
THE COLOURING NUMBER OF INFINITE GRAPHS
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Abstract. We show that, given an infinite cardinal µ, a graph has colouring number at
most µ if and only if it contains neither of two types of subgraph. We also show that every
graph with infinite colouring number has a well-ordering of its vertices that simultaneously
witnesses its colouring number and its cardinality.

§1. Introduction

Our point of departure is a recent article of the third author [4] one of whose results
addresses infinite graphs with infinite colouring number. Let us recall this notion introduced
by Erdős and Hajnal in [2].

Definition 1.1. The colouring number colpGq of a graph G “ pV,Eq is the smallest
cardinal κ such that there exists a well-ordering ă˚ of V with

|Npvq X tw : w ă˚ vu| ă κ for all v P V ,

where Npvq is the set of neighbours of v. We call such well-orderings good.

The result of [4] is that if the colouring number of a graph G is bigger than some infinite
cardinal µ, then G contains either a Kµ, i.e., µ mutually adjacent vertices, or G contains
for each positive integer k an induced copy of the complete bipartite graph Kk,k. This
condition is not a characterisation: there are graphs, such as Kω,ω, which have small
colouring number but nevertheless include an induced Kk,k for each k.

Since having colouring number ď µ is closed not only under taking induced subgraphs but
even under taking subgraphs, it seems easier to look first for a characterisation in terms of
forbidden subgraphs. Our main result is that there is indeed a transparent characterisation
of “having colouring number ď µ” in terms of forbidden subgraphs. For some explicit
graphs called µ-obstructions, to be introduced in Definition 2.1 below, we shall prove the
following.

Theorem 1.2. Let G be a graph and let µ denote some infinite cardinal. Then the
statement colpGq ą µ is equivalent to G containing some µ-obstruction as a subgraph.

This result will also appear in the upcoming book [5] of the third author. The proof we
describe has an interesting consequence.
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Theorem 1.3. Every graph G whose colouring number is infinite possesses a good well-
ordering of length |V pGq|.

It is not hard to re-obtain the result mentioned above from our characterisation, Theo-
rem 1.2, by inspecting whether the µ-obstructions satisfy it. In fact, one can easily deduce
the following strengthening.

Theorem 1.4. If G is a graph with colpGq ą µ, where µ denotes some infinite cardinal,
then G contains either a Kµ or, for each positive integer k, an induced Kk,ω.

We will also give an example in Section 5 demonstrating that the conclusion cannot be
improved further to the presence of an induced Kω,ω. Which complete bipartite graphs
exactly one gets by this approach depends on which properties the relevant cardinals have
in the partition calculus.

For standard set-theoretical background we refer to Kunen’s textbook [6].

§2. Obstructions

Throughout this section, we fix an infinite cardinal µ. There are two kinds of µ-
obstructions relevant for the condition colpGq ą µ in Theorem 1.2. They are introduced
next.

Definition 2.1. (1) A µ-obstruction of type I is a bipartite graph H with bipartition
pA,Bq such that for some cardinal λ ě µ we have

‚ |A| “ λ, |B| “ λ`,
‚ every vertex of B has at least µ neighbours in A, and
‚ every vertex of A has λ` neighbours in B.

(2) Let κ ą µ be regular, and let G be a graph with V pGq “ κ. Define TG to be the set
of those α P κ with the following properties:

‚ cfpαq “ cfpµq
‚ The order type of Npαq X α is µ.
‚ The supremum of Npαq X α is α.

If TG is stationary in κ, then G is a µ-obstruction of type II. We also call graphs isomorphic
to such graphs µ-obstructions of type II.

Now we can directly proceed to the easier direction of Theorem 1.2.

Proposition 2.2. If a graph G has a µ-obstruction of either type as a subgraph, then
colpGq ą µ.
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Proof. Suppose first that G contains a µ-obstruction of type I, say with bipartition pA,Bq
as in Definition 2.1 above, and |A| “ λ ě µ. Assume for a contradiction that there is a good
well-ordering of G. Thus every b P B has a neighbour in A above it in that well-ordering.
For a P A, we denote by Xa the set of those neighbours of a that are below a in the
well-ordering. Hence B “

Ť

aPAXa. Since all the Xa have size less than µ, we deduce
that |B| ď λ, which is the desired contradiction.

In the second case, we may without loss of generality assume that G itself is an obstruction
of type II. Again we suppose for a contradiction that there is a good well-ordering ă˚

of V pGq. Notice that each α P TG has a neighbour β ă α such that α ă˚ β. Let
f : TG ÝÑ κ be a function sending each α to some such β. By Fodor’s Lemma, there must
be some β ă κ such that

T “ tα P TG : fpαq “ βu

is stationary. Now every element of T is a neighbour of β, and β comes after T in the
ordering ă˚, which in view of |T | “ κ ą µ contradicts our assumption that this ordering
is good. �

We say that a graph is µ-unobstructed if it has no µ-obstruction of either type as
a subgraph. To complete the proof of Theorem 1.2 we still need to show that every
µ-unobstructed graph G satisfies colpGq ď µ. This will be the objective of Sections 3 and 4.

In the remainder of this section, we prove two results asserting that in order to find an
obstruction in a given graph G it suffices to find something weaker.

Definition 2.3. A µ-barricade is bipartite graph with bipartition pA,Bq such that

‚ |A| ă |B|,
‚ and every vertex of B has at least µ neighbours in A.

Lemma 2.4. If G has a µ-barricade as a subgraph, then it also has a µ-obstruction of
type I as a subgraph.

Proof. Let H with bipartition pA,Bq be a barricade which is a subgraph of G, chosen so
that λ “ |A| is minimal. By deleting some vertices of B if necessary, we may assume that B
has cardinality λ`. Let A1 be the set of a P A for which NBpaq is of size λ`, and let B1 be
the set of elements of B with no neighbour in Ar A1. By the definition of A1, there are
at most λ edges ab with a P Ar A1 and b P B. So B rB1 is of size at most λ. It follows
that B1 has cardinality λ`. In particular, the subgraph H 1 of H on pA1, B1q is a barricade,
so by minimality of |A| we have |A1| “ λ. Since by construction every vertex of A1 has λ`

neighbours in B and hence in B1, the subgraph H 1 is a µ-obstruction of type I. �
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Definition 2.5. Let κ ą µ be regular. A graph G with set of vertices κ is said to be a
µ-ladder if there is a stationary set T such that each α P T has at least µ neighbours in α.
Also, every graph isomorphic to such a graph is regarded as a µ-ladder.

Lemma 2.6. Every graph containing a µ-ladder is µ-obstructed.

Proof. It suffices to prove that every µ-ladder is µ-obstructed. So let G with V pGq “ κ
and the stationary set T be as described in the previous definition. For each α P T we
let the sequence xαi | i ă µy enumerate the µ smallest neighbours of α in increasing order
and denote the limit point of this sequence by fpαq. Clearly we have fpαq ď α and
cf
`

fpαq
˘

“ cfpµq for all α P T .
Let us first suppose that the set

T 1 “ tα P T : fpαq ă αu

is stationary in κ. Then for some γ ă κ the set

B “ tα P T 1 : fpαq “ γu

is stationary and as |γ| ă κ “ |B| the pair pγ,Bq is a µ-barricade in G. Due to Lemma 2.4
it follows that G contains a µ-obstruction of type I.

So it remains to consider the case that

T 2 “ tα P T : fpαq “ αu

is stationary in κ. In that case we have Npαq X α “ tαi : i ă µu for all α P T 2. So TG is a
superset of T 2 and thus stationary, meaning that G is a µ-obstruction of type II. �

§3. Regular κ

In this and the next section we shall prove the harder part of Theorem 1.2, in such a
way that Theorem 1.3 is also immediate. To this end we shall show

Theorem 3.1. Let G denote an infinite graph of order κ and let µ be an infinite cardinal.
Then at least one of the following three cases occurs:

‚ G has a subgraph H with |V pHq| ă |V pGq| and colpHq ą µ.
‚ G is µ-obstructed.
‚ G has a good well-ordering of length κ exemplifying colpGq ď µ.

Suppose for a moment that we know this. To deduce Theorem 1.2 we consider any graph
with colpGq ą µ. Let G˚ be subgraph of G with colpG˚q ą µ and subject to this with
|V pG˚q| as small as possible. Then G˚ is still infinite and when we apply Theorem 3.1 to G˚

the first and third outcome are impossible, so the second one most occur. Thus G˚ and
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hence G contains a µ-obstruction, as desired. To obtain Theorem 1.3 we apply Theorem 3.1
to G with µ “ colpGq.

The proof of Theorem 3.1 itself is divided into two cases according to whether κ is
regular or singular. The former case will be treated immediately and the latter case is
deferred to the next section.

Proof of Theorem 3.1 when κ is regular. Let V pGq “ κ and consider the set

T “ tα ă κ : some β ě α has at least µ neighbours in αu .

First Case: T is not stationary in κ.

We observe that 0 R T . Let xδi | i ă κy be a strictly increasing continuous sequence of
ordinals with limit κ starting with δ0 “ 0 and such that δi R T holds for all i ă κ. Now
if for some i ă κ the restriction Gi of G to the half-open interval rδi, δi`1q has colouring
number ą µ, then the first alternative holds. Otherwise we may fix for each i ă κ a
well-ordering ăi of V pGiq that exemplifies colpGiq ď µ. The concatenation ă˚ of all these
well-orderings has length κ, so it suffices to verify that it demonstrates colpGq ď µ.

To this end, we consider any vertex x of G. Let i ă κ be the ordinal with x P Gi. The
neighbours of x preceding it in the sense of ă˚ are either in δi or they belong to Gi and
precede x under ăi. Since x ě δi and δi R T , there are less than µ neighbours of x in δi.
Also, by our choice of ăi, there are less than µ such neighbours in Gi.

Second Case: T is stationary in κ.

Let us fix for each α P T an ordinal βα ě α with |Npβαq Xα| ě µ. A standard argument
shows that the set

E “ tδ ă κ : if α P T X δ, then βα ă δu

is club in κ. Thus T X E is unbounded in κ. Let the sequence xηi | i ă κy enumerate the
members of this set in increasing order. Then for each i ă κ the ordinal ξi “ βηi is at
least ηi and smaller than ηi`1, because the latter ordinal belongs to E. In particular, each
of the equations ηi “ ξj and ξi “ ξj is only possible if i “ j. Thus it makes sense to define

vα “

$

’

’

’

&

’

’

’

%

α if α ‰ ηi, ξi for all i ă κ ,

ξi if α “ ηi for some i ă κ ,

ηi if α “ ξi for some i ă κ .

The map π sending each α ă κ to vα is a permutation of κ. If α belongs to the stationary
set T X E, then vα “ ξi for some i ă κ and therefore vα has at least µ neighbours in ηi
and all of these are of the form vβ with β ă α. So π gives an isomorphism between G and
a µ-ladder, and in the light of Lemma 2.6 we are done. �
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§4. Singular κ

Next we consider the case that κ is a singular cardinal. The form of our argument will
be recognisable to anyone who is familiar with Shelah’s singular compactness theorem (see
for instance [7]). We will not, however, assume such familiarity.

Throughout this section, sets of size at least µ will be referred to as big and sets of
size less than µ will be said to be small. We will often consider Ď-increasing sequences
xXi | i ă γy of sets for which each NXipvq is small. In such cases we would like to conclude
that also NŤ

iăγ Xi
pvq is small. We can do this as long as γ and µ have different cofinalities.

So we fix the notation $ for the rest of the argument to mean the least infinite cardinal
whose cofinality is not equal to cfpµq. Thus $ is either ω or ω1.

Definition 4.1. A set X of vertices of a graph G is robust if for any v P V pGqrX the
neighbourhood NXpvq is small.

Remark 4.2. Let xXi | i ă $y be a Ď-increasing sequence of robust sets. Then
Ť

iă$Xi

is also robust.

Lemma 4.3. Let G be a µ-unobstructed graph and let X be an uncountable set of vertices
of G. Then there is a robust set Y of vertices of G which includes X and is of the same
cardinality.

Proof. Let λ be the cardinality of X. We build a Ď-increasing sequence xXi | i ă $y of
sets recursively by letting X0 “ X, taking Xi`1 “ Xi Y tv P V pGq : NXipvq is bigu in the
successor step and X` “

Ť

iă`Xi for ` a limit ordinal. Finally we set Y “
Ť

iă$Xi. Since
by construction Y is robust and includes X, it remains to prove that |Y | “ λ.

To do this, we prove by induction on i that each Xi is of size λ. The cases where i is 0
or a limit are clear, so suppose i “ j ` 1. By the induction hypothesis, |Xj| “ λ. If |Xj`1|

were greater than λ, then the induced bipartite subgraph on pXj, Xj`1 rXjq would be a
µ-barricade, which is impossible by Lemma 2.4. Thus |Xj`1| “ λ, as required. �

Remark 4.4. Lemma 4.3 also holds when X is countably infinite, but the proof is more
involved and so we have omitted it (unlike in the above proof, we need that there are no
type II obstructions).

Proof of Theorem 3.1 when κ is singular. If G is µ-obstructed then we are done, so we
suppose that it is not. Let us fix any bijective enumeration xvi | i ă κy of the set of vertices
and a continuous increasing sequence xκi | i ă cfpκqy of cardinals with limit κ, where
κ0 ą cfpκq is uncountable.
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We begin by building a family xXi,j | i ă cfpκq, j ă $y of robust sets of vertices of G,
with Xi,j of size κi. This will be done by nested recursion on i and j. When we come to
choose Xi,j , we will already have chosen all Xi1,j1 with j1 ă j or with both j1 “ j and i1 ă i.
Whenever we have just selected such a set Xi,j , we fix immediately an arbitrary enumeration
xxki,j | k ă κiy of this set. We impose the following conditions on this construction:

(1 ) tvk : k ă κiu Ď Xi,0 for all i ă cfpκq.
(2 )

Ť

i1ďi,j1ďj Xi1,j1 Ď Xi,j for all i ă cfpκq and j ă $.
(3 ) txki1,j : k ă κiu Ď Xi,j`1 for all i ă i1 ă cfpκq and j ă $.

These three conditions specify some collection of κi-many vertices which must appear
in Xi,j. By Lemma 4.3 we can extend this collection to a robust set of the same size and
we take such a set as Xi,j. This completes the description of our recursive construction.

The purpose of condition (3 ) is to ensure that we have

(4 ) X`,j Ď
Ť

iă`Xi,j`1 whenever ` ă cfpκq is a limit ordinal and j ă $.

Indeed, for any x P X`,j there is some index k ă κ` with x “ xk`,j , owing to the continuity
of the κi there is some ordinal i ă ` with k ă κi, and condition (3 ) yields x P Xi,j`1 for
any such i.

Now for i ă cfpκq the set Xi “
Ť

jă$Xi,j is robust by Remark 4.2. We claim that for
any limit ordinal ` ă cfpκq we have X` “

Ť

iă`Xi. That each Xi with i ă ` is a subset
of X` is clear by condition (2 ) above. The other inclusion follows by taking the union over
all j ă $ in (4 ).

Each vertex must lie in some set Xi by condition (1 ) above, and it follows from what
we have just shown that the least such i can never be a limit. That is, X0 together with
all the sets Xi`1 rXi gives a partition of the vertex set. If the induced subgraph of G
on any of these sets has colouring number ą µ, then the first alternative of Theorem 3.1
holds. Otherwise all of these induced subgraphs have good well-orderings. Since each Xi is
robust, the well-ordering obtained by concatenating all of these well-orderings is also good,
so that the third alternative of Theorem 3.1 holds. �

§5. A necessary condition

In this section we show that we can now easily deduce Theorem 1.4. We shall rely on
the following result of Dushnik, Erdős, and Miller from [1].

Theorem 5.1. For each infinite cardinal λ we have λ ÝÑ pλ, ωq. This means that if the
edges of a complete graph on λ vertices are coloured red and green, then there is either a
red clique of order λ, or a green clique of order ω.
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By restricting the attention to the red graph, one realises that this means that every
infinite graph G either contains a clique of order |V pGq| or an infinite independent set.
When used in this formulation, we refer to the above theorem as DEM.

Proof of Theorem 1.4. By Theorem 1.2 it remains to show that every graph with an
obstruction of type I or II has a Kµ subgraph or an induced Kk,ω.

First we check this for obstructions pA,Bq of type I. By DEM, we may assume that the
neighbourhood Npbq of every b P B contains an independent set Yb of size k. Let f be the
function mapping b to Yb. There must be a k-element subset Y of A such that |f´1rY s| “ |B|.
By DEM again, we may assume that f´1rY s contains an infinite independent set B1.
Then GrB1 Y Y s is isomorphic to Kk,ω.

Hence it remains to show that every obstruction G of type II has a Kµ subgraph or
an induced Kk,ω. For every α P TG, we may assume by DEM that Npαq X α contains an
independent set Yα of size k. For each i with 1 ď i ď k, let fi : T Ñ κ be the function
mapping α to the i-th smallest element of Yα. By Fodor’s Lemma, there is some stationary
T 1 Ď TG at which f1 is constant, and some stationary T 2 Ď T 1 at which f2 is constant.
Proceeding like this, we find some stationary S Ď TG at which all the fi are constant. Let X
be the set of these k constants. By DEM, we may assume that S contains a countably
infinite independent set I. Then GrX Y Is is isomorphic to Kk,ω. �

In the following example, we show that if we replace ‘Kk,ω’ by ‘Kω,ω’ in Theorem 1.4,
then it becomes false.

Example 5.2. Let A be the set of finite 0-1-sequences, and let B be the set of 0-1-sequences
with length ω. We define a bipartite graph G with vertex set AY B by adding for each
a P A and b P B the edge ab if a is an initial segment of b. Since G is bipartite, it cannot
contain a Kω. It cannot contain a Kω,ω either, since any two vertices in B have only finitely
many neighbours in common. On the other hand, colpGq ą ℵ0, since G is an ℵ0-barricade.

Remark 5.3. The proof of Theorem 1.4 actually shows something slightly stronger: in
order to have colpGq ď µ it is enough to forbid Kµ and a Kk,µ`-subgraph where the k
vertices on the left are independent. If µ “ ω, then DEM implies it is enough to forbid
Kµ and an induced Kk,µ` . On the other hand if κ “ 2ω and µ “ ω1, it may happen that
the bipartite graph contains neither a Kµ nor an induced Kk,ω1 by Sierpiński’s theorem
from [8], which says that

2ω XÝÑ pω1q
2
2 .

Our characterisation simplifies the study of many questions about colouring numbers,
since they can often be reduced to questions about the properties of our obstructions.
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However there are some cases where our results do not appear to be helpful. For example,
Halin showed in [3] that if λ is infinite and a graph G has colouring number greater than λ,
then G includes a subdivision of Kλ. But this result is more closely tied to the structure
of graphs with no subdivision of Kλ than of those with colouring number less than λ, and
our methods appear not to provide a simplification of the proof.
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