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Abstract

An embedding of a graph in 3-space is linkless if for every two disjoint cycles there exists
an embedded ball that contains one of the cycles and is disjoint from the other. We
prove that every bipartite linklessly embeddable (simple) graph on n ≥ 5 vertices has
at most 3n− 10 edges, unless it is isomorphic to the complete bipartite graph K3,n−3.

1 Introduction

All graphs in this paper are finite and simple. Paths and cycles have no “repeated” vertices.
An embedding of a graph in 3-space is linkless if for every two disjoint cycles there exists
an embedded ball that contains one of the cycles and is disjoint from the other. We prove
the following theorem.

Theorem 1.1. Every bipartite linklessly embeddable graph on n ≥ 5 vertices has at most
3n− 10 edges, unless it is isomorphic to the complete bipartite graph K3,n−3.

The question of whether linklessly embeddable bipartite graphs on n ≥ 5 vertices have
at most 3n − 9 edges is stated as [18, Problem 2.3], and Theorem 1.1 is implied by [6,
Conjecture 4.5].

The following are equivalent conditions for a graph to be linklessly embeddable. A graph
H is obtained from a graph G by a Y∆ transformation if H is obtained from G by deleting
a vertex v of degree 3 and joining every pair of non-adjacent neighbors of v by an edge.
Conversely, G is obtained from H by means of a ∆Y transformation if G is obtained from
H by deleting the edges of a cycle of length 3 (“a triangle”) and adding a vertex of degree 3
joined to the vertices of the triangle. The Petersen family is the set of seven graphs obtained
from the complete graph K6 by means of Y∆ and ∆Y transformations. The Petersen graph
is a member of the family, and hence the name. The Petersen family is depicted in Figure 1.
A graph is a minor of another if the first can be obtained from a subgraph of the second
by contracting edges. An H minor is a minor isomorphic to H. We denote by µ(G) the
graph invariant introduced by Colin de Verdière [3]. We omit its definition, because we do
not need it.

1Partially supported by NSF under Grants No. DMS-1202640 and DMS-1700157. 2 July 2017, revised
17 December 2018.
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Figure 1: The Petersen family.

Theorem 1.2. For every graph G the following conditions are equivalent:

(i) G has an embedding in 3-space such that every two disjoint cycles have even linking
number.

(ii) G is linklessly embeddable.

(iii) G has an embedding in 3-space such that every cycle bounds an open disk disjoint from
the embedding of G.

(iv) G has no minor isomorphic to a member of the Petersen family.

(v) µ(G) ≤ 4.

Here (iii)⇒(ii) and (ii)⇒(i) are trivial, (i)⇒(iv) was shown by Sachs [16, 17], (iv)⇒(iii) was
shown by Robertson, Seymour and the second author [15], (v)⇒(iv) was shown by Bacher
and Colin de Verdière [1], and (iii)⇒(v) was shown by Lovász and Schrijver [11].

Let us now put Theorem 1.1 in perspective. For general graphs excluding only the
Petersen graph as a minor, Hendrey and Wood [5] showed that the correct bound on the
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number of edges is 5n − 9, which is tight. For linklessly embeddable graphs that are not
necessarily bipartite the correct bound on the number of edges is 4n − 10, which is tight
for any graph obtained from a planar triangulation G on at least three vertices by adding a
new vertex with neighborhood V (G). This bound follows from the following more general
result of Mader [12].

Theorem 1.3. For every integer p = 2, 3, . . . , 7, every graph on n ≥ p− 1 vertices with no
minor isomorphic to Kp has at most (p− 2)n−

(

p−1
2

)

edges.

Theorem 1.3 is such a nice result that it raises the question of whether it can be gener-
alized to all values of p. But there is some depressing news: for large p a graph must have
at least Ω(p

√
log pn) edges in order to guarantee a Kp minor, because, as noted by several

people (Kostochka [7, 8], and Fernandez de la Vega [4] based on Bollobás, Catlin and Erdös
[2]), a random graph with no Kp minor may have average degree of order p

√
log p. Kos-

tochka [7, 8] and Thomason [20] proved that this is indeed the correct order of magnitude,
and in a remarkable result, Thomason [21] was able to determine the constant of propor-
tionality. For small s, Kühn and Osthus [10] and Kostochka and Prince [9] have shown that
average degree of order p suffices to guarantee a Ks,p minor.

It may seem that an effort to generalize Theorem 1.3 to clique minors will be in vain, but
there are still the following possibilities. The random graph examples provide only finitely
many counterexamples for any given value of p. Of course, more counterexamples can be
obtained by taking disjoint unions or even gluing counterexamples along small cutsets, but
we know of no construction of highly connected infinite families of counterexamples. More
specifically, Seymour and the second author conjecture the following.

Conjecture 1.4. For every integer p ≥ 2 there exists a constant N = N(p) such that every
(p − 2)-connected graph on n ≥ N vertices with no minor isomorphic to Kp has at most
(p− 2)n −

(

p−1
2

)

edges.

In a slightly different direction the first author conjectures [13] the following.

Conjecture 1.5. For every integer p ≥ 3, every graph G on n ≥ p − 1 vertices with
µ(G) ≤ p− 2 has at most (p− 2)n−

(

p−1
2

)

edges.

Whether Conjecture 1.5 holds is stated as [18, Problem 1]. Conjecture 1.5 is implied by [14,
Conjecture 1.5].

Let us repeat that for not necessarily bipartite graphs the bound on the number of
edges for linklessly embeddable graphs and graphs with no K6 minors coincide. Not so for
bipartite graphs. In an earlier version of this paper we conjectured the following.

Conjecture 1.6. For every integer p = 2, 3, . . . , 8, every bipartite graph on n ≥ 2p − 5
vertices with no minor isomorphic to Kp has at most (p− 2)n − (p− 2)2 edges.

The bound in Conjecture 1.6 is tight, because of the graphs Kp−2,n−p+2. For p ≤ 4 Con-
jecture 1.6 is easy, and for p = 5 it follows from Wagner’s characterization of graphs with
no K5 minor [22]. Conjecture 1.6 certainly does not hold for all p, because a graph with
Ω(p

√
log pn) edges and no Kp minor has a bipartite subgraph with Ω(p

√
log pn) edges and

noKp minor. Since the time of submission, Thomas and Yoo [19] proved a theorem implying
Conjecture 1.6. They proved

3



Theorem 1.7. For every integer p = 2, 3, . . . , 9, every triangle-free graph on n ≥ 2p − 5
vertices with no minor isomorphic to Kp has at most (p− 2)n − (p− 2)2 edges.

Motivated by Theorem 1.1 and the equivalence of (ii) and (v) in Theorem 1.2 we also
conjecture the following.

Conjecture 1.8. For every integer p ≥ 3, every bipartite graph G on n ≥ 2p − 3 vertices
with µ(G) ≤ p has at most (p − 1)n− (p− 1)2 edges.

Let us remark that the bound in Conjecture 1.8, if true, is tight, because of the graphs
Kp−1,n−p+1. For p = 3 Conjecture 1.8 follows from the fact that graphs G with µ(G) ≤ 3
are precisely planar graphs [3], and for p = 4 it follows from Theorems 1.1 and 1.2.

For linklessly embeddable graphs, we conjecture that Theorem 1.1 in fact holds for
triangle-free graphs.

Conjecture 1.9. Every triangle-free linklessly embeddable graph on n ≥ 5 vertices has at
most 3n− 10 edges, unless it is isomorphic to the complete bipartite graph K3,n−3.

A possible approach to Conjecture 1.9 is to prove the following conjecture:

Conjecture 1.10. Every linklessly embeddable graph on n ≥ 7 vertices with t triangles has
at most 3n− 9 + t/3 edges.

Thomas and Yoo [19] recently proved that Conjecture 1.10 holds for apex graphs, that is,
graphsG with a vertex v so that G−v is planar. One could speculate whether Conjecture 1.8
holds for triangle-free graphs, but we do not have enough evidence to formally conjecture
that.

The paper is organized as follows. In the next section we introduce definitions and
notation. In Section 3 we state Theorem 3.1, which implies Theorem 1.1 and prove half
of it, proving some useful lemmas and disposing of vertices of degree 5. In Section 4 we
complete the proof of Theorem 3.1 by disposing of vertices of degree 4.

2 Notation and Definitions

For positive integers n1, n2, . . . , nk with k ≥ 2, we let Kn1,n2,...,nk
denote the complete

multipartite graph with k independent sets of sizes n1, n2, . . . , nk. We let K−

4,4 denote the

graph obtained from K4,4 by deleting an edge. We also let K∆Y
6 denote the graph obtained

from K6 by performing a ∆Y transformation.
For a graph G we write V (G) for the vertex set of G and E(G) for the edge set of G. We

write δ(G) for the minimum degree of G and ∆(G) for the maximum degree of G. Suppose
v is a vertex of G and S is a subset of V (G). Then we write G[S] for the induced subgraph
of G with vertex set S and G−S for the induced subgraph of G with vertex set V (G)− S.
We write G−v for G−{v}. We write dG(v), or d(v) if the graph is understood from context,
for the degree of v in G. We write NG(S) for the set of all vertices in V (G) − S that are
adjacent to some vertex in S. We write N(S) if the graph is understood from context, and
we write N(v) for N({v}). We use N [v] to denote N(v) ∪ {v}.

If G is a graph with S and T disjoint subsets of V (G), we say an edge uv ∈ E(G) is
between S and T if S ∩ {u, v} 6= ∅ and T ∩ {u, v} 6= ∅. If S consists of a single vertex v,
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we may talk about the edges between v and T . Given a graph G, we say that {X0,X1} is
a bipartition of G if {X0,X1} is a partition of V (G) so that all edges of G are between X0

and X1.
We define a separation of a graph G to be a pair of sets (A,B) with union V (G) such

that G has no edge between A−B and B−A. The order of a separation (A,B) is |A∩B|.
We also say that a separation of order k is a k-separation. A separation (A,B) is non-trivial
if both A − B and B − A are non-empty. We say that a separation (A,B) is minimal if
there does not exist a non-trivial separation (A′, B′) of G with A′ ∩B′ ( A ∩B.

It is convenient for us to give the following related definition. We say a super-separation
of a graph G is a pair of graphs (G0, G1) such that V (G) ⊆ V (G0) ∪ V (G1), and E(G) ⊆
E(G0) ∪ E(G1), and both G0 and G1 are isomorphic to minors of G. We say a super-
separation (G0, G1) of G is non-trivial if both G0 and G1 are isomorphic to proper minors
of G. (That is, neither G0 nor G1 is isomorphic to G.) We say that the order of a super-
separation (G0, G1) of G is |V (G0)|+ |V (G1)| − |V (G)|. Finally we say a super-separation
(G0, G1) is bipartite if both G0 and G1 are bipartite.

Note that if (A,B) is a (non-trivial) separation of G of order k, then (G[A], G[B]) is
a (non-trivial) super-separation of G of order k. Furthermore, if G is bipartite then the
super-separation (G[A], G[B]) is bipartite. In this paper, each super-separation we use will
be constructed from a non-trivial separation (A,B) as follows. We will construct a graph
GA formed from G[A] by possibly adding some edges with both ends in A∩B, and possibly
a new vertex a /∈ V (G) with neighbors in A ∩B. We will show that GA is isomorphic to a
proper minor of G by contracting some edges with at least one end in B. A graph GB will
be formed similarly from G[B], so that (GA, GB) is a non-trivial super-separation.

Finally, if G is a bipartite graph with bipartition {X0,X1} and S ⊆ V (G), then we will
write G[S] for the bipartite complement of G[S]. That is, G[S] is the graph on vertex set S
where uv is an edge of G[S] if and only if exactly one of u and v is in X0 and uv /∈ E(G).

3 Proof of Main Theorem: Vertices of Degree 5

By Theorem 1.2, the following theorem implies Theorem 1.1.

Theorem 3.1. Every bipartite graph on n ≥ 5 vertices with no K6, K1,3,3, K
−

4,4, or K∆Y
6

minor has at most 3n − 10 edges, unless it is isomorphic to the complete bipartite graph
K3,n−3.

The rest of the paper is dedicated to proving Theorem 3.1. Going for a contradic-
tion, suppose that Theorem 3.1 is false. Let G be a counterexample with |V (G)| + |E(G)|
minimum. Write n := |V (G)|, and let {X0,X1} be a bipartition of G.

We begin by giving a brief outline of our proof strategy. First we will show an easy
lemma, and that 4 ≤ δ(G) ≤ 5. Then we show that G cannot have certain separations and
super-separations of small order. It follows that G has no subgraph isomorphic to K3,3:
otherwise it either has a K1,3,3 minor or a separation of small order. Next we show that if
v is a vertex of degree 4 or 5 and x and y are neighbors of v, then x and y have several
common neighbors other than v. Then it is fairly easy to show that G has no vertex v of
degree 5: for every pair of distinct neighbors x and y of v, let vx,y be a vertex other than
v that is adjacent to both x and y. If all ten vx,y are distinct, then G has a K6 minor.
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Otherwise we find a K3,3 subgraph or another forbidden minor. In Section 4 we will deal
with the case that δ(G) = 4.

We begin with two easy lemmas:

Lemma 3.2. n ≥ 7

Proof. Otherwise, n ∈ {5, 6}. Then ⌈n/2⌉ = 3 and ⌊n/2⌋ = n − 3. If G is a subgraph
of K3,n−3, then since by assumption G is not isomorphic to K3,n−3, we have |E(G)| ≤
|E(K3,n−3)| − 1 = 3n− 10, a contradiction. So G is not a subgraph of K3,n−3. Then

3n− 9 ≤ |E(G)| ≤ |X0||X1| ≤ (⌈n/2⌉ + 1)(⌊n/2⌋ − 1) = 4(n− 4).

This gives us n ≥ 7, a contradiction. �

Lemma 3.3. 4 ≤ δ(G) ≤ 5

Proof. Since G was chosen to be a counterexample with |V (G)|+|E(G)| minimum, |E(G)| ≤
3n− 8. So δ(G) ≤ 5 by the handshaking lemma.

Now, let v be a vertex of minimum degree. Since n ≥ 6 by Lemma 3.2, either G − v
is isomorphic to K3,n−4 and |E(G − v)| = 3(n − 1) − 9, or |E(G − v)| ≤ 3(n − 1) − 10. If
d(v) ≤ 2, then

|E(G)| = |E(G − v)|+ d(v) ≤ 3(n − 1)− 9 + 2 = 3n− 10,

a contradiction. Now suppose that d(v) = 3. If G − v is not isomorphic to K3,n−4, then
similarly |E(G)| ≤ 3n− 10, and we are done.

So G − v is isomorphic to K3,n−4. Without loss of generality suppose that v ∈ X0.
If N(v) = X1, then G is isomorphic to K3,n−3, a contradiction. So there exists a vertex
u ∈ X1 − N(v). Then |X0 − {v}| = 3, and G[X0 ∪ {u} ∪ N(v)] is isomorphic to K−

4,4, a
contradiction. So δ(G) = d(v) ≥ 4, completing the proof of the lemma. �

Next we prove two lemmas on separations and super-separations of G. Observe that
since δ(G) ≥ 4 by Lemma 3.3, if (A,B) is a non-trivial separation of G, then (G[A], G[B])
is a non-trivial bipartite super separation of G such that |V (G[A])|, |V (G[B])| ≥ 5. We will
frequently apply the following lemma to such a case.

Lemma 3.4. Let (G0, G1) be a non-trivial bipartite super-separation of G of order k such
that |V (G0)|, |V (G1)| ≥ 5 and neither G0 nor G1 is isomorphic to K3,t for any t. Then
3k ≥ |E(G0)|+ |E(G1)| − |E(G)| + 11.

Proof. For convenience, write e = |E(G0)| + |E(G1)| − |E(G)|. By the conditions of the
lemma and since G is a counterexample with |V (G)|+ |E(G)| minimum,

3n − 9 ≤ |E(G)|
= |E(G0)|+ |E(G1)| − e

≤ 3(|V (G0)|+ |V (G1)|)− 20− e

= 3(n + k)− 20− e.

So 3k ≥ e+ 11, as desired. �
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Next we show that G does not have certain separations of small order.

Lemma 3.5. Let (A,B) be a non-trivial separation of G such that for each i ∈ {0, 1},
|A ∩B ∩Xi| ≤ 3. Then |A ∩B| = 6 and ∆(G[A ∩B]) ≤ 1.

Proof. Suppose otherwise for some separation (A,B). Note that any non-trivial separation
(A′, B′) of G with A′ ∩ B′ ( A ∩ B also violates the lemma. Thus we may assume that
(A,B) is minimal.

First we show that both A and B have at least four vertices in each side of the bipartition
of G. Let v ∈ A−B, and without loss of generality assume that v ∈ X0. Then |X1 ∩A| ≥
|N(v)| ≥ 4 since δ(G) ≥ 4 by Lemma 3.3. Also, since |A∩B∩X1| ≤ 3, there exists a vertex
u ∈ N(v)− (A∩B). Then similarly |X0 ∩A| ≥ |N(u)| ≥ 4. The same argument shows that
B has at least four vertices in each side of the bipartition of G.

Now for convenience write S := A ∩ B. So |S| ≤ 6. Let z ∈ S so that d
G[S](z) is

maximum, where G[S] is the bipartite complement of G[S]. Let GA be the graph formed
from G[A] by adding edges between z and every vertex in N

G[S]
(z). We can see that GA

is a minor of G by contracting some component of G[B − A] to z and by the minimality
of (A,B). Furthermore GA is bipartite, has fewer vertices than G, and has at least four
vertices in each side of the bipartition of G. So GA is not isomorphic to K3,t for any t.
Define GB analogously, by adding edges between z and every vertex in N

G[S](z) to G[B].

We have shown that (GA, GB) is non-trivial bipartite super-separation of G so that GA

and GB both have at least five vertices, and neither GA nor GB is isomorphic to K3,t for
any t. Furthermore, the order of (GA, GB) is |S| and

|E(GA)|+ |E(GB)| − |E(G)| = |E(G[A])| + |E(G[B])| + 2d
G[S]

(z)− |E(G)|
= |E(G[S])| + 2d

G[S](z).

So by Lemma 3.4 applied to the super-separation (GA, GB), we have 3|S| ≥ |E(G[S])|+
2d

G[S]
(z) + 11. Thus |S| ≥ 4. We proceed by cases.

Case: |S| = 4

Then |E(G[S])|+2d
G[S]

(z) ≤ 1. So d
G[S]

(z) = 0. ThusG[S] is a complete bipartite graph

on four vertices with at least one vertex on each side of its bipartition. So |E(G[S])| ≥ 3, a
contradiction.

Case: |S| = 5

Since |X0 ∩ S|, |X1 ∩ S| ≤ 3 and by symmetry between X0 and X1, we may assume that
|X0 ∩ S| = 3 and |X1 ∩ S| = 2. Let z1 and z2 be the vertices in X1 ∩ S. By the definition
of z,

4 ≥ |E(G[S])| + 2d
G[S](z) ≥ |E(G[S])| + d

G[S](z1) + d
G[S](z2) = 6,

a contradiction.

Case: |S| = 6 and ∆(G[S]) ≥ 2

7



Then |X0 ∩ S| = |X1 ∩ S| = 3. Let z1 and z2 be the other vertices on the same side of
the bipartition of G[S] as the vertex of maximum degree. Then

7 ≥ |E(G[S])| + 2d
G[S]

(z) ≥ |E(G[S])| + d
G[S]

(z1) + d
G[S]

(z2) = ∆(G[S]) + 6 ≥ 8,

a contradiction. �

Next we observe that G has noK3,3 subgraph, and then we show that common neighbors
of a vertex of degree 4 or 5 in fact share several common neighbors.

Lemma 3.6. G does not have a subgraph isomorphic to K3,3.

Proof. Suppose H is a subgraph of G isomorphic to K3,3. Since n ≥ 7 by Lemma 3.2, the
graph G− V (H) is non-empty. Let C be the vertex set of some component of G − V (H).
Then since (C ∪ N(C)) ∩ (V (G) − C) = N(C) ⊆ V (H), by Lemma 3.5, the separation
(C∪N(C), V (G)−C) is trivial. Then C∪N(C) = V (G), and soN(C) = V (H). So the graph
obtained by contacting C to a single vertex is isomorphic to K1,3,3, a contradiction. �

Lemma 3.7. Let v ∈ V (G) be a vertex of degree 4 or 5. Let x and y be distinct vertices in
N(v). Then x and y share at least 7− d(v) common neighbors other than v.

Proof. Suppose otherwise, and write c := |N(x) ∩ N(y)| − 1. That is, c is the number of
common neighbors of x and y other than v. So c ≤ 6 − d(v). Without loss of generality
suppose that v ∈ X0. Let G

′ be the graph formed from G by deleting y and v, and adding
edges between x and all vertices in N(y) − N(x). We can see that G′ is a minor of G by
contracting y and v to x. Furthermore, G′ is bipartite and since n ≥ 7 by Lemma 3.2, the
graph G′ has at least five vertices. Let ℓ be 1 if G′ is isomorphic to K3,t for some t, and 0
otherwise. Then:

3n− 9 ≤ |E(G)|
= |E(G− v)|+ d(v)

= |E(G′)|+ c+ d(v)

≤ 3(n− 2)− 10 + ℓ+ c+ d(v)

= 3n− 10 + ℓ+ (c− 6 + d(v)).

It follows that ℓ = 1 and c = 6 − d(v). Thus, G′ is isomorphic to K3,t for some t. If
d(v) = 4, then c = 2 and G[N(v) ∪ (N(x) ∩ N(y))] is isomorphic to K3,4. This is a
contradiction since by Lemma 3.6, the graph G has no K3,3 subgraph. If d(v) = 5, then
|X1∩V (G′)| ≥ d(v)−1 = 4, and so |X0∩V (G′)| = 3. Then G[(X0∩V (G′))∪(N(v)−{x, y})]
is isomorphic to K3,3, again a contradiction to Lemma 3.6. �

Now we are ready to show:

Lemma 3.8. G has no vertex of degree 5.

Proof. Suppose v ∈ V (G) is a vertex of degree 5. Let

W := {w ∈ V (G)−N [v] : |N(w) ∩N(v)| = 2},

8



and let
U0 := {u ∈ V (G) −N [v] : |N(u) ∩N(v)| ≥ 3}.

We will show a contradiction by proving that G[N [v] ∪W ∪ U0] has a minor isomorphic to
K6 or K∆Y

6 . If U0 = ∅, then this is immediate since by Lemma 3.8 every pair of vertices
in N(v) share at least two common neighbors other than v. On the other hand, if U0 has
too many vertices with too many neighbors in N(v), then we will find a K3,3 subgraph,
contradicting Lemma 3.7. The proof proceeds by carefully contracting certain vertices in
W ∪ U0 to one of their neighbors in N(v). Note that since G is bipartite, if G′ is obtained
from G[N [v] ∪W ∪U0] by performing such contractions and then deleting edges with both
ends in N(v), then G′ is a subgraph of G. We will sometimes need this fact to find a K3,3

subgraph in G.
Now, let G0 be the graph formed from G[N [v]∪W ∪U0] by contracting, for every vertex

w ∈ W , an arbitrary edge with one end w and the other end in N(w) ∩N(v). Please note
that G0 is not necessarily bipartite. By Lemma 3.7, every pair of vertices in N(v) are either
adjacent in G0 or share at least two common neighbors in U0.

First we show the following claim:

Claim 3.8.1. There exist a set U1 ⊆ U0 and a graph G1 so that:

(i) The graph G1 is formed from G0 by contracting edges with one end in U0 − U1 and
the other end in N(v).

(ii) Every pair of distinct vertices in N(v) are either adjacent in G1 or share a common
neighbor in U1.

(iii) Every vertex in U1 has degree exactly 3 in G0, and δ(G1[N(v)]) ≥ 1.

Proof. Observe that U0 is non-empty since otherwise G0[N [v]] is isomorphic to K6. Fix a
vertex z ∈ U0 with dG0

(z) maximum. First suppose dG0
(z) = 5. Then since G has no K3,3

subgraph by Lemma 3.6, every pair of vertices in N(v) are adjacent in G0. Then G0[N [v]]
is isomorphic to K6, a contradiction. So dG0

(z) ≤ 4.
Now observe that every vertex in U0 other than z has degree exactly 3 in G0. This is

clear if dG0
(z) = 3, and follows since G has no K3,3 subgraph if dG0

(z) = 4.
Let x ∈ N(v)−NG0

(z). If dG0
(z) = 3, let x′ be the vertex other than x in N(v)−NG0

(z).
If dG0

(z) = 4, let x′ be any vertex in N(v) other than x.
First suppose that x and x′ are adjacent in G0. Then let G1 be the graph formed from

G0 by contracting z to one of its neighbors in G0, and let U1 := U0 −{z}. Then G1 and U1

satisfy the conditions of the claim.
So we may assume that x and x′ are not adjacent in G0. Then they have a common

neighbor z′ ∈ U0 − {z}. Let G1 be the graph formed from G0 by contracting z to a vertex
in NG0

(z) − NG0
(z′) and z′ to x′. Write U1 := U0 − {z, z′}. Then G1 and U1 satisfy the

conditions of the claim. �

Fix G1 and U1 as in the claim. Choose a graph G2 and a set U2 ⊆ U1 so that:

(i) The graph G2 is formed from G1 by contracting edges with one end in U1 − U2 and
the other end in N(v).

9



(ii) Every pair of distinct vertices in N(v) are either adjacent in G2 or share a common
neighbor in U2.

(iii) Subject to the above, |U2| is minimum.

Such a choice is possible because G2 := G1 and U2 := U1 satisfy (i) and (ii). Observe
that G2 is a minor of G. We first show that for all u ∈ U2, the graph G2[NG2

(u)] has no
edges. Since every vertex in U1 has degree exactly 3 in G0 by the claim, u also has degree
exactly 3 in G2. Write NG2

(u) = {x, x′, x′′} and suppose xx′ ∈ E(G2). Then let G′

2 be the
graph formed from G2 by contracting u to x′′, and let U ′

2 := U2 − {u}. Then G′

2 and U ′

2

contradict our choice of G2 and U2.
Then by the last paragraph and condition (ii), if |U2| ≤ 1, then G2[N [v]∪U2] is isomor-

phic to either K6 or K∆Y
6 . So there exist distinct vertices u, u′ ∈ U2. Both u and u′ have

degree exactly 3 in G2. We proceed by cases.

Case: |NG2
(u) ∩NG2

(u′)| = 3

Then G[NG2
(u) ∪ {v, u, u′}] is isomorphic to K3,3, a contradiction to Lemma 3.6.

Case: |NG2
(u) ∩NG2

(u′)| = 2

Then let x be the unique vertex in NG2
(u) − NG2

(u′). Let G′

2 be the graph formed from
G2 by contracting u to x, and let U ′

2 := U2 − {u}. Then G′

2 and U ′

2 contradict part (iii) of
our choice of G2 and U2.

Case: |NG2
(u) ∩NG2

(u′)| = 1

Let x be the unique vertex in NG2
(u) ∩NG2

(u′). Then x is adjacent to no vertices in N(v)
in the graph G2. But this is a contradiction since δ(G2[N(v)]) ≥ δ(G1[N(v)]) ≥ 1 by part
(iii) of Claim 3.8.1. This is the final case and completes the proof of Lemma 3.8. �

4 Proof of Main Theorem: Vertices of Degree 4

Now that we have shown G has no vertices of degree 5 and that 4 ≤ δ(G) ≤ 5 by Lemma
3.3, the remainder of the proof deals with vertices of degree 4. First we will show that if v
is any vertex of degree 4, then G has no vertex u such that |N(u) ∩ N(v)| ≥ 4. We then
use this fact to show that G does not have additional kinds of separations of small order.
Finally we fix a vertex v of degree 4 and a certain set U ⊆ V (G) −N [v] of three or fewer
vertices that each have neighbors in N(v). We show that G− (N [v] ∪ U) is connected and
has a cut vertex a. We then use the fact that G− (N [v] ∪ U ∪ {a}) is disconnected to find
a separation showing a contradiction to Lemma 3.4.

Lemma 4.1. Suppose v ∈ V (G) is a vertex of degree 4. Then there does not exist a vertex
u ∈ V (G) −N [v] so that |N(u) ∩N(v)| = 4.

Proof. Suppose otherwise. Without loss of generality assume that v ∈ X0. Write N(v) =
{v1, v2, v3, v4}. For every i, j ∈ {1, 2, 3} with i < j, let ui,j ∈ V (G)−{v, u} be a vertex that
is adjacent to both vi and vj . Such vertices exist since by Lemma 3.7, vi and vj have at least
three common neighbors other than v. Since G has no K3,3 subgraph by Lemma 3.6 and

10



|N(u)∩N(v)| = 4, the vertices u1,2, u1,3, and u2,3 are distinct. Write U := {u1,2, u1,3, u2,3},
and H := G[N [v] ∪ U ∪ {u}]. Then dH(v4) ≤ 2 since G has no K3,3 subgraph. So since
δ(G) ≥ 4 by Lemma 3.3, there exists a component of G − V (H) with neighbor v4. Let C
be the vertex set of such a component. Observe that N(C) ⊆ N(v) ∪ U ∪ {u}.

Now we show that either N(v) ⊆ N(C) or U ∪ {u} ⊆ N(C). Suppose otherwise. Then
for all i ∈ {0, 1}, we have |Xi ∩N(C)| ≤ 3. Then by Lemma 3.5 applied to the separation
(C ∪ N(C), V (G) − C), it follows that |N(C)| = 6 and ∆(G[N(C)]) ≤ 1. Then since
|N(C) ∩ N(v)| = 3 and |N(u) ∩ N(v)| = 4, we have u /∈ N(C). Then U ⊆ N(C). But
|N(C) ∩ {v1, v2, v3}| ≥ 2, which is a contradiction since ∆(G[N(C)]) ≤ 1. We have shown
that either N(v) ⊆ N(C) or U ∪ {u} ⊆ N(C).

If N(v) ⊆ N(C), let G′ be the graph formed from G by contracting C to a single vertex
with neighborhood N(v) and deleting all other vertices in G− V (H). Let G′′ be the graph
formed from G′ by contracting u1,2 to v1, u2,3 to v2, and u1,3 to v3. Then G′′ is isomorphic
to K∆Y

6 , a contradiction.
So we may assume that U ∪ {u} ⊆ N(C). Remember also that by the choice of C,

we have v4 ∈ N(C). Now let G′ be the graph formed by contracting C to a vertex with
neighborhood U ∪{u, v4} and deleting all other vertices in G−V (H). Let G′′ be the graph
formed from G′ by contracting v to v4 and by contracting u1,2 to v1, u2,3 to v2, and u1,3 to
v3. Then G′′ is isomorphic to K6, a contradiction. �

We are now ready to show that G does not have additional kinds of separations of small
order.

Lemma 4.2. Let (A,B) be a non-trivial separation of G. If there exists i ∈ {0, 1} such
that |Xi ∩A ∩B| ≤ 4 and |X1−i ∩A ∩B| ≤ 2, then either |A−B| = 1 or |B −A| = 1.

Proof. Suppose otherwise. Let (A,B) be a separation of minimum order that violates the
lemma. Write S := A ∩ B for convenience. Without loss of generality we assume that
|X0 ∩ S| ≤ 4 and |X1 ∩ S| ≤ 2. By Lemma 3.5, we have |X0 ∩ S| = 4.

First we will show that there exists a component of G[A − B] with neighborhood S.
Suppose otherwise. Let C be the vertex set of any component of G[A − B]. If |C| ≥ 2
and N(C) 6= S, then (C ∪N(C), V (G)−C) is a separation violating the lemma of smaller
order, a contradiction to the choice of (A,B). So |C| = 1 and thus since δ(G) ≥ 4 by
Lemma 3.3, we have N(C) = X0 ∩ S. Then since |A − B| ≥ 2, the graph G[A − B] has
another component with vertex set C ′ also consisting of a single vertex with neighborhood
X0∩S. But this is a contradiction to Lemma 4.1. This shows that there exists a component
of G[A − B] with neighborhood S. By symmetry the same holds for G[B − A]. We now
proceed by cases.

Case: Either |S| = 4, or |S| = 5 and |E(G[S])| = 4

We will construct a super-separation (GA, GB) that contradicts Lemma 3.5. This will be
the first time that V (GA) 6⊆ A.

Let GA be the graph formed from G[A] by adding a single vertex, call it a, with neigh-
borhoodX0∩S. We can see that GA is a minor of G by contracting a component of G[B−A]
with neighborhood S to a single vertex. Furthermore, GA is bipartite, has fewer vertices
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than G since by assumption |B − A| ≥ 2, and has at least five vertices since A ⊆ V (GA).
Define GB analogously, by adding a single vertex with neighborhood S ∩X0 to G[B].

SupposeGA is isomorphic toK3,t for some t. Then sinceNGA
(a) = S∩X0 and |S∩X0| =

4, there exist two vertices u and v in GA −NGA
[a] with degree exactly 4 in GA. Then since

|S| ≤ 5, we have |S −NGA
[a]| ≤ 1, so at least one of the vertices, say v, is in A− S. Then

v has degree 4 in G, and |N(u) ∩N(v)| = 4, a contradiction to Lemma 4.1. By symmetry,
we have shown that neither GA nor GB is isomorphic to K3,t for any t. Furthermore, the
order of the super-separation (GA, GB) is |S|+ 2, and

|E(GA)|+ |E(GB)| − |E(G)| = |E(G[A])| + |E(G[B])| + 8− |E(G)| = |E(G[S])| + 8.

So by Lemma 3.4 applied to the super-separation (GA, GB), we have 3(|S|+2) ≥ |E(G[S])|+
19. But this is a contradiction since either |S| ≤ 4, or |S| = 5 and |E(G[S])| = 4.

Case: Either |S| = 5 and |E(G[S])| ≤ 3, or |S| = 6

This case is similar to the proof of Lemma 3.5. Let z ∈ X1 ∩ S so that d
G[S]

(z) is

maximum. Let GA be the graph formed from G[A] by adding edges between z and every
vertex in N

G[S](z). We can see that GA is a minor of G by contracting a component of

G[B−A] with neighborhood S to z. The graph GA is bipartite and has fewer vertices than
G. Since there is a component of G[A − B] with neighborhood S and both X0 ∩ S and
X1 ∩ S are non-empty, both X0 ∩ (A − B) and X1 ∩ (A − B) are also non-empty. Thus,
since δ(G) ≥ 4, A has at least four vertices in each side of the bipartition of G. So GA is
not isomorphic to K3,t for any t. Define GB analogously, by adding edges between z and
every vertex in N

G[S](z) to G[B]. By symmetry, neither GA nor GB is isomorphic to K3,t

for any t.
The order of the super-separation (GA, GB) is |S|, and

|E(GA)|+ |E(GB)| − |E(G)| = |E(G[A])| + |E(G[B])| + 2d
G[S]

(z)− |E(G)|
= |E(G[S])| + 2d

G[S](z).

Then by Lemma 3.4, 3|S| ≥ |E(G[S])| + 2d
G[S](z) + 11. Observe that

4|X1 ∩ S| =
∑

x∈X1∩S

(

dG[S](x) + d
G[S](x)

)

.

So if |S| = 5 and |E(G[S])| ≤ 3, then d
G[S](z) ≥ 1 and so |E(G[S])| + 2d

G[S](z) ≥ 5.

This is a contradiction. So |S| = 6. But then |E(G[S])| + 2d
G[S](z) ≥ 8, which is again a

contradiction. �

By Lemmas 3.3 and 3.8, the graph G has a vertex of degree 4. Fix v ∈ V (G) a vertex of
degree 4, and write N(v) = {v1, v2, v3, v4}. Without loss of generality assume that v ∈ X0.
Choose a set U ⊆ V (G) −N [v] of minimum cardinality such that either:

(i) U consists of a single vertex u with |N(u) ∩N(v)| = 3, or

(ii) U = {u1,2, u1,3, u2,3} and for all i, j ∈ {1, 2, 3} with i < j, N(ui,j) ∩N(v) = {vi, vj}.
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First we show that such a set exists. If there exists a vertex u ∈ V (G) − N [v] such that
|N(u) ∩ N(v)| ≥ 3, then by Lemma 4.1 in fact |N(u) ∩ N(v)| = 3 and we are done. So
we may assume that for all u ∈ V (G) − N [v] we have |N(u) ∩ N(v)| ≤ 2. Then for all
i, j ∈ {1, 2, 3} with i < j, let ui,j be a vertex not in N [v] that is adjacent to both vi and vj .
Such a vertex exists since vi and vj have at least three common neighbors other than v by
Lemma 3.7. By assumption u1,2, u1,3, and u2,3 are distinct and N(ui,j) ∩ N(v) = {vi, vj}.
So such a set exists.

Write H := G[N [v] ∪ U ]. Next we show one short lemma.

Lemma 4.3. There do not exist disjoint sets A,B ⊆ V (G) − V (H) such that G[A] and
G[B] are connected, and N(v) ⊆ N(A) and N(v) ⊆ N(B).

Proof. Let G′ be the graph obtained from G by contracting A to a single vertex with
neighborhood N(v), contracting B to a single vertex with neighborhood N(v), and deleting
all other vertices in G− V (H).

If |U | = 1, then G′ is isomorphic to K−

4,4, a contradiction. If |U | = 3, then let G′′ be the
graph formed from G′ by contracting ui,j to vi for all i, j ∈ {1, 2, 3} with i < j. Then G′′ is
isomorphic to K∆Y

6 , a contradiction. �

In the next lemma we show that G−V (H) is connected and has a 1-separation satisfying
certain properties.

Lemma 4.4. The graph G−V (H) is connected. Furthermore, there exist {a0, a′0, a1, a′1} ⊆
V (G) − V (H) and a 1-separation (A0, A1) of G − V (H) such that for every i ∈ {0, 1}, we
have ai, a

′

i ∈ Ai and ai and a′i are both adjacent to v2i+1 and v2i+2.

Proof. First we will show thatG−V (H) is connected. Otherwise, by Lemma 4.3, there exists
a component of G−V (H) with vertex set C so that N(v) * N(C). So by Lemma 3.5 applied
to the separation (C ∪N(C), V (G)−C), we find that |N(C)| = 6 and ∆(G[N(C)]) ≤ 1. It
follows that |U | = 3 and U ⊆ N(C). This is a contradiction since |N(C) ∩ {v1, v2, v3}| ≥ 2
and ∆(G[N(C)]) ≤ 1. So G− V (H) is connected.

Now for every i ∈ {0, 1}, let ai and a′i be distinct vertices in V (G) − V (H) that are
adjacent to both v2i+1 and v2i+2. Such vertices exist since by Lemma 3.7 the vertices v2i+1

and v2i+2 share at least three common neighbors other than v, and by the definition of U
they share no more than one common neighbor in U . Furthermore by Lemma 4.1, in fact
a0, a

′

0, a1, a
′

1 are all distinct. By Menger’s Theorem, either the desired 1-separation exists,
or G− V (H) contains vertex-disjoint paths P and P ′ so that both P and P ′ have one end
in {a0, a′0} and one end in {a1, a′1}. But then by choosing A := V (P ) and B := V (P ′) we
have a contradiction to Lemma 4.3. �

Fix {a0, a′0, a1, a′1} ⊆ V (G) − V (H) and a 1-separation (A0, A1) of G− V (H) as in the
lemma. Let a be the unique vertex in A0 ∩A1, and for convenience write H ′ := G[V (H) ∪
{a}]. Let C be the vertex set of a component of G−V (H ′) so that 1 ≤ |N(C)∩N(v)| ≤ 3.
Subject to this, choose C such that |N(C)| is minimum.

To see that such a component exists, for every i ∈ {0, 1}, let Ci be the vertex set of
a component of G[Ai − {a}] with Ci ∩ {ai, a′i} 6= ∅. Then G[C0] and G[C1] are distinct
components of G − V (H ′). By Lemma 4.3, either N(v) * N(C0) or N(v) * N(C1). So
such a component exists. We first show:
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Lemma 4.5. |U | = 3

Proof. Suppose |U | = 1. Let u be the unique vertex in U . Without loss of generality we
may assume that N(u) ∩N(v) = {v1, v2, v3}. Remember that v ∈ X0. If a ∈ X0, then for
every i ∈ {0, 1}, we have |N(C) ∩ Xi| ≤ 3. But |N(C)| ≤ 5, which is a contradiction to
Lemma 3.5. Thus a ∈ X1. We prove the following claim:

Claim 4.5.1. Let C ′ be the vertex set of a component of G−V (H ′) so that N(v) * N(C ′).
Then C ′ consists of a single vertex of degree 4 that is only adjacent to vertices in N(v)∪{a}.

Proof. Let C ′ be the vertex set of such a component. Then |N(C ′)∩X1| = |N(C ′)∩(N(v)∪
{a})| ≤ 4 and |N(C ′)∩X0| = |N(C ′)∩U | ≤ 1. Note that |V (G)−V (C ′)| ≥ |N [v]−V (C ′)| ≥
2. Then by Lemma 4.2 applied to the separation (C ′∪N(C ′), V (G)−C ′), the set C ′ consists
of a single vertex. Then since δ(G) ≥ 4 by Lemma 3.3, the vertex in C ′ is only adjacent to
vertices in N(v) ∪ {a}. �

Now define the set

W := {w ∈ V (G) − V (H ′) : dG(w) = 4 and N(w) ⊆ N(v) ∪ {a}}.

Since G − V (H) is connected by Lemma 4.1, every vertex w ∈ W is adjacent to a.
Furthermore, every vertex w ∈ W is adjacent to v4, as otherwise G[{v, v1, v2, v3, u, w}] is
isomorphic to K3,3, a contradiction to Lemma 3.6.

Now we show that |W | ≥ 2. By the claim and the choice of C, we have |C| = 1.
Since a ∈ X1 while {a0, a′0, a1, a′1} ⊆ X0, for every i ∈ {0, 1} we have |Ai − ({a} ∪ C)| ≥
|{ai, a′i} − C| ≥ 1. So G− V (H ′) has at least three components. So by Lemma 4.3 and by
the claim, |W | ≥ 2.

Next we show that G − (V (H ′) ∪ W ) has a component with vertex set D so that
N(v) ∪ {a} ⊆ N(D). By Lemma 3.7, the vertices v1 and v2 have at least three common
neighbors besides v. Suppose that there are distinct vertices w,w′ ∈ W that are common
neighbors of v1 and v2. Then G[{v,w,w′ , v1, v2, v4}] is isomorphic to K3,3, a contradiction
to Lemma 3.6. So the vertices v1 and v2 have a common neighbor in V (G)− (V (H ′)∪W ).
So V (G) − (V (H ′) ∪ W ) is non-empty. Let D be the vertex set of any component of
G− (V (H ′)∪W ). Since G−V (H) is connected, we have a ∈ N(D). If N(v) * N(D), then
by the claim, D consists of a single vertex of degree 4 that is only adjacent to vertices in
N(v) ∪ {a}. But this is a contradiction to the choice of W . So N(v) ∪ {a} ⊆ N(D).

Let w and w′ be distinct vertices in W . Since G has no K3,3 subgraph, we may assume
without loss of generality that N(w) = {v1, v2, v4, a} and N(w′) = {v1, v3, v4, a}. Then let
G′ be the graph formed from G by contracting D to a single component with neighborhood
N(v)∪{a} and deleting all other vertices except V (H ′)∪{w,w′}. Then let G′′ be the graph
formed from G′ by contracting w to v2, u to v3, v to v4, and w′ to a. Then G′′ is isomorphic
to K6, a contradiction. This completes the proof of the lemma. �

So |U | = 3. Write U = {u1,2, u1,3, u2,3} so that for all i, j ∈ {1, 2, 3} with i < j,
N(ui,j) ∩ N(v) = {vi, vj}. By the choice of U , no vertex other than v is adjacent to three
or more vertices in N(v). For convenience write T := NG[N(C)](a) ∪ N

G[N(C)]
(a). That is,

T is the set of all vertices in N(C) that are in the other side of the bipartition of G from
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that of the vertex a. Let x be some vertex in N(v) −N(C). Such a vertex exists since by
the choice of C we have |N(C) ∩N(v)| ≤ 4.

Now we give an overview of the rest of the proof. The goal is to show a contradiction
to Lemma 3.4 on super-separations of G. Note that since |N(C) ∩ N(v)| ≤ 3, we have
N(C) ( N(v) ∪ U ∪ {a}. So |N(C)| ≤ 7. The previous lemmas on separations of G,
Lemmas 3.5 and 4.2, apply only to separations of order six or less, so some casework is
required to show a contradiction. We will frequently construct a super-separation (GC , G

′)
so that G[C ∪N(C)] is a subgraph of GC and G− C is a subgraph of G′.

We first show a straightforward lemma that will help with constructing such super-
separations. We are then able to show the harder lemma that a ∈ X1 and that G−(V (H ′)∪
C) is connected. Then it is easy to show that v4 /∈ N(C), or else G has a K6 minor. A
final lemma shows that certain vertices in U have no neighbor in V (G) − (V (H ′) ∪ C).
We then construct one last super-separation of G that gives a contradiction to Lemma 3.4,
completing the proof. We begin with the following lemma.

Lemma 4.6. The following hold:

(i) The set C has at least two vertices. Both C ∪N(C) and V (G)−C have at least four
vertices in each side of the bipartition of G.

(ii) Every neighbor of v is adjacent to a vertex in V (G) − (V (H ′) ∪ C).

(iii) |N(C) ∩N(v)| = 3 and |T | = 3

Proof. First we show that |C| ≥ 2 and |V (G) − (V (H ′) ∪ C)| ≥ 2. We have |V (G) − (C ∪
N(C))| ≥ |N [v] − (C ∪ N(C))| ≥ 2. Suppose |C| = 1. Since |N(C) ∩ N(v)| ≥ 1 by the
choice of C, it follows that N(C) ⊆ N(v) ∪ {a}. But then since δ(G) ≥ 4 by Lemma 3.3,
we have |N(C) ∩N(v)| ≥ 3, a contradiction to the choice of U .

Next we show (i). The set V (G) − C has at least four vertices in each side of the
bipartition of G since V (H) ⊆ V (G)−C. Since |C| ≥ 2 and G[C] is connected, the set C is
not contained in one side of the bipartition of G. Thus, since δ(G) ≥ 4, the set C ∪N(C)
has at least four vertices in each side of the bipartition of G.

Now we show (ii). Let y be any vertex in N(v) − {x}. By Lemma 3.7, the vertices x
and y share at least three common neighbors other than v. By the choice of U , they share
no more than two common neighbors in U ∪ {a}. So x and y have a common neighbor in
V (G) − (V (H ′) ∪ C).

Finally we show (iii). If a ∈ X0 and |N(C) ∩N(v)| ≤ 2, then this is a contradiction to
Lemma 4.2 applied to the separation (C∪N(C), V (G)−C). If a ∈ X1 and |N(C)∩N(v)| ≤ 2,
then by Lemma 3.5, we have |N(C)| = 6 and ∆(G[N(C)]) ≤ 1. This is a contradiction since
then U ⊆ N(C) and |N(C) ∩N(v)| = 2, but every vertex in {v1, v2, v3} has two neighbors
in U .

If a ∈ X0, then T = N(C) ∩ N(v) and so |T | = 3 by the last paragraph. If a ∈
X1 and |T | ≤ 2, then this is a contradiction to Lemma 4.2 applied to the separation
(C ∪N(C), V (G)− C). �

Next we show the following lemma.

Lemma 4.7. a ∈ X1 and G− (V (H ′) ∪ C) is connected.
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Proof. Suppose otherwise. That is, suppose that a ∈ X0 or G−(V (H ′)∪C) is not connected.
Then:

Claim 4.7.1. If a ∈ X1, then there exists a component of G− (V (H ′) ∪C) with vertex set
C ′ so that U ⊆ N(C ′) and |N(C ′) ∩N(v)| = 3.

Proof. Suppose a ∈ X1. Then G − (V (H ′) ∪ C) is not connected, and so by Lemma 4.3,
it has a component with vertex set C ′ such that N(v) * N(C ′). Since C is the vertex set
of a component of G − V (H ′), it follows that C ′ is also the vertex set of a component of
G − V (H ′). So N(C ′) ∩ X0 ⊆ U and thus |N(C ′) ∩ X0| ≤ 3. So by Lemma 3.5 applied
to the separation (C ′ ∪ N(C ′), V (G) − C ′), we have that |N(C ′) ∩ X1| ≥ 2. So C ′ is the
vertex set of a component of G − V (H ′) such that 1 ≤ |N(C ′) ∩ N(v)| ≤ 3. Then by the
choice of C, we have |N(C ′)| ≥ |N(C)|. By part (iii) of Lemma 4.6, since a ∈ X1, we have
|N(C)| = 7. Then |N(C ′)| ≥ 7, and so U ⊆ N(C ′) and |N(C ′) ∩N(v)| = 3. �

Recall that by part (iii) of Lemma 4.6, we have |N(C) ∩ N(v)| = 3. If v4 /∈ N(C),
then let GC denote the graph obtained from G[C ∪N(C)] by adding edges between a and
every vertex in N

G[N(C)]
(a). If v4 ∈ N(C), then let GC denote the graph obtained from

G[C ∪ N(C)] by adding edges between a and every vertex in N
G[N(C)](a), and by adding

edges between v4 and every vertex in N(x) ∩ U ∩N(C).
Observe that in both cases, GC is bipartite and has fewer vertices than G. Furthermore,

by part (i) of Lemma 4.6, the graph GC is not isomorphic to K3,t for any t, and has at least
five vertices. We now show two claims about the graph GC .

Claim 4.7.2. The graph GC is a minor of G.

Proof. Recall that G − V (H) is connected by Lemma 4.4. So every component of G −
(V (H ′) ∪ C) has a as a neighbor.

First suppose that a ∈ X0. By part (ii) of Lemma 4.6, every vertex in N(v) has a
neighbor in V (G)− (V (H ′) ∪C). Then we can see that GC is a minor of G by contracting
every component of G− (V (H ′) ∪C) to a, and if v4 ∈ N(C), by contracting x and v to v4.

So we may assume that a ∈ X1. Then by Claim 4.7.1, there exists a component of
G− (V (H ′) ∪ C) with vertex set C ′ so that U ⊆ N(C ′) and |N(C ′) ∩N(v)| = 3. Then we
can see that GC is a minor of G by contracting C ′ to a, and if v4 ∈ N(C), by contracting
x and v to v4. �

Claim 4.7.3. |E(GC)|+ |E(G − C)| − |E(G)| = 3 + 2|N(C) ∩ U |

Proof. First suppose that |N(C) ∩ U | = 3. Observe that then if v4 ∈ N(C) we have
|N(x) ∩ U ∩ N(C)| = |N(x) ∩ U | = 2. Let 1v4∈N(C) be 1 if v4 ∈ N(C) and 0 otherwise.
Then:

|E(GC)|+ |E(G − C)| − |E(G)|
= d

G[N(C)](a) + 21v4∈N(C) + |E(G[C ∪N(C)])| + |E(G − C)| − |E(G)|
= d

G[N(C)]
(a) + 21v4∈N(C) + |E(G[N(C)])|

= 21v4∈N(C) + |T |+ |E(G[N(C) − {a}])|.
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In either case, since |T | = 3 by part (iii) of Lemma 4.6,

21v4∈N(C) + |T |+ |E(G[N(C) − {a}])| = 9 = 3 + 2|N(C) ∩ U |,

which completes the case that |N(C) ∩ U | = 3.
So we may assume that |N(C) ∩ U | ≤ 2. Since |T | ≥ 3, it follows that a ∈ X0. Then

by Lemma 3.5 applied to the separation (C ∪N(C), V (G) − C), we have |N(C) ∩ U | = 2
and ∆(G[N(C)]) ≤ 1. By symmetry between pairs of vertices in U , we may assume that
N(C)∩U = {u1,2, u1,3}. Then v1 /∈ N(C). Then |N(x)∩U∩N(C)| = |N(v1)∩U∩N(C)| = 2
and similarly to the last case we find that

|E(GC)|+ |E(G− C)| − |E(G)| = |T |+ 2 + |E(G[N(C) − {a}])|
= |T |+ 4 = 3 + 2|N(C) ∩ U |,

which completes the proof of the claim. �

We now show that G[N(C)] is almost a complete bipartite graph.

Claim 4.7.4. ∆(G[N(C)]) ≤ 1

Proof. Suppose that ∆(G[N(C)]) ≥ 2. Let z ∈ N(C) be a vertex with maximum degree in
G[N(C)]. Then let G′ be the graph obtained from G−C by adding an edge between z and
every vertex in N

G[N(C)](z). We can see that G′ is a minor of G on strictly fewer vertices

by contracting C to z. Furthermore, G′ is bipartite, and by part (i) of Lemma 4.6, has at
least five vertices and is not isomorphic to K3,t for any t. By Claim 4.7.2, the graph GC is
a minor of G. So since (C ∪N(C), V (G)−C) is a separation of G, it follows that (GC , G

′)
is a super-separation of G.

In fact we have shown that (GC , G
′) is a non-trivial bipartite super-separation of G so

that both GC and G′ have at least five vertices and are not isomorphic to K3,t for any
t. Since |N(C) ∩ N(v)| = 3 and a ∈ N(C), the order of the super-separation (GC , G

′) is
4 + |N(C) ∩ U |. Then by Lemma 3.4 and the last claim,

3(4 + |N(C) ∩ U |) ≥ |E(GC)|+ |E(G′)| − |E(G)| + 11

≥ |E(GC)|+ |E(G − C)| − |E(G)| + 13

= 2|N(C) ∩ U |+ 16.

But then |N(C) ∩ U | ≥ 4, which is a contradiction since |U | = 3. �

We are now ready to complete the proof of the lemma. We proceed by cases.

Case: a ∈ X0

By the last claim, d
G[N(C)](a) ≤ 1. Then since |N(C) ∩N(v)| = 3, a is adjacent to at least

two vertices in N(v). So by the choice of U , a is adjacent to exactly two vertices in N(v).
So there exists a vertex y ∈ N(C) ∩ N(v) that is not adjacent to a. By the last claim,
d
G[N(C)]

(y) ≤ 1. So since y is not adjacent to a, y is adjacent to every vertex in N(C) ∩U .

Then U * N(C). Then by Lemma 3.5 applied to the separation (C ∪N(C), V (G)−C),
we have |N(C)∩U | = 2 and ∆(G[N(C)]) ≤ 1. But then 1 ≥ dG[N(C)](y) = 3−d

G[N(C)](y) ≥
2, a contradiction.
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Case: a ∈ X1

Then since |T | = 3, we have U ⊆ N(C). Suppose there exists u ∈ U such that ua /∈ E(G).
Then since |N(C) ∩N(v)| = 3 and u is adjacent to exactly two vertices in N(v), it follows
that d

G[N(C)](u) ≥ 2, a contradiction to the last claim. So U ⊆ N(a). Also by the last

claim applied to v4, we have v4 /∈ N(C). So N(C) = U ∪ {v1, v2, v3, a}.
By Claim 4.7.1, there exists a component of G− (V (H ′)∪C) with vertex set C ′ so that

U ⊆ N(C ′) and |N(C ′) ∩ N(v)| = 3. By symmetry between the vertices v1, v2, and v3,
we may assume that v1 ∈ N(C ′). Then let G′

C be the graph formed from G[C ∪N(C)] by
adding an edge between v1 and u2,3. We can see that G′

C is a minor of G with strictly fewer
vertices by contracting C ′ to v1. By part (i) of Lemma 4.6, the graph G′

C has at least five
vertices and is not isomorphic to K3,t for any t.

Let G′ be the graph formed from G−C by adding an edge between v1 and u2,3. We can
see that G′ is a minor of G on strictly fewer vertices by contacting C to v1. By part (i) of
Lemma 4.6, the graph G′ has at least five vertices and is not isomorphic to K3,t for any t.

Then (G′

C , G
′) is a non-trivial bipartite super-separation of G of order 7 such that

neither G′

C nor G′ is isomorphic to K3,t for any t. So by Lemma 3.4 and since U ⊆ N(a)
and N(C) = U ∪ {v1, v2, v3, a},

3(7) ≥ |E(G′

C )|+ |E(G′)| − |E(G)| + 11

= |E(G[C ∪N(C)])|+ |E(G− C)| − |E(G)| + 13

= |E(G[N(C)])| + 13

= 22,

a contradiction. This completes the proof of the lemma. �

We have shown that a ∈ X1 and that G − (V (H ′) ∪ C) is connected. For convenience
write D := V (G) − (V (H ′) ∪ C). By part (ii) of Lemma 4.6, we have N(v) ⊆ N(D). Also
since |T | = 3, we have U ⊆ N(C). The final two lemmas show that certain vertices are not
neighbors of C or not neighbors of D.

Lemma 4.8. v4 /∈ N(C)

Proof. Suppose v4 ∈ N(C). Remember that U ∪ {a} ⊆ N(C). Then let G′ be the graph
formed from G by contracting D to a single vertex with neighborhood N(v) ∪ {a} and by
contracting C to a single vertex, call it c, with neighborhood U ∪ {v4, a}. Then let G′′ be
the graph formed from G′ by contracting u1,2 to v1, u2,3 to v2, u1,3 to v3, v to v4, and finally
c to a. Then G′′ is isomorphic to K6, a contradiction. �

Lemma 4.9. If u ∈ U ∩N(D), then ua ∈ E(G).

Proof. Suppose otherwise. Let GC be the graph formed from G[C ∪N(C)] by adding edges
between u and all vertices in N

G[N(C)](u). We can see that GC is a minor of G by contracting

D to u, since N(v) ∪ {a} ⊆ N(D). Let G′ be the graph formed from G − C by adding
edges between a and all vertices in N

G[N(C)](a). We can see that G′ is a minor of G by

contracting C to a. Then (GC , G
′) is a non-trivial bipartite super-separation of G of order

|N(C)| = 7. By part (i) of Lemma 4.6, both GC and G′ have at least four vertices on each
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side of the bipartition of G. So neither is isomorphic to K3,t for any t. So by Lemma 3.4
and since u is adjacent to exactly two vertices in N(v),

3(7) ≥ |E(GC)|+ |E(G′)| − |E(G)| + 11

= d
G[N(C)](u) + d

G[N(C)](a) + |E(G[N(C)])| + 11

≥ |N(C) ∩ U |+ |E(G[N(C) − {a}])| + 13.

Since v4 /∈ N(C) by Lemma 4.8, we have |E(G[N(C) − {a}])| = 6. This is a contradiction
since |N(C) ∩ U)| = 3. �

Write U ′ := U ∩ N(D). Let GC be the graph formed from G[C ∪ N(C)] by adding a
vertex with neighborhood {v1, v2, v3, a}. We can see that GC is a minor of G on strictly
fewer vertices by contracting D to a single vertex and since |D| ≥ 2 by the choice of U .
Also, by part (i) of Lemma 4.6, the graph GC has at least four vertices in each side of the
bipartition of G.

Let G′ be the graph formed from G[D ∪ N(D) ∪ {v}] by adding a vertex with neigh-
borhood {v1, v2, v3, a}. We can see that G′ is a minor of G on strictly fewer vertices by
contracting C to a single vertex and since |C| ≥ 2 by part (i) of Lemma 4.6. Furthermore,
G′ is not isomorphic to K3,t for any t since va /∈ E(G′).

Now we show that every edge of H ′ is an edge of either GC or G′. Let e be an edge of
H ′. If e is incident to v, then e is an edge of G′. If e is incident to a vertex in U , then e is
an edge of the graph GC . Furthermore, if e is incident to a vertex in U ′, then e is also an
edge of G′.

So (GC , G
′) is a non-trivial bipartite super-separation of G. Furthermore, neither GC

nor G′ is isomorphic to K3,t for any t, and the order of the super-separation (GC , G
′) is

6+ |U ′|. Remember also that by Lemma 4.9, every vertex u ∈ U ′ is adjacent to a. Then by
Lemma 3.4,

3(6 + |U ′|) ≥ |E(GC )|+ |E(G′)| − |E(G)| + 11 = 3|U ′|+ 19,

a contradiction. This completes the proof of Theorem 3.1.
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