arXiv:1808.01229v1 [math.CO] 3 Aug 2018

INCOMPATIBLE INTERSECTION PROPERTIES

PETER FRANKL AND ANDREY KUPAVSKII

ABSTRACT. Let F C 2" be a family in which any three sets have non-empty intersection and any
two sets have at least 38 elements in common. The nearly best possible bound |F| < 2"~2 is proved.
We believe that 38 can be replaced by 3 and provide a simple-looking conjecture that would imply
this.

1. INTRODUCTION

Let [n] := {1,...,n} be the standard n-element set and 2/ its power set. Subsets of 2" are
called families.

Definition 1. For positive integers r,t, where r > 2, a family F C 2 is called r-wise t-
intersecting, if |F1 N...NF.| >t for all Fy,...,F, € F.

In the case t = 1, instead of l-intersecting the term intersecting is used. Arguably the simplest
result in extremal set theory is the following.

Proposition 2. If F C 2I" is 2-wise intersecting then
F| <27t (1)

The above result is a small part of the classical Erdés-Ko-Rado paper [2]. Since the family
Fo:={F C ol .1 e F } is r-wise intersecting for every r > 2, () is the best possible bound for
r > 3 as well. The family Fqy is usually called trivially intersecting.

Let us call a family non-trivial if (. F = 0. The following result is one of the early gems in
extremal set theory.

Theorem 3 (Brace-Daykin [1]). Suppose that F C 2[n] s r-wise intersecting and non-trivial. Then
< T 2 )
Since r + 2 < 2" for r > 3 and (r +2)27" — 0 as r tends to infinity, (2)) is much stronger than
(D). The following example shows that it is best possible for n > r + 1.
B(1,r):={BC[n]:|BN[r+1]>r}.
Let us mention that for n < r there is no non-trivial r-wise intersecting family. For a simple proof

of @) cf. [4].

Definition 4. For a family F C 2" and an arbitrary integer r > 2 let t(F,r) denote the largest
integer t such that |Fy N ...NE,| >t for all Fy,...,F, € F.

One can easily check that t(F,r + 1) < max{0,t(F,r) — 1} for non-trivial families. Therefore,
t(F,2) > 2 for every non-trivial 3-wise intersecting family F. On the other hand, we believe that
assuming t(F,2) > 3 leads to stronger bounds on the size of the family.
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Conjecture 1. Suppose that F C 2/ is both 3-wise 1-intersecting and 2-wise 3-intersecting. Then
|F| < 2m 2. (3)

If F is trivial, e.g., if 1 € F for all F € F, then the 2-wise 3-intersecting property implies that
F(1):={F\{1}: F € F} c 212" is 2-wise intersecting. Applying () to F(1) yields

IF = FQ) <2772

This shows that in proving (B]) one might assume that F is non-trivial. From (2] we obtain

|F| < 22" =2 .22 which falls short of ().
Example. Let t > 2 be a fixed integer and suppose for convenience that n > t, n + ¢ is odd.
Define -
T(n,t) := {{1} UT:T C [2,n],|T| > ”T}

Claim 5. The following hold:
(i) T (n,t) is 3-wise intersecting and 2-wise (t + 1)-intersecting.
(i) |T(n,t)] = Ziz'rLleth ("71) =(1-0(1))2""2 as n — oco.

7

We leave the easy proof to the reader. This claim shows that even for ¢ large one cannot expect
something much smaller than 272,
We were unable to prove Conjecture [I but established (38]) with 3 replaced by 38.

Theorem 6. Suppose that F C 2" is 3-wise intersecting and 2-wise 38-intersecting. Then (33}
holds.

A family F c 2" is called an up-set if for all F € F, F C H C [n] implies H € F. Every family
generates a unique up-set containing it. Moreover, if it is r-wise t-intersecting then the same holds
for the corresponding up-set. Therefore, unless otherwise stated, we shall tacitly assume that the
families we consider are up-sets.

Let us mention that the Katona Theorem [7] determines the maximum size k(n,t) of 2-wise
t-intersecting families for all n > ¢ > 1. The construction is analogous to T (n,t) and shows

k(n,t) = (1 — 0(1))2" for t fixed and n — oo.

That is, for each of the two intersecting properties from Theorem [6] we have a lower bound of
the form (1 + o(1))2"~! for the largest size of the family satisfying the property. By the lemma
of Kleitman [§], two up-sets Fi,Fo C 2" of sizes 2"~ 2"~ %2 respectively, satisfy |F; N Fa| >
2n—a1—2_ This immediately gives us a lower bound of (1+0(1))2"~2 for the largest size of the family
satisfying the conditions of Theorem Thus, one may say that, in a sense, 3-wise intersecting
and 2-wise t-intersecting properties are as incompatible for large families as any two monotone
increasing properties may be.
For a family F, let O(F) be its immediate shadow:

OF :={G:3F € F,G C F,|F\ G| =1}.
Define also o(F) := FUOJF.

It is important to note that [n] € F for every non-empty up-set F C 27} This implies (n@l) C OF
whence both OF and o(F) are non-trivial.

Conjecture 2. Suppose that F C 2" is 3-wise intersecting. Then
o (F)| = 2|F]. (4)

In the next section we show that Conjecture 2l implies Conjecture [II
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2. PRELIMINARIES

There is a natural partial order A < B defined for sets of the same size. Suppose that A =
{a1,...,ap}, B = {b1,...,by} are distinct sets with a; < ... < a, and by < ... < b,. We write
A< Biffa; <b;forall 1 <i<np.

Definition 7. The family F C 2" is called initial if A < B and B € F imply A € F.

Extend the above partial order to 2" by putting A < B if B ¢ A. We call this order the
shifting/inclusion order. Erdés, Ko and Rado [2] defined an operation on families of sets (called
shifting) that maintains the r-wise ¢-intersecting property (cf. [4] for the proof). Since repeated
application of shifting always produces an initial family, we shall always assume that the families
in question are initial.

Proposition 8 ([3]). If F C 2" is 3-wise t-intersecting and initial, then, for every F € F, there
exists an integer £ > 0 such that
|FN[30+t]| >20+4t. (5)

The following result is proven in [5].

Theorem 9 ([5]). Suppose that F C 2" is such that for any F € F we have |F N[30+2]| > 2042
for some £ > 0. Then
0(F)] = 2|F]. (6)

Corollary 10. Suppose that () # F 2" is 3-wise 2-intersecting. Then o(F) > 2|F|.

Proof. Proposition B implies that F satisfies the conditions of Theorem [0l Now the statement
follows from (@) and [n] ¢ OF. O

Definition 11. Suppose that A,B,C C 2" satisfy |[ANBNC| >t for all Ac A,B € B and C €C.
Then we say that A, B,C are cross-t-intersecting.

Let us recall the following recent result.
Theorem 12 ([6]). Suppose that A,B,C C 2" are non-trivial and cross-1-intersecting. Then
|A| + |B| +|C] < 2. (7)
The reason for our interest in OF and o(F) is explained by the following simple statement.

Observation 13. If A,B,C C 2" are cross-t-intersecting, t > 2, then o(A),B,C are cross-(t —1)-
intersecting.

We finish this section with a short proof of the fact that Conjecture 2l implies Conjecture [I1
Conjecture [4 implies Conjecture [1l. Consider F as in the statement of Conjecture[Il Then o(F) is
2-wise intersecting, and thus |o(F)| < 2"~!. Therefore, by Conjecture@ |F| < 1|o(F)| <272 O

3. PROOF OF THEOREM
Consider a shifted family F 2" as in the statement of Theorem [Bl For S C [s], define
F(S,[s]) ={F\S:FeF,Fn[s]=S}.

We consider two cases depending on whether the subsets not containing 1 have a strong or weak
presence in F. As a criterion, let us fix the set

Hy = {[2,8] U{10,11,13,14,16,17...} U [n].
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Note that for all ¢, 3 <t <n/3,

|Ho N [3t]| = 2t + 1. (8)
Case 1. Hy € F. Put w := 54. We are going to partition F according to F N [w]. Set
H := Hy N [w] and define

Go:={G C [w]:|G|>33,G+#H}.
It is easy to verify by computer-aided computation that
1 w
Gol < 52" ©

Define Ty := [w+ 1L, w + 7| U{w +9,w + 10,w + 12, w + 13,...} N [n]. Now we can define

g1 := {G C [w] -G §7_f Go, T Qé ./."(G, [w])}
Here we invoke an old result of the first author [3, Lemma 2] which asserts that for any G € G;
\/g_ 1\8 n—w 1 n—w
—) 2 < 2

Finally, set Go := 2“1\ (Go U G1). By construction, the 37-element set H is in Go. Below we are
going to prove the following.

FG )] < ( (10)

Proposition 14. G, is 3-wise intersecting.

Let us first show how Proposition [ implies |F| < 2”72, First note that the pairwise 38-
intersecting property and |G| < 37 for all G € Gy imply that for any G € Gy the family F(G, [w])
is 2-wise intersecting. Consequently, |F(G, [w])| < 12"~

Partition F according to F' N [w]: F; :={F € F: FN[w] € G;}. We have

1 1
1= 1Fol + [F1l + |72 = [Gol - 277 + |G - 15277 + ]G - 52777 (11)
By H € G, and Proposition [[4, we may apply the Brace-Daykin Theorem and infer
5
< =2n7 12
|Ga| < 16 (12)

Since the coefficient in front of |G;| is the smallest, we get an upper bound for the RHS for (III) by
making |Go| = 2%, [Go| = 2% and |G| = (1 — & — 2)2%. We obtain
1 5 1 _9
<(=+24+(1-—-2)=)on <"
1< (gt J6)2 <2
as desired.

Proof of Proposition [T Take first F,G,H € Gy \ {Hp} and suppose that FNGNH = (. By
definition, Ty € F (S, [w]) for S = F,G and H. Using shiftedness, we can obtain that

T = [w+1,w+7U{w+8w+10,w+ 11,w +13,...} € F(G,[w]) and
T":=w+1Lw+ 7T U{w+8w+9,w+11,w+12,...} € F(H,[w]).

The intersection of 7/, 7" and Tp is [w+ 1,w+7]. Since |F|+|G|+|H| <3-33 =99 < 2-54—7, for
each i € [7] we can replace w + i with an element [w] in one of F U Ty, GUT', H UT" and strictly
decrease the common intersection of the three sets. Repeating it for each i € [7], by shiftedness we
get that there are three sets in F that have empty common intersection, a contradiction.

Now suppose that H = H = Hy N [w]. Then F(H,[w]) contains H' := H N [w+ 1,n] =
{w+1,w+2,w+4,w+5w+7,w+8,...}. Taking Ty € F(F,[w]) and T” € F(G, [w]), respectively,
we get that T"NToNH' = {w+1,w+2,w+4,w+5,w+ 7}. To arrive at the same contradiction,
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we shift these 5 elements into [w], decreasing the intersection of 7o U F, 7" U G and Hy after each
shift. Since |F| + |G|+ |H| < 33+ 33 + 37 =2-54 — 5, this is possible. O

Case 2. Hy ¢ F. This condition implies that, for all S C [2,7] and F € F(S,[7]), there exists
¢ such that
|F N [8,3¢+9) >2¢+2. (13)

Indeed, it is true for S = [2,7] since Hy N [8,n] is the unique maximal set in the shifting/inclusion
order that does not have this property, and for S” C S we have F(5,[7]) D F(S’,[7]). The equations
([@3) and (@), in turn, imply that, for each S C [2,7], we have |9(F (S, [7]))| > 2|F(S,[7])]-

For a two-element set {x;,y;}, let us consider the following four ordered triplets:

(0, {zi}, {mi,yi}),
(zih, {wits {wid )
(v}, Az wih, 0 )
({zi,yi}, 0, {zi} ).

Note that all four subsets of {x;,y;} occur once in each position (column). Also, the sum of sizes
of the subsets in each triplet is always 3 and the intersection of the subsets is empty. Suppose that
{z1, 22, 23,Y1,Y2,y3} = [2,7] and let (A;, B;, C;), i € [3], be some of the above triples. We associate
with them a big triple

({1} UAiUAy UAg,{l} UBiUByUB;3, C UC, UCg).

Let us note that, for each big triple, the sum of the sizes of the subsets in it is 11. Altogether, we
constructed 4 x 4 x 4 = 64 triples, where each subset of [7] containing 1 appears exactly once in
the first and second position and each subset of [2,7] appears exactly once in the third position.
Moreover, the intersection of the three subsets is empty for each triple.

For a big triple (A, B,C) we consider the three families F (D) := F(D,[7]), where D = A, B, or
C. Recall that o(F) = FUOF.

Proposition 15. The families F(A), F(B), F(C) are cross 3-wise 4-intersecting. The families
o(F(A)), o(F(B)), o(F(C)) are cross 3-wise intersecting.

Proof. For each triple (A, B, (), either there are three elements in [2,7] that are contained in only
one set among A, B, C, or one such element and one element which is not contained in AU BU C.
In either case, if F € F(A), G € F(B), H € F(C) satisty |[FFNG N H| < 3, then we can do (at
most) three shifts and replace each element that belongs to the intersection in one set with one of
the “low-degree” elements, thus not creating new common intersection. By shiftedness, we will get
F',G', H' that belong to F but whose common intersection is empty.

The second statement obviously follows from the first one. O
Now, if (D) is non-empty then o(F (D) is non-trivial, where D = A, B, C. In that case, by (7
|o(F(A)] + o (F(B)| +|o(F(O) < 2" (14)

On the other hand, if one of the families above is empty, the sum of cardinalities of the two
remaining ones is at most 2”77 since they are cross-intersecting (due to the 2-wise 38-intersecting
property). Note that 1 ¢ C implies that F(C) is 3-wise 2-intersecting. In view of Corollary [I0] we
infer |o(F(C))| > 2|F(C)|. Consequently, in all cases we have
[F(A)| +[F(B)| +2[F(C) <27,
Summing over the 64 big triples gives 2|7| =23 7 [F(D)| < 64 2"=7 that is, | F| < 2"2.
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