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LARGE CLIQUES IN HYPERGRAPHS WITH FORBIDDEN

SUBSTRUCTURES

ANDREAS F. HOLMSEN

ABSTRACT. A result due to Gyárfás, Hubenko, and Solymosi (answering a ques-
tion of Erdős) states that if a graph G on n vertices does not contain K2,2 as an
induced subgraph yet has at least c

(

n

2

)

edges, then G has a complete subgraph on

at least c
2

10
n vertices. In this paper we suggest a “higher-dimensional” analogue

of the notion of an induced K2,2 which allows us to generalize their result to k-
uniform hypergraphs. Our result also has an interesting consequence in discrete
geometry. In particular, it implies that the fractional Helly theorem can be derived
as a purely combinatorial consequence of the colorful Helly theorem.

1. INTRODUCTION

Among the classical problems in extremal graph theory are the Turán type ex-

tremal problems. They ask for the maximum number of edges ex(n,H) in a graph
on n vertices provided it does not contain some fixed graph H as a subgraph. In
the case when H = Km, the complete graph on m vertices, the answer is given by
Turan’s theorem [22], which also characterizes the extremal graphs which obtain
the maximum ex(n,Km) for all n and m. More generally, if the chromatic number
χ(H) ≥ 3, we have ex(n,H) = (1 − 1

χ(H)−1
)
(

n

2

)

+ o(n2). This is the funda-
mental Erdős–Stone–Simonovits theorem [7, 8]. While their result also holds for
bipartite H , it only tells us that ex(n,H) = o(n2), which is less satisfactory since
stronger estimates exist. For instance, the Kővari–Sós–Turán theorem [19] states
that for the complete bipartite graph Ks,t we have ex(n,Ks,t) < cs,tn

2− 1

s . There
are many long-standing unsolved questions in this area and we refer the reader to
the extensive survey [10] for more information and further references.

Recently, Loh, Tait, Timmons, and Zhou [20] introduced a new and natural line
of investigations related to the Turán type problems. For a pair of graphs H and
F , they proposed the problem of determining the maximum number of edges in a
graph on n vertices, subject to the condition that we simultaneously forbid H as a
subgraph and F as an induced subgraph. One of their main results [20, Theorem
1.1] addresses the case when H = Kr and F = Ks,t, where they obtain the same
asymptotic upper bound as in the Kővari-Sós-Turán theorem (with a different con-
stant, now depending on r, s, and t). The case s = t = 2 is interesting in its own
right, and is closely related to the following result due to Gyárfás, Hubenko, and
Solymosi [11].
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Theorem (Gyárfás-Hubenko-Solymosi). Let G be a graph on n vertices and at

least c
(

n

2

)

edges. If G does not contain K2,2 as an induced subgraph, then ω(G) ≥
c2

10
n.

Here ω(G) denotes the maximum number of vertices in a clique contained in G.
In the aforementioned paper by Loh et al., they also give an extension the Gyárfás–
Hubenko–Solymosi Theorem to the case when the forbidden induced subgraph is
K2,t [20, Theorem 1.3].

The goal of this paper is to extend the Gyárfás–Hubenko–Solymosi theorem
in another direction, more specifically, for k-uniform hypergraphs. Throughout
the paper we use the following standard notation and terminology. For a positive
integer k we let [k] denote the set {1, . . . , k}. For a finite set S we let

(

S

k

)

denote
the set of all k-tuples (i.e. k-element subsets) of S. A k-uniform hypergraph H =
(V,E) consists of a finite set of vertices V and a set of edges E ⊂

(

V

k

)

. A subset
S ⊂ V forms a clique in H if

(

S

k

)

⊂ E, and we let ω(H) denote the maximum
number of vertices in a clique in H .

In order to avoid using ceiling and floor functions in calculations, we extend the
binomial coefficient as the continuous convex function

(

x

k

)

=

{

x(x−1)···(x−k+1)
k!

x ≥ k − 1

0 x < k − 1.

Results. We start by giving a new proof of the Gyárfás–Hubenko–Solymosi theo-
rem which has the advantage of producing a quantitative improvement.

Theorem 1.1. Let G be a graph on n vertices and at least α
(

n

2

)

edges. If G does

not contain K2,2 as an induced subgraph, then ω(G) ≥ (1−
√
1− α)2n.

Remark. It is interesting to note that if G is a chordal graph on n vertices and
α
(

n

2

)

edges, then ω(G) ≥ (1 −
√
1− α)n, which is best possible. (This is a result

due to Katchalski and Abbot [1], and was also shown in [11].) The appearance
of the factor (1 −

√
1− α) in our new bound seems to be a coincidence, and the

problem of determining the optimal linear factor in the general case of no induced
K2,2, even for specific values of α, remains an open, although some progress has
been made in [12].

The main advantage of our new proof of the Gyárfás–Hubenko–Solymosi the-
orem is that it can be extended to k-uniform hypergraphs. This is interesting be-
cause it has implications in discrete geometry and combinatorial topology, more
specifically, with respect to the colorful and fractional versions of Helly’s theorem
[4, 5, 9, 14, 15, 16, 17]. This connection will be discussed further in Section 4.

Let H = (V,E) be a k-uniform hypergraph. We call the set M =
(

V

k

)

\E the set
of missing edges of H . The following definition extends the notion of an induced
K2,2 in a graph in several ways.

Definition. Let H be a k-uniform hypergraph and m ≥ k an integer. A family
{τ1, . . . , τm} ⊂ M is called a complete m-tuple of missing edges if

(1) τi ∩ τj = ∅ for all i 6= j, and
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(2) {t1, . . . , tm} is a clique in H for all ti ∈ τi and all i ∈ [m].

Remark. Note that for m = k, condition (2) simply says that {t1, . . . , tk} is an
edge in H for every choice t1 ∈ τ1, . . . , tk ∈ τk. In the case of graphs (k = 2), a
complete m-tuple of missing edges is equivalent to an induced K2(m), that is, the
complete multipartite graph on m vertex classes each of size two. However, for
k > 2, a complete m-tuple of missing edges should not be thought of as an induced
hypergraph since the definition only speaks about edges containing at most one
vertex from each τi.

For a k-uniform hypergraph H and m ≥ k, let cm(H) denote the number of
cliques on m vertices in H . In particular, ck(H) denotes the number of edges in H .
We may now state our main result.

Theorem 1.2. For any m ≥ k ≥ 2 and α ∈ (0, 1), there exists a constant β =
β(α, k,m) > 0 with the following property: Let H be a k-uniform hypergraph

on n vertices and cm(H) ≥ α
(

n

m

)

. If H does not contain a complete m-tuple of

missing edges, then ω(H) ≥ βn.

Outline of paper. In section 2 we give the new proof of the Gyárfás-Hubenko-
Solymosi theorem. This proof contains all the main ideas needed for establishing
Theorem 1.2, which will be done in section 3. Finally, in section 4 we review the
(topological) colorful Helly theorem and the (topological) fractional Helly theorem
and show how these are related via Theorem 1.2.

2. IMPROVING THE GYÁRFÁS-HUBENKO-SOLYMOSI THEOREM

Here we prove Theorem 1.1. Let G = (V,E) be a graph with |V | = n and
|E| ≥ α

(

n

2

)

. Recall that the missing edges are the elements of M =
(

V

2

)

\ E.
Let us suppose ω(G) ≤ βn, where β = (1 −

√
1− α)2, and that G does not

contain K2,2 as an induced subgraph. Notice that for our choice of β, we have

(α− β) = 2
√
1− α

√

β.

We start by fixing a vertex v and making some observations about its neighbor-
hood Nv = {u ∈ V : uv ∈ E} and the induced subgraph Gv = G[Nv]. The
assumption that G does not contain an induced K2,2 implies that for every pair of
(vertex) disjoint missing edges {ē1, ē2} in Gv there exists another missing edge
ē3 which has one vertex in common with ē1 and one with ē2. Letting mv denote
the total number of missing edges in Gv, and µv denote the maximum number of
pairwise disjoint missing edges in Gv, we obtain

mv ≥ µv +

(

µv

2

)

=

(

µv + 1

2

)

.

Note that the vertices in Gv not covered by a maximal mathcing of missing edges
must form a clique and that ω(Gv) ≤ βn− 1, which implies

µv + 1 ≥ |Nv| − βn+ 3

2
.

Summing over all v ∈ V and using
∑ |Nv|

2
= |E| ≥ α

(

n

2

)

, we have
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∑

(µv + 1) ≥ α

(

n

2

)

− β
n2

2
+

3n

2

= (α− β)
n2

2
+ (3− α)

n

2

≥
√
1− α

√

βn2 + n.

By Jensen’s inequality, we get

∑

mv ≥
∑

(

µv + 1

2

)

≥ n

( 1
n

∑

(µv + 1)

2

)

≥ n

(
√
1− α

√
βn + 1

2

)

≥ (1− α)

(

n

2

)

βn.

Since the total number of missing edges in G is at most (1 − α)
(

n

2

)

, by the
pigeon-hole principle, there is a missing edge ē and a subset of vertices S ⊂ V ,
with |S| ≥ βn, such that ē is in the neigborhood of every vertex in S. There can not
be a missing edge contained in S, since together with ē this would form an induced
K2,2. Therefore S forms a clique which implies ω(G) ≥ βn. �

3. EXTENDING TO HYPERGRAPHS

We start by generalizing the two key steps from the proof in the previous section.
The case m = k of the following lemma was used implicitly in the proof of [18,
Theorem 2.2].

Lemma 3.1. Let H = (V,E) be a k-uniform hypergraph and let m ≥ k. If H does

not contain a complete m-tuple of missing edges, then any subset S ⊂ V contains

at least
(

m

k

)−1( 1

k
(|S|−ω(H))

k

)

missing edges of H .

Proof. We may assume |S| > ω(H), otherwise there is nothing to prove, so there-
fore S contains at least one missing edge. Let τ1, . . . , τt be a maximal matching of
missing edges contained in S. Since S \ (τ1 ∪ · · · ∪ τt) contains no missing edges,
we have

kt = |τ1 ∪ · · · ∪ τt| ≥ |S| − ω(H).

Using the hypothesis that H has no complete m-tuple of missing edges, it fol-
lows that for every I ∈

(

[t]
m

)

there is J ∈
(

I

k

)

and a missing edge τ ∈ M such that
|τ ∩ τj | = 1 for all j ∈ J . Since this particular missing edge can appear in this way
for at most

(

t−k

m−k

)

distinct m-tuples of [t], it follows that S contains at least
(

t

m

)

(

t−k

m−k

) =

(

t

k

)

(

m

k

)

distinct missing edges. �
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In the proof of Theorem 1.2 we will iteratively build up a set of missing edges
(eventually ending up in a complete m-tuple of missing edges or a clique). This
iterative process is defined by the following.

Lemma 3.2. Let H = (V,E) be a k-uniform hypergraph on n vertices with

ω(H) ≤ (c/2)n, and suppose H does not contain a complete m-tuple of miss-

ing edges. The following holds for any i ≥ 2 and for all sufficiently large n: Given

a family Fi ⊂
(

V

i

)

with |Fi| ≥ c
(

n

i

)

, there exists a family Fi−1 ⊂
(

V

i−1

)

and a

missing edge τ of H such that

(1) |Fi−1| ≥
(

c
12km

)k ( n

i−1

)

, and

(2) σ ∪ {t} ∈ Fi for all σ ∈ Fi−1 and all t ∈ τ .

Proof. For every σ ∈
(

V

i−1

)

define the set Nσ = {x ∈ V : σ ∪ {x} ∈ Fi}. We want
to lower bound the size of the set

X = {(σ, τ) : σ ∈
(

V

i−1

)

, τ ∈ M ∩
(

Nσ

k

)

}.
By Lemma 3.1 and Jensen’s inequality, we get

|X| ≥
(

m

k

)−1
∑

σ∈( V

i−1)

(

1
k
(|Nσ| − (c/2)n)

k

)

≥
(

m

k

)−1(
n

i− 1

)(

(

n

i−1

)−1 1
k

∑

σ∈( V

i−1)
(|Nσ| − (c/2)n)

k

)

.

Using
∑

σ∈( V

i−1)
|Nσ| = i|Fi| ≥ ic

(

n

i

)

and
(

n

i

)

> (n−i)
i

(

n

i−1

)

, we get

|X| >
(

m

k

)−1(
n

i− 1

)(

c
2k
n− ci

k

k

)

.

Since the term ci
k

is a constant which does not depend on n, it follows that for all
sufficiently large n (depending only on c, i, and k), we get

|X| > 1

2

(

m

k

)−1(
n

i− 1

)(

c
2k
n

k

)

≥
( c

12km

)k
(

n

i− 1

)(

n

k

)

.

By averaging, there exists a missing edge τ ∈ M such that τ ⊂ Nσ for at least
|X|
|M |

distinct σ ∈
(

[n]
i−1

)

. The lemma now follows since |M | ≤
(

n

k

)

. �

Proof of Theorem 1.2. Let f(x) = ( x
12km

)k. (Note that 0 < f(x) < x/2 for all
x ∈ (0, 1).) Define α0 = α and αi = f(αi−1) for all i ≥ 1. We will show the
theorem holds with β = β(α, k,m) = αm−1 > 0.

Let Fm ⊂
(

V

m

)

be the the set of m-tuples that form cliques in H , and so by
hypothesis, we have |Fm| = cm(H) ≥ α0

(

n

m

)

. Assuming both ω(H) ≤ βn and that
H does not contain a complete m-tuple of missing edges, we can apply Lemma 3.2
iteratively, starting with Fm, obtaining a family Fm−1, to which we apply Lemma
3.2, and so on. Moreover, at each step we pick up a new missing edge.
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For every 1 ≤ i < m, we claim that after the ith application of Lemma 3.2
we have obtained a subfamily Fm−i ⊂

(

V

m−i

)

and pairwise disjoint missing edges
τ1, . . . , τi such that

|Fm−i| ≥ αi

(

n

m−i

)

, and
σ ∪ {t1, . . . , ti} ∈ Fm for all σ ∈ Fm−i and all t1 ∈ τ1, . . . , ti ∈ τi.

The claim is true for i = 1, as this is just the statement of Lemma 3.2. Assuming it
is true for some i, we now check that it holds for i+ 1.

Applying Lemma 3.2 to Fm−i, we obtain a family Fm−i−1 ⊂
(

V

m−i−1

)

and a
missing edge τi+1 such that

|Fm−i−1| ≥ αi+1

(

n

m−i−1

)

, and
σ ∪ {ti+1} ∈ Fm−i for all σ ∈ Fm−i−1 and all ti+1 ∈ τi+1.

But our assumption on Fm−i therefore implies that σ ∪ {t1, . . . , ti+1} ∈ Fm for all
σ ∈ Fm−i−1 and t1 ∈ τ1, . . . , ti+1 ∈ τi+1. Note that this also implies that τi+1 must
be disjoint from every τ1, . . . , τi. This proves the inductive step.

After m − 1 applications of Lemma 3.2, we end up with a subset F1 ⊂ V and
pairwise disjoint missing edges τ1, . . . , τm−1 such that

|F1| ≥ αm−1n = βn, and
{t} ∪ {t1, . . . , tm−1} ∈ Fm for all t ∈ F1 and all t1 ∈ τ1, . . . , tm−1 ∈ τm−1.

If F1 contains a missing edge τm ∈ M , then {τ1, . . . , τm} would be a complete
m-tuple of missing edges in H . Since we assumed this does not exist, it follows
that F1 is a clique in H , and so ω(H) ≥ βn. �

Remark. In the proof above, Lemma 3.2 was used m − 1 times, and it follows
that for fixed k and m we have β = Ω(αkm−1

). If we consider the optimal function
β = β(α, k,m) for which Theorem 1.2 holds, it is worth noting that β → 1 as
α → 1. This does not follow from our definition of β in the proof above, but can
be deduced directly from Lemma 3.1 by setting S = V . The lemma then tells us
that if ω(H) ≤ (1− ǫ)n, then H has at least

(

m

k

)−1( ǫ

k
n

k

)

missing edges. It is easy to
show by a simple double-counting argument that this implies cm(H) ≤ (1− δ)

(

n

m

)

for some absolute δ > 0.

4. APPLICATIONS

Here we present some applications of Theorem 1.2 related to certain Helly-type
theorems and the intersection patterns of convex sets. For more information about
these types of results we refer the reader to the surveys [3, 6].

Helly’s theorem [14] asserts that if every d + 1 members of a finite family of
convex sets in Rd have a point in common, then there is a point in common to
every member of the family. Among the numerous generalizations and extensions
of Helly’s theorem we focus on two important generalizations. The first one is the
Colorful Helly Theorem discovered by Lovász and reported by Bárány in [4].

Theorem (Colorful Helly). Let F1, . . . , Fd+1 be finite families of convex sets in Rd.

Suppose for every choice K1 ∈ F1, . . . , Kd+1 ∈ Fd+1 we have
⋂d+1

i=1 Ki 6= ∅. Then

for one of the families Fi we have
⋂

K∈Fi
K 6= ∅.
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Note that we recover Helly’s theorem in the case when F1 = · · · = Fd+1. The
second generalization of Helly’s theorem we are interested in is the Fractional

Helly Theorem due to Katchalski and Liu [1]. (See also [21, Chapter 8].)

Theorem (Fractional Helly). For every d ≥ 1 and α ∈ (0, 1) there exists a β =
β(α, d) ∈ (0, 1) with the following property: Let F be a family of n > d + 1
convex sets in Rd and suppose at least α

(

n

d+1

)

of the (d+ 1)-tuples in F have non-

empty intersection. Then there exists some βn members of F whose intersection is

non-empty.

Our first application is a new proof of the Fractional Helly Theorem, which uses
the Colorful Helly Theorem and Theorem 1.2.

Proof of the fractional Helly theorem. Define a (d + 1)-uniform hypergraph H =
(F,E) where E = {σ ∈

(

F

d+1

)

:
⋂

K∈σ K 6= ∅}. By hypothesis, H has at least
α
(

n

d+1

)

edges, and by the Colorful Helly Theorem H does not contain a complete
(d + 1)-tuple of missing edges. So by Theorem 1.2, with k = m = d + 1, there
exists a β > 0 such that H has a clique on βn vertices. By Helly’s theorem, the
members of F contained in this clique have non-empty intersection. �

The argument above is general enough to give a proof of a topological general-
ization of the fractional Helly theorem proved by Kalai [15], and independently by
Eckhoff [5] in a slightly restricted setting.

Let K be a finite simplicial complex. For an integer i ≥ 0, let fi(K) denote
the number of i-dimensional faces in K. We say that K is d-Leray if H̃i(X) = 0

for all induced subcomplexes X ⊂ K and all i ≥ d. (Here H̃i(X) denotes the
i-dimensional homology of X with coefficients in Q.)

The following is a consequence of the “upper-bound theorem” for d-Leray com-
plexes due to Kalai [15], and implies the Fractional Helly Theorem (via the Nerve
theorem, see e.g. [13, Corollary 4G.3]).

Theorem (Topological Fractional Helly). For every d ≥ 1 and α ∈ (0, 1) there

exists a β = β(α, d) ∈ (0, 1) with the following property: If K is a d-Leray

complex with f0(K) = n and fd(K) ≥ α
(

n

d+1

)

, then K has dimension at least

βn− 1.

Kalai’s proof of this result relies on his technique of algebraic shifting. (See
also [2, Section 6] for other algebraic approaches.) We want to give a proof of the
Topological Fractional Helly Theorem using Theorem 1.2, but first we need the
following auxiliary result, due to Kalai and Meshulam [16, Theorem 1.6]. (See
also [9] for an algebraic generalization.)

Theorem (Topological Colorful Helly). Let X be a d-Leray complex on the vertex

set V and let M be a matroidal complex on V such that M ⊂ X . Then there exists

a simplex τ ∈ X such that ρ(V \ τ) ≤ d.

(Here ρ denotes the rank function of the matroid M .) Let us describe the special
case of the Topological Colorful Helly Theorem that we need. Let V1, . . . , Vd+1 be
distinct finite sets with |V1| = · · · = |Vd+1| = d+ 1, and let V = V1 ∪ · · · ∪ Vd+1.
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Define the simplicial complex Md+1 as the join of the Vi, that is

Md+1 = V1 ∗ · · · ∗ Vd+1 = {σ ⊂ V : |σ ∩ Vi| ≤ 1, for all i}.
Note that Md+1 is the matroidal complex of the partition matroid induced by the
Vi, which has rank d+ 1.

Suppose X is a d-Leray complex such that Md+1 ⊂ X . By the Topological
Colorful Helly Theorem, there is face τ ∈ X such that ρ(X \ τ) ≤ d. But this
means that for some i we have Vi ⊂ τ , so in particular one of the Vi is a face in X .

Proof of the Topological Fractional Helly Theorem. Let H = (V,E) be the (d +
1)-uniform hypergraph where V is the vertex set of K and E is the set of d-
dimensional faces of K. Thus, H has n vertices and at least α

(

n

d+1

)

edges. In
order to apply Theorem 1.2, with k = m = d+1, we need to show that H does not
contain a complete k-tuple of missing edges. But this is precisely the special case
of the Topological Colorful Helly Theorem we described above.

Now Theorem 1.2 implies that there is a clique in H on at least βn vertices,
which corresponds to a subcomplex K ′ ⊂ K on at least βn vertices whose d-
dimensional skeleton is complete. The d-Leray property now implies that K ′ is a
full simplex. �

Remark. It should be noted that Kalai’s “upper-bound theorem” actually implies
the Topological Fractional Helly Theorem with β = 1− (1− α)

1

d+1 , which is best
possible. Our proof gives a far weaker bound on β, but this is not surprising since
the d-Leray property is much stronger than excluding a complete set of missing
edges in H . It would be interesting to find examples for the hypergraph setting of
Theorem 1.2 which give non-trivial upper bounds on β.

Acknowledgements. The author thanks Xavier Goaoc and Seunghun Lee for
pointing out some mistakes in an earlier version of this manuscript.
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