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Number of 1-factorizations of regular high-degree graphs

Asaf Ferber ∗ Vishesh Jain† Benny Sudakov ‡

Abstract

A 1-factor in an n-vertex graph G is a collection of n
2

vertex-disjoint edges and a 1-factorization of G is

a partition of its edges into edge-disjoint 1-factors. Clearly, a 1-factorization of G cannot exist unless n is

even and G is regular (that is, all vertices are of the same degree). The problem of finding 1-factorizations

in graphs goes back to a paper of Kirkman in 1847 and has been extensively studied since then. Deciding

whether a graph has a 1-factorization is usually a very difficult question. For example, it took more than 60

years and an impressive tour de force of Csaba, Kühn, Lo, Osthus and Treglown to prove an old conjecture

of Dirac from the 1950s, which says that every d-regular graph on n vertices contains a 1-factorization,

provided that n is even and d ≥ 2⌈n
4
⌉ − 1. In this paper we address the natural question of estimating

F (n, d), the number of 1-factorizations in d-regular graphs on an even number of vertices, provided that

d ≥ n
2
+ εn. Improving upon a recent result of Ferber and Jain, which itself improved upon a result of

Cameron from the 1970s, we show that F (n, d) ≥
(

(1 + o(1)) d
e2

)nd/2
, which is asymptotically best possible.

1 Introduction

A 1-factorization of a graph G is a collection M of edge-disjoint perfect matchings (also referred to as

1-factors) whose union is E(G). An equivalent definition of a 1-factorization is an edge-coloring of G where

each color class consists of a perfect matching. Clearly, if G admits a 1-factorization then the number of

vertices of G, denoted by |V (G)|, is even, and G is a regular graph (that is, all its vertices are of the same

degree). The problem of finding 1-factorizations in graphs goes back to a paper of Kirkman [17] from 1847

and has been extensively studied since then in graph theory and in combinatorial designs (see, e.g., [21, 27]

and the references therein). Despite the fact that 1-factorizations of the complete graph are quite easy to

construct (for example, see [20]), the problems of enumerating all the distinct 1-factorizations and finding

1-factorizations in graphs which are not complete are considered as much harder.

A simple example is the problem of finding (and asymptotically enumerating) 1-factorizations of Kn,n, the

complete bipartite graph with both parts of size n. Note that a 1-factorization of Kn,n is equivalent to a Latin

square, where a Latin square is an n×n array, with each row and each column being a permutation of {1, . . . , n}
(in particular, each element appears exactly once in each row and each column). The existence of Latin squares

follows easily from Hall’s marriage theorem. On the other hand, in order to prove an asymptotic formula for

the number of Latin squares, one needs sophisticated estimates of the permanent of the adjacency matrix of

regular bipartite graphs. Given an n × n matrix Mn, its permanent is Per(Mn) :=
∑

σ∈Sn

∏n
i=1 mi,σ(i). If

M is a {0, 1} matrix, then it is easy to see that the permanent counts the number of perfect matchings in

the bipartite graph with both parts of size n, where the ith vertex in the first part is connected to the jth

vertex in the second part if and only if mi,j = 1. It is well known (the upper bound is due to Bregman [3],

solving the conjecture of Minc, and the lower bound was first obtained by Egorychev [7] and independently by

Falikman [8], solving the conjecture of Van der Waerden) that if M is an n×n matrix with all entries either 0

or 1 whose row sums and column sums are all d, then Per(Mn) =
(

(1 + o(1))de
)n

. Therefore, starting with a

bipartite, d-regular graph H with parts of size n, by repeatedly removing perfect matchings from H , applying
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the above bound on the obtained graph, and using Stirling’s approximation (that is, d! ≈
(

(1 + o(1))de
)d

), we

get that there are
(

(1 + o(1)) d
e2

)nd
1-factorizations of H .

For non-bipartite (regular) graphs, even deciding whether a single 1-factorization exists is usually a very

difficult question. For example, it took about 60 years and an impressive tour de force of Csaba, Kühn,

Lo, Osthus and Treglown [5] (improving an earlier asymptotic result of Perkovic and Reed [22]) to solve the

following old problem of Dirac:

Theorem 1.1 ([5]). Every d-regular graph G on n vertices, where n is a sufficiently large even integer and

d ≥ 2⌈n
4 ⌉ − 1, contains a 1-factorization.

The above theorem is clearly tight in terms of d as can be seen, for example if n = 4k + 2, by taking G to

be the disjoint union of two cliques of size 2k + 1 = 2⌈n
4 ⌉ − 1 (which is odd).

Once an existence result is obtained, one can naturally ask for the number of distinct such structures.

Given a d-regular graph G, it was shown by Kahn-Lovász (unpublished) and Alon-Friedland [1] that it has

at most ((1 + o(1))d/e)n/2 perfect matchings. Therefore, the same reasoning as above (see also [19]) shows

that the number of 1-factorizations of G is at most
(

(1 + o(1)) d
e2

)dn/2
. On the other hand, no matching lower

bounds were known for this problem. For the complete graph Kn, Cameron [4] proved in 1976 that the number

of 1-factorizations is at least
(

(1 + o(1)) n
4e2

)n2/2
(off by a factor of roughly 4−n2/2 from the upper bound),

which was recently improved by Ferber and Jain [9] to
(

(1 + o(1)) n
2e2

)n2/2
. For general d-regular graphs with

d ≥ n/2 + εn only weaker non-trivial lower bounds of the form n(1−o(1))dn/2 are proven implicitly in [13] and

in [11].

In this paper, we give an asymptotically optimal lower bound for every d-regular graph G on n vertices

with d ≥ n
2 + εn. That is, we prove the following:

Theorem 1.2. There exists a universal constant C > 0 such that for all sufficiently large even integers n and

all d ≥ (1/2 + n−1/C)n, every d-regular graph G on n vertices has at least

(

(

1− n−1/C
) d

e2

)dn/2

distinct 1-factorizations.

Remark 1.3. We have stated the above theorem in a stronger form (1 − n−α instead of 1 − o(1)) with the

hope that it might be useful in studying the behavior of typical 1-factorizations. That such a bound might

be helpful was recently shown by Kwan [18] in the study of typical Steiner triple systems (which we do not

define here).

We conclude this introduction with a brief outline of the proof of our main result.

Proof outline: Our proof is based on and extends ideas developed in [11] and [9], and largely goes as follows:

First, we find an r-regular subgraph H ⊆ G, where r = d1−τ , such that any ∆-regular graph R ⊃ H with

∆ = (1 + o(1))r contains a 1-factorization (we chose the letter R to denote the remainder graph obtained

after deleting an ‘approximate’ 1-factorization from G) . This is actually the key part of our argument and

the existence of such a graph (which, perhaps surprisingly, is quite simple!) is proven in Section 2.2.

Next, we show that the graph G′ which is obtained by deleting all the edges of H from G contains the

‘correct’ number of ‘almost’ 1-factorizations. By an ‘almost’ 1-factorization, we mean a collection of edge-

disjoint perfect matchings that cover almost all the edges of G′. This part is the most technical part of the

paper and is based on a suitable partitioning of the edge-set of G′ into sparse subgraphs (quite similar to the

one in [11]) along with a ‘nibbling’ argument from [6].

Finally, for any given ‘almost’ 1-factorization of G′, by adding all the edges uncovered by this ‘almost’

1-factorization to H , we obtain a graph R ⊃ H which is ∆-regular with ∆ ≈ r, and therefore admits a

1-factorization by the property of H discussed above. Since the complete proofs are anyway not too long, we

postpone the more formal details to later sections.
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2 Auxiliary results

In this section, we have collected a number of tools and auxiliary results to be used in proving our main

theorem.

2.1 Probabilistic tools

Throughout the paper, we will make extensive use of the following well-known bounds on the upper and

lower tails of the Binomial distribution due to Chernoff (see, e.g., Appendix A in [2]).

Lemma 2.1 (Chernoff’s inequality). Let X ∼ Bin(n, p) and let E(X) = µ. Then

• Pr[X < (1− a)µ] < e−a2µ/2 for every a > 0;

• Pr[X > (1 + a)µ] < e−a2µ/3 for every 0 < a < 3/2.

Sometimes, we will find it more convenient to use the following concentration inequality due to Hoeffding

([15]).

Lemma 2.2 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables such that ai ≤ Xi ≤ bi
with probability one. If Sn =

∑n
i=1 Xi, then for all t > 0,

Pr (Sn − E[Sn] ≥ t) ≤ exp

(

− 2t2
∑n

i=1(bi − ai)2

)

and

Pr (Sn − E[Sn] ≤ −t) ≤ exp

(

− 2t2
∑n

i=1(bi − ai)2

)

.

2.2 Completion

In this section we present the completion step, which uses some ideas from [9], and is a key ingredient of

our proof. Before stating the relevant lemma, we need the following definition.

Definition 2.3. A graph H = (A ∪B,E) is called (α, r,m)-good if it satisfies the following properties:

(G1) H is an r-regular, balanced bipartite graph with |A| = |B| = m.

(G2) Every balanced bipartite subgraph H ′ = (A′ ∪ B′, E′) of H with |A′| = |B′| ≥ (1 − α)m and with

δ(H ′) ≥ (1− 2α)r contains a perfect matching.

The motivation for this definition comes from the next proposition, which shows that a regular graph on

an even number of vertices, which can be decomposed into a good graph and a graph of ‘small’ maximum

degree, has a 1-factorization.

Proposition 2.4. There exists a sufficiently large integer m0 for which the following holds. Let m ≥ m0, and

suppose that H = (A∪B,E(H)) is an (α, r1,m)-good graph with m1/10 ≤ r1 ≤ m and logm/r1 ≪ α2 < 1/100.

Then, for every r2 ≤ α4r1/ logm, every r := r1 + r2-regular (not necessarily bipartite) graph R on the vertex

set A ∪B, for which H ⊆ R, admits a 1-factorization.

Proof. First, observe that e(R[A]) = e(R[B]). Indeed, as R is r-regular, we have for X ∈ {A,B} that

rm =
∑

v∈X

dR(v) = 2e(R[X ]) + e(R[A,B]),

from which the above equality follows. Moreover, ∆(R[X ]) ≤ r2 for all X ∈ {A,B} since the only edges in

R[X ] come from R \H . Next, let R0 := R and f0 := e(R0[A]) = e(R0[B]). By Vizing’s theorem ([26]), both

3



R0[A] and R0[B] contain matchings of size exactly ⌈f0/(r2 + 1)⌉. Consider any two such matchings MA in A

and MB in B, and for X ∈ {A,B}, let M ′
X ⊆ MX denote a matching of size |M ′

X | = ⌊αf0/2r2⌋ such that no

vertex v ∈ V (H) is adjacent to more than 3αr1/2 vertices which are paired in the union of the two matchings.

To show that such M ′
X must exist, it suffices to show that for X ∈ {A,B}, there exist matchings M ′′

X ⊆ MX

with |M ′′
X | ≥ ⌊αf0/2r2⌋ such that no vertex v ∈ V (H) is incident in H to more than 3αr1/2 vertices which

are paired in the union of the two matchings, since we can obtain M ′
X from M ′′

X by simply removing the

appropriate number of edges arbitrarily. Note that if the size of MX is at most 3αr1/4, then this follows

trivially by taking M ′′
X = MX . When the size of MX is at least 3αr1/4, the existence of M ′′

X is seen using

the following simple probabilistic argument. Let M ′′
X denote the random matching obtained by including each

edge of MX independently with probability 3α/4. By Chernoff’s inequality, |M ′′
X | ≥ 3α|MX |/5 > ⌊αf0/2r2⌋,

except with probability at most exp(−Θ(α|MX |)) ≤ exp(−Θ(α2r1)) ≪ 1, where the last inequality uses the

assumption that α2r1 ≫ logm ≫ 1. Moreover, each v ∈ V (H) is incident to at most r vertices, each of which

has at most 1 edge in MA∪MB. Hence, the number of vertices paired in M ′′
A∪M ′′

B incident to a fixed v ∈ V (H)

is stochastically dominated by Bin(r, 3α/4). In particular, by Chernoff’s inequality, the probability that a

fixed v ∈ V (H) is incident to at least 3αr1/2 vertices matched in M ′′
A ∪M ′′

B is at most exp(−Θ(αr)) ≪ 1/m,

where the last inequality uses the assumption that αr1 ≥ α2r1 ≫ logm. Therefore, the union bound shows

that the above claim holds simultaneously for all vertices v ∈ V (H) with probability close to 1. It follows that

there exist M ′′
A and M ′′

B with the desired properties.

Delete the vertices in (∪M ′
A)
⋃

(∪M ′
B), as well as any edges incident to them, from H and denote the

resulting graph by H ′ = (A′∪B′, E′). Since |A′| = |B′| ≥ (1−α)|A| and δ(H ′) ≥ (1−3α/2)r1 by the choice of

M ′
X , it follows from (G2) that H ′ contains a perfect matching M ′. Note that M0 := M ′∪M ′

A∪M ′
B is a perfect

matching in R0. We repeat this process with R1 := R0−M0 (deleting only the edges in M0, and not the vertices)

and f1 := e(R1[A]) = e(R1[B]) until we reach Rk and fk such that fk ≤ r2. Since fi+1 ≤ (1− α/3r2) fi, this

must happen after at most 3r2 logm/α < α2r1 steps. Moreover, since deg(Ri+1) = deg(Ri)−1, it follows that

during the first ⌈3r2 logm/α⌉ steps of this process, the degree of any Rj is at least r1 −α2r1. Therefore, since

(r1 − α2r1)− 3αr1/2 ≥ (1− 2α)r1, we can indeed use (G2) throughout the process, as done above.

From this point onwards, we continue the above process (starting with Rk) with matchings of size one

i.e. single edges from each part, until no more edges are left. By the choice of fk, we need at most r2 such

iterations, which is certainly possible since r2 + 3r2 logm/α < α2r1 and (r1 − α2r1) − 3αr1/2 ≥ (1 − 2α)r1.

After removing all the perfect matchings obtained via this procedure, we are left with a regular, balanced,

bipartite graph, which admits a 1-factorization (this follows by a more or less direct application of Hall’s

marriage theorem [14]). Taking any such 1-factorization along with all the perfect matchings that we removed

gives a 1-factorization of R.

The remainder of this subsection is devoted to proving the following proposition, which shows that every

d-regular graph on n vertices contains a ‘good’ subgraph H , assuming that d ≥ n/2+εn and n is a sufficiently

large even integer.

Proposition 2.5. Let n be a sufficiently large even integer, and let 0 < ε = ε(n) < 1 be such that ε4 ≫ logn/n.

Let G be a graph on n vertices which is d-regular, with d ≥ n/2 + εn. Then, for every p = ω
(

logn
nε3

)

≤ 1,

there exists a spanning subgraph H of G which is (ε/10, r, n/2)-good, for some (1 − ε/1000)dp/2 ≥ r ≥
(1− ε/100)dp/2.

To prove this proposition, we will use the following three results. The first result is a theorem from [10],

which states that if G is a bipartite graph with sufficiently large minimum degree which contains an r-factor

(i.e. a spanning r-regular subgraph) for r sufficiently large, then the random graph Gp, which is obtained by

keeping each edge of G independently with probability p, typically contains a (1 − o(1))rp-factor. The proof

of this theorem follows quite easily by using the Gale-Ryser criterion for the existence of r-factors in bipartite

graphs ([12], [24]), and standard applications of Chernoff’s bounds.

Theorem 2.6 (Theorem 1.4 in [10]). Let m be a sufficiently large integer. Then, for any positive τ such that

logm/m ≪ τ3 < 1, α = 1/2 + τ and 0 < ρ ≤ α, the following holds. Suppose that:
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1. G is bipartite with parts A and B, both of size m,

2. δ(G) ≥ αm, and

3. G contains a ρm-factor.

Then, for p = ω
(

logm
mτ3

)

, the random graph Gp has a k-factor for k = (1− τ)ρmp with probability 1−m−ω(1).

Remark 2.7. In [10], τ is taken to be some positive constant, as opposed to a function of m which can go to

0 as m goes to infinity. However, the exact same proof actually gives the slightly more general result stated

above.

The second result shows that if G is a bipartite graph with parts of size m, then with high probability, the

number of edges in Gp between subsets X and Y with |X | = |Y | ≤ m/2 is not much more than pm|X |/2.

Lemma 2.8. Let G = (A ∪ B,E) be a bipartite graph with parts A and B, both of size m. Let c = 1/2 + τ

with 0 < τ = τ(m) < 1, and let p = ω
(

logm
mτ2

)

. Then, for Gp, the following holds with probability at least

1−m−ω(1): eGp(X,Y ) < cpm|X | for any subsets X ⊆ A and Y ⊆ B with |X | = |Y | ≤ m/2.

Proof. Consider any subsets X ⊆ A and Y ⊆ B with |X | = |Y | ≤ m/2. Since

eG(X,Y ) ≤ |X ||Y | ≤ |X |m
2
,

we get that

Pr
[

eGp(X,Y ) ≥ cpm|X |
]

≤ Pr

[

Bin

(

m|X |
2

, p

)

≥ cpm|X |
]

≤ exp(−τ2m|X |p/6),

where the first inequality follows from the fact that eGp(X,Y ) is a sum of at most m|X |/2 independent

Bernoulli(p) random variables, and the second inequality follows from Chernoff’s bounds.

Let B denote the event that there exist subsets X ⊆ A and Y ⊆ B with |X | = |Y | ≤ m/2 and eGp(X,Y ) ≥
cpm|X |. Then, it follows by the union bound that

Pr[B] ≤
m/2
∑

x=1

(

m

x

)2

exp(−τ2mxp/6) ≤
m/2
∑

x=1

(em

x

)2x

exp(−τ2mxp/6) ≤
m/2
∑

x=1

exp(4x logm− τ2mxp/6)

≤
m/2
∑

x=1

exp (x logm(4 − ω(1))) = m−ω(1),

where the inequality on the second line holds since pm = ω(logm/τ2).

Finally, the third result, which is a lemma from [11], shows that an almost regular bipartite graph with

sufficiently large degrees contains an r-factor with r close to its minimum degree.

Lemma 2.9 (Lemma 20 in [11]). Let ρ ≥ 1/2, m ∈ N, and ξ = ξ(m) > 0. Suppose that G = (A ∪B,E) is a

bipartite graph with parts A and B, both of size m, and ρm+ ξ ≤ δ(G) ≤ ∆(G) ≤ ρm+ ξ + ξ2/m. Then, G

contains a ρm-factor.

We are now ready to prove Proposition 2.5.

Proof of Proposition 2.5. Consider a random partitioning of V (G) with parts A,B of size m := |A| = |B| =
n/2, and let G′ = (A ∪ B,E′) denote the induced bipartite subgraph between A and B. For any v ∈ V (G),

by linearity of expectation

E[degG′(v)] =
d

2
+

d

2(n− 1)
.

5



Since the distribution of the random subset A ⊆ V (G) coincides with the distribution on subsets of V (G) ob-

tained by including every vertex independently with probability 1/2, conditioned on the event (of probability

Θ(1/
√
n)) that exactly n/2 elements are included, it follows from Hoeffding’s inequality that for any fixed ver-

tex v ∈ V (G) the probability that | degG′(v)−E[degG′(v)]| ≥ 4
√
d logn is at most O(

√
n exp(−16d logn/d)) ≪

1/n. Therefore, taking the union bound over all vertices, it follows that with high probability,

d/2− 5
√

d logn ≤ δ(G′) ≤ ∆(G′) ≤ d/2 + 5
√

d logn.

Fix any such G′.

We now wish to apply Lemma 2.9 to G′. For the choice of parameters, note that since d ≥ n/2 + εn, we

can find ρ ≥ 1/2 such that ρm = d/2−εm/1000. If we take ξ = εm/1000−5
√
d logn, then since ε4 ≫ logn/n,

we have ξ ≥ εm/2000 for all n sufficiently large, and hence ξ2/m ≥ O(ε2m) ≫
√
n logn. This shows that

ρm+ ξ ≤ δ(G′) ≤ ∆(G′) ≤ ρm+ ξ + ξ2/m,

Therefore, Lemma 2.9 applied to G′ shows that G′ contains a ρm = d/2 − εm/1000-factor. Note also that

δ(G′) ≥ αm, with α = ρ+ (ξ/m) ≥ 1/2 + τ , where τ = ε/1000.

We will now apply Theorem 2.6 and Lemma 2.8 to G′ in order to extract a sparse ‘good’ subgraph. Let

p = ω(logm/(mε3)) and consider the random graph G′
p. Since G′ satisfies the hypothesis of Theorem 2.6 with

the parameters ρ, α and τ as above, it follows that with high probability, G′
p contains an r = (1 − τ)ρmp =

(1− τ)(1− εm/500d)dp/2-factor H . In particular, note that (1− ε/100)dp/2 ≤ (1− τ)(1− ε/500)dp/2 ≤ r ≤
(1 − τ)dp/2 = (1 − ε/1000)dp/2 as desired. Moreover, applying Lemma 2.8 to G′ with p and τ as above, we

see that with high probability, for any subsets X ⊆ A and Y ⊆ B, eG′
p
(X,Y ) < (1/2 + ε/1000)pm|X |. Fix

any such realization of G′
p. We will show that H is (ε/10, r, n/2)-good.

Suppose this is not the case. Then, by definition, there must exist a balanced bipartite subgraph H ′ =

(A′ ∪ B′, E′) ⊆ H ⊆ G′
p, with parts A′, B′ of size |A′| = |B′| ≥ (1 − ε/10)n/2 and with δ(H ′) ≥ (1 − ε/5)r,

which does not contain a perfect matching. Therefore, by Hall’s marriage theorem (see, e.g., [25] for the

version used here), there must exist subsets X ′ ⊆ A′ and Y ′ ⊆ B′ with |X ′| = |Y ′| ≤ n/4 such that at least

one of the following is true:

NH′(X ′) ⊆ Y ′, or NH′(Y ′) ⊆ X ′.

In either case, we get from the minimum degree assumption on H ′ that

(1− ε/5)r|X ′| ≤ eH′(X ′, Y ′) ≤ eG′
p
(X ′, Y ′).

Thus, we get

eG′
p
(X ′, Y ′) ≥

(

1− ε

5

)

r|X ′| ≥
(

1− ε

5

)(

1− ε

100

) dp

2
|X ′| ≥

(

1− ε

4

)

(

1

2
+ ε

)

np

2
|X ′|

≥
(

1

2
+

3ε

4

)

np

2
|X ′|.

However, since G′
p satisfies the conclusion of Lemma 2.8, we must also have eG′

p
(X ′, Y ′) ≤ (1/2+ε/1000)pm|X ′| =

(1/2 + ε/1000)np|X ′|/2, which leads to a contradiction.

2.3 Random partitioning

The following technical lemma allows us to partition our graph G into a number of smaller subgraphs, each

of which contains many ‘almost’ 1-factorizations. Its proof is similar to Lemma 27 in [11], but we need here a

different set of parameters.

Lemma 2.10. Let n be a sufficiently large integer and let K be an integer in [log2 n, n1/300]. Let τ > 0 be

such that τ > 100/K. Suppose that G is a d-regular graph on n vertices with d ≥ n/2. Then, there are K3

edge-disjoint spanning subgraphs H1, . . . , HK3 of G with the following properties:
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1. For each Hi, there is a partition V (G) = Ui ∪Wi with |Wi| = n/K2 ± (n/K2)2/3 and even;

2. Letting Fi = Hi[Wi], we have δ(Fi) ≥ (d/n− τ)|Wi|;

3. Letting Ei = Hi[Ui,Wi], we have eEi(u,Wi) ≥ |Wi|/10K3 for all u ∈ Ui;

4. Letting Di = Hi[Ui] for all i, then for some d/K3 ≥ r ≥ (1 − τ)d/K3, we have

r ≤ δ(Di) ≤ ∆(Di) ≤ r + r4/5.

Proof. First, let {S(v)}v∈V (G) be i.i.d random variables, where for each v ∈ V (G), S(v) ⊆ [K3] is a subset of

size exactly K, chosen uniformly at random from among all such subsets. For each i ∈ [K3], let

Wi := {v ∈ V (G) : i ∈ S(v)};

note that the graphs G[Wi] are not necessarily edge-disjoint.

Second, let s := n/K2. Since any i ∈ [K3] is included in S(v) with probability 1/K2, independently for

different v ∈ V (G), it follows by Chernoff’s bounds that the following holds for all v ∈ V (G) and i ∈ [K3]

with probability 1− o(1):

(a) |Wi| = s(1± s−1/3);

(b) eG(v,Wi) =
d
K2 (1± s−1/3).

Next, for each v ∈ V (G), we define the random variable Y (v) to be the number of vertices u ∈ NG(v) with

{u, v} ⊂ Wi for some i ∈ [K3]. For each v ∈ V (G) and i ∈ [K3], we define the random variable Zi(v) to be

the number of vertices u ∈ NG(v) such that u ∈ Wi and {u, v} ⊂ Wj for some j ∈ [K3]. Since all vertices of

G have the same degree, the values of E[Y (v)] and E[Zi(v)] are the same for all choices of v and i. Let us

denote these common values by Y and Z, respectively.

We claim that Y ≤ d/K and d/2K3 ≤ Z ≤ 2d/K3 for all sufficiently large K. To see this, note that

Y = E[Y (v)] = E[E[Y (v)|S(v)]], and conditioned on any realization of S(v),

E[Y (v)|S(v)] ≤
∑

u∈NG(v)

ES(u)[|S(u) ∩ S(v)|] = dES(u)[|S(u) ∩ S(v)|] = d/K.

Similarly, Z = E[Z1(v)] = E[E[Z1(v)|S(v)]]. Conditioned on any realization of S(v) for which 1 /∈ S(v), for all

sufficiently large K,

E[Z1(v)|S(v)] =
∑

u∈NG(v)

PrS(u)[{|S(u) ∩ S(v)| > 0} ∩ {1 ∈ S(u)}] ∈ [0.9d/K3, 1.1d/K3],

whereas conditioned on any realization of S(v) for which 1 ∈ S(v),

E[Z1(v)|S(v)] = dPrS(u)[{|S(u) ∩ S(v)| > 0} ∩ {1 ∈ S(u)}] = d/K2.

Since Pr[1 ∈ S(v)] = 1/K2, the desired conclusion follows from the law of total probability. Also, by Hoeffding’s

inequality, it follows that with probability 1− o(1), for all v ∈ V (G) and i ∈ [K3],

(c) Y (v) = Y ± 2
√
n logn ;

(d) Zi(v) = Z ± 2
√
n logn.

Therefore, there exists a collection W1, . . . ,WK3 satisfying (a), (b), (c) and (d) simultaneously. Moreover, after

removing at most one vertex from each Wi, we may further assume that |Wi| is even for all i ∈ [K3]. Fix any

such collection. Let Ui := V (G) \Wi and let G′ = (V (G), E(G′)), where E(G′) := E(G) \ ∪i∈[K3]E[Wi].

To each edge e ∈ ∪i∈[K3]E[Wi], assign an arbitrary k(e) ∈ [K3] such that e ⊂ Wk(e). Further, assign

independently to each edge e ∈ E(G′), a uniformly chosen element k(e) ∈ [K3]. For each i ∈ [K3], let
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Hi = (V (G), E(Hi)), where E(Hi) := {e ∈ E(G) : k(e) = i}. We claim that with probability at least

1− 2n−8, H1, . . . , HK3 satisfy the conclusions of the lemma.

Conclusion 1. follows immediately from property (a). For conclusion 2., note that the only edges {u, v} ⊂ Wi

which are present in G[Wi] but possibly not in Hi[Wi] are those which are also present in G[Wj ] for some

other j ∈ [K3]. Since for given i ∈ [K3] and v ∈ V (G), Zi(v) bounds the number of such edges incident to v,

it follows from properties (b) and (d) that for any i ∈ [K3] and any v ∈ Wi:

degFi
(v) ≥ eG(v,Wi)− Zi(v) ≥ eG(v,Wi)−

3d

K3
≥ d

K2
− 4d

K3
.

Therefore, property (a) shows that

degFi
(v) ≥ d

n
|Wi| −

4d

K3
− d

n

n2/3

K4/3
≥
(

d

n
− 5

K

)

|Wi|.

We now verify that conclusions 3. and 4. are satisfied with the desired probability. Property (c) shows that

for all v ∈ V (G),

degG′(v) = degG(v) − Y (v) = d− Y ± 2
√

n logn.

Moreover, properties (b) and (d) show that for all i ∈ [K3] and for all u ∈ Ui,

eG′(u,Wi) = eG(u,Wi)− Zi(u) =
d

K2
(1± s−1/3)− Z ± 2

√

n logn.

Therefore, since each edge e in G′ chooses a label k(e) ∈ [K3] independently and uniformly, it follows by

Chernoff’s inequality that for all v ∈ V (G), i ∈ [K3] and u ∈ Ui,

degHi
(v) =

degG′(v)

K3
± 2
√

n logn =
d− Y

K3
± 4
√

n logn

eHi(u,Wi) =
eG′(u,Wi)

K3
± 2
√

n logn =
d

K5

(

1− ZK2

d

)

± n2/3,

except with probability at most (say) 2n−8. Whenever this holds, we also get that for all i ∈ [K3] and u ∈ Ui,

degDi
(u) = degHi

(u)− eHi(u,Wi) =
d− Y

K3
− d

K5

(

1− ZK2

d

)

± 2n2/3.

This implies that for all i ∈ [K3] and u ∈ Ui,

eEi(u,Wi) ≥
d

K5
− Z

K3
− n2/3 ≥ n

2K5
− 2d

K6
− n2/3 ≥ n

2K5
− 2n

K6
− n2/3 ≥ |Wi|

3K3
− 2|Wi|

K4
− n2/3

≥ |Wi|
10K3

,

where the last line uses |Wi|/K3 ≫ |Wi|/K4 ≫ n2/3. We also have for all i ∈ [K3] that

δ(Di) ≥
d

K3
− Y

K3
− d

K5
+

Z

K3
− 2n2/3 ≥ d

K3
− d

K4
− d

K5
+

d

2K6
− 2n2/3

≥
(

1− 5

K

)

d

K3
,

and

∆(Di) ≤
d

K3
− Y

K3
− d

K5
+

Z

K3
+ 2n2/3 ≤ δ(Di) + 4n2/3

≤ δ(Di) + δ(Di)
3/4.

Therefore, we may take (1− τ)d/K3 ≤ r ≤ d/K3 in conclusion 4. This completes the proof.
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Remark 2.11. The proof of Lemma 2.10 given above actually shows that if we fix any collection W1, . . . ,WK3

satisfying properties (a), (b), (c) and (d) in the proof, then there are at least

(

1− 2n−8
)

(K3)(1−
10
K )nd

2

collections H1, . . . , HK3 satisfying the conclusions of the lemma with respect to this choice of {Ui,Wi}K
3

i=1.

This may be seen as follows: since we have seen that, given W1, . . . ,WK3 satisfying properties (a), (b), (c) and

(d), the random process to produce H1, . . . , HK3 with the desired properties succeeds with probability at least

1 − 2n−8, it suffices to show that the number of outcomes of this random process is at least (K3)(1−
10
K )nd

2 .

But this is immediate since

|E(G′)| ≥ |E(G)| −
K3
∑

i=1

|Wi|2
2

≥ dn

2
−K3 · n2

K4
≥ dn

2

(

1− 10

K

)

,

and each edge e ∈ E(G′) chooses one of K3 labels. The fact that all these collections satisfy the conclusion

of the lemma with respect to the same fixed choice of {Ui,Wi}K
3

i=1 will be used crucially in the proof of

Theorem 1.2.

2.4 Almost regular graphs contain many equitable collections of edge-disjoint

large matchings

The following proposition shows that an almost regular graph contains the ‘correct’ number of collections

of large matchings such that every collection is equitable in the sense that each vertex is left uncovered by

only a small number of the matchings. The proof of this proposition follows from the proof of the main result

in the work of Dubhashi, Grable, and Panconesi [6]. For completeness, we include the details in Section 4,

after the proof of our main result.

Proposition 2.12. Let n be a sufficiently large even integer, and let G be a graph on n vertices and m edges

with δ := δ(G) ≤ ∆(G) =: ∆ such that δ ≥ n1/10 and ∆ − δ ≤ ∆5/6. There exists a universal constant

J > 0 for which the following holds. There are at least
(

(1−n−1/40J )δ
e2

)m

distinct collections of edge-disjoint

matchings M = {M1, . . . ,Mδ} of G such that:

1. Each matching Mi covers at least
(

1− n−1/10J
)

n vertices;

2. Each vertex is uncovered by at most δ · n−1/10J matchings in M.

2.5 Extending edge disjoint matchings to edge disjoint perfect matchings

In this subsection, we show how to complete a collection of edge-disjoint matchings of H [Ui] into a collection

of edge-disjoint perfect matchings of G, using the sets Wi.

Lemma 2.13. Let n be a sufficiently large even integer. Let K be an integer in [log10 n, n1/300] and let H be

a graph on n vertices for which:

1. V (H) = U ∪W with |W | even;

2. |W | = n
K2 ± ( n

K2 )
2/3;

3. δ(H [W ]) ≥ (1/2 + τ/2)|W | with τ > 100/K;

4. Every vertex u ∈ U has at least n
K6 edges into W .

Let M be a collection of t ≤ 10n
K3 edge-disjoint matchings of H [U ] such that:

(a) Every matching in M covers at least |U | − n
K10 vertices of U ;
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(b) Every vertex u ∈ U is uncovered by at most n/K10 matchings in M.

Then, M can be extended to a collection of t edge-disjoint perfect matchings of H.

Proof. Let M := {M1, . . . ,Mt} be an enumeration of the matchings. For each Mi, let Ci ⊆ U denote the set

of vertices which are not covered by Mi. By assumption (a), we have |Ci| ≤ n/K10 for all i ∈ [t]. We now

describe and analyze an iterative process to extend M1, . . . ,Mt to edge-disjoint perfect matchings M1, . . . ,Mt

of H .

Let H1 := H . For each u ∈ C1, select a distinct vertex w(u) ∈ W such that {u,w(u)} is an edge in H1.

This is possible (and can be done greedily) since every u ∈ C1 has at least n/K6 > |C1| edges into W by

assumption 4. Let W1 ⊆ W denote the set of vertices in W which have not been matched to any vertex in

C1. Note that since |W | and |C1| are even by assumption, |W1| is also even. Moreover,

|W1| = |W | − |C1| ≥ |W | − n

K10
≥ |W |

(

1− 1

K7

)

,

where the last inequality follows from assumption 2. and

δ(H1[W1]) ≥ δ(H1[W ])− (|W | − |W1|) ≥
(

1

2
+

τ

2

)

|W | − |W |
K7

>
1

2
|W1|,

where the second and third inequalities follow from assumption 3. A classical theorem due to Dirac shows

that any graph on 2k vertices with minimum degree at least k contains a Hamilton cycle, and hence, a perfect

matching; therefore, H1[W1] contains a perfect matching N1. Let M1 := M1 ∪N1 ∪ {{u,w(u)} : u ∈ C1}. It

is clear that M1 is a perfect matching in H1. Continue this process starting with H2, where H2 is the graph

obtained from H1 by deleting the edges of M1.

To complete the proof, it suffices to show that the above procedure can be repeated t times. For this, we

simply need to observe two things. First, since each vertex u ∈ U is uncovered by at most n/K10 matchings

Mi by assumption (b), we need to use at most n/K10 edges from u into W during this process; in particular,

at any stage i ∈ [t] during this process, every u ∈ U has at least n/K6 − n/K10 > |Ci| edges into W . Second,

since δ(Hi+1[W ]) ≥ δ(Hi[W ]) − 1 for all i ∈ [t − 1] and since t ≤ 10n/K3 ≤ τ |W |/4, it follows that at any

stage i ∈ [t],

δ(Hi[W ]) ≥
(

1

2
+

τ

2

)

|W | − t ≥
(

1

2
+

τ

4

)

|W |,

which is sufficient for the application of Dirac’s theorem as above.

Remark 2.14. The above proof shows that if M = {M1, . . . ,Mt} and M′ = {M ′
1, . . . ,M

′
t} are distinct collec-

tions of t edge-disjoint matchings in H [U ] satisfying the hypotheses of Lemma 2.13, then M = {M1, . . . ,Mt}
and M′ = {M ′

1, . . . ,M
′
t} are distinct collections of t edge-disjoint perfect matchings in H . This is because

none of the edges in Mi \Mi and M ′
i \M ′

i are present in H [U ], so that Mi∩H [U ] = Mi and M ′
i ∩H [U ] = M ′

i .

3 Proof of Theorem 1.2

In this section we prove our main result, Theorem 1.2.

Proof of Theorem 1.2. Let C = 2000max{J, 10} where J is the constant appearing in the statement of

Proposition 2.12. Our proof consists of two stages. In Stage 1, we describe our algorithm for construct-

ing 1-factorizations. In Stage 2, we analyze this algorithm and show that it actually outputs the ‘correct’

number of distinct 1-factorizations.

Stage 1: Our algorithm consists of the following five steps.
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Step 1 Let ε = n−1/C and p = ε2. Since ε4 = n−4/C ≫ logn/n, p = ε2 = ω(logn/ε3n) ≤ 1, and d ≥ n/2+εn,

it follows from Proposition 2.5 that there exists a spanning subgraph H of G which is (ε/10, r1, n/2)-

good, for some r1 = Θ(dp). Later (in Step 5.), we will apply Proposition 2.4 with H as the underlying

good graph. For this, note that as required for this proposition, we indeed have that n1/10 ≪ r1 =

Θ(dp) = Θ(nε2) ≪ n and logn ≪ r1α
2 = Θ(nε4) ≪ n.

Step 2 Let G′ be the graph obtained from G by deleting all the edges of H . Then, G′ is d′ := (d− r1)-regular

and crucially, d′ ≥ n/2 + 3εn/4, since r1 = Θ(dp) = Θ(nε2) ≪ εn. For K = ⌊ε−10⌋, fix any collection

of K3 subsets of V (G′) = V (G), denoted by W1, . . . ,WK3 , satisfying properties (a), (b), (c) and (d) as

in the proof of Lemma 2.10 (which is applicable since K ∈ [log2 n, n1/300] and d′ ≥ n/2). For i ∈ [K3],

let Ui := V (G′) \Wi.

Step 3 Let H1, . . . , HK3 be edge-disjoint spanning subgraphs of G′ satisfying properties 1., 2., 3. and 4. in the

conclusion of Lemma 2.10 for the choice of {Ui,Wi}K
3

i=1 as above, and with τ = 200/K. In particular,

by conclusion 3. of Lemma 2.10, we have

δ(Hi[Wi]) ≥
(

d′

n
− τ

)

|Wi| ≥
(

1

2
+

3ε

4
− τ

)

|Wi| ≥
(

1

2
+

ε

2

)

|Wi| (1)

for all i ∈ [K3], where the last inequality holds since τ = Θ(K−1) = Θ(ε10) ≪ ε. Moreover, by

conclusion 4. of Lemma 2.10, we also have that for all i ∈ [K3],

d′

K3
≥ δ(Hi[Ui]) ≥ (1− τ)

d′

K3
=

(

1− 200

K

)

d′

K3
.

Step 4 Note that for each i ∈ [K3], we can apply Proposition 2.12 to the graph Hi[Ui] since δi := δ(Hi[Ui]) ≥
(1 − 200/K)d′/K3 = Θ(ε30n) ≫ n1/10 ≥ |Ui|1/10 and ∆(Hi[Ui]) − δ(Hi[Ui]) ≤ (2∆(Hi[Ui]))

4/5 ≪
(∆(Hi[Ui]))

5/6, where the first inequality follows from conclusion 4. of Lemma 2.10. Let Mi denote

a collection of matchings of Hi[Ui] satisfying the conclusions of Proposition 2.12. In particular, each

matching M ∈ Mi covers at least

|Ui| − |Ui|1−1/10J ≥ |Ui| −
n

n1/10J
≥ |Ui| −

n

K10

vertices, where the last inequality holds since K10 = Θ(ε−100) ≪ n1/10J , and each vertex u ∈ Ui is

uncovered by at most

|Ui|−1/10Jδi ≤
n

K3n1/10J
≤ n

K10

matchings in Mi, where the last inequality holds since K7 = Θ(ε−70) ≪ n1/10J .

Note also that for each i ∈ [K3], we can apply Lemma 2.13 to H := Hi and M := Mi with τ = ε.

Indeed, hypotheses 1. and 2. follow from conclusion 1. of Lemma 2.10, hypothesis 3. follows from

Equation (1), hypothesis 4. follows from conclusion 3. of Lemma 2.10 (since |Wi|/10K3 = Θ(n/K5) ≫
n/K6), hypotheses (a) and (b) follow from the computations earlier in this step, and finally, the number

of matchings in Mi is at most δi ≤ n/K3. Hence, we can extend Mi to a collection of edge-disjoint

perfect matchings of Hi, which we will denote by Mi.

Step 5 Let R be the graph consisting of all the edges in E(G′) which do not belong to any Mi. Then, R is

an r2-regular graph with

r2 = d′ −
K3
∑

i=1

δi ≤ d′ − d′(1 − 200/K) = 200d′/K.

Since H is a (ε/10, r1, n/2)-good graph (with α := ε/10 and r1 satisfying the hypotheses of Proposition 2.4),

and since r2 = 200d′/K = Θ(nε10) ≪ α4r1/ logn = Θ(nε6/ logn), we can apply Proposition 2.4 to

the graph H ∪R in order to complete ∪i∈[K3]Mi to obtain a 1-factorization of G.
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Stage 2: We now show that the above algorithm can output the ‘correct’ number of distinct 1-factorizations.

Throughout, we will assume that n is a sufficiently large even integer. By Remark 2.11, there are at least

(

1− 2n−8
)

(K3)(1−
10
K )nd′

2 =
(

1− 2n−8
)

(

K3e−30 logK/K
)nd′/2

≫
(

e−30 logK/K
)nd′/2 (

K3e−30 logK/K
)nd′/2

≥
(

K3e−60 logK/K
)nd′/2

≥
(

K3e−60 logK/K
)

nd
2 (1−p)

=
(

K3e−60 logK/K
)nd/2 (

K−3pe60p logK/K
)nd/2

≫
(

K3e−60ε10 logK
)

nd
2 (

e−3p logK
)

nd
2

≥
(

K3
)

nd
2
(

e−6p logK
)

nd
2

distinct ways to choose the collection of subgraphs H1, . . . , HK3 in Step 3. Moreover, by Proposition 2.12, for

each i ∈ [K3], there are at least

(

(1− |Ui|−1/40J)δi
e2

)

δi|Ui|
2

≥
(

(1− 2n−1/40J)δi
e2

)

δin(1−2/K2)

2

≥
(

(1− 2n−1/40J)(1 − 200/K)d′

K3e2

)

nd′(1−200/K)(1−2/K2)

2K3

≥
(

(1− 400ε10)d′

K3e2

)

nd′(1−400ε10)

2K3

≥
(

(1− 400ε10)(1− p)d

K3e2

)

nd(1−p)(1−400ε10)

2K3

≥
(

(1− 2p)d

K3e2

)
nd

2K3 (1−2p)

≥
(

(1− 2p)d

K3e2

)
nd

2K3
(

e−2p log d
)

nd
2K3

distinct ways to choose a collection of edge-disjoint matchings Mi in Hi[Ui] satisfying the conclusions of

Proposition 2.12. Since distinct collections of edge-disjoint matchings Mi of Hi[Ui] stay distinct upon the

application of Lemma 2.13 (see Remark 2.14), it follows that there are at least

K3
∏

i=1

(

(1− 2p)d

K3e2

)
nd

2K3
(

e−2p log d
)

nd
2K3 =

(

(1− 2p)d

K3e2

)
nd
2
(

e−2p log d
)

nd
2

distinct ways to choose, one for each i ∈ [K3], a collection of edge-disjoint perfect matchings Mi of Hi as at

the conclusion of Step 4. of our algorithm in Stage 1. Together with the number of choices for H1, . . . , HK3

in Step 3., it follows that the multiset of 1-factorizations of G that can be obtained by the algorithm in Stage

1 has size at least
((

(1 − 2p)d

K3e2

)

K3e−10p log n

)
nd
2

≥
(

(1− 20p logn)d

e2

)
nd
2

.

To complete the proof, it suffices to show that no 1-factorization F = {F1, . . . , Fd} is counted more than

(1 + 400p logn)
nd
2 times in the calculation above. Let us call a collection of edge-disjoint subgraphs H1, . . . , HK3
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of G′ consistent with F if H1, . . . , HK3 satisfy the conclusions of Lemma 2.10 with the parameters in Step 3

(in particular, with respect to the fixed collection {Ui,Wi}K
3

i=1 from Step 2), and if F can be obtained by the

algorithm after choosing H1, . . . , HK3 in Step 3. It is clear that the number of times that F can be counted by

the above computation is at most the number of collections H1, . . . , HK3 which are consistent with F , so that

it suffices to upper bound the latter. For this, note that at most r1 +200d′/K ≤ 2r1 of the perfect matchings

in F can come from Step 5 of the algorithm. Each of the other perfect matchings belongs completely to a

single Hi by construction. It follows that the number of consistent collections H1, . . . , HK3 is at most

n ·
(

d

2r1

)

·
(

K3
)r1n ·

(

K3
)d

.

Indeed, there are at most n ·
(

d
2r1

)

ways to choose the perfect matchings coming from Step 5; these matchings

contain at most r1n edges; for each such edge, there are at most K3 choices for which Hi it should belong to;

and for each of the remaining (at most d) matchings which are completely contained in some Hi, there are at

most K3 choices for which Hi such a matching should belong to. Finally, observe that

n ·
(

d

2r1

)

·
(

K3
)r1n · (K3)d ≪ d3r1K3r1n+3d ≪ K4r1n ≪ K10pnd =

(

K20p
)

nd
2 ≤ (1 + 400p logn)

nd
2 ,

which completes the proof.

4 Proof of Proposition 2.12

We now show how the proof of the main result in [6], which is based on the celebrated Rödl nibble

[23], implies Proposition 2.12. The organization of this section is as follows: Algorithm 1 records the nib-

bling algorithm used in [6]; Theorem 4.1 records the conclusion of the analysis in [6]; Proposition 4.3 adapts

Theorem 4.1 for our choice of parameters; Remark 4.4 shows that the collection of matchings produced by

Algorithm 1 satisfies the conclusions of Proposition 2.12, and finally, following this remark, we present the

proof of Proposition 2.12.

The following algorithm (Algorithm 1) is a slight variant of the algorithm used in [6] to find an almost-

optimal edge coloring of a graph. Here, we show how it can be used to generate ‘almost the correct number’

of ‘equitable collections of edge-disjoint large matchings’ of an ‘almost regular graph’ (all in the sense of

Proposition 2.12). Since we are not concerned with the running time of the algorithm, we are able to make a

simpler choice for the initial palettes of the edges as compared to [6]. Moreover, since our goal is to output a

large collection of edge-disjoint matchings as in Proposition 2.12, we have no need for the trivial ‘Phase 2’ of

the algorithm in [6].

The analysis of this algorithm is based on controlling the following three quantities:

• |Ai(u)|, the size of the implicit palette of vertex u at the end of stage i, where the implicit palette Ai(u)

denotes the set of colors not yet successfully used by any edge incident to u.

• |Ai(e)|, the size of the palette Ai(e) of edge e at the end of stage i. Note that Ai(uv) = Ai(u) ∩ Ai(v).

• degi,γ(u), the number of neighbors of u which, at the end of stage i, have color γ in their palettes.

We record the outcome of their analysis as Theorem 4.1. Before stating it, we need some notation.

Define di and ai as follows. First, define initial values

d0, a0 := ∆

and then, recursively define

di := (1− pτ )di−1 = (1− pτ )
i∆
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Algorithm 1 The Nibble Algorithm

Input: The initial graph G0 := G on n vertices with minimum degree δ and maximum degree ∆. Each edge

e = uv is initially given the palette A0(e) = {1, . . . , δ}. For i = 0, 1, . . . , tτ − 1 stages, repeat the following:

• (Select nibble) Each vertex u randomly and independently selects each uncolored edge incident to itself

with probability τ/2. An edge is considered selected if either or both of its endpoints selects it.

• (Choose tentative color) Each selected edge e chooses independently at random a tentative color t(e)

from its palette Ai(e) of currently available colors.

• (Check color conflicts) Color t(e) becomes the final color of e unless some edge incident to e has chosen

the same tentative color.

• (Update graph and palettes) The graph and the palettes are updated by setting

Gi+1 = Gi − {e|e got a final color}

and, for each edge e, setting

Ai+1(e) = Ai(e)− {t(f)|f incident to e, t(f) is the final color of f}.

ai := (1− pτ )
2ai−1 = (1 − pτ )

2i∆ = d2i /∆,

where

pτ := τ
(

1− τ

4

)

e−2τ(1−τ/4).

In particular, note that setting

tτ :=
1

pτ
log

4

τ
,

we have dtτ ≤ τ∆/4.

Theorem 4.1 ([6], Lemmas 10, 13 and 16, and the discussion in Section 5.5.). There exist constants K, c > 0

such that, if at the end of stage i of Algorithm 1, the following holds for all vertices u, edges e and colors γ:

|Ai(u)| = (1 ± ei)di

|Ai(e)| = (1 ± ei)ai

degi,γ(u) = (1 ± ei)ai

then, except with probability at most 15n−1, the following holds at the end of stage i + 1 for all vertices u,

edges e and colors γ:

|Ai+1(u)| = (1± ei+1)di+1

|Ai+1(e)| = (1± ei+1)ai+1

degi+1,γ(u) = (1± ei+1)ai+1,

where

ei+1 = C(ei + c
√

logn/ai) = C(ei + c(1− pτ )
−i
√

logn/∆),

with C = 1 +Kτ .

Remark 4.2. In our case, we have

|A0(u)| = |A0(e)| = δ = ∆

(

1− ∆− δ

∆

)

,

14



and

deg0,γ = deg(u) = ∆

(

1± ∆− δ

∆

)

for all vertices u, edges e, and colors γ. Therefore, we can take

e0 =
∆− δ

∆
≤ ∆−1/6.

Proposition 4.3. Let n be a sufficiently large integer. There exists a constant J > 0 for which the following

holds. Let G be a graph on n vertices with ∆ ≥ log12 n and e0 := (∆ − δ)/∆ ≤ ∆−1/6, and let ∆−1/J ≤ τ <

1/100. Then, with probability at least 1− 15tτn
−1, the following holds for the execution of Algorithm 1 on G

with parameter τ for tτ − 1 stages: for all 0 ≤ i ≤ tτ , and for all vertices u, all edges e, and all colors γ,

• |Ai(u)| = (1 ± τ3)di

• |Ai(e)| = (1± τ3)ai

• degi,γ(u) = (1± τ3)ai

Proof. Setting A := c
√

logn/∆ and B := 1/(1 − pτ ), we see from Theorem 4.1 and the union bound that,

except with probability at most 15tτn
−1,

eℓ = Cℓe0 +A[Cℓ + Cℓ−1B + · · ·+ CBℓ−1]

for all 0 ≤ ℓ ≤ tτ . Since B = 1/(1− pτ ) ≤ 1 +K ′τ for some constant K ′ > 0, it follows that

eℓ ≤ ℓ(1 + Lτ)ℓc
√

logn/∆+ (1 + Lτ)ℓe0,

where L = max{K,K ′, c}. Since e0 ≤ ∆−1/6 and ∆ ≥ log12 n, it follows that

eℓ ≤ 2cℓ exp(Lτℓ)∆−1/6.

The right hand side is maximized when ℓ = tτ . Finally, since τ < 1/100 by assumption, we get that

etτ ≤
(

1

τ

)3L

∆−1/6 ≤ τ3,

where the last inequality holds provided we take J ≥ 18(L+ 1).

Remark 4.4. Consider any partial edge coloring of G satisfying the conclusions of Proposition 4.3, and let

M := {M1, . . . ,Mδ} denote the collection of edge-disjoint matchings of G obtained by letting Mγ be the

set of edges colored with γ. Then, |Mγ | ≥ (1 − τ)n/2 for all γ ∈ [δ]. To see this, note that any vertex u

which is not covered by Mγ must have γ in its implicit palette Atτ (u). Moreover, every vertex u has at least

|Atτ (u)| > dtτ /2 missing colors, and therefore at least as many uncolored edges attached to it at the end of

stage tτ − 1. It follows that every vertex which is uncovered by Mγ contributes at least dtτ /2 to the sum
∑

u degtτ ,γ(u). Hence, if nγ denotes the number of vertices uncovered by Mγ , then

nγdtτ
2

≤
∑

u

degtτ ,γ(u).

On the other hand, we have
∑

u

degtτ ,γ(u) ≤ 2atτn ≤ 2d2tτn

∆
.

Combining these two inequalities and using dtτ ≤ τ∆/4, we see that nγ ≤ τn, as desired.

Moreover, as mentioned above, the number of times a given vertex u is left uncovered by a matching in

M equals |Atτ (u)|, which is at most 2dtτ ≤ τ∆/2. Below, in the proof of Proposition 2.12, we will take

τ := ∆−1/J . Using this choice of parameter in the two estimates in the present remark, it follows readily that

that M satisfies the conclusions of Proposition 2.12.
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We are now ready to prove Proposition 2.12.

Proof of Proposition 2.12. We will view the execution of Algorithm 1 as a branching process where at each

stage, we branch out according to which edges get assigned final colors, and which final colors are assigned to

these edges. In particular, the leaves of this branching process are at distance tτ − 1 from the root.

We say that a leaf L of this branching process is a good leaf if the unique path from the root to L

represents an execution of Algorithm 1 such that at all stages, all vertices u, all edges e, and all colors γ

satisfy the conclusions of Proposition 4.3. Also, we say that a partial coloring with δ colors is a good partial

coloring if the corresponding collection of edge-disjoint matchings M = {M1, . . . ,Mδ} satisfies the conclusions

of Proposition 2.12. Note by Remark 4.4 that the partial edge coloring corresponding to a good leaf is a good

partial coloring. Therefore, in order to lower bound the number of good partial colorings, it suffices to lower

bound the number of good leaves, and upper bound the number of distinct leaves any given good partial

coloring can correspond to.

For this, let Q > 0 be an upper bound for the probability of the branching process reaching a given good

leaf. Since, by Proposition 4.3, the probability that the branching process reaches some good leaf is at least

1− 15tτn
−1, it follows that the number of good leaves is at least (1− 15tτn

−1)/Q. Further, let R > 0 be such

that for any good partial coloring C, there are at most R leaves of the branching process whose corresponding

partial coloring is C. Then, it follows that the number of good partial colorings is at least (1− 15tτn
−1)/QR.

The remainder of the proof consists of upper bounding the quantity QR.

To upper bound Q, fix a good leaf L and note that in the ith stage of the execution corresponding to L,

mi specific edges must be selected and assigned their final colors, where

mi : = (1± τ3)
din

2
− (1 ± τ3)

di+1n

2
=

din

2

(

1± τ3 − (1− pτ )(1± τ3)
)

=
din

2

(

pτ ± 3τ3
)

=
τdin

2
(1± 10τ) ,

and the last line follows since τ < 1/100. Since each edge is selected independently with probability τ(1−τ/4)

(an edge is selected if and only if it is selected by at least one of its endpoints, which happens with probability

τ/2+ τ/2− τ2/4 by the inclusion-exclusion principle), and each selected edge chooses one of at least (1− τ3)ai
colors uniformly at random, it follows that the probability that the branching process makes the specific

choices at the ith stage of L is at most

(

τ(1 − τ
4 )

(1− τ3)ai

)mi (

1− τ
(

1− τ

4

))

(1−τ3)din

2 −mi

≤
(

τ(1 + τ)

ai

)mi (

1− τ
(

1− τ

4

))

(1−τ3)din

2 −mi

≤
(

τ(1 + τ)

ai

)mi (

1− τ
(

1− τ

4

))

(1−τ3)din−(1±10τ)τdin

2

≤
(

τ(1 + τ)

ai

)mi

exp

(

−τ
(

1− τ

4

) din

2

)(1−τ3)−(1±10τ)τ

≤
(

τ(1 + τ)

ai

)mi

exp

(

− (1− 10τ)
τdin

2

)

,

where the first and last inequalities use τ < 1/100. Since the randomness in different stages of the branching

process is independent, it follows that

Q ≤
tτ−1
∏

i=0

(

τ(1 + τ)

ai

)mi

exp

(

−(1− 10τ)
τdin

2

)

= exp

(

−(1− 10τ)
τn

2

tτ−1
∑

i=0

di

)

tτ−1
∏

i=0

(

τ(1 + τ)

ai

)mi

= exp

(

−(1− 10τ)(1 ± 10τ)
∆n

2

) tτ−1
∏

i=0

(

τ(1 + τ)

ai

)mi

= exp

(

−(1± 25τ)
∆n

2

) tτ−1
∏

i=0

(

τ(1 + τ)

∆(1− pτ )2i

)mi

= exp

(

−(1± 25τ)
∆n

2

)(

τ(1 + τ)

∆

)

∑tτ−1
i=0 mi

(1− pτ )
−

∑tτ−1
i=0 2imi
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= exp

(

−(1± 25τ)
∆n

2

)(

τ(1 + τ)

∆

)

(1±10τ)τn
2

∑tτ−1
i=0 di

(1− pτ )
−

∑tτ−1
i=0 2imi

= exp

(

−(1± 25τ)
∆n

2

)(

τ(1 + τ)

∆

)

(1±25τ)∆n
2

(1− pτ )
−

∑tτ−1
i=0 2imi

= exp (−(1± 30τ)m)

(

τ(1 + τ)

∆

)(1±30τ)m

(1− pτ )
−

∑tτ−1
i=0 2imi ,

where we have used that
tτ−1
∑

i=0

di = ∆

tτ−1
∑

i=0

(1 − pτ )
i = (1 ± 10τ)

∆

τ

in the third and seventh lines, τ < 1/100 in the fourth and seventh lines, and m = (1 ± τ)∆n/2 in the last

line.

To upper bound R, it suffices to upper bound the number of ways in which the edges of any good partial

coloring can be partitioned into sets of size {(1 ± 10τ)τdin/2}tτ−1
i=0 , since the number of edges colored by

the algorithm in the ith stage is (1 ± 10τ)τdin/2. For this, note that there are at most (10τ2∆n)tτ ways

to choose the sizes of these tτ sets, and for each such choice for the sizes of the sets, there are at most

m!/
∏tτ−1

i=0 ((1 − 10τ)mi)! ways to partition the edges into these sets. Therefore,

R(10τ2∆n)−tτ ≤ m!
∏tτ−1

i=0 ((1− 10τ)mi)!
≤ m

(m

e

)m
tτ−1
∏

i=0

(

e

(1− 10τ)mi

)(1−10τ)mi

= m
(m

e

)m
tτ−1
∏

i=0

(

2e

(1− 10τ)(1± 10τ)τdin

)(1−10τ)mi

= m
(m

e

)m
tτ−1
∏

i=0

(

2e

(1− 25τ)τ∆(1 − pτ )in

)(1−10τ)mi

= m
(m

e

)m
(

2e

(1− 25τ)τ∆n

)(1−10τ)
∑tτ−1

i=0 mi tτ−1
∏

i=0

(1− pτ )
−imi(1−10τ)

= m
(m

e

)m
(

2e

(1− 25τ)τ∆n

)

(1±25τ)∆n
2

(1− pτ )
−(1−10τ)

∑
i imi

≤ m
(m

e

)m
(

e

(1− 25τ)τm

)(1±30τ)m

(1− pτ )
−(1−10τ)

∑
i imi

≤
(m

e

)30τm
(

(1± 50τ)

τ

)m(1±30τ)

(1− pτ )
−(1−10τ)

∑
i imi

≤ (me)100τm
(

1

τ

)m(1±30τ)

(1− pτ )
−(1−10τ)

∑
i imi ,

where the second line uses the standard approximation (k/e)k ≤ k! ≤ k(k/e)k for k ≥ 10; the third line

uses the definition of mi; the fourth line uses the definition of di along with τ < 1/100; the sixth line uses
∑tτ−1

i=0 mi = (1 ± 25)∆n/2 as shown in the calculation of the upper bound on Q; the seventh line uses

m = (1 ± τ)∆n/2; the eighth line uses ∆−1/J < τ < 1/100, and the last line uses (1 + 50τ) ≤ e50τ and

τ < 1/100.

It follows that

QR ≤ (10τ2∆n)tτ (me)
100τm

exp (−(1− 30τ)m)

(

τ(1 + τ)

∆

)(1±30τ)m(
1

τ

)m(1±30τ)

(1− pτ )
−

∑
i 3imi

≤ (10τ2∆n)tτ
(

me∆

τ

)200τm(
1

e∆

)m

(1− pτ )
−

∑
i 3imi
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≤ (10τ2∆n)tτ
(

me∆

τ

)200τm(
1

eδ

)m

e3pτ (1+10τ)
∑tτ−1

i=0 imi

≤ mtτ (eδ)−m

(

me∆

τ

)200τm

e3(1±30τ) τ∆n
2pτ

≤ mτm(eδ)−m

(

me∆

τ

)200τm

e3(1±50τ)m

≤ (eδ)−me3m
(

me∆

τ

)1000τm

=

(

e2

δ

)m

e1000τm log(me∆/τ)

≤
(

e3000τ log(m/τ)e2

δ

)m

,

where the second line uses the inequality (1+ τ) ≤ eτ ; the third line uses the inequality (1−pτ ) ≥ e−pτ (1+10τ)

which holds since τ < 1/100; the fourth line uses the following computation:

tτ−1
∑

i=0

imi = (1± 10τ)
τn

2

tτ−1
∑

i=0

idi = (1 ± 10τ)
τ∆n

2

tτ−1
∑

i=0

i(1− pτ )
i

≤ (1± 10τ)
τ∆n

2

∞
∑

i=0

i(1− pτ )
i = (1± 10τ)

τ∆n

2

1

p2τ
,

along with τ < 1/100, and the fifth line uses m = (1± τ)∆n/2 along with τ < (1+5τ)pτ and tτ < 1/τ2 < τm

which holds since m−1/J ≤ τ < 1/100. Finally, substituting τ = ∆−1/J completes the proof.

5 Concluding remarks and open problems

• We proved that the number of 1-factorizations in a d-regular graph is at least

(

(1 + o(1))
d

e2

)dn/2

,

provided that d ≥ n
2 + εn. As mentioned in the introduction, this is asymptotically best possible. It will

be very interesting to obtain a similar result for all d ≥ 2⌈n/4⌉− 1 (the existence of a 1-factorization in

this regime was proven in [5]).

• As mentioned in Remark 1.3, we obtain an explicit function (polynomial in n) for the (1+ o(1))-term in

the bound on the number of 1-factorizations. We have written such a formula with the hope that it could

be useful towards studying the behavior of typical 1-factorizations. For example, using similar bounds on

the number of Steiner triple systems as obtained by Keevash [16], Kwan [18] was recently able to study

some non-trivial properties of typical Steiner Triple Systems. Therefore, we hope that building upon

Kwan’s ideas and using our counting argument one could obtain some non-trivial properties of typical

1-factorizations. For example, can one show that a typical 1-factorization of Kn contains a rainbow

Hamiltonian path? (that is, a Hamiltonian path which uses exactly one edge from each of the perfect

matchings).

• Another very interesting direction is to study the number of 1-factorizaitons in hypergraphs. In this

setting, much less is known and every non-trivial lower bound on the number of such factorizations should

require new ideas. We are curious whether one can attack this problem using some clever reduction to

the graph setting and use our ideas for the ‘completion part’.
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