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INCOMPATIBLE INTERSECTION PROPERTIES

PETER FRANKL AND ANDREY KUPAVSKII

Abstract. Let F ⊂ 2[n] be a family in which any three sets have non-empty intersection and any
two sets have at least 38 elements in common. The nearly best possible bound |F| ≤ 2n−2 is proved.
We believe that 38 can be replaced by 3 and provide a simple-looking conjecture that would imply
this.

1. Introduction

Let [n] := {1, . . . , n} be the standard n-element set and 2[n] its power set. Subsets of 2[n] are
called families.

Definition 1. For positive integers r, t, where r ≥ 2, a family F ⊂ 2[n] is called r-wise t-
intersecting, if |F1 ∩ . . . ∩ Fr| ≥ t for all F1, . . . , Fr ∈ F .

In the case t = 1, instead of 1-intersecting the term intersecting is used. Arguably the simplest
result in extremal set theory is the following.

Proposition 2. If F ⊂ 2[n] is 2-wise intersecting then

|F| ≤ 2n−1. (1)

The above result is a small part of the classical Erdős-Ko-Rado paper [2]. Since the family

F0 := {F ⊂ 2[n] : 1 ∈ F} is r-wise intersecting for every r ≥ 2, (1) is the best possible bound for
r ≥ 3 as well. The family F0 is usually called trivially intersecting.

Let us call a family non-trivial if
⋂

F∈F F = ∅. The following result is one of the early gems in
extremal set theory.

Theorem 3 (Brace-Daykin [1]). Suppose that F ⊂ 2[n] is r-wise intersecting and non-trivial. Then

|F| ≤ r + 2

2r
2n−1. (2)

Since r + 2 < 2r for r ≥ 3 and (r + 2)2−r → 0 as r tends to infinity, (2) is much stronger than
(1). The following example shows that it is best possible for n ≥ r + 1.

B(1, r) := {B ⊂ [n] : |B ∩ [r + 1] ≥ r}.
Let us mention that for n ≤ r there is no non-trivial r-wise intersecting family. For a simple proof
of (2) cf. [4].

Definition 4. For a family F ⊂ 2[n] and an arbitrary integer r ≥ 2 let t(F , r) denote the largest
integer t such that |F1 ∩ . . . ∩ Fr| ≥ t for all F1, . . . , Fr ∈ F .

One can easily check that t(F , r + 1) ≤ max{0, t(F , r) − 1} for non-trivial families. Therefore,
t(F , 2) ≥ 2 for every non-trivial 3-wise intersecting family F . On the other hand, we believe that
assuming t(F , 2) ≥ 3 leads to stronger bounds on the size of the family.
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Conjecture 1. Suppose that F ⊂ 2[n] is both 3-wise 1-intersecting and 2-wise 3-intersecting. Then

|F| ≤ 2n−2. (3)

If F is trivial, e.g., if 1 ∈ F for all F ∈ F , then the 2-wise 3-intersecting property implies that
F(1) := {F \ {1} : F ∈ F} ⊂ 2[2,n] is 2-wise intersecting. Applying (1) to F(1) yields

|F| = |F(1)| ≤ 2n−2.

This shows that in proving (3) one might assume that F is non-trivial. From (2) we obtain
|F| ≤ 5

162
n = 5

4 · 2n−2, which falls short of (3).
Example. Let t ≥ 2 be a fixed integer and suppose for convenience that n > t, n + t is odd.

Define

T (n, t) :=
{

{1} ∪ T : T ⊂ [2, n], |T | ≥ n− 1 + t

2

}

.

Claim 5. The following hold:

(i) T (n, t) is 3-wise intersecting and 2-wise (t+ 1)-intersecting.

(ii) |T (n, t)| = ∑

i≥n−1+t

2

(

n−1
i

)

= (1− o(1))2n−2 as n → ∞.

We leave the easy proof to the reader. This claim shows that even for t large one cannot expect
something much smaller than 2n−2.

We were unable to prove Conjecture 1, but established (3) with 3 replaced by 38.

Theorem 6. Suppose that F ⊂ 2[n] is 3-wise intersecting and 2-wise 38-intersecting. Then (3)
holds.

A family F ⊂ 2[n] is called an up-set if for all F ∈ F , F ⊂ H ⊂ [n] implies H ∈ F . Every family
generates a unique up-set containing it. Moreover, if it is r-wise t-intersecting then the same holds
for the corresponding up-set. Therefore, unless otherwise stated, we shall tacitly assume that the
families we consider are up-sets.

Let us mention that the Katona Theorem [7] determines the maximum size k(n, t) of 2-wise
t-intersecting families for all n ≥ t ≥ 1. The construction is analogous to T (n, t) and shows

k(n, t) = (1− o(1))2n−1 for t fixed and n → ∞.

That is, for each of the two intersecting properties from Theorem 6, we have a lower bound of
the form (1 + o(1))2n−1 for the largest size of the family satisfying the property. By the lemma
of Kleitman [8], two up-sets F1,F2 ⊂ 2n of sizes 2n−α1 , 2n−α2 , respectively, satisfy |F1 ∩ F2| ≥
2n−α1−α2 . This immediately gives us a lower bound of (1+o(1))2n−2 for the largest size of the family
satisfying the conditions of Theorem 6. Thus, one may say that, in a sense, 3-wise intersecting
and 2-wise t-intersecting properties are as incompatible for large families as any two monotone
increasing properties may be.

For a family F , let ∂(F) be its immediate shadow:

∂F := {G : ∃F ∈ F , G ⊂ F, |F \G| = 1}.
Define also σ(F) := F ∪ ∂F .

It is important to note that [n] ∈ F for every non-empty up-set F ⊂ 2[n]. This implies
( [n]
n−1

)

⊂ ∂F
whence both ∂F and σ(F) are non-trivial.

Conjecture 2. Suppose that F ⊂ 2[n] is 3-wise intersecting. Then

|σ(F)| ≥ 2|F|. (4)

In the next section we show that Conjecture 2 implies Conjecture 1.
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2. Preliminaries

There is a natural partial order A ≺ B defined for sets of the same size. Suppose that A =
{a1, . . . , ap}, B = {b1, . . . , bp} are distinct sets with a1 < . . . < ap and b1 < . . . < bp. We write
A ≺ B iff ai ≤ bi for all 1 ≤ i ≤ p.

Definition 7. The family F ⊂ 2[n] is called initial if A ≺ B and B ∈ F imply A ∈ F .

Extend the above partial order to 2[n] by putting A ≺ B if B ⊂ A. We call this order the
shifting/inclusion order. Erdős, Ko and Rado [2] defined an operation on families of sets (called
shifting) that maintains the r-wise t-intersecting property (cf. [4] for the proof). Since repeated
application of shifting always produces an initial family, we shall always assume that the families
in question are initial.

Proposition 8 ([3]). If F ⊂ 2[n] is 3-wise t-intersecting and initial, then, for every F ∈ F , there
exists an integer ℓ ≥ 0 such that

|F ∩ [3ℓ+ t]| ≥ 2ℓ+ t. (5)

The following result is proven in [5].

Theorem 9 ([5]). Suppose that F ⊂ 2[n] is such that for any F ∈ F we have |F ∩ [3ℓ+2]| ≥ 2ℓ+2
for some ℓ ≥ 0. Then

|∂(F)| ≥ 2|F|. (6)

Corollary 10. Suppose that ∅ 6= F ⊂ 2[n] is 3-wise 2-intersecting. Then σ(F) > 2|F|.
Proof. Proposition 8 implies that F satisfies the conditions of Theorem 9. Now the statement
follows from (6) and [n] /∈ ∂F . �

Definition 11. Suppose that A,B, C ⊂ 2[n] satisfy |A∩B∩C| ≥ t for all A ∈ A, B ∈ B and C ∈ C.
Then we say that A,B, C are cross-t-intersecting.

Let us recall the following recent result.

Theorem 12 ([6]). Suppose that A,B, C ⊂ 2[n] are non-trivial and cross-1-intersecting. Then

|A|+ |B|+ |C| < 2n. (7)

The reason for our interest in ∂F and σ(F) is explained by the following simple statement.

Observation 13. If A,B, C ⊂ 2[n] are cross-t-intersecting, t ≥ 2, then σ(A),B, C are cross-(t− 1)-
intersecting.

We finish this section with a short proof of the fact that Conjecture 2 implies Conjecture 1.

Conjecture 2 implies Conjecture 1. Consider F as in the statement of Conjecture 1. Then σ(F) is
2-wise intersecting, and thus |σ(F)| ≤ 2n−1. Therefore, by Conjecture 2, |F| ≤ 1

2 |σ(F)| ≤ 2n−2. �

3. Proof of Theorem 6

Consider a shifted family F ⊂ 2[n] as in the statement of Theorem 6. For S ⊂ [s], define

F(S, [s]) := {F \ S : F ∈ F , F ∩ [s] = S}.
We consider two cases depending on whether the subsets not containing 1 have a strong or weak

presence in F . As a criterion, let us fix the set

H0 := {[2, 8] ∪ {10, 11, 13, 14, 16, 17 . . .} ∪ [n].
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Note that for all t, 3 ≤ t ≤ n/3,
|H0 ∩ [3t]| = 2t+ 1. (8)

Case 1. H0 ∈ F. Put w := 54. We are going to partition F according to F ∩ [w]. Set

H̃ := H0 ∩ [w] and define

G0 := {G ⊂ [w] : |G| ≥ 33, G 6= H̃}.
It is easy to verify by computer-aided computation that

|G0| <
1

13
2w. (9)

Define T0 := [w + 1, w + 7] ∪ {w + 9, w + 10, w + 12, w + 13, . . .} ∩ [n]. Now we can define

G1 := {G ⊂ [w] : G /∈ G0, T0 /∈ F(G, [w])}.
Here we invoke an old result of the first author [3, Lemma 2] which asserts that for any G ∈ G1

|F(G, [w])| <
(

√
5− 1

2

)8
2n−w <

1

46
2n−w. (10)

Finally, set G2 := 2[w] \ (G0 ∪ G1). By construction, the 37-element set H̃ is in G2. Below we are
going to prove the following.

Proposition 14. G2 is 3-wise intersecting.

Let us first show how Proposition 14 implies |F| < 2n−2. First note that the pairwise 38-
intersecting property and |G| ≤ 37 for all G ∈ G2 imply that for any G ∈ G2 the family F(G, [w])
is 2-wise intersecting. Consequently, |F(G, [w])| ≤ 1

22
n−w.

Partition F according to F ∩ [w]: Fi := {F ∈ F : F ∩ [w] ∈ Gi}. We have

|F| = |F0|+ |F1|+ |F2| = |G0| · 2n−w + |G1| ·
1

46
2n−w + |G2| ·

1

2
2n−w. (11)

By H̃ ∈ G2 and Proposition 14, we may apply the Brace–Daykin Theorem and infer

|G2| ≤
5

16
2n−w. (12)

Since the coefficient in front of |G1| is the smallest, we get an upper bound for the RHS for (11) by
making |G0| = 1

132
w, |G2| = 5

162
w and |G1| =

(

1− 1
13 − 5

16

)

2w. We obtain

|F| ≤
( 1

13
+

5

32
+
(

1− 1

13
− 5

16

) 1

46

)

2n < 2n−2,

as desired.

Proof of Proposition 14. Take first F,G,H ∈ G2 \ {H0} and suppose that F ∩ G ∩ H = ∅. By
definition, T0 ∈ F(S, [w]) for S = F,G and H. Using shiftedness, we can obtain that

T ′ := [w + 1, w + 7] ∪ {w + 8, w + 10, w + 11, w + 13, . . .} ∈ F(G, [w]) and

T ′′ := [w + 1, w + 7] ∪ {w + 8, w + 9, w + 11, w + 12, . . .} ∈ F(H, [w]).

The intersection of T ′, T ′′ and T0 is [w+1, w+7]. Since |F |+ |G|+ |H| ≤ 3 ·33 = 99 < 2 ·54−7, for
each i ∈ [7] we can replace w + i with an element [w] in one of F ∪ T0, G ∪ T ′,H ∪ T ′′ and strictly
decrease the common intersection of the three sets. Repeating it for each i ∈ [7], by shiftedness we
get that there are three sets in F that have empty common intersection, a contradiction.

Now suppose that H = H̃ = H0 ∩ [w]. Then F(H, [w]) contains H ′ := H ∩ [w + 1, n] =
{w+1, w+2, w+4, w+5, w+7, w+8, . . .}. Taking T0 ∈ F(F, [w]) and T ′′ ∈ F(G, [w]), respectively,
we get that T ′′ ∩T0 ∩H ′ = {w+1, w+2, w+4, w+5, w+7}. To arrive at the same contradiction,
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we shift these 5 elements into [w], decreasing the intersection of T0 ∪ F, T ′′ ∪G and H0 after each

shift. Since |F |+ |G| + |H̃| ≤ 33 + 33 + 37 = 2 · 54− 5, this is possible. �

Case 2. H0 /∈ F. This condition implies that, for all S ⊂ [2, 7] and F ∈ F(S, [7]), there exists
ℓ such that

|F ∩ [8, 3ℓ+ 9]| ≥ 2ℓ+ 2. (13)

Indeed, it is true for S = [2, 7] since H0 ∩ [8, n] is the unique maximal set in the shifting/inclusion
order that does not have this property, and for S′ ⊂ S we have F(S, [7]) ⊃ F(S′, [7]). The equations
(13) and (6), in turn, imply that, for each S ⊂ [2, 7], we have |∂(F(S, [7]))| ≥ 2|F(S, [7])|.

For a two-element set {xi, yi}, let us consider the following four ordered triplets:

(∅, {xi}, {xi, yi}),
({xi}, {yi}, {yi} ),

({yi}, {xi, yi}, ∅ ),

({xi, yi}, ∅, {xi} ).

Note that all four subsets of {xi, yi} occur once in each position (column). Also, the sum of sizes
of the subsets in each triplet is always 3 and the intersection of the subsets is empty. Suppose that
{x1, x2, x3, y1, y2, y3} = [2, 7] and let (Ai, Bi, Ci), i ∈ [3], be some of the above triples. We associate
with them a big triple

({1} ∪A1 ∪A2 ∪A3, {1} ∪B1 ∪B2 ∪B3, C1 ∪ C2 ∪C3).

Let us note that, for each big triple, the sum of the sizes of the subsets in it is 11. Altogether, we
constructed 4 × 4 × 4 = 64 triples, where each subset of [7] containing 1 appears exactly once in
the first and second position and each subset of [2, 7] appears exactly once in the third position.
Moreover, the intersection of the three subsets is empty for each triple.

For a big triple (A,B,C) we consider the three families F(D) := F(D, [7]), where D = A,B, or
C. Recall that σ(F) = F ∪ ∂F .

Proposition 15. The families F(A), F(B), F(C) are cross 3-wise 4-intersecting. The families
σ(F(A)), σ(F(B)), σ(F(C)) are cross 3-wise intersecting.

Proof. For each triple (A,B,C), either there are three elements in [2, 7] that are contained in only
one set among A,B,C, or one such element and one element which is not contained in A ∪B ∪C.
In either case, if F ∈ F(A), G ∈ F(B), H ∈ F(C) satisfy |F ∩ G ∩ H| ≤ 3, then we can do (at
most) three shifts and replace each element that belongs to the intersection in one set with one of
the “low-degree” elements, thus not creating new common intersection. By shiftedness, we will get
F ′, G′,H ′ that belong to F but whose common intersection is empty.

The second statement obviously follows from the first one. �

Now, if F(D) is non-empty then σ(F(D) is non-trivial, where D = A,B,C. In that case, by (7)

|σ(F(A)| + |σ(F(B))| + |σ(F(C)| ≤ 2n−7. (14)

On the other hand, if one of the families above is empty, the sum of cardinalities of the two
remaining ones is at most 2n−7 since they are cross-intersecting (due to the 2-wise 38-intersecting
property). Note that 1 /∈ C implies that F(C) is 3-wise 2-intersecting. In view of Corollary 10, we
infer |σ(F(C))| ≥ 2|F(C)|. Consequently, in all cases we have

|F(A)| + |F(B)|+ 2|F(C)| ≤ 2n−7.

Summing over the 64 big triples gives 2|F| = 2
∑

D⊂[7] |F(D)| ≤ 64 · 2n−7, that is, |F| ≤ 2n−2.
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