INCOMPATIBLE INTERSECTION PROPERTIES

PETER FRANKL AND ANDREY KUPAVSKII

Abstract

Let $\mathcal{F} \subset 2^{[n]}$ be a family in which any three sets have non-empty intersection and any two sets have at least 38 elements in common. The nearly best possible bound $|\mathcal{F}| \leq 2^{n-2}$ is proved. We believe that 38 can be replaced by 3 and provide a simple-looking conjecture that would imply this.

1. Introduction

Let $[n]:=\{1, \ldots, n\}$ be the standard n-element set and $2^{[n]}$ its power set. Subsets of $2^{[n]}$ are called families.
Definition 1. For positive integers r, t, where $r \geq 2$, a family $\mathcal{F} \subset 2^{[n]}$ is called r-wise t intersecting, if $\left|F_{1} \cap \ldots \cap F_{r}\right| \geq t$ for all $F_{1}, \ldots, F_{r} \in \mathcal{F}$.

In the case $t=1$, instead of 1 -intersecting the term intersecting is used. Arguably the simplest result in extremal set theory is the following.
Proposition 2. If $\mathcal{F} \subset 2^{[n]}$ is 2-wise intersecting then

$$
\begin{equation*}
|\mathcal{F}| \leq 2^{n-1} \tag{1}
\end{equation*}
$$

The above result is a small part of the classical Erdős-Ko-Rado paper [2]. Since the family $\mathcal{F}_{0}:=\left\{F \subset 2^{[n]}: 1 \in F\right\}$ is r-wise intersecting for every $r \geq 2$, (11) is the best possible bound for $r \geq 3$ as well. The family \mathcal{F}_{0} is usually called trivially intersecting.

Let us call a family non-trivial if $\bigcap_{F \in \mathcal{F}} F=\emptyset$. The following result is one of the early gems in extremal set theory.

Theorem 3 (Brace-Daykin [1]). Suppose that $\mathcal{F} \subset 2^{[n]}$ is r-wise intersecting and non-trivial. Then

$$
\begin{equation*}
|\mathcal{F}| \leq \frac{r+2}{2^{r}} 2^{n-1} \tag{2}
\end{equation*}
$$

Since $r+2<2^{r}$ for $r \geq 3$ and $(r+2) 2^{-r} \rightarrow 0$ as r tends to infinity, (21) is much stronger than (11). The following example shows that it is best possible for $n \geq r+1$.

$$
\mathcal{B}(1, r):=\{B \subset[n]: \mid B \cap[r+1] \geq r\} .
$$

Let us mention that for $n \leq r$ there is no non-trivial r-wise intersecting family. For a simple proof of (2) cf. [4].
Definition 4. For a family $\mathcal{F} \subset 2^{[n]}$ and an arbitrary integer $r \geq 2$ let $t(\mathcal{F}, r)$ denote the largest integer t such that $\left|F_{1} \cap \ldots \cap F_{r}\right| \geq t$ for all $F_{1}, \ldots, F_{r} \in \mathcal{F}$.

One can easily check that $t(\mathcal{F}, r+1) \leq \max \{0, t(\mathcal{F}, r)-1\}$ for non-trivial families. Therefore, $t(\mathcal{F}, 2) \geq 2$ for every non-trivial 3 -wise intersecting family \mathcal{F}. On the other hand, we believe that assuming $t(\mathcal{F}, 2) \geq 3$ leads to stronger bounds on the size of the family.

[^0]Conjecture 1. Suppose that $\mathcal{F} \subset 2^{[n]}$ is both 3 -wise 1 -intersecting and 2 -wise 3 -intersecting. Then

$$
\begin{equation*}
|\mathcal{F}| \leq 2^{n-2} \tag{3}
\end{equation*}
$$

If \mathcal{F} is trivial, e.g., if $1 \in F$ for all $F \in \mathcal{F}$, then the 2 -wise 3 -intersecting property implies that $\mathcal{F}(1):=\{F \backslash\{1\}: F \in \mathcal{F}\} \subset 2^{[2, n]}$ is 2 -wise intersecting. Applying (1) to $\mathcal{F}(1)$ yields

$$
|\mathcal{F}|=|\mathcal{F}(1)| \leq 2^{n-2}
$$

This shows that in proving (3) one might assume that \mathcal{F} is non-trivial. From (21) we obtain $|\mathcal{F}| \leq \frac{5}{16} 2^{n}=\frac{5}{4} \cdot 2^{n-2}$, which falls short of (3)).

Example. Let $t \geq 2$ be a fixed integer and suppose for convenience that $n>t, n+t$ is odd. Define

$$
\mathcal{T}(n, t):=\left\{\{1\} \cup T: T \subset[2, n],|T| \geq \frac{n-1+t}{2}\right\}
$$

Claim 5. The following hold:
(i) $\mathcal{T}(n, t)$ is 3-wise intersecting and 2-wise $(t+1)$-intersecting.
(ii) $|\mathcal{T}(n, t)|=\sum_{i \geq \frac{n-1+t}{2}}\binom{n-1}{i}=(1-o(1)) 2^{n-2}$ as $n \rightarrow \infty$.

We leave the easy proof to the reader. This claim shows that even for t large one cannot expect something much smaller than 2^{n-2}.

We were unable to prove Conjecture 1, but established (3) with 3 replaced by 38.
Theorem 6. Suppose that $\mathcal{F} \subset 2^{[n]}$ is 3 -wise intersecting and 2 -wise 38 -intersecting. Then (3) holds.

A family $\mathcal{F} \subset 2^{[n]}$ is called an up-set if for all $F \in \mathcal{F}, F \subset H \subset[n]$ implies $H \in \mathcal{F}$. Every family generates a unique up-set containing it. Moreover, if it is r-wise t-intersecting then the same holds for the corresponding up-set. Therefore, unless otherwise stated, we shall tacitly assume that the families we consider are up-sets.

Let us mention that the Katona Theorem [7] determines the maximum size $k(n, t)$ of 2 -wise t-intersecting families for all $n \geq t \geq 1$. The construction is analogous to $\mathcal{T}(n, t)$ and shows

$$
k(n, t)=(1-o(1)) 2^{n-1} \text { for } t \text { fixed and } n \rightarrow \infty
$$

That is, for each of the two intersecting properties from Theorem 6, we have a lower bound of the form $(1+o(1)) 2^{n-1}$ for the largest size of the family satisfying the property. By the lemma of Kleitman [8], two up-sets $\mathcal{F}_{1}, \mathcal{F}_{2} \subset 2^{n}$ of sizes $2^{n-\alpha_{1}}, 2^{n-\alpha_{2}}$, respectively, satisfy $\left|\mathcal{F}_{1} \cap \mathcal{F}_{2}\right| \geq$ $2^{n-\alpha_{1}-\alpha_{2}}$. This immediately gives us a lower bound of $(1+o(1)) 2^{n-2}$ for the largest size of the family satisfying the conditions of Theorem 6. Thus, one may say that, in a sense, 3 -wise intersecting and 2 -wise t-intersecting properties are as incompatible for large families as any two monotone increasing properties may be.

For a family \mathcal{F}, let $\partial(\mathcal{F})$ be its immediate shadow:

$$
\partial \mathcal{F}:=\{G: \exists F \in \mathcal{F}, G \subset F,|F \backslash G|=1\}
$$

Define also $\sigma(\mathcal{F}):=\mathcal{F} \cup \partial \mathcal{F}$.
It is important to note that $[n] \in \mathcal{F}$ for every non-empty up-set $\mathcal{F} \subset 2^{[n]}$. This implies $\binom{[n]}{n-1} \subset \partial \mathcal{F}$ whence both $\partial \mathcal{F}$ and $\sigma(\mathcal{F})$ are non-trivial.

Conjecture 2. Suppose that $\mathcal{F} \subset 2^{[n]}$ is 3 -wise intersecting. Then

$$
\begin{equation*}
|\sigma(\mathcal{F})| \geq 2|\mathcal{F}| \tag{4}
\end{equation*}
$$

In the next section we show that Conjecture 2 implies Conjecture 1 .

2. Preliminaries

There is a natural partial order $A \prec B$ defined for sets of the same size. Suppose that $A=$ $\left\{a_{1}, \ldots, a_{p}\right\}, B=\left\{b_{1}, \ldots, b_{p}\right\}$ are distinct sets with $a_{1}<\ldots<a_{p}$ and $b_{1}<\ldots<b_{p}$. We write $A \prec B$ iff $a_{i} \leq b_{i}$ for all $1 \leq i \leq p$.
Definition 7. The family $\mathcal{F} \subset 2^{[n]}$ is called initial if $A \prec B$ and $B \in \mathcal{F}$ imply $A \in \mathcal{F}$.
Extend the above partial order to $2^{[n]}$ by putting $A \prec B$ if $B \subset A$. We call this order the shifting/inclusion order. Erdős, Ko and Rado [2] defined an operation on families of sets (called shifting) that maintains the r-wise t-intersecting property (cf. [4] for the proof). Since repeated application of shifting always produces an initial family, we shall always assume that the families in question are initial.
Proposition 8 (3]). If $\mathcal{F} \subset 2^{[n]}$ is 3 -wise t-intersecting and initial, then, for every $F \in \mathcal{F}$, there exists an integer $\ell \geq 0$ such that

$$
\begin{equation*}
|F \cap[3 \ell+t]| \geq 2 \ell+t \tag{5}
\end{equation*}
$$

The following result is proven in [5].
Theorem 9 ([5]). Suppose that $\mathcal{F} \subset 2^{[n]}$ is such that for any $F \in \mathcal{F}$ we have $|F \cap[3 \ell+2]| \geq 2 \ell+2$ for some $\ell \geq 0$. Then

$$
\begin{equation*}
|\partial(\mathcal{F})| \geq 2|\mathcal{F}| \tag{6}
\end{equation*}
$$

Corollary 10. Suppose that $\emptyset \neq \mathcal{F} \subset 2^{[n]}$ is 3-wise 2-intersecting. Then $\sigma(\mathcal{F})>2|\mathcal{F}|$.
Proof. Proposition 8 implies that \mathcal{F} satisfies the conditions of Theorem 9. Now the statement follows from (6) and $[n] \notin \partial \mathcal{F}$.
Definition 11. Suppose that $\mathcal{A}, \mathcal{B}, \mathcal{C} \subset 2^{[n]}$ satisfy $|A \cap B \cap C| \geq t$ for all $A \in \mathcal{A}, B \in \mathcal{B}$ and $C \in \mathcal{C}$. Then we say that $\mathcal{A}, \mathcal{B}, \mathcal{C}$ are cross-t-intersecting.

Let us recall the following recent result.
Theorem 12 ([6]). Suppose that $\mathcal{A}, \mathcal{B}, \mathcal{C} \subset 2^{[n]}$ are non-trivial and cross-1-intersecting. Then

$$
\begin{equation*}
|\mathcal{A}|+|\mathcal{B}|+|\mathcal{C}|<2^{n} . \tag{7}
\end{equation*}
$$

The reason for our interest in $\partial \mathcal{F}$ and $\sigma(\mathcal{F})$ is explained by the following simple statement.
Observation 13. If $\mathcal{A}, \mathcal{B}, \mathcal{C} \subset 2^{[n]}$ are cross-t-intersecting, $t \geq 2$, then $\sigma(\mathcal{A}), \mathcal{B}, \mathcal{C}$ are cross- $(t-1)$ intersecting.

We finish this section with a short proof of the fact that Conjecture 2 implies Conjecture 1 .
Conjecture 包 implies Conjecture 1. Consider \mathcal{F} as in the statement of Conjecture 1. Then $\sigma(\mathcal{F})$ is 2-wise intersecting, and thus $|\sigma(\mathcal{F})| \leq 2^{n-1}$. Therefore, by Conjecture 2, $|\mathcal{F}| \leq \frac{1}{2}|\sigma(\mathcal{F})| \leq 2^{n-2}$.

3. Proof of Theorem 6

Consider a shifted family $\mathcal{F} \subset 2^{[n]}$ as in the statement of Theorem 6 For $S \subset[s]$, define

$$
\mathcal{F}(S,[s]):=\{F \backslash S: F \in \mathcal{F}, F \cap[s]=S\} .
$$

We consider two cases depending on whether the subsets not containing 1 have a strong or weak presence in \mathcal{F}. As a criterion, let us fix the set

$$
H_{0}:=\{[2,8] \cup\{10,11,13,14,16,17 \ldots\} \cup[n] .
$$

Note that for all $t, 3 \leq t \leq n / 3$,

$$
\begin{equation*}
\left|H_{0} \cap[3 t]\right|=2 t+1 \tag{8}
\end{equation*}
$$

Case 1. $H_{0} \in \mathcal{F}$. Put $w:=54$. We are going to partition \mathcal{F} according to $F \cap[w]$. Set $\tilde{H}:=H_{0} \cap[w]$ and define

$$
\mathcal{G}_{0}:=\{G \subset[w]:|G| \geq 33, G \neq \tilde{H}\}
$$

It is easy to verify by computer-aided computation that

$$
\begin{equation*}
\left|\mathcal{G}_{0}\right|<\frac{1}{13} 2^{w} \tag{9}
\end{equation*}
$$

Define $T_{0}:=[w+1, w+7] \cup\{w+9, w+10, w+12, w+13, \ldots\} \cap[n]$. Now we can define

$$
\mathcal{G}_{1}:=\left\{G \subset[w]: G \notin \mathcal{G}_{0}, T_{0} \notin \mathcal{F}(G,[w])\right\}
$$

Here we invoke an old result of the first author [3, Lemma 2] which asserts that for any $G \in \mathcal{G}_{1}$

$$
\begin{equation*}
|\mathcal{F}(G,[w])|<\left(\frac{\sqrt{5}-1}{2}\right)^{8} 2^{n-w}<\frac{1}{46} 2^{n-w} \tag{10}
\end{equation*}
$$

Finally, set $\mathcal{G}_{2}:=2^{[w]} \backslash\left(\mathcal{G}_{0} \cup \mathcal{G}_{1}\right)$. By construction, the 37 -element set \tilde{H} is in \mathcal{G}_{2}. Below we are going to prove the following.

Proposition 14. \mathcal{G}_{2} is 3 -wise intersecting.
Let us first show how Proposition 14 implies $|\mathcal{F}|<2^{n-2}$. First note that the pairwise 38intersecting property and $|G| \leq 37$ for all $G \in \mathcal{G}_{2}$ imply that for any $G \in \mathcal{G}_{2}$ the family $\mathcal{F}(G,[w])$ is 2 -wise intersecting. Consequently, $|\mathcal{F}(G,[w])| \leq \frac{1}{2} 2^{n-w}$.

Partition \mathcal{F} according to $F \cap[w]: \mathcal{F}_{i}:=\left\{F \in \mathcal{F}: F \cap[w] \in \mathcal{G}_{i}\right\}$. We have

$$
\begin{equation*}
|\mathcal{F}|=\left|\mathcal{F}_{0}\right|+\left|\mathcal{F}_{1}\right|+\left|\mathcal{F}_{2}\right|=\left|\mathcal{G}_{0}\right| \cdot 2^{n-w}+\left|\mathcal{G}_{1}\right| \cdot \frac{1}{46} 2^{n-w}+\left|\mathcal{G}_{2}\right| \cdot \frac{1}{2} 2^{n-w} \tag{11}
\end{equation*}
$$

By $\tilde{H} \in \mathcal{G}_{2}$ and Proposition 14, we may apply the Brace-Daykin Theorem and infer

$$
\begin{equation*}
\left|\mathcal{G}_{2}\right| \leq \frac{5}{16} 2^{n-w} \tag{12}
\end{equation*}
$$

Since the coefficient in front of $\left|\mathcal{G}_{1}\right|$ is the smallest, we get an upper bound for the RHS for (11) by making $\left|\mathcal{G}_{0}\right|=\frac{1}{13} 2^{w},\left|\mathcal{G}_{2}\right|=\frac{5}{16} 2^{w}$ and $\left|\mathcal{G}_{1}\right|=\left(1-\frac{1}{13}-\frac{5}{16}\right) 2^{w}$. We obtain

$$
|\mathcal{F}| \leq\left(\frac{1}{13}+\frac{5}{32}+\left(1-\frac{1}{13}-\frac{5}{16}\right) \frac{1}{46}\right) 2^{n}<2^{n-2}
$$

as desired.
Proof of Proposition 14. Take first $F, G, H \in \mathcal{G}_{2} \backslash\left\{H_{0}\right\}$ and suppose that $F \cap G \cap H=\emptyset$. By definition, $T_{0} \in \mathcal{F}(S,[w])$ for $S=F, G$ and H. Using shiftedness, we can obtain that

$$
\begin{aligned}
T^{\prime} & :=[w+1, w+7] \cup\{w+8, w+10, w+11, w+13, \ldots\} \in \mathcal{F}(G,[w]) \quad \text { and } \\
T^{\prime \prime} & :=[w+1, w+7] \cup\{w+8, w+9, w+11, w+12, \ldots\} \in \mathcal{F}(H,[w])
\end{aligned}
$$

The intersection of $T^{\prime}, T^{\prime \prime}$ and T_{0} is $[w+1, w+7]$. Since $|F|+|G|+|H| \leq 3 \cdot 33=99<2 \cdot 54-7$, for each $i \in[7]$ we can replace $w+i$ with an element $[w]$ in one of $F \cup T_{0}, G \cup T^{\prime}, H \cup T^{\prime \prime}$ and strictly decrease the common intersection of the three sets. Repeating it for each $i \in[7]$, by shiftedness we get that there are three sets in \mathcal{F} that have empty common intersection, a contradiction.

Now suppose that $H=\tilde{H}=H_{0} \cap[w]$. Then $\mathcal{F}(H,[w])$ contains $H^{\prime}:=H \cap[w+1, n]=$ $\{w+1, w+2, w+4, w+5, w+7, w+8, \ldots\}$. Taking $T_{0} \in \mathcal{F}(F,[w])$ and $T^{\prime \prime} \in \mathcal{F}(G,[w])$, respectively, we get that $T^{\prime \prime} \cap T_{0} \cap H^{\prime}=\{w+1, w+2, w+4, w+5, w+7\}$. To arrive at the same contradiction,
we shift these 5 elements into $[w]$, decreasing the intersection of $T_{0} \cup F, T^{\prime \prime} \cup G$ and H_{0} after each shift. Since $|F|+|G|+|\tilde{H}| \leq 33+33+37=2 \cdot 54-5$, this is possible.

Case 2. $H_{0} \notin \mathcal{F}$. This condition implies that, for all $S \subset[2,7]$ and $F \in \mathcal{F}(S,[7])$, there exists ℓ such that

$$
\begin{equation*}
|F \cap[8,3 \ell+9]| \geq 2 \ell+2 \tag{13}
\end{equation*}
$$

Indeed, it is true for $S=[2,7]$ since $H_{0} \cap[8, n]$ is the unique maximal set in the shifting/inclusion order that does not have this property, and for $S^{\prime} \subset S$ we have $\mathcal{F}(S,[7]) \supset \mathcal{F}\left(S^{\prime},[7]\right)$. The equations (13) and (6), in turn, imply that, for each $S \subset[2,7]$, we have $|\partial(\mathcal{F}(S,[7]))| \geq 2|\mathcal{F}(S,[7])|$.

For a two-element set $\left\{x_{i}, y_{i}\right\}$, let us consider the following four ordered triplets:

$$
\begin{aligned}
& \left(\emptyset, \quad\left\{x_{i}\right\}, \quad\left\{x_{i}, y_{i}\right\}\right), \\
& \left(\left\{x_{i}\right\}, \quad\left\{y_{i}\right\}, \quad\left\{y_{i}\right\} \quad\right), \\
& \left(\left\{y_{i}\right\}, \quad\left\{x_{i}, y_{i}\right\}, \emptyset \quad\right), \\
& \left(\left\{x_{i}, y_{i}\right\}, \emptyset, \quad\left\{x_{i}\right\} \quad\right) .
\end{aligned}
$$

Note that all four subsets of $\left\{x_{i}, y_{i}\right\}$ occur once in each position (column). Also, the sum of sizes of the subsets in each triplet is always 3 and the intersection of the subsets is empty. Suppose that $\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}=[2,7]$ and let $\left(A_{i}, B_{i}, C_{i}\right), i \in[3]$, be some of the above triples. We associate with them a big triple

$$
\left(\{1\} \cup A_{1} \cup A_{2} \cup A_{3},\{1\} \cup B_{1} \cup B_{2} \cup B_{3}, C_{1} \cup C_{2} \cup C_{3}\right) .
$$

Let us note that, for each big triple, the sum of the sizes of the subsets in it is 11. Altogether, we constructed $4 \times 4 \times 4=64$ triples, where each subset of [7] containing 1 appears exactly once in the first and second position and each subset of $[2,7]$ appears exactly once in the third position. Moreover, the intersection of the three subsets is empty for each triple.

For a big triple (A, B, C) we consider the three families $\mathcal{F}(D):=\mathcal{F}(D,[7])$, where $D=A, B$, or C. Recall that $\sigma(\mathcal{F})=\mathcal{F} \cup \partial \mathcal{F}$.
Proposition 15. The families $\mathcal{F}(A), \mathcal{F}(B), \mathcal{F}(C)$ are cross 3 -wise 4 -intersecting. The families $\sigma(\mathcal{F}(A)), \sigma(\mathcal{F}(B)), \sigma(\mathcal{F}(C))$ are cross 3 -wise intersecting.
Proof. For each triple (A, B, C), either there are three elements in $[2,7]$ that are contained in only one set among A, B, C, or one such element and one element which is not contained in $A \cup B \cup C$. In either case, if $F \in \mathcal{F}(A), G \in \mathcal{F}(B), H \in \mathcal{F}(C)$ satisfy $|F \cap G \cap H| \leq 3$, then we can do (at most) three shifts and replace each element that belongs to the intersection in one set with one of the "low-degree" elements, thus not creating new common intersection. By shiftedness, we will get $F^{\prime}, G^{\prime}, H^{\prime}$ that belong to \mathcal{F} but whose common intersection is empty.

The second statement obviously follows from the first one.
Now, if $\mathcal{F}(D)$ is non-empty then $\sigma(\mathcal{F}(D)$ is non-trivial, where $D=A, B, C$. In that case, by (7)

$$
\begin{equation*}
\mid \sigma\left(\mathcal { F } (A) | + | \sigma (\mathcal { F } (B)) | + | \sigma \left(\mathcal{F}(C) \mid \leq 2^{n-7}\right.\right. \tag{14}
\end{equation*}
$$

On the other hand, if one of the families above is empty, the sum of cardinalities of the two remaining ones is at most 2^{n-7} since they are cross-intersecting (due to the 2 -wise 38 -intersecting property). Note that $1 \notin C$ implies that $\mathcal{F}(C)$ is 3 -wise 2 -intersecting. In view of Corollary 10, we infer $|\sigma(\mathcal{F}(C))| \geq 2|\mathcal{F}(C)|$. Consequently, in all cases we have

$$
|\mathcal{F}(A)|+|\mathcal{F}(B)|+2|\mathcal{F}(C)| \leq 2^{n-7} .
$$

Summing over the 64 big triples gives $2|\mathcal{F}|=2 \sum_{D \subset[7]}|\mathcal{F}(D)| \leq 64 \cdot 2^{n-7}$, that is, $|\mathcal{F}| \leq 2^{n-2}$.

References

[1] A. Brace and D. E. Daykin, A finite set covering theorem, Bulletin of the Australian Mathematical Society 5 (1971), N2, 197-202.
[2] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, The Quarterly Journal of Mathematics, 12 (1961) N1, 313-320.
[3] P. Frankl, Families of finite sets satisfying an intersection condition, Bull. Austral. Math. Soc. 15 (1976), N1, 73-79.
[4] P. Frankl, The shifting technique in extremal set theory, Surveys in combinatorics 123 (1987), 81-110.
[5] P. Frankl, Shadows and shifting, Graphs and Combinatorics 7 (1991), 23-29.
[6] P. Frankl, Some exact results for multiply intersecting families, to appear
[7] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964), 329-337.
[8] D.J. Kleitman, Families of Non-Disjoint Subsets, J. Combin. Theory 1 (1966), 153-155.
Rényi Institute, Budapest, Hungary; Email: peter.frankl@gmail.com
University of Birmingham, Moscow Institute of Physics and Technology and Caucasus Mathematical Center, Adyghe State University; Email: kupavskii@ya.ru.

[^0]: The research of the second author was partially supported by the EPSRC grant no. EP/N019504/1.

