), ℓτ + d). Let G be as in the
theorem with χ(G) > c. Since χ(G) > c ≥ φ(c1), there exists z ∈ V (G) such that, denoting the
set of vertices of G with G-distance i from z by Li, we have χ(Lρ) > c1. Since L1 is τ -colourable,
there is a stable subset A of L1 such that the set B of vertices in Lρ that are descendants of vertices
in A has chromatic number more than c1/τ = φ(c2). Consequently there is a ρ-ball C ⊆ B with
χ(C) > c2. Choose D ⊆ A minimal such that every vertex in C has an ancestor in D. Let v1 ∈ D;
then there exists vρ−1 ∈ Lρ−1 with a neighbour in C such that v1 is its only ancestor in D. Let
v1-v2- · · · -vρ−1 be an induced path, where vi ∈ Li for 1 ≤ i ≤ ρ − 1. The set of vertices in C with
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G-distance less than ρ from one of v1, v2, . . . , vρ−1 has chromatic number at most ρτ , and so the set
E of vertices in C with G-distance at least ρ from each of v1, v2, . . . , vρ−1 has chromatic number more
than c2 − ρτ = φ(c3). Consequently there is a ρ-ball F ⊆ E, with chromatic number more than c3.

Since C is a ρ-ball and vρ−1 has a neighbour in C, there is an induced path P of G[C ∪ {vρ}]
from vρ−1 to some vertex x ∈ C with a neighbour in F , of length at most 2ρ, such that no vertex of
P different from x has a neighbour in F . By 3.5 applied to x, F , since χ(F ) > c3, there is a vertex
v ∈ F , 2ρ + 4 induced paths P0, . . . , P2ρ+3 of G[F ∪ {vρ−1}] between x, v, and a ρ-ball X ⊆ F , such
that:

• |E(Pi)| = ℓ − 6ρ + i for 0 ≤ i ≤ 2ρ + 3;

• V (Pi) ∩ X = ∅ for 0 ≤ i ≤ 2ρ + 3;

• v has a neighbour in X and no other vertex of Pi has a neighbour in X, for 0 ≤ i ≤ 2ρ + 2; and

• χ(X) > c4.

Now every vertex of X has G-distance at least ρ from each of v1, . . . , vρ−1, but there may be vertices
in X with G-distance less than ρ to a vertex in P or in one of P0, . . . , P2ρ+3. The union of these
paths has at most ℓ(2ρ + 4) vertices (in fact much fewer), and since χ(X) > ℓ(2ρ + 4)τ , there exists a
vertex in X with G-distance at least ρ from all vertices of these paths. Let y ∈ Lρ−1 be adjacent to
this vertex, and let Q be an induced path between y, x with interior in X, of length at most 2ρ + 2.
Let R be a path of length ρ − 1 between y, z with interior in D ∪ L2 ∪ L3 ∪ · · · ∪ Lρ−2.

The union of the four paths z-v1-v2- · · · -vρ−1, P, Q, R has length at most 6ρ, and at least 4ρ − 3,
since P, Q have lengths at least ρ and at least ρ − 1 respectively. Let their union have length j where
4ρ−3 ≤ j ≤ 6ρ. Let i = 6ρ− j; then 0 ≤ i ≤ 2ρ+3, and so Pi is defined and has length ℓ−6ρ+ i+ j.
Consequently the union of the five paths z-v1-v2- · · · -vρ−1, P , Pi, Q and R is a cycle Hi of length ℓ,
and we claim it is induced. Certainly it is a cycle; suppose that it is not induced, and so there is an
edge ab say that joins two nonconsecutive vertices of Hi. It follows that a, b do not both belong to
any of its five constituent paths. Certainly a, b 6= z. Suppose that a = vi for some i. Since every
vertex in E has G-distance at least ρ from vi, it follows that b /∈ V (Pi) and b /∈ V (Q). Also b /∈ V (P )
since every vertex of V (P ) \ {vρ−1} belongs to Lk and P is an induced path containing vρ−1. Thus
b ∈ R. Since the G-distance between y, a is at least ρ − 1, and R has length ρ − 1, it follows that
b ∈ L1 and so i ∈ {1, 2}; but i 6= 1 since A is stable, and i 6= 2 since vρ−1, and hence v2, has a unique
ancestor in D. This proves that a, b /∈ {v1, . . . , vρ−1}.

Next suppose that a ∈ V (R), and so either b ∈ V (P ) \ {vρ−1}, or b ∈ V (Pi ∪ Q \ {y}). In either
case b ∈ Lk, and so a = y; hence b /∈ V (Q) since Q is induced and y ∈ V (Q), and a /∈ V (P ∪ Pi)
since y has a neighbour in X with G-distance at least ρ from each vertex of V (P ∪ Pi), and ρ ≥ 3.
This proves that a, b /∈ V (R). Next suppose that a ∈ V (P ) \ {x}. Then b ∈ F ; but no vertex of P
except x has a neighbour in F , a contradiction. Finally, suppose that a ∈ V (Pi) and b ∈ V (Q). No
vertex of Pi has a neighbour in X except v, and v ∈ V (Q), a contradiction. This proves that Hi is an
ℓ-hole. Now the set of vertices of G that belong to or have a neighbour in Hi has chromatic number
at most ℓτ , and since χ(G) > c ≥ ℓτ + d, it follows that H1 is d-peripheral. This proves 3.6.

Let us deduce 1.10, which we restate:
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3.7 Let ρ ≥ 2 be an integer, and let C be a ρ-controlled ideal of graphs. Let ℓ ≥ 24 if ρ = 2, and
ℓ ≥ 8ρ2 + 6ρ if ρ > 2. Then for all κ, d ≥ 0, there exists c ≥ 0 such that every graph G ∈ C with
ω(G) ≤ κ and χ(G) > c has a d-peripheral ℓ-hole.

Proof. By induction on κ we may assume that there exists τ1 such that every graph in C with clique
number less than κ and no d-peripheral ℓ-hole has chromatic number at most τ1. Let C2 be the ideal
of G ∈ C with clique number at most κ and no d-peripheral ℓ-hole. We suppose that there are graphs
in C2 with arbitrarily large chromatic number, and so C2 is not 2-controlled, by 2.8. Consequently
there exists τ2 such that if C3 denotes the class of graphs G ∈ C2 with χ2(G) ≤ τ2, there are graphs
in C3 with arbitrarily large chromatic number. Hence by 3.6 with ρ = 3, C3 is not 3-controlled, and
so on; and we deduce that there is an ideal Cρ of graphs in C that is not ρ-controlled, a contradiction.
This proves 3.7.

4 Controlling 8-balls

In this section we prove 1.11. We use the following relative of 3.1, proved in [5]:

4.1 Let τ, c ≥ 0 and let (W1, . . . , Wn) be a τ -colourable grading of a graph G. Let H be a subgraph
of G (not necessarily induced) with χ(H) > τ + 2(c + χ1(G)). Then there is an edge uv of H, and a
subset X of V (G), such that

• G[X] is connected;

• u, v are both earlier than every vertex in X;

• v has a neighbour in X, and u does not; and

• χ(X) > c.

We deduce a version of 3.3 that has no assumption of ρ-control:

4.2 Let G be a graph, and let B, C ⊆ V (G), where B covers C. Let every induced subgraph J
of G with ω(J) < ω(G) have chromatic number at most τ . Let the enumeration (b1, . . . , bm) of
B and the grading (W1, . . . , Wn) of G[C] be compatible. Let (W1, . . . , Wn) be τ -colourable, and let
χ(G[C]) > τ2(2c + 3τ). Then there is a square edge uv, and a subset X of V (G), such that

• G[X] is connected;

• u, v are both earlier than every vertex in X;

• v has a neighbour in X, and u does not; and

• χ(X) > c.

Proof. Let H be as in 3.2; then by 3.2, χ(G[C]) ≤ τ2χ(H). Since χ(G[C]) > τ2(2c + 3τ) and
χ1(G) ≤ τ , it follows that χ(H) > τ + 2(c + χ1(G)). By 4.1 applied to G[C] and H, we deduce that
there is an edge uv of H, and a subset X of V (G), satisfying the theorem. This proves 4.2.
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A shower in G is a sequence (L0, L1, . . . , Lk, s) where L0, L1, . . . , Lk are pairwise disjoint subsets
of V (G) and s ∈ Lk, such that

• |L0| = 1;

• Li−1 covers Li for 1 ≤ i < k;

• for 0 ≤ i < j ≤ k, if j > i + 1 then no vertex in Lj has a neighbour in Li; and

• G[Lk] is connected.

(Note that we do not require that Lk−1 covers Lk.) We call the vertex in L0 the head of the shower,
and s its drain, and L0 ∪ · · · ∪ Lk is its vertex set. (Thus the drain can be any vertex of Lk.) The set
of vertices in Lk with a neighbour in Lk−1 is called the floor of the shower.

Let S be a shower with head z0, drain s and vertex set V . An induced path of G[V ] between
z0, s is called a jet of S. For d ≥ 0, a jet J is d-peripheral if there is a subset X of the floor of the
shower, anticomplete to V (J), with χ(G[X]) > d. The set of all lengths of d-peripheral jets of S is
called the d-jetset of S. For integers ℓ ≥ 2 and 1 ≤ k ≤ ℓ, we say a d-jetset is (k, ℓ)-complete if there
are k jets J0, . . . , Jk−1, all d-peripheral, such that |E(Jj)| = |E(J0)| + j modulo ℓ for 0 ≤ j ≤ k − 1.

We will prove:

4.3 Let τ ≥ 0 and ℓ ≥ 2. For all integers d ≥ 0 and t with 1 ≤ t ≤ ℓ there exists cd,t ≥ 0 with the
following property. Let G be a graph such that χ3(G) ≤ τ , and such that every induced subgraph J
of G with ω(J) < ω(G) has chromatic number at most τ . Let S = (L0, L1, . . . , Lk, s) be a shower in
G, with floor of chromatic number more than ct. Then the d-jetset of S is (t, ℓ)-complete.

Proof. Suppose first that t = 1. Let cd,1 = d + τ , and let G and S = (L0, L1, . . . , Lk, s) be as in
the theorem, with floor F where χ(F ) > c1. Since cd,1 ≥ 0, it follows that F 6= ∅, and so there is
an induced path P of G[Lk] between s and some vertex in F . Choose such a path P of minimum
length, and let its end in F be v. If s = v let u = v, and otherwise let u be the neighbour of v in P .
It follows that no vertex of P belongs to or has a neighbour in F except u, v. Also there is a path Q
of length k between v and z0 ∈ L0, with one vertex w ∈ Lk−1 and all others in L0 ∪ · · · ∪ Lk−2 ∪ {v}.
Thus P ∪ Q is a jet. Moreover, the only vertices of P ∪ Q that belong to or have a neighbour in F
are u, v, w, and so all these neighbours have G-distance at most two from v, and consequently have
chromatic number at most τ . Since χ(F ) > cd,1 = d + τ , it follows that P ∪ Q is a d-peripheral jet,
as required.

We may therefore assume that 2 ≤ t ≤ ℓ, and inductively the result holds for t − 1 (and all
d). Define d′ = d + 2τ , and let cd,t = 2(ℓ + 1)τ2(2cd′,t−1 + 7τ); let G be a graph, and let S =
(L0, L1, . . . , Lk, s) be a shower in G with floor F of chromatic number more than cd,t. For i ≥ 0, let
Mi be the set of vertices with G[Lk]-distance exactly i from s. Then there exists r ≥ 0 such that
χ(F ∩ Mr) ≥ χ(F )/2; and r ≥ 3 since χ2(G) ≤ τ < χ(F )/2. For 0 ≤ i ≤ r, each vertex v ∈ Mi is
joined to s by an induced path of length i with interior in M1 ∪ · · · ∪ Mi−1; let us call such a path a
bloodline of v.
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Figure 3: v is a grandparent of u.

If u ∈ F ∩Mr and v ∈ M0 ∪· · ·∪Mr−2, we say that v is a grandparent of u if there exists b ∈ Lk−1

adjacent to both u, v. Let C be the set of vertices in Mr with a grandparent in M0 ∪ · · · ∪ Mr−2.

(1) If χ(C) > ℓτ2(2cd′,t−1 + 7τ) then the theorem holds.

Let (v1, . . . , vn) be an enumeration of M0 ∪ · · · ∪ Mr−2, where the vertex in M0 is first, followed
by the vertices in M1 in some order, and so on; more precisely, for 1 ≤ i < j ≤ n, if vi ∈ Ma

and vj ∈ Mb where a, b ∈ {0, . . . , r − 2}, then a ≤ b. Let B0 be the set of vertices in Lk−1 that
have neighbours in M0 ∪ · · · ∪ Mr−2, and let (b1, . . . , bm) be an enumeration of B0, enumerating the
members of B0 with the earliest neighbours in (v1, . . . , vn) first; more precisely, for 1 ≤ i < j ≤ m,
if bj is adjacent to vq for some q ∈ {1, . . . , n}, then there exists p ∈ {1, . . . , q} such that bi is ad-
jacent to vp. We say vi is the earliest grandparent of u ∈ Mr if i is minimum such that vi is a
grandparent of u. For 1 ≤ i ≤ n, let Wi be the set of vertices in Mr whose earliest grandparent is
vi. Thus C = W1 ∪ · · · ∪ Wn, and (W1, . . . , Wn) is a grading of G[C]. It is χ2(G)-colourable, since
Wi ⊆ N2

G[vi] for each i, and hence τ -colourable. For u ∈ C, if v is the earliest grandparent of u, then
the earliest parent of u is adjacent to v. Consequently the enumeration (b1, . . . , bm) and the grading
(W1, . . . , Wn) are compatible; because if u, v ∈ W with u earlier than v, the earliest grandparent of
u is earlier than the earliest grandparent of v, and consequently the earliest parent of u is earlier
than the earliest parent of v.

For 0 ≤ j < ℓ, let Cj be the set of vertices u ∈ C such that i − j is a multiple of ℓ, where i is the
length of the bloodline of the earliest grandparent of u. Thus C0 ∪ · · · ∪ Cℓ−1 = C. Choose j such
that χ(Cj) > τ2(2cd,t−1 + 7τ). Then by 4.2, there is a square edge uv with u, v ∈ Cj , and a subset
X of Cj , such that

• G[X] is connected;

• u, v are both earlier than every vertex in X;

• v has a G-neighbour in X, and u does not; and
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• χ(X) > cd,t−1 + 2τ .

Lk−1

Lk

Mr Mr−1 Mr−2

X

Wi

Wi+1

v

v′′

v′

u
u′′

u′

Figure 4: The square edge and its relatives.

Let the earliest parents of u, v be u′, v′ respectively, and let their earliest grandparents be u′′, v′′

respectively. Let P be the induced path between v, s consisting of the path v-v′-v′′ and a bloodline
of v′′. Thus P has length j + 2 modulo ℓ. Let Q be the path between v, s consisting of the edge
uv, the path u-u′-u′′, and a bloodline of u′′. Note that Q is induced, since v is not adjacent to u′

(because uv is square). Moreover, Q has length j + 3 modulo ℓ.
Let Z be the set of vertices in X with G-distance at least four from both u′, v′, and let L′

k−1
be

the set of vertices in Lk−1 with a neighbour in Z. Let L′
k−2

be the set of vertices in Lk−2 with a
neighbour in L′

k−1
, and for 0 ≤ i ≤ k − 3 let L′

i = Li. It follows that Li−1 covers Li for 0 ≤ i ≤ k − 2,
and so (L′

0, . . . , L′
k−1

, X ∪ {v}, v) is a shower S ′. Let V ′ be its vertex set.
We claim that V ′ ∩ V (P ∪ Q) = {v}, and every edge between V ′ and V (P ∪ Q) is incident with v.

For suppose that a ∈ V ′ and b ∈ V (P ∩ Q) are equal or adjacent, and a, b 6= v. If b = u, then a 6= b
since u /∈ V ′; a /∈ X since u has no neighbour in X; and so a ∈ L′

i for some i′ < k. Then i = k − 1
since b ∈ Lk, and so a has a neighbour in Z from the definition of L′

k−1
; and so the G-distance

between a, u is at least two from the definition of Z, a contradiction. Thus b 6= u. Next suppose
that b ∈ {u′, v′}. Since u′, v′ are the earliest parents of u, v respectively, and u, v are earlier than
every vertex in X, it follows that no vertex in X is adjacent to b; and so a 6= b, and a /∈ X. Hence
a ∈ L′

i for some i < k, and since b ∈ Lk−1 it follows that k − 2 ≤ i ≤ k − 1. But then the G-distance
between a and some vertex of Z is at most two, and since the G-distance between b, Z is at least
four, it follows that a, b are nonadjacent, a contradiction. So b /∈ {u′, v′} and so b ∈ Mj for some
j ≤ r − 2, and so b is a vertex of a bloodline of the earliest grandparent of one of u, v (say u′′, v′′

respectively). Consequently a 6= b, and a /∈ X, and so a ∈ L′
k−1

. Choose z ∈ Z adjacent to a; then
u, v are earlier than z, and so u′′, v′′ are both earlier than the earliest grandparent of z. It follows
that no parent of z has a neighbour in a bloodline of either of u′′, v′′, and so a, b are nonadjacent,
a contradiction. This proves our claim that V ′ ∩ V (P ∪ Q) = {v}, and every edge between V ′ and
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V (P ∪ Q) is incident with v. In particular Z is anticomplete to V (P ∪ Q).
The floor of S ′ includes Z, and χ(Z) ≥ χ(X) − 2χ3(G) > cd′,t−1. Consequently the d′-jetset of

S ′ is (t − 1, ℓ)-complete; let J0, . . . , Jt−2 be corresponding d′-peripheral jets of S ′. For 0 ≤ h ≤ t − 2,
both Jh ∪P and Jh ∪Q are jets of S, and we claim they are d-peripheral. For let 0 ≤ h ≤ t−2, and let
Y be a subset of the floor of S ′ with χ(G[Y ]) > d′, anticomplete to V (Jh). Thus Y ⊆ X ∪ {v} ⊆ F .
Let Y ′ = Y ∪Z. Since every vertex in Y \Z has G-distance at most three from one of u′, v′, it follows
that χ(Y \ Z) ≤ 2τ , and so χ(Y ′) ≥ χ(Y ) − 2τ > d. Since Y ′ is anticomplete to V (P ∪ Q), this
proves our claim that both Jh ∪ P and Jh ∪ Q are d-peripheral jets of S. Consequently the d-jetset
of S is (t, ℓ)-complete. This proves (1).

(2) If χ((F ∩ Mr) \ C) > τ2(2cd′,t−1 + 7τ) then the theorem holds.

Let us write C ′ = (F ∩ Mr) \ C; then C ′ is the set of vertices in Mr that have neighbours in
Lk−1, but every such neighbour has no neighbour in M0 ∪ · · · ∪ Mr−2. The neighbours in Lk−1 might
or might not have neighbours in Mr−1. Take an arbitrary enumeration (b1, . . . , bn) of Mr−1, and
for 1 ≤ i ≤ n let Wi be the set of vertices in C ′ adjacent to bi and nonadjacent to b1, . . . , bi−1.
Thus (W1, . . . , Wn) is a grading of G[C ′], compatible with (b1, . . . , bn), and it is χ1(G)-colourable
and hence τ -colourable. By 4.2, there is a square edge uv of G[C ′], and a subset X of C ′, such that

• G[X] is connected;

• u, v are both earlier than every vertex in X;

• v has a neighbour in X, and u does not; and

• χ(X) > cd′,t−1 + 2τ .

Let u′, v′ be the earliest neighbours in Mr−1 of u, v respectively. Let P be an induced path between
v, s consisting of the edge vv′ and a bloodline of v′; and let Q be the path consisting of the edges
uv, uu′, and a bloodline of u′. They are both induced. Let Z be the set of all vertices in X with
G-distance at least four from both of u, v. Let L′

k−1
be the set of vertices in Lk−1 with a neighbour

in Z, and for 0 ≤ i ≤ k − 2 let L′
i = Li. Then (L′

0, . . . , L′
k−1

, X ∪ {v}, v) is a shower S ′. Moreover, its
vertex set V ′ satisfies V ′ ∩V (P ∪Q) = {v}, and every edge between V ′ and V (P ∪Q) is incident with
v (the proof is as in (1), and we omit it). Its floor includes Z, and χ(Z) ≥ χ(X) − 2χ3(G) > cd′,t−1;
and so the d′-jetset of S ′ is (t − 1, ℓ)-complete. But for each jet J of S ′, J ∪ P, J ∪ Q are both jets
of S, and as in (1) it follows that the d-jetset of S is (t, ℓ)-complete. This proves (2).

Since χ(F ) > cd,t, it follows that χ(F ∩ Mr) > (ℓ + 1)τ2(2cd′,t−1 + 7τ), and so either χ(C) >
ℓτ2(2cd′,t−1 + 7τ) or χ((F ∩ Mr) \ C) > τ2(2cd′,t−1 + 7τ). Hence the result follows from (1) or (2).
This proves 4.3.

A recirculator for a shower (L0, L1, . . . , Lk, s) with head z0 is an induced path R with ends s, z0

such that no internal vertex of R belongs to V and no internal vertex of R has any neighbours in
V \ {s, z0}. We need the following, proved in [14]:

4.4 Let c ≥ 0 be an integer, and let G be a graph such that χ(G) > 44c + 4χ8(G). Then there is a
shower in G, with floor of chromatic number more than c, and with a recirculator.
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We deduce 1.11, which we restate:

4.5 For all integers ℓ ≥ 2 and τ, d ≥ 0 there is an integer c ≥ 0 with the following property. Let G
be a graph such that χ8(G) ≤ τ , and every induced subgraph J of G with ω(J) < ω(G) has chromatic
number at most τ . If χ(G) > c then there are ℓ d-peripheral holes in G with lengths of all possible
values modulo ℓ.

Proof. Let cd,ℓ be as in 4.3, and let c = 44cd,ℓ +4τ . Let G be a graph such that χ8(G) ≤ τ , and every
induced subgraph J of G with ω(J) < ω(G) has chromatic number at most τ , with χ(G) > c. By
4.4 there is a shower in G, with floor of chromatic number more than cd,ℓ, and with a recirculator.
By 4.3 the d-jetset of this shower is (ℓ, ℓ)-complete. Thus adding the recirculator to each of the
corresponding jets gives the ℓ d-peripheral holes we need. This proves 4.5.

5 Two consecutive holes

Finally let us prove 1.9, which we restate.

5.1 For each κ, ℓ ≥ 0 there exists c ≥ 0 such that every graph G with ω(G) ≤ κ and χ(C) > c has
holes of two consecutive lengths, both of length more than ℓ.

Proof. We may assume that ℓ ≥ 8. By induction on κ, there exists τ1 such that every graph with
clique number less than κ and chromatic number more than τ1 has two holes of consecutive length
more than ℓ. Let C2 be the ideal of graphs with clique number at most κ and with no two holes of
consecutive lengths more than ℓ. By 2.8, C2 is not 2-controlled, and so for some τ1 there are graphs
G in C2 with arbitrarily large chromatic number and χ2(G) ≤ τ . Let C3 be the ideal of graphs in G
with χ2(G) ≤ τ . By 3.6 with ρ = 3, C3 is not 3-controlled, and so on; and we deduce that there is an
ideal Cℓ of graphs in C2, with unbounded chromatic number, and a number τ such that χℓ(G) ≤ τ
for each G ∈ Cℓ.

Let c′ = 14τ3, and let c = 44c′ + 4τ ; and choose G ∈ Cℓ with χ(G) > c. By 4.4, there is a shower
S = (L0, . . . , Lk, s) in G with a recirculator and with floor F with chromatic number more than
14τ3. Define d, M0, . . . , Md and C as in the proof of 4.3.

(1) If χ(C) > 7τ3 then the theorem holds.

Define the enumeration (v1, . . . , vn) of M0 ∪ · · · ∪ Md−2, and B0 and its enumeration (b1, . . . , bm),
as in the proof of 4.3. Let b′

m+1−i = bi; so (b′
1, . . . , b′

m) = (bm, . . . , b1) is also an enumeration of
the same set. For i = 1, . . . , m let Wi be the set of vertices in Md that are adjacent to b′

i and to
none of b′

1, . . . , b′
i−1. Thus W1 ∪ · · · ∪ Wm = C, and (W1, . . . , Wm) is a χ1(G)-colourable (and hence

τ -colourable) grading of G[C], compatible with (b′
1, . . . , b′

m). By 4.2 (taking c = 2τ), there is a square
edge uv of G[C], and a subset X of C, such that

• G[X] is connected;

• u, v are both earlier than every vertex in X;
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• v has a neighbour in X, and u does not; and

• χ(X) > 2τ .

Let u′, v′ ∈ B0 be the earliest parents of u, v respectively. Since χ(X) > 2τ , there exists x ∈ X
with G-distance at least four from each of u′, v′. Let x′ ∈ B0 be its earliest parent, and let R be
an induced path of G[X ∪ {v, x′}] between v and x′. Now no vertex of the interior of R is adjacent
to either of u′, v′ since u, v are earlier than every member of X and u′, v′ are their earliest parents.
Also, x′ is nonadjacent to u, v, u′, v′ since the G-distance between x and u′, v′ is at least four. Since
uv is square, the path Q′ obtained from R by adding the edge vv′ is induced, and since u has no
neighbour in X, so is the path P ′ obtained from R by adding the path v-u-u′. Now there are paths
between the apex of S (say a) and u′, and between a, v′, both of length k − 1 ≥ ℓ. No vertex of Lk

has a neighbour different from u′, v′ in these paths. Also x′ has no neighbour in P ′ ∪ Q′; because
any such neighbour would be in Lk ∪ Lk−1 ∪ Lk−2, and hence would have G-distance at most one
from one of u′, v′, which is impossible since the G-distance between x and u′, v′ is at least four. Thus
by taking the union of the first of these with P ′ and the second with Q′, we obtain two paths P, Q,
both induced and both between a, x′, with consecutive lengths. Choose i minimum such that x′ is
adjacent to vi, and let R be a bloodline of vi (defined as in 4.3). Let u′ = b′

f , v′ = b′
g, x′ = b′

h. Since
u, v are earlier than x, it follows that f, g < h. Now u′, v′ are nonadjacent to vi since the G-distance
between u′v′ and x is at least four. Since u′ = bm+1−f and x′ = bm+1−h, and m + 1 − f > m + 1 − h,
it follows that no neighbour of u′ belongs to V (R), and similarly for v′. Thus the union of P with
the edge x′vi and R is induced, and so is the union of Q with x′vi and R. Consequently there are
jets of S with consecutive lengths. By taking their unions with the recirculator, we obtain holes of
consecutive lengths. This proves (1).

(2) If χ((F ∩ Md) \ C) > 7τ3 then the theorem holds.

The proof of this is the same as that for step (2) of the proof of 4.3 and we omit it.

From (1) and (2) the result follows.

6 Some connections with homology

In the 1990s, Kalai and Meshulam made several intriguing conjectures connecting the chromatic
number of a graph with the homology of a simplicial complex associated with G. (Most of them are
mentioned in [10], and see also [11].) The nth Betti number bn(X) of a simplicial complex X is the
rank of the nth homology group Hn(X) (see, for instance, [9]). The Euler characteristic1 of X is
∑

n≥0(−1)ncn(X), where cn(X) is the number of n-faces in X; it turns out that the Euler charac-
teristic is also equal to the alternating sum

∑
n≥0(−1)nbn(X) of Betti numbers. The independence

complex I(G) of a graph G is the simplicial complex whose faces are the stable sets of vertices. For
a graph G, we say that its total Betti number is b(G) :=

∑
n≥0 bn(G). The total Betti number of a

1The standard notation for the Euler characteristic of a simplicial complex X is χ(X); however, we will avoid using
that notation here, as there is clearly some potential for confusion between χ(I(G)) and χ(G).
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graph G is clearly greater than or equal to the modulus of the Euler characteristic of I(G), as the
former is the sum of Betti numbers and the latter is equal to the alternating sum.

Kalai and Meshulam made several conjectures on this topic: one was already mentioned (at 1.2),
and two others are as follows:

6.1 For every integer k ≥ 0 there exists c such that the following holds. If b(H) ≤ k for every
induced subgraph H of G then χ(G) ≤ c.

6.2 For every integer k ≥ 0 there exists c such that following holds. For every graph G, if the Euler
characteristic of I(H) has modulus at most k for every induced subgraph H of G then χ(G) ≤ c.

Kalai and Meshulam also asked about the graphs G that satisfy the condition in 6.2 with k = 1
(i.e. for every induced subgraph H, the Euler characteristic of H lies in {−1, 0, 1}). They conjectured
that G has this property if and only if G has no induced cycle of length divisible by three. We prove
this conjecture in [6], with Chudnovsky and Spirkl.

In this paper, we prove conjectures 6.1 and 6.2. The second conjecture is clearly stronger, as the
modulus of the Euler characteristic of I(G) is at most the total Betti number of G. In this section,
we will prove both of these conjectures, using 1.4.

Say that a graph G is k-balanced if for every induced subgraph H of G, the number of stable
sets in H of even cardinality differs by at most k from the number of stable sets of odd cardinality.
The condition in 6.2 is exactly that G is k-balanced, so 6.2 (and therefore also 6.1) is an immediate
consequence of the following result.

6.3 For every integer k ≥ 0 there exists c such that χ(G) ≤ c for every k-balanced graph G.

Proof of 6.3, assuming 1.4. Let k ≥ 1 be an integer. By 1.4, we may choose c such that every
graph G with ω(G) ≤ k + 1 and χ(G) > c contains k holes, pairwise anticomplete and each of length
a multiple of three. We claim that every k-balanced graph has chromatic number at most c. For if
G is k-balanced, then G has no clique of cardinality more than k + 1 (because a complete subgraph
H with k + 2 vertices has k + 2 odd stable sets and only one even one); and G does not have k holes
that are pairwise anticomplete, each of length a multiple of three. (We leave the reader to check
this.) This proves 6.3.
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