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Abstract

In 1959, Grötzsch [5] famously proved that every planar graph of girth at least 4 is 3-colourable (or equiv-
alently, admits a homomorphism to C3). A natural generalization of this is the following conjecture: for every
positive integer t, every planar graph of girth at least 4t admits a homomorphism to C2t+1. This is in fact the
planar dual of a well-known conjecture of Jaeger [7] which states that every 4t-edge-connected graph admits a
modulo (2t+ 1)-orientation. Though Jaeger’s original conjecture was disproved in [6], Lovasz et al. [10] showed
that every 6t-edge connected graph admits a modulo (2t + 1)-flow. The latter result implies that every planar
graph of girth at least 6t admits a homomorphism to C2t+1. We improve upon this in the t = 3 case, by showing
that every planar graph of girth at least 16 admits a homomorphism to C7. We obtain this through a more
general result regarding the density of C7-critical graphs: if G is a C7-critical graph with G 6∈ {C3, C5}, then

e(G) ≥ 17v(G)−2
15 .

1 Introduction and Notation

In 1951, Dirac [3] introduced the concept of colour-criticality and since then, colour-critical graphs have been
widely studied. A graph G is k-critical if its chromatic number is k and the chromatic number of every proper
subgraph of G is strictly less than k. As every graph with chromatic number k contains a k-critical subgraph,
it is useful to study k-colourability via colour-critical graphs. More generally, it is useful to study graph homo-
morphisms1 through homomorphism-critical graphs, which we define as follows.

Definition 1.1. Let H be a graph. A graph G is H-critical if every proper subgraph of G admits a homomorphism
to H, but G itself does not.

Perhaps one of the more famous results concerning homomorphisms of planar graphs is Grötzsch’s Theorem
[5], which states that every planar graph of girth at least 4 admits a homomorphism to C3 (or equivalently, is
3-colourable). As a natural generalization of this, one might conjecture the following.

Conjecture 1.2. If G is a planar graph of girth at least 4t, then G admits a homomorphism to C2t+1.

This is in fact the planar dual of a well-known conjecture of Jaeger [7] which states that every 4t-edge-
connected graph admits a modulo (2t + 1)-orientation2. Though Jaeger’s original conjecture was shown to be
false in early 2018 [6], all counterexamples found thus far are non-planar. As such, Conjecture 1.2 is still open.
We note that Conjecture 1.2 is equivalent to the following: if G is a planar graph of girth at least 4t, then G

admits a
(

2t+1
t

)

-circular colouring. For an overview on circular colouring, see [13]. The t = 1 case is the only
case in which the conjecture has been confirmed.

Considerable progress has been made in the general t case, though the girth bound of 4t remains elusive. In
1996, Nešetřil and Zhu [11] showed that every planar graph of girth at least 10t− 4 admits a homomorphism to
C2t+1. In 2000, Klostermeyer and Zhang [8] showed that it is sufficient to bound the odd girth3 of the graph
as being at least 10t− 3. A year later, Zhu [14] showed that a girth of at least 8t− 3 is sufficient, and in 2003,
Borodin et al. [1] improved upon this by showing a girth of at least 20t−3

3 suffices. Progress stalled for a decade

1A homomorphism φ : G → H from a graph G to a target graph H is a mapping of the vertices of G to those of H , such that for
each edge uv ∈ E(G), φ(u)φ(v) ∈ E(H).

2That is, an orientation of its edges such that for each vertex, the difference of the in-degree and the out-degree is congruent to 0
modulo 2t+ 1.

3The odd girth of a graph is the length of its shortest odd cycle.
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until in 2013, Lovász et al. [10] showed that 6t-edge-connected graph admits a modulo (2t+ 1)-orientation. As
a corollary to this, they obtain that every planar graph of girth at least 6t admits a homomorphism to C2t+1.
This is the best known general bound, though in the t = 2 case Dvořák and Postle [4] showed that every planar
graph of odd girth at least 11 (and hence of girth at least 10) admits a homomorphism to C5.

Our first main result is the following.

Theorem 1.3. If G is a planar graph with girth at least 16, then G admits a homomorphism to C7.

This stems from Theorem 1.4, below, in which we bound the density of C7-critical graphs. We note Cranston
and Li proved Theorem 1.3 independently in [2], as a consequence of a more technical theorem regarding graph
boundaries. (Though the consequences of our works for Conjecture 1.2 are the same, our density theorem and
their theorem do not imply each other.) A trivial density bound for C2t+1-critical graphs arises from the fact that
they have minimum degree 2 (see Lemma 2.1). This tells us that if G is a C2t+1-critical graph, then e(G) ≥ v(G).
Unfortunately, we cannot beat this bound in the general case as for t ≥ 1, the (2t − 1)-cycle is C2t+1-critical.
However, we can do better if we assume G contains a vertex of degree at least 3. In this case, a straightforward
discharging argument shows that if G is a C2t+1-critical graph that contains a vertex of degree at least 3, then
e(G) ≥

(

1 + 1
4t

)

v(G) + 1
3t (see Lemma 2.10).

Ours are not the first density results regarding C2t+1-critical graphs. In [1], Borodin et al. show that if G is
a C2t+1-critical graph with girth at least 6t− 2, then G contains a subgraph G′ with e(G′) ≥ (1 + 3

10t−4 )v(G
′).

In [4], Dvořák and Postle give the best-known result for the t = 2 case by showing that every C5-critical graph

on at least four vertices has e(G) ≥ 5v(G)−2
4 .

Our second main result, which concerns the density of C7-critical graphs, is the following.

Theorem 1.4. Let G be a C7-critical graph. If G 6∈ {C3, C5}, then e(G) ≥ 17v(G)−2
15 .

From Theorem 1.4 and using Euler’s formula for graphs embedded in surfaces, we immediately obtain the
following result.

Theorem 1.5. If G is a planar or projective planar graph of girth at least 17, then G admits a homomorphism
to C7.

In order to further lower the girth bound to 16 in the planar case and obtain Theorem 1.3, we use the
following lemma of Klostermeyer and Zhang [8].

Folding Lemma (Klostermeyer and Zhang [8]) Let G be a planar graph with odd girth k. If C = v0 . . . vr−1v0
is a cycle in G that bounds a face and r 6= k, then there is an integer i ∈ {0, ..., r − 1} such that the graph G′

obtained from G by identifying vi−1 and vi+1 (mod r) is of odd girth k.

With this, we obtain from Theorem 1.5 the following theorem:

Theorem 1.6. If G is a planar graph with odd girth at least 17, then G admits a homomorphism to C7.

Proof. By the Folding Lemma, we may assume a minimum counterexample to Theorem 1.6 only has faces of
length 17. The theorem now follows directly from Theorem 1.4 and Euler’s formula for planar graphs.

1.1 Outline

In Section 2, we will present relevant definitions, give general results regarding C2t+1-critical graphs, and provide
an outline of the proof of Theorem 1.4. In Section 3, we will establish the structural properties of a minimum
counterexample to Theorem 1.4. Section 4 is dedicated to proving Theorem 1.4 using discharging and the
structure established in the foregoing section. The discharging process used is rather intricate: for one thing,
the discharging rules are performed sequentially. This ensures that in the later steps of the discharging process,
much of the local structure surrounding the structures receiving charge is known. Additionally, charge is only
ever sent along short, nearby paths with internal vertices of degree two. If a structure sends charge to many
vertices, it follows from the initial charges that the structure sending charge has large amount of charge to spare.
We believe a similar form of sequential discharging may prove useful in proving Conjecture 1.2. In Section 5,
we will discuss the limits of the methods used here in establishing possible improvements to Theorem 1.3 and
Conjecture 1.2.

2 Preliminaries

In this section, we present several results concerning C2t+1-critical graphs. In Subsection 2.1, we establish local
structural results regarding the surroundings of vertices of degree at least three. The subsection ends with the
proof of Lemma 2.10. In Subsection 2.2, we bound the number of vertices of degree two surrounding (2t + 1)-
cycles in C2t+1-critical graphs. In Subsection 2.3, we define all relevant terms to the potential method used in
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the proof of Theorem 1.4. Finally, the section ends with an overview of the structure of the proof of Theorem
1.4.

We note that in general, it is only interesting to study H-critical graphs when H is a core: a graph that does
not admit a homomorphism to a proper subgraph of itself. Moreover, by limiting our study to graphs that are
H-critical for a vertex-transitive core H , we ensure the graphs under study are 2-connected. Indeed, we have
the following.

Lemma 2.1. (Folklore) Let H be a vertex-transitive graph, and let G be an H-critical graph. Then G is
2-connected.

This follows from the fact that if H is vertex-transitive and G is an H-critical graph containing a cut vertex
v, partial homomorphisms of G to H may be combined at v contradicting the fact that G is H-critical.

For a set S ⊆ V (G), the neighbourhood of S is denoted N(S) and is defined as N(S) = ∪v∈SN(v). The path
with t edges is denoted Pt, and will be referred to as the path of length t. The internal vertices of a path are
the vertices of the path that are not endpoints of the path.

2.1 Strings

A crucial part of our analysis of graph homomorphisms consists of examining the extensions of partial homomor-
phisms to the entire graph. Paths with internal vertices of degree 2 play an important role in our investigation, as
it is easy to determine the extensions of a partial homomorphism along such paths. In addition, the low-density
C7-critical graphs under study in further sections contain a relatively high amount of vertices of degree two. As
a consequence, such paths are ubiquitous. For these reasons, we define the following terms.

Definition 2.2. A string in a graph G is a path with internal vertices of degree two and endpoints of degree at
least three. A k-string is a string with k internal vertices. We say a vertex is incident with a string if it is an
endpoint of the string. Two vertices share a string if they are the endpoints of that string.

If a vertex is incident with many long strings, then its local density is relatively low. As we aim to lower-
bound the density of C2t+1-critical graphs, it is useful to be able to bound the number of degree two vertices in
the strings incident with vertices of degree at least three.

First, we define the following.

Definition 2.3. Let G be an H-critical graph for some graph H. Let u and v be vertices on a path P in G

such that the internal vertices of P have degree 2 in G. Let φ : u → H be a homomorphism. Let Φ be the set of
extensions of φ to P . We define Bφ(v|u, P ) := {φ′(v) : φ′ ∈ Φ}. If the choice of φ is irrelevant (for instance if
we only wish to speak of |Bφ(v|u, P )|), we will sometimes write B(v|u, P ).

We will use the following observation.

Observation 2.4. If H is an odd cycle, then for any nonempty S ( V (H), |N(S)| > |S|.

We note that the above observation as well as Lemmas 2.5, 2.6, and 2.9 readily generalize to H-critical graphs
when H is any non-bipartite, vertex-transitive graph.

Lemma 2.5. Let G and H be graphs, and suppose H is an odd cycle. Let P = v0v1...vk+1 be a path in G with
k + 1 edges, with degG(v) = 2 for each v ∈ V (P ) \ {v0, vk+1}. Let φ : v0 → H be a homomorphism. Then
|Bφ(vk+1|v0, P )| ≥ min(k + 2, v(H)).

This is a consequence of Observation 2.4 and is proved by Borodin et al. in Example 2.2 of [1].
We are now equipped to restrict the length of strings in C2t+1-critical graphs.

Lemma 2.6. Let H be an odd cycle. If G is an H-critical graph, then G does not contain a k-string with
k ≥ v(H)− 2.

Proof. Suppose not: that is, suppose P = v0v1v2 · · · vv(H)−1 is a subpath of a string in G. Since G is H-critical,
G−{v1, · · · vv(H)−2} admits a homomorphism φ to H . By Lemma 2.5, |Bφ(vv(H)−1|v0, P )| ≥ min(v(H), v(H)) =
v(H). Hence φ(vv(H)−1) ∈ Bφ(vv(H)−1|v0, P ), and so φ extends to G. This contradicts the fact that G is
H-critical.

Next, we show that C2t+1-critical graphs do not contain two vertices that share distinct strings with the same
number of vertices modulo 2.

Lemma 2.7. Let H be an odd cycle, and let G be H-critical. Let S = uv1v2 · · · vkv be a k-string in G, and let
P = uw1w2 · · ·wtv be a (u, v)-path in G− E(S). Then either t > k, or t 6≡ k mod 2.
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Proof. Suppose not. As G is H-critical, G − E(S) admits a homomorphism φ to H . But φ extends to G in
the following way: for i = 1, · · · , t, let φ(vi) = φ(wi). For t < i ≤ k with i 6≡ t mod 2, let φ(vi) = φ(v). For
t < i < k with i ≡ t mod 2, let φ(vi) = φ(wt). This contradicts the fact that G is H-critical.

Lemma 2.6 gives us a bound on the local density surrounding a vertex of degree at least 3, but a better bound
arises by considering the entire set of strings incident with the vertex rather than each string individually. To
that end, we define the weight of a vertex as follows.

Definition 2.8. Let G be a graph, and let v ∈ V (G) be a vertex of degree d ≥ 3, and let k1, k2, . . . , kd be integers
with k1 ≥ · · · ≥ kd. If v is incident with d distinct strings S1, . . . , Sd where Si is a ki-string for each 1 ≤ i ≤ d,
we say v is of type (k1, . . . , kd). If v is a vertex of type (k1, ..., kd), we define the weight of v as wt(v) =

∑d

i=1 ki.

Recall that by Lemma 2.1, if G is a C2t+1-critical graph then G does not contain a vertex that is both
endpoints of a string: hence the type of a vertex in a C2t+1-critical graph is well-defined.

We bound the weight of vertices as follows. Note the lemma below and its proof are found in [14] (Lemma
3.3).

Lemma 2.9. If H is an odd cycle, G is an H-critical graph, and v ∈ V (G), then wt(v) ≤ (v(H)−2) deg(v)−v(H).

Having established the required definitions, we are now equipped to show the following.

Lemma 2.10. If G is a C2t+1-critical graph that contains a vertex of degree at least 3, then

e(G) ≥ (1 + 1
4t )v(G) + 1

3t .

Proof. Suppose not. Let G be a counterexample. Since e(G) < (1 + 1
4t )v(G) + 1

3t , it follows that 4te(G)− (4t+
1)v(G) < 4

3 . We will assign an initial charge of ch0(v) = 4t deg(v) − 8t − 2 to each vertex v ∈ V (G), so that
∑

v∈V (G) ch0(v) =
∑

v∈V (G)(4t deg(v)− 8t− 2) = 2(4te(G)− (4t+ 1)v(G)) < 8
3 .

We discharge according to the following rule to obtain a final charge ch1(v) for each vertex v ∈ V (G): each
vertex of degree 2 sends −1 to the endpoints of the string that contains it. We claim that after discharging every
vertex of degree at least 3 has positive charge.

To see this, let v be a vertex of degree at least 3. Then ch1(v) = 4t deg(v)− 8t− 2− wt(v). By Lemma 2.9,
wt(v) ≤ (2t− 1) deg(v)− (2t+ 1), and so it follows that ch1(v) ≥ (2t+ 1) deg(v)− 6t− 1. Since deg(v) ≥ 3 and
t ≥ 1, ch1(v) ≥ 2.

Since v is a vertex of degree at least 3, it is the endpoint of a string S. By Lemma 2.1, S has two distinct
endpoints, each of which have degree at least 3 by the definition of string. Thus G contains at least two vertices
of degree 3. Since every vertex of degree 2 has final charge 0 and G contains at least two vertices of degree 3, it
follows that the total sum of the charges is at least 4 —a contradiction.

2.2 Cells

Cycles of length seven will play an important role in establishing the structure of C7-critical graphs in the
following sections. For that reason, we define the following terms.

Definition 2.11. A (2t+ 1)-cycle in a C2t+1-critical graph is called a cell4. A cell C is incident with a string
S 6⊆ C if one of the endpoints of the string is contained in the cell.

In the discharging process in Section 4, cells aggregate and dispense charge in the graph in much the way
vertices do. In this way, we think of cells as elementary structures, and treat them as supervertices. It is therefore
unsurprising that notions of cell weight and type (analogous to their vertex counterparts) prove useful in our
analysis.

Definition 2.12. The degree of a cell C is the number of strings incident with C. Let deg(C) = d, and let
k1, k2, ..., kd be integers with k1 ≥ ... ≥ kd. If C is incident with d distinct strings S1, . . . , Sd where for 1 ≤ i ≤ d

Si is a ki-string, we say C is a cell of type (k1, . . . , kd). If C is a cell of type (k1, ..., kd), we define the weight

of C as wt(C) =
∑d

i=1 ki.

Note the definition does not preclude a cell C from containing both endpoints of a string S with S 6⊂ C.
However, we show in the following lemma that this does not happen.

Lemma 2.13. Let t ≥ 1 be an integer, and let C be a cell in a C2t+1-critical graph G. Let S 6⊆ C be a string.
At most one of the endpoints of S is contained in V (C).

4We caution the reader that we do not mean to suggest that there is an intrinsic property of (2t + 1)-cycles that makes them a
vital part of the structural analysis for general C2t+1-critical graphs. For C7-critical graphs, cells as defined proved a useful tool in
our analysis. For values of t larger than 3, it seems likely that (2t + 3)-cycles and perhaps (2t + 5)-cycles will prove equally useful in
establishing the structure of C2t+1-critical graphs.

4



Proof. Note that if G contains a string, it contains two vertices of degree at least three and so is not an odd
cycle. Since G is C2t+1 critical, G does not contain an odd cycle with fewer than 2t+1 edges, as such a cycle is
C2t+1-critical itself. The proof then follows easily from Lemma 2.7.

In the spirit of Lemma 2.9, the following lemma provides some restriction on the local structure surrounding
a cell in a C2t+1-critical graph.

Lemma 2.14. Let G be a C2t+1-critical graph. If C is a cell of G, then wt(C) ≤ (2t− 1) deg(C)− (2t+ 1).

Proof. Let C be a cell of G with deg(C) = d. By Lemma 2.13, C is a cell of type (k1, ..., kd), incident with a
ki-string Si for each 1 ≤ i ≤ d. We will denote by ci and vi the endpoints of each Si, with vi 6∈ V (C).

Note first there are 2(2t+ 1) homomorphisms of a cell to C2t+1. Given a homomorphism φ : vi → C2t+1, we
denote by Bφ(C|vi, Si) the set of possible extensions of φ to Si ∪ C. Note that |Bφ(C|vi, Si)| = 2|Bφ(ci|vi, Si)|.

Since G does not admit a homomorphism to C2t+1, we have ∩d
i=1B(C|vi, Si) = ∅. Therefore

∑d
i=1(2(2t+ 1)−

|B(C|vi, Si)|) ≥ 2(2t + 1). By Lemma 2.5, for each 1 ≤ i ≤ d we have |B(ci|vi, Pi)| ≥ min(ki + 2, 2t + 1).
From Lemma 2.6, since G is C2t+1-critical, ki + 2 < 2t + 1. Therefore |B(ci|vi, Pi)| ≥ ki + 2, and since

|B(C|vi, Si)|)| = 2|B(ci|vi, Pi)| for each i, it follows that
∑d

i=1(2(2t + 1) − 2(ki + 2)) ≥ 2(2t + 1). Using the

fact that
∑d

i=1 ki = wt(C), dividing by 2, and reorganizing, we obtain wt(C) ≤ (2t − 1) deg(C) − (2t + 1), as
desired.

2.3 Potential

Our analysis will also rely heavily on the insights gained from identifying vertices in a critical graph and examining
the resulting graph. It is useful to be able to speak of undoing the identification process; to that end, we define
the following term.

Definition 2.15. Let u and v be non-adjacent vertices in a graph G. Let G′ be the graph obtained from G by
identifying u and v to a new vertex z. Let H be a subgraph of G′ that contains z. Given the identification of u
and v to z, splitting z back into u and v refers to deleting z and adding new vertices u and v to V (H), and for
each x ∈ {u, v}, adding to E(H) all edges of the form xy such that y ∈ V (H) and xy ∈ E(G).

In both Sections 3 and 4, we will use potential to learn about the density of subgraphs of minimum coun-
terexample to Theorem 1.4. The potential method used here was popularized by Kostochka and Yancey in [9]
in order to give a lower bound on the number of edges in colour-critical graphs. In [4], Dvořák and Postle use
potential to bound the density of C5-critical graphs.

We define potential as follows.

Definition 2.16. Let α, β > 0 and let G be a graph. The (α, β)-potential of G is given by

pα,β(G) = αv(G)− βe(G).

When α and β are clear from the context, we will omit them and speak only of the potential of a graph and
its subgraphs. Potential on its own is merely a measure of the density of the graph: what makes it a powerful
tool for structural analysis is the reduction found in the paragraphs below.

In addition, we will require the following definition.

Definition 2.17. Let φ : G → H be a homomorphism, and let F ⊆ G. We let φ(F ) denote the subgraph of H
with V (φ(F )) = {φ(v) : v ∈ V (F )} and E(φ(F )) = {φ(u)φ(v) : uv ∈ E(F )}.

Definition 2.18. Let G be an H-critical graph, and let F be a proper subgraph of G. Let φ : F → H be a
homomorphism. Let G′ be the graph with V (G′) = V (G \ F ) ∪ V (φ(F )), and E(G′) = E(G \ F ) ∪ E(φ(F )).
For each u ∈ φ(F ), let φ−1(u) be the set of vertices of F with image u under φ. We define GF [φ] as the graph
obtained from G′ by adding an edge vu for each u ∈ φ(F ) and v ∈ V (G)\V (F ) such that there exists w ∈ φ−1(u)
with vw ∈ E(G).

Let G,H, F, and φ be as in Definition 2.18. Note GF [φ] has no homomorphism to H , as such a homomorphism
φ′ admits an extension to a homomorphism φ′′ : V (G) → V (H) by setting φ′′(v) = φ′(φ(v)) for each v ∈ V (F ),
and φ′′(v) = φ′(v) for each v ∈ V (G \ F ). Thus GF [φ] contains an H-critical subgraph W . Note if F is not
isomorphic to a subgraph of H , then GF [φ] contains fewer vertices than F , and hence W contains fewer vertices
than G. Furthermore, W ∩ φ(F ) 6= ∅ as otherwise W ⊂ G and so G contains a proper H-critical subgraph,
contradicting the fact that G is H-critical. This motivates the following definitions.

Definition 2.19. Let G be a graph. The subgraph F ′ of G is an extension of F ( G if there exists a homo-
morphism φ : F → H and an H-critical subgraph W in GF [φ] such that V (F ′) = V (W \ φ(F )) ∪ V (F ), and
E(F ′) = E(W \ φ(F )) ∪ E(F ) ∪ E, where E is a minimal set of edges containing an edge vu for each u ∈ φ(F )
and v ∈ V (W \ φ(F )) such that there exists w ∈ φ−1(u) with vw ∈ E(W ). We call W an extender of F , and
W [φ(F )] the source of the extension.
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Note the source is a subgraph of H , and that it is not necessarily induced.
In order to establish certain structural properties of C2t+1-critical graphs in the subsequent section, we will

make extensive use of the following lemma.

Lemma 2.20. Let G be an H-critical graph with potential p(G). Let F be a proper subgraph of G that is not
isomorphic to H. If F ′ is an extension of F with extender W and source X, then

p(F ′) = p(F ) + p(W )− p(X).

Proof. By the definitions of F ′, W ′, and X given in 2.19, v(F ′) = v(F ) + v(W ) − v(X). Furthermore, e(F ′) =
e(F ) + e(W ) − e(X). Therefore since p(F ′) = αv(F ′) − βe(F ′) and both α and β are greater than 0, p(F ′) =
p(F ) + p(W )− p(X).

2.4 Outline of the Proof of Theorem 1.4

The proof of Theorem 1.4 is obtained via reducible configurations and discharging. The structural results of
a minimum counterexample to Theorem 1.4 are rather lengthy, and are found in Section 3. The discharging
portion is found in Section 4; it is a bit unusual, as we will discuss later. More specifically, the discharging
proceeds as follows.

We let G be a counterexample to Theorem 1.4 with v(G) minimum and, subject to that, with e(G) minimum.
Since potential is integral, it follows that p(G) ≥ 3. We will assign initial charge of ch0(v) = 15 deg(v)−2wt(v)−34
to each vertex v ∈ V (G) with deg(v) ≥ 3, and ch0(v) = 0 to each vertex of degree two. Thus

∑

v∈V (G) ch0(v) =

−2p(G) ≤ −6. We aim to show that after discharging, every structure in the graph has non-negative charge,
thus arriving at a contradiction.

Initially, the only structures with negative charge are the degree three vertices with weight at least six. Using
Lemma 2.6 and 2.9, we rule out several such types of vertices with high weight. Using Lemmas 3.10, 3.11, and
3.12 we will rule out the existence of vertices of type (3, 3, 2), (4, 4, k) where k ≥ 0, and (4, 3, k) where k ≥ 1.
This is accomplished by characterizing the intersection of 7- and 9-cycles in Lemmas 3.7, 3.8, and 3.9. As not
all degree three vertices with weight at least six can be ruled out, the remainder of the lemmas in Section 3 aim
to establish the local structure surrounding the vertices of degree three and the cells and vertices that will later
send them charge. In particular, Lemmas 3.4, 3.5, and 3.6 will establish the neighbouring structure of vertices
incident with long strings. In Lemma 3.13, we show that G does not contain cells of low degree. Finally, Lemmas
3.14, 3.15, and 3.16 establish the neighbouring structure of certain types of vertices not contained in cells.

The discharging itself begins with each cell collecting all of the charge of nearby vertices. Next, vertices of
degree at least four send charge to the vertices of degree three that were not near cells. Finally, vertices of degree
three and low weight send charge to nearby vertices of degree three and weight at least six.

The discharging process used is a bit unusual. For one thing, the rules are performed sequentially. This
ensures that in the later steps of the discharging process, much of the local structure surrounding the vertices
and cells receiving charge will be known. Finally, the vertices and cells in G only send charge along short strings.
This way, the initial charges ensure that if a vertex or cell sends charge to many structures, it follows that the
vertex or cell sending charge has relatively low weight and so consequently has a large amount of charge to spare.
We believe a similar form of sequential discharging may prove useful in proving Conjecture 1.2.

3 Structure of C7-Critical Graphs

Our main result is the following:

Theorem 1.4. Let G be a C7-critical graph. If G 6∈ {C3, C5}, then e(G) ≥ 17v(G)−2
15 .

As before, we will restate this theorem in terms of potentials. In this section, the potential5 of a graph G

will be defined as p(G) = 17v(G) − 15e(G). We aim to prove that if G 6∈ {C3, C5} is a C7-critical graph, then
p(G) ≤ 2. We note this bound is tight: examples of C7-critical graphs with potential 2 can be found in Figure 1.

Since potential is integral, a counterexample to Theorem 1.4 has potential at least 3. A minimum counterex-
ample to Theorem 1.4 is a C7-critical graph G 6∈ {C3, C5} with p(G) ≥ 3, minimal with respect to v(G), and,
subject to that, with respect to e(G).

For the remainder of Sections 3 and 4, G will be a minimum counterexample to Theorem 1.4. The following
two subsections concern the structure of G. Section 3.1 contains general structural results, and Section 3.2 rules
out the presence of certain substructures in G.

5In Sections 3 and 4, potential denotes the (17, 15)-potential.
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Figure 1: Examples of C7-critical graphs with potential 2.

H H

Figure 2: G contains a path P of length either 2 or 3, such that the endpoints of P are in H and the internal
vertices of P are in G \ V (H).

3.1 General Structure Results

The lemmas in this section provide us with a general framework for G. Lemma 3.2 concerns the potential of
subgraphs of G, and will be useful in proving further structural lemmas. Lemma 3.3 establishes a lower bound
for the girth of G. The proofs of Lemmas 3.4, 3.5, and 3.6 will establish the neighbouring structure of vertices
incident with long strings. Finally, with Lemmas 3.7, 3.8, and 3.9 we will characterize the intersections of distinct
7-cycles and 9-cycles in G. We require the following definition.

Definition 3.1. Let H be a graph. We denote by Pt(H) the set of graphs obtained from H by adding a path P

of length t joining two distinct vertices of H, such that the internal vertices of P are disjoint from V (H).

Our first structural result in this section concerns the density of subgraphs of G.

Lemma 3.2. Let H be a subgraph of G. Then the following all hold:

(i) p(H) ≥ 3 if H = G,

(ii) p(H) ≥ 20− 2k if G ∈ Pk(H) and k ∈ {3, 4, 5},

(iii) p(H) = 14 if H = C7, and

(iv) p(H) ≥ 15 otherwise.

Proof. Suppose not. Let H be a counterexample to Lemma 3.2, maximal with respect to v(H), and subject to
that, with respect to e(H). Since G is a minimum counterexample to Theorem 1.4 and potential is integral, if
H = G, then (i) holds—a contradiction. If H is isomorphic to C7, then (iii) holds, a contradiction. We may
therefore assume H 6∈ {C7, G}.

First suppose that H is not induced. Then p(G[V (H)]) = p(H) − 15(e(G[V (H)]) − e(H)). As H is not
induced, e(G[V (H)]) − e(H) ≥ 1 and so it follows that p(G[V (H)]) ≤ p(H)− 15 ≤ −1. But then G[V (H)] is a
counterexample to Lemma 3.2, contradicting our choice of H .

We may therefore assume H is induced. Note every proper subgraph H of C7 has potential at least 17, since
p(H) = 2t + 17 if H is a path with t edges. Thus if H is a proper subgraph of C7, (iv) holds, a contradiction.
Since G is C7-critical and H ( G, H has a homomorphism φ to a subgraph of C7. Let H

′ be an extension of H
with extender W and source X (see Definition 2.19). By Lemma 2.20, p(H ′) = p(H) + p(W )− p(X).

Suppose first that W is a triangle. Since W 6⊂ G, W contains at least one vertex in φ(H) (see Definition
2.17). Similarly, since W 6⊂ φ(H), W contains at least one vertex in V (G)\V (H). This gives rise to at least two
edges in E(H ′) from vertices in V (G) \ V (H) to V (H). Thus G has a path Pk, k ∈ {2, 3}, with endpoints in H

and internal vertices in G \V (H) (see Figure 2). Since e(H ∪Pk)− e(H) = k and v(H ∪Pk)− v(H) = k− 1, we
have that p(H ∪ Pk) = p(H) + 17(k− 1)− 15k, and so p(H ∪ Pk) = p(H) + 2k− 17 ≤ 2k− 3 (since p(H) ≤ 14).
Since H is maximal, H ∪ Pk is not a counterexample to Lemma 3.2. Thus p(H ∪ Pk) ≥ 3 and so k = 3. As
p(H ∪ P3) ≤ 3, we have G = H ∪ P3. But then 3 ≤ p(H ∪ P3) = p(H) − 11, and so p(H) ≥ 14. But now
G = (P3 ∪H) ∈ P3(H) and so (ii) holds —a contradiction.
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H H H H H H

Figure 3: G contains a path Pk, k ∈ {2, 3, 4, 5}, joining two distinct vertices of H such that the internal vertices
of Pk are not in H, or G contains a path P2 joining two distinct vertices of H such that the internal vertex of P2

is not in H, and a second path Qk, k ∈ {2, 3}, joining distinct vertices of H such that the internal vertices of Qk

are not in H.

Suppose next that W is a 5-cycle. Since W 6⊂ G, W contains at least one vertex in φ(H). Note there are
at most two components in W \ V (H), since each such component gives rise to at least two edges in W and
e(W ) = 5. Thus each component in W \ V (H) is a path, and so at least one of the following cases hold (see
Figure 3):

(1) G contains a path Pk, k ∈ {2, 3, 4, 5}, joining two distinct vertices of H such that the internal vertices of
Pk are not in H , or

(2) G contains a path P2 joining two distinct vertices of H such that the internal vertex of P2 is not in H , and
a second path Qk, k ∈ {2, 3}, joining distinct vertices of H such that the internal vertices of Qk are not in
H .

Suppose that G contains a path P2 as described in (1) or (2). Note that p(H∪P2) = p(H)−13 ≤ 1. But since
H is maximal this contradicts our choice of H . If G does not contain a path P2 as described, then it contains a
path Pk, with k ∈ {3, 4, 5} as described in (1). We have p(H ∪ Pk) = p(H) + 17(k− 1)− 15k = p(H) + 2k− 17.
Since p(H) ≤ 14, it follows that p(H ∪ Pk) ≤ 2k − 3. Since H ∪ Pk is not a counterexample, 3 ≤ p(H ∪ Pk). As
3 ≤ 2k − 3, it follows that k = 3 and p(H) = 14. But then (ii) holds —a contradiction.

We can therefore assume W 6∈ {C3, C5}. Recall H ′ is an extension of H with extender W and source X .
Note since H 6⊆ C7, we have that v(φ(H)) < v(H), and consequently that v(W ) < v(G). Since G is a minimum
counterexample to Theorem 1.4, and W is neither a 3-cycle nor a 5-cycle, it follows that p(W ) ≤ 2. Since X

is a subgraph of a 7-cycle, p(X) ≥ 14. We have therefore that p(H ′) = p(W ) + p(H) − p(X) ≤ 2 + p(H)− 14.
Since p(H) ≤ 14 we have p(H ′) ≤ 2. But then H ′ is a counterexample to Lemma 3.2, contradicting our choice
of H .

The following lemma gives a lower bound for the girth of G.

Lemma 3.3. G has girth at least 7.

Proof. Suppose not. Note G does not contain a 5-cycle or a triangle, as these are C7-critical themselves and
G 6∈ {C3, C5}. It follows that G contains a cycle C of length 2t, where t ∈ {2, 3}. But then p(C) = 17(2t) −
15(2t) = 2t ≤ 12, so G ∈ {P4(C), P5(C)} by lemma 3.2. But then G is a theta graph, and no such graph is
C2t+1-critical —a contradiction.

The following three lemmas are used to show that certain types of vertices of degree three and four are
contained either in cells or in cycles of length nine.

Lemma 3.4. If v is a vertex of degree three incident with strings S1, S2, and S3 such that S3 is a 4-string, then
S1 ∪ S2 is contained in a cell.

Proof. Let {a1, a2} = N(v) \ V (S3). It suffices to show that the path a1va2 is contained in a cell, since the
internal vertices of S1 and S2 (if they exist) have degree 2. Suppose this is not the case. Let G′ be the graph
obtained from G by identifying a1 and a2 to a new vertex z. Note since a1va2 is not contained in a cell and G

has girth at least 7 by Lemma 3.3, G′ contains no triangle nor 5-cycle. Let x 6= v be an endpoint of S3 in G, and
let S = S3 − x. If G′ admits a homomorphism φ to C7, then φ extends to G by setting φ(a1) = φ(a2) = φ(z).
Thus there does not exist a homomorphism of G′ to C7, and so G′ contains a C7-critical subgraph G′′. Since
G′′ 6∈ {C3, C5}, since v(G′′) < v(G), and since G is a minimum counterexample, we have that p(G′′) ≤ 2. Since
G′′ 6⊆ G, it follows that z ∈ V (G′′). Furthermore, S is not contained in G′′, since by Lemma 2.6 G′′ does
not contain the 5-string S3z and the minimum degree of G′′ is at least 2. Let F be the graph obtained from
G′′ by splitting z back into vertices a1 and a2, and adding the path a1va2. The potential of F is given by
p(F ) = p(G′′) + 17(2) − 15(2) ≤ 6. By Lemma 3.2, F = G. But this is a contradiction, since S − v is not
contained in F .
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Lemma 3.5. If v is a vertex of degree three incident with strings S1, S2, and S3 such that S3 is a 3-string and
both S1 and S2 contain at least two edges, then S1 ∪ S2 is contained in a cell or a 9-cycle.

Proof. Let {a1, b1} = N(v) \ V (S3). It suffices to show the path a1vb1 is contained in a cell or 9-cycle, since
the internal vertices of S1 and S2 have degree 2. Suppose this is not the case. Let a2 = N(a1) − v, and let
b2 = N(b1)−v. Let G′ be the graph obtained from G by identifying a1 and b1 to a new vertex z1, and identifying
a2 and b2 to a new vertex z2. Note since a1vb1 is not contained in a cell or 9-cycle, G′ contains no 3- nor 5-
cycle. Let x 6= v be an endpoint of S3 in G, and let S = (S3 ∪ z1) \ {x}. If G′ admits a homomorphism φ to
C7, then φ extends to G by setting φ(a1) = φ(b1) = φ(z1) and φ(a2) = φ(b2) = φ(z2). Thus there does not
exist a homomorphism of G′ to C7, and so G′ contains a C7-critical subgraph G′′. Since G′′ 6∈ {C3, C5}, since
v(G′′) < v(G), and since G is a minimum counterexample, it follows that p(G′′) ≤ 2. Furthermore, S is not
contained in G′′ since by Lemma 2.6 G′′ does not contain a 5-string S3z1z2 and the minimum degree of G′′ is at
least 2. Since G′′ 6⊆ G and z1 6∈ V (G′′), we have that z2 ∈ V (G′′).

Let F be the graph obtained from G by splitting z1 and z2 back into a1, b1 and a2, b2, respectively, and
adding the path b2b1va1a2. The potential of F is given by p(F ) = p(G′′) + 17(4)− 15(4) ≤ 10. By Lemma 3.2,
either F = G or G ∈ P5(F ). Since S3 \ {x, v} is not contained in F , we have that F 6= G and so G = F ∪ P for
a path P of length 5. But again since S3 \ {x, v} is not contained in F , P contains S3. But by definition, S3 is
a path of length 4 with endpoints of degree three —a contradiction.

Lemma 3.6. If v is a vertex of degree 4 incident with strings S1, S2, S3, and S4 such that S4 is a 4-string, then
there exists {i, j} ⊂ {1, 2, 3} with i 6= j such that Si ∪ Sj is contained in a cell.

Proof. Let {u1, u2, u3} = N(v) \ V (S4). It suffices to show one of the paths u1vu2, u1vu3 or u2vu3 is contained
in a cell, since the internal vertices of S1, S2 and S3 (if they exist) have degree 2. Suppose this is not the case.
Let G′ be the graph obtained from G by identifying u1, u2 and u3 to a new vertex z. Note G′ contains no 3-
nor 5-cycle. Let x 6= v be an endpoint of S4 in G, and let S = S4 − x. If G′ admits a homomorphism φ to C7,
then φ extends to G by setting φ(u1) = φ(u2) = φ(u3) = φ(z). Thus there does not exist a homomorphism of
G′ to C7, and so G′ contains a C7-critical subgraph G′′. Since G′′ 6∈ {C3, C5}, since v(G′′) < v(G), and since
G is a minimum counterexample, it follows that p(G′′) ≤ 2. Since G′′ 6⊆ G, we have z ∈ V (G′′). Furthermore,
S is not contained in G′′, since by Lemma 2.6 G′′ does not contain a 5-string and the minimum degree of G′′ is
at least 2. Let F be the graph obtained from G′′ by splitting z back into vertices u1, u2 and u3, and adding the
path u1vu2 and the edge vu3. The potential of F is given by p(F ) = p(G′′) + 17(3)− 15(3) ≤ 8. By Lemma 3.2,
F = G. But this is a contradiction, since S − v is not contained in F .

Finally, the last three lemmas in Section 4.1 characterize the intersection of distinct 7- and 9-cycles in G.
Together with Lemmas 3.4, 3.5, and 3.6, the following lemmas will allow us to rule out the existence of certain
types of vertices in Section 4.2.

Lemma 3.7. Let C and C′ be distinct 7-cycles in G. Then C and C′ are vertex-disjoint.

Proof. Suppose not, and let H = C ∪C′. First suppose C ∩C′ has two components P and P ′. Since paths have
potential at least 17, p(H) ≤ p(C) + p(C′) − p(P )− p(P ′) ≤ 14 + 14− 17 − 17 ≤ −6. This contradicts Lemma
3.2.

Thus we may assume the cycles C and C′ intersect in a single path P of length k. Note 0 ≤ k ≤ 3, as
otherwise H (and thus G) contains a cycle of length at most six, contradicting Lemma 3.3. The potential of
H is given by p(H) = p(C) + p(C′) − p(P ) = 14 + 14 − (2k + 17) = 11 − 2k. Note H 6= G since no theta
graph is C7-critical. By Lemma 3.2, we have that p(H) ≥ 10. Since p(H) ≤ 11 we have k = 0, and by Lemma
3.2 G ∈ P5(H). Since k = 0, P is a single vertex v. Let Q be the path of length five such that G = H ∪ Q.
Since G is C7-critical, Q ∩ (C − v) 6= ∅ and Q ∩ (C′ − v) 6= ∅ as otherwise v is a cut vertex, and no C7-critical
graph contains a cut-vertex by Lemma 2.1. The cell C has degree three, and is incident with strings S1, S2 and
Q, where S1 ∪ S2 = C′. Note Q is a 4-string, and S1 and S2 together contribute 5 to the weight of C. Thus
wt(C) = 9. But this is a contradiction, since by Lemma 2.14 wt(C) ≤ 8.

Lemma 3.8. Let C and C′ be cycles of length seven and nine, respectively, in G. Then C and C′ are edge-
disjoint.

Proof. Suppose not. Let C and C′ be the cycles of length 7 and 9, respectively, of G, chosen such that their
intersection is maximal. Let H = C ∪ C′. First suppose C ∩ C′ has at least two components P and P ′. Since
paths have potential at least 17, p(H) ≤ p(C) + p(C′)− p(P )− p(P ′) ≤ 14 + 18− 17− 17 = −2, contradicting
Lemma 3.2.

Thus we may assume C ∩ C′ is a single path P of length k. Note since C and C′ share an edge, k ≥ 1.
Furthermore, k ≤ 6, as otherwise H (and thus G) contains a cycle of length at most six, contrary to Lemma 3.3.
The potential of H is therefore given by p(H) = p(C) + p(C′) − p(P ) = 18 + 14 − (2k + 17) = 15 − 2k. Note
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H 6= G, since H is a theta graph and no such graph is C7-critical. By Lemma 3.2, we have that p(H) ≥ 10.
Since p(H) ≤ 15, we have k ∈ {1, 2}. We now break into cases according to the value of k.

Case 1: k = 1. By Lemma 3.2, G ∈ P4(H) ∪ P5(H). Let Qi be the path of length i ∈ {4, 5} with G = H ∪Qi.
Note since G is C7-critical, Qi ∩ P = ∅. To see this, suppose not. Then at least one of (C \ V (P )) ∩ Qi and
(C′ \ V (P )) ∩Qi is the empty set. But then C or C′ contains a j-string with j ≥ 5, contradicting Lemma 2.6.
Thus Qi ∩ P = ∅ and both Qi ∩ C 6= ∅ and Qi ∩ C′ 6= ∅. The cycle C has degree three, and its incident strings
are S1, S2, and Qi, where S1 ∪ S2 ∪ P = C′. Qi contributes i − 1 to the weight of C, and S1 and S2 together
contribute 6. Thus wt(C) = i+ 5. Since i ≥ 4, we have that wt(C) ≥ 9, contradicting Lemma 2.14.

Case 2: k = 2. By Lemma 3.2, G ∈ P5(H). Let Q be the path of length five with G = H ∪ Q. Note
(C′ \ V (P )) ∩ Q 6= ∅ as otherwise C′ contains a 6-string, contrary to Lemma 2.6. Note therefore at least one
of the endpoints of P is not in V (Q). Let v be an endpoint of P with v 6∈ V (Q). Let u ∈ V (C′) \ V (C) be
adjacent to v. Suppose (C \ V (P )) ∩ Q = ∅. Then v is incident with a 4-string of G contained in C, and so by
Lemma 3.4, Pu is contained in a cell C′′ 6= C. Since P ⊂ C, this contradicts Lemma 3.7, since distinct 7-cycles
in G are vertex-disjoint. Thus we may assume Q ∩ P = ∅, and both Q ∩ C 6= ∅ and Q ∩ C′ 6= ∅. Let w be the
endpoint of Q contained in C′. By Lemma 3.4, since Q is a 4-string, the path formed by w and w’s neighbours
in C′ is contained in a cell C′′. Since every vertex in C′ \ V (P ) except w has degree exactly 2, it follows that
|E(C′)∩E(C′′)| ≥ |E(C′)|− |E(P )| = 7. But this is a contradiction, since C′ and C were chosen to be the cycle
of length 9 and 7 that have the largest intersection.

Lemma 3.9. Let C and C′ be distinct 9-cycles in G, with V (C) ∩ V (C′) 6= ∅. Their intersection is a path of
length at most 2.

Proof. Suppose not, and let H = C ∪ C′. First suppose the cycles C and C′ intersect in at least two paths P

and P ′. Since paths have potential at least 17, we have p(H) = p(C) + p(C′)− p(P )− p(P ′) ≤ 2, contradicting
Lemma 3.2.

Thus we may assume the cycles C and C′ intersect in a single path P of length k ≥ 3. The potential of H
is given by p(H) = p(C) + p(C′) − p(P ) = 18 + 18 − (2k + 17) = 19 − 2k. Note H 6= G since no theta graph
is C7-critical. Thus by Lemma 3.2, p(H) ≥ 10. Hence k ≤ 4. Note by assumption k ≥ 3. By Lemma 3.2,
G ∈ P5(H) ∪ P4(H).

Suppose first G ∈ P5(H). Let Q5 be the path with G = H ∪ Q5. Let a and b be the endpoints of the path
P = C ∩C′. Suppose first (C \V (P ))∩Q5 = ∅. Let a1a2...a9−k−1 = C \V (P ), and let b1...b9−k−1 = C′ \V (P ),
labeled so that aa1...a9−k−1bb9−k−1...b1a forms a cycle of length 2(9 − k). Since G is C7-critical, C

′ ∪ Q5 has
a homomorphism φ to C7. But then φ extends to a homomorphism of G by setting φ(ai) = φ(bi) for each
i ∈ {1, . . . , 9− k − 1}.

Thus we may assume (C \ V (P )) ∩ Q5 6= ∅, and symmetrically, (C′ \ V (P )) ∩ Q5 6= ∅. Let q ∈ V (Q5 ∩ C).
Let v1 6= v2 be neighbours of q such that {v1, v2} ⊂ V (C). Let G′ be the graph obtained from G by identifying
v1 and v2 to a new vertex v. Note if G′ admits a homomorphism φ to C7, then φ extends to G by setting
φ(v1) = φ(v2) = φ(v). Therefore G′ contains a C7-critical subgraph G′′. Note there exists an edge in the 5-string
formed by Q5v that is not contained in E(G′′) by Lemma 2.6. Since C7-critical graphs have minimum degree
two by Lemma 2.1, it follows that E(Q5v) ∩ E(G′′) = ∅. Thus G′′ is a subgraph of a theta graph H ′. But no
theta graph is C7-critical. Since H ′ has girth at least 7, we have that G′′ 6∈ {C3, C5}. But then H ′ does not
contain a C7-critical subgraph, a contradiction.

We may therefore assume G 6∈ P5(H), and so by Lemma 3.2, we have p(H) ≥ 12. Since p(H) = 19− 2k, it
follows that k = 3. By Lemma 3.2, G ∈ P4(H). Let Q4 = q0q1q2q3q4 be the path such that G = H ∪ Q4. As
above, (C \ V (P )) ∩ Q4 6= ∅ as otherwise a homomorphism φ : Q4 ∪ C′ → C7 extends to G, a contradiction.
Symmetrically, (C \ V (P )) ∩ Q4 6= ∅. Let q ∈ V (C ∩ Q4), and let q′ ∈ V (C′ ∩ Q4). Let v1 and v2 neighbour
q, with {v1, v2} ⊂ V (C). Similarly, let u1 6= u2 be neighbours of q′ such that {u1, u2} ⊂ V (C′). Let G′ be the
graph obtained from G by both identifying v1 and v2 to a new vertex v, and identifying u1 and u2 to a new
vertex u. Note if G′ admits a homomorphism φ to C7, then φ extends to a homomorphism of G by setting
φ(v1) = φ(v2) = φ(v), and φ(u1) = φ(u2) = φ(u). Therefore G′ contains a C7-critical subgraph G′′. Note that
there exists an edge in the 5-string formed by uQ4v that is not contained in G′′ by Lemma 2.6. Since C7-critical
graphs have minimum degree two by Lemma 2.1, it follows E(uQ4v) ∩ E(G′′) = ∅. Thus G′′ is a subgraph of a
theta graph H ′. Note no theta graph is C7-critical. Since H ′ has girth at least 7, we have that G′′ 6∈ {C3, C5}.
But then H ′ does not contain a C7-critical subgraph, a contradiction.

3.2 Forbidden Structures

The lemmas in this section are used to rule out the existence of certain configurations in G, and to establish the
neighbouring structure of others. Lemmas 3.10, 3.11, and 3.12 rule out the existence of certain types of vertices
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of degree three. In Lemma 3.13, we show that G does not contain cells of low degree. Finally, Lemmas 3.14,
3.15, and 3.16 establish the neighbouring structure of certain types of vertices not contained in cells.

Given the structure established in the previous section, we are now equipped to rule out several types of
degree three vertices. We note that in the discharging portion of the proof of Theorem 1.4, the problematic
structures will be degree three vertices with weight at least six. In ruling out a subset of these types of vertices,
we therefore shorten and simplify the discharging portion of the proof of Theorem 1.4.

Lemma 3.10. G does not contain a vertex of type (4, 4, k), where 0 ≤ k ≤ 4.

Proof. Suppose not. Then there exists a vertex v of type (4, 4, k) with neighbours a, b, and c, where a is contained
in a 4-string Sa, and b is contained in a 4-string Sb 6= Sa by Lemma 2.1. Lemma 3.4 applied to v and Sa implies
the edge vc is contained in a cell C. Lemma 3.4 applied to v and Sb implies vc is contained in a cell C′ 6= C.
This contradicts Lemma 3.7, since distinct cells are vertex-disjoint.

Lemma 3.11. G does not contain a vertex of type (4, 3, k), where 1 ≤ k ≤ 3.

Proof. Suppose not. Then for some k ∈ {1, 2, 3}, there exists a vertex v of type (4, 3, k). Let a be a vertex in N(v)
that is contained in a 4-string Sa, and let b be a vertex in N(v) contained in a 3-string Sb. Let c ∈ N(v) \ {b, a}
be the other neighbour of v. By applying Lemma 3.4 to v and Sa, we have that the path bvc is contained in
a cell C. By applying Lemma 3.5 to v and Sb, we have that the path avc is contained in a cycle C′ of length
either seven or nine. In particular, the edge vc is contained in E(C′ ∩ C). First suppose C′ is of length seven.
This contradicts Lemma 3.7 as distinct cells are vertex-disjoint. Thus we may assume C′ is of length nine. This
contradicts Lemma 3.8, since 7-cycles and 9-cycles are edge-disjoint.

Lemma 3.12. G does not contain a vertex of type (3, 3, 2).

Proof. Suppose not. Then there exists a vertex v of type (3, 3, 2). Let a be a neighbour of v that is contained
in a 3-string Sa. Let b 6= a be a neighbour of v contained in a 3-string Sb. Finally, let c be the neighbour of v
contained in a 2-string Sc. By applying Lemma 3.5 to the v and Sa, we have that Sc is contained in a cycle C

of length either seven or nine. By applying Lemma 3.5 to v and Sb, we have that the path Sc is contained in
a cycle C′ 6= C of length either seven or nine. Suppose first C and C′ are both cells. Since Sc ∈ C ∩ C′, this
contradicts Lemma 3.7 as cycles of length seven are vertex disjoint. Suppose next that one of C and C′ is a
9-cycle, and the other is a cell. Since Sc ∈ C ∩ C′, this contradicts Lemma 3.8 as 7-cycles and 9-cycles are edge
disjoint. Thus we may assume both C and C′ are 9-cycles. But this contradicts Lemma 3.9, as distinct 9-cycles
intersect in a path of length at most two.

The following lemma is used to lower-bound the degree of cells in G. This will be useful in the discharging
portion of the proof.

Lemma 3.13. G does not contain a cell of degree at most two.

Proof. Suppose not. Note since G is C7-critical, G is not a cell. Thus if G contains a cell of degree 0, we have
that G is disconnected, contradicting Lemma 2.1. If G contains a cell of degree one, then G contains a cut
vertex, contradicting Lemma 2.1.

We may therefore assume G contains a cell C of degree two. Let P be a longest string contained in C. Note
P is a k-string with k ≥ 3 since deg(C) = 2. Note that k ≤ 4 by Lemma 2.6. Suppose first that P is a 4-string,
and let v be an endpoint of P . Note since C has degree 2, it follows that v has degree 3. Let u1 6= u2 be
neighbours of v, such that P ∩ {u1, u2} = ∅. By Lemma 3.4, the path u1vu2 is contained in a cell C′. But since
v is also contained in C, we have that V (C) ∩ V (C′) 6= ∅, contradicting Lemma 3.7.

Thus we may assume P is a 3-string. Let u 6= v be the endpoints of P . Let u1 be a vertex in V (C) ∩N(u),
with u1 6∈ V (P ). Similarly, let v1 be a vertex in V (C) ∩ N(v), with v1 6∈ V (P ). Let u2 be a vertex in
N(u) \ V (C), and let v2 be a vertex in N(v) \ V (C). Note v2 6= u2, as otherwise v2Pv2 is a cycle of length 6
in G, contradicting Lemma 3.3. Furthermore, v2 and u2 are not adjacent as otherwise the cell v2Pu2v2 6= C

intersects C contradicting Lemma 3.7.
Let G′ be the graph obtained from G by both identifying u1 and u2 to a new vertex zu, and identifying v1

and v2 to a new vertex zv.
Claim 1. G′ does not contain a triangle.

Proof. Suppose not. Since G does not contain a 5-cycle, a triangle in G′ contains both zu and zv. But then the
path u2uu1v1vv2 is contained in a cell C′ 6= C. This contradicts Lemma 3.7.

Claim 2. G′ does not contain a 5-cycle.
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Proof. Suppose not. Let K be a 5-cycle contained in G′. Since K 6⊂ G, we have that at least one of zu and zv
is contained in V (K). Suppose first exactly one of zu and zv is contained in V (K). Without loss of generality,
suppose zu ∈ V (K). Then the path u1uu2 is contained in a cell C′ in G. Since u ∈ V (C ∩ C′), this contradicts
Lemma 3.7.

Thus we may assume both zu and zv are contained in V (C′), and that the path u2uu1v1vv2 is contained in
a 9-cycle C′ in G. But then the path uu1v1v is contained in both C′ and C, contradicting Lemma 3.8.

Note G′ does not admit a homomorphism φ to C7, as any such homomorphism extends to G by setting
φ(u1) = φ(u2) = φ(zu), and φ(v1) = φ(v2) = φ(v). Thus G′ contains a C7-critical subgraph G′′. By Claims
1 and 2, we have that G′′ 6∈ {C3, C5}. Since v(G′′) < v(G) and G is a minimum counterexample, p(G′′) ≤ 2.
Note by Lemma 2.6, P 6⊆ G′′ since zuPzv is a 5-string. Furthermore, G′′ contains at least one of {zu, zv} since
G′′ 6⊆ G.

Suppose first G′′ contains exactly one of {zu, zv}, and without loss of generality suppose zv ∈ V (G′′). Let
F be the graph obtained from G′′ by splitting zv back into v1 and v2 and adding v1vv2. We have p(F ) ≤
p(G′′) + 17(2)− 15(2) ≤ 6, and so F contradicts Lemma 3.2.

Thus we may assume G′′ contains both of {zu, zv}. Let F be the graph obtained from G′′ by splitting zv
back into v1 and v2 and adding the path v1vv2. Let F ′ be obtained from F by splitting zu back into u1 and
u2 and adding the path u1uu2. We have p(F ′) ≤ p(G′′) + 17(4) − 15(4) ≤ 10. By Lemma 3.2, G ∈ P5(F

′) or
F ′ = G. But since P \ {u, v} 6∈ F ′ and P is not a 4-string, this is a contradiction.

Finally, the last three lemmas in this section establish the neighbouring structure of certain types of vertices
not contained in cells. These lemmas will be useful in the discharging portion of the proof of Lemma 1.4.

Lemma 3.14. Let v ∈ V (G) be a vertex of type (3,2,2) that is not contained in a cell. If a 6= b are the vertices
that share a 2-string with v and deg(a) = deg(b) = 3, then at least one of a and b is contained in a cell.

Proof. Suppose not. Let Sa = aa1a2v be the 2-string shared by a and v, and let Sb = bb1b2v be the 2-string
shared by b and v. Let S be the 3-string incident with v. By Lemma 3.5 applied to v, since v is not contained
in a cell there exists a 9-cycle C = Sa ∪ Sb ∪ bc2c1a in G. Let x1 ∈ N(a) \ V (C), and let x2 ∈ N(b) \ V (C).

Note since C is a 9-cycle, by Lemma 3.9 the path x1ac1c2bx2 is not contained in a 9-cycle. Furthermore,
since cells and 9-cycles are edge-disjoint by Lemma 3.8, ac1 and c2b are each not contained in a cell. Let G′ be
the graph obtained from G by identifying xi and ci to a new vertex zi, for each i ∈ {1, 2}. Note that G′ does
not contain a triangle or 5-cycle. Furthermore, if G′ admits a homomorphism φ to C7, then φ extends to G by
setting φ(x1) = φ(c1) = φ(z1) and φ(x2) = φ(c2) = φ(z2), contradicting the fact that G is C7-critical. Thus
G′ does not admit a homomorphism to C7. Furthermore, G′ is not C7-critical, as v is a vertex of degree 3 and
weight 9 in G′, contradicting Lemma 2.9. Thus G′ contains a proper C7-critical subgraph G′′. Note since G′′

does not contain a vertex of degree 3 with weight at least 9, at least one edge in one of the strings S∗ incident
with v is not contained in G′′. Since G′′ has minimum degree 2 by Lemma 2.1, we have E(S∗)∩E(G′′) = ∅. Let
S′ and S′′ be the strings in {Sa, Sb, S} \ {S

∗}. Since S′ ∪ S′′ is a k-string with k ≥ 5, at least one of the edges
in S′ ∪ S′′ is not contained in E(G′′). Since G′′ has minimum degree 2, it follows that E(S′ ∪ S′′) ∩E(G′′) = ∅.
In particular, it follows that v 6∈ V (G′′).

Since G′′ 6⊂ G, it follows that G′′ contains at least one of z1 and z2. Furthermore, since G′′ is not a triangle
or a 5-cycle and v(G′′) < v(G), we have p(G′′) ≤ 2.

Suppose first exactly one of {z1, z2} is contained in V (G′′). Without loss of generality, we may assume
z1 ∈ V (G′′). Let F be the graph obtained from G′′ by splitting z1 back into c1 and x1, and adding the path
x1ac1. Then p(F ) = p(G′′) + 17(2)− 15(2) ≤ 6. Since F 6= G, this contradicts Lemma 1.4.

Thus we may assume both of {z1, z2} are contained in V (G′′). Let F be the graph obtained from G′′ by
splitting z1 back into c1 and x1, splitting z2 back into c2 and x2, and adding the paths x1ac1 and x2bc2. Then
p(F ) = p(G′′)+ 17(4)− 15(4) ≤ 10. By Lemma 3.2, either F = G or G ∈ P5(H). But since v 6∈ V (F ) is a vertex
of degree 3, this is a contradiction.

Lemma 3.15. Let v ∈ V (G) be a vertex of type (2,2,2) not contained in a cell. If a, b, and c are the vertices
that share a 2-string with v and deg(a) = deg(b) = deg(c) = 3, then at least one of a, b and c is contained in a
cell.

Proof. Suppose not. Let Sa, Sb, and Sc be the 2-strings shared by v with a, b, and c, respectively. Let
N(a) \ V (Sa) = {a1, a2}, let N(b) \ V (Sb) = {b1, b2}, and similarly let N(c) \ V (Sc) = {c1, c2}. Note first a, b,
and c are all distinct vertices, since G does not contain a 6-cycle by Lemma 3.3. Furthermore, {a1, a2}∩{b, c} = ∅
since v is not contained in a cell. Similarly, {b1, b2} ∩ {a, c} = {c1, c2} ∩ {a, b} = ∅.

Let G′ be the graph obtained fromG by identifying a1 and a2 to a new vertex za; identifying b1 and b2 to a new
vertex zb; and identifying c1 and c2 to a new vertex zc. If G

′ admits a homomorphism φ to C7, then φ extends to
G by setting φ(x1) = φ(x2) = φ(zx) for each x ∈ {a, b, c}, contradicting the fact that G is C7-critical. Therefore
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G′ contains a C7-critical subgraph G′′. Note by Lemma 2.9, at least one vertex in V (Sa)∪ V (Sb) ∪ V (Sc) is not
in V (G′′) as otherwise v has weight nine in G′′, contradicting Lemma 2.9. Without loss of generality, suppose
there is a vertex in V (Sa) not contained in V (G′′). Since G′′ is C7-critical, by Lemma 2.1 G′′ has minimum
degree 2, and so (V (Sa) \ {v}) ∩ V (G′′) = ∅. Suppose Sa ∪ Sb is contained in G′′. Since E(Sa) ∩ E(G′′) = ∅,
it follows that Sa ∪ Sb is a 7-string in G′′, contradicting Lemma 2.6. Thus at least one edge in E(Sa ∪ Sb) is
not contained in E(G′′). Since G′′ has minimum degree 2 by 2.1, it follows that E(Sa ∪ Sb) ∩ E(G′′) = ∅, and
furthermore that V (G′′) ∩ V (Sa ∪ Sb ∪ Sc) = ∅.
Claim 1. G′′ is neither a triangle nor a 5-cycle.

Proof. Suppose not, and suppose first G′′ is a triangle. Since neither a, b, nor c is contained in a 5-cycle in G

by Lemma 3.3, G′′ we have that |{za, zb, zc} ∩ V (G′′)| ≥ 2. Since neither a, b, nor c is contained in a cell, it
follows that |{za, zb, zc} ∩ V (G′′)| = 3 and that the paths a1aa2, b1bb2, and c1cc2 are contained in a 9-cycle C.
Let F = Sa ∪ Sb ∪ Sc ∪C. The potential of F is given by

p(F ) = p(C) + p(Sa) + p(Sb) + p(Sc)− p(a)− p(b)− p(c)− 2p(v)

= 18 + 3(23)− 3(17)− 2(17)

= 2.

This contradicts Lemma 3.2.
Suppose next G′′ is a 5-cycle. Since neither a, b, nor c is contained in a cell, |{za, zb, zc} ∩ V (G′′)| ≥ 2. First

suppose that |{za, zb, zc} ∩ V (G′′)| = 2, and so that two of the paths a1aa2, b1bb2, and c1cc2 are contained in
a 9-cycle C. Without loss of generality, assume the paths are a1aa2 and b1bb2. Let F be the graph formed by
C ∪ Sa ∪ Sb. The potential of F is given by

p(F ) = p(C) + p(Sa) + p(Sb)− p(a)− p(b)− p(v)

= 18 + 2(23)− 3(17)

= 13.

By Lemma 3.2, we have F = G or G ∈ P5(F ) ∪ P4(F ). But this is a contradiction, since Sc is a 2-string and
Sc 6⊂ F .

We may therefore assume that |{za, zb, zc} ∩ V (G′′)| = 3, and so that the paths a1aa2, b1bb2 and c1cc2 are
contained in an 11-cycle C. Let F = C ∪ Sa ∪ Sb ∪ Sc. The potential of F is given by

p(F ) = p(C) + p(Sa) + p(Sb) + p(Sc)− p(a)− p(b)− p(c)− 2p(v)

= 22 + 3(23)− 17(5)

= 6.

By Lemma 3.2, F = G. Let Pab be the (a, b)-path in C that does not contain c. Similarly, let Pbc and Pac be
the (b, c)- and (a, c)-paths along C that do not contain a and b, respectively. Note since neither a, b, nor c is
contained in a cell by assumption, neither Pab, Pbc, nor Pac is a 4-string by Lemma 3.4. Since together the three
paths form an 11-cycle, we may assume without loss of generality that each of Pab and Pbc is a 3-string, and that
Pac is a 2-string. Note Sa∪Sc∪Pac forms a 9-cycle C′. Let a′ and c′ be v’s neighbours in Sa and Sc, respectively.
Let F ′ be the graph obtained from G by identifying a′ and c′. Note F ′ does not admit a homomorphism to C7 as
such a homomorphism extends to G. Thus F ′ contains a C7-critical subgraph F ′′. Note C′ is a cell of weight 9 in
F ′′, and so F ′′ does not contain at least one string in or incident with C′. But then F ′′ is a subgraph of a theta
graph. Note no theta graph is C7-critical; since F ′′ has girth at least 7, it follows that F ′′ is not C7-critical.

By Claim 1, G′′ 6∈ {C3, C5}, and since G is a minimum counterexample and v(G′′) < V (G), it follows that
p(G′′) ≤ 2. Since G′′ 6⊂ G, at least one of {za, zb, zc} is contained in V (G′′). Let I = {x : zx ∈ V (G′′)}. Let F be
the graph obtained from G′′ by splitting zx back into x1 and x2 and adding the path x1xx2, for each i ∈ I. Let
k = |I| ≤ 3. We have p(F ) ≤ p(G′′) + 17(2k)− 15(2k). Note this does not necessarily hold with equality, since
{x1, x2} and {y1, y2} are not necessarily disjoint for x 6= y, {x, y} ⊆ I. Simplifying, p(F ) ≤ p(G′′) + 2(2k) ≤ 14.
By Lemma 3.2, either F = G or G ∈ P5(F ) ∪ P4(F ) ∪ P3(F ). But since v 6∈ V (F ) and deg(v) = 3, this is a
contradiction.

Lemma 3.16. Let v ∈ V (G) be a vertex of type (3,3,0) that is not contained in a cell. Let S be the 0-string
incident with v, and let u 6= v be an endpoint of S. If u is not contained in a cell, u is not of type (3,3,0).

Proof. Suppose not. Let Sa and Sb be the 3-strings incident with v, and let Sc and Sd be the 3-strings incident
with u. Let a 6= v and b 6= v be endpoints of Sa and Sb, respectively. Let c 6= u and d 6= u be endpoints of Sc

and Sd, respectively. Note a 6= b and c 6= d by Lemma 2.7.
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Figure 4: Figure for Lemma 3.16. Extensions of φ to G. The white vertices are of unknown degree, though their
degree is at least that shown. The black vertices’ degrees are as illustrated.

In this proof, we consider all numerical indices to be taken modulo 7. We aim to show {a, b}∩ {c, d} 6= ∅. To
see this, suppose not. Let φ be a homomorphism from G\ (V (Sa ∪Sb ∪Sc∪Sd)\ {a, b, c, d}) to C = c1c2 · · · c7c1.
Let I1 = Bφ(v|a, Sa) ∩ Bφ(v|b, Sb). Let I2 = Bφ(u|c, Sc) ∩ Bφ(u|d, Sd). Note since G is C7-critical, we have
NC(I1) ∩ I2 = ∅; otherwise, φ extends to G, a contradiction. First, we will show the following:
Claim 1. Given φ as described, φ(a) ∈ {φ(c), φ(d)}.

Proof. By Lemma 2.5, since each of Sa, Sb, Sc, and Sd is a 3-string, each of |Bφ(v|a, Sa)|, |Bφ(v|b, Sb)|, |Bφ(u|c, Sc)|,
and |Bφ(u|d, Sd)| is at least 5. Note since I1 and I2 are each the intersection of two subsets of V (C) of size
at least 5, it follows that |I1| ≥ 3 and |I2| ≥ 3. Suppose |I1| ≥ 4. Then |NC(I1)| ≥ 5 by Lemma 2.4, and so
NC(I1) ∩ I2 6= ∅. But then φ extends to G, a contradiction. Therefore I1 (and symmetrically, I2) is a set of size
3.

We may assume without loss of generality that φ(a) = c1. Then Bφ(v|a, Sa) = V (C)\{c7, c2}. Let φ(b) = cj ,
with j ∈ {1, . . . , 7}. In order to have |I2| = |Bφ(v|b, Sb) ∩ Bφ(v|a, Sa)| = 3, we therefore have {c7, c2} ∩
{cj−1, cj+1} = ∅. Thus j ∈ {4, 5, 2, 7}. Suppose j = 2. Then I1 = {c4, c5, c6}. But then |NC7

(I1)| = 5, and so
since NC(I1)∩I2 6= ∅, φ extends to G, a contradiction. The same is symmetrically true if j = 7. We may therefore
assume j ∈ {4, 5}. Without loss of generality, we will take j = 4, as the j = 5 case corresponds to simply renaming
the vertices along the cycle C in the opposite orientation. Similarly, if φ(c) = ck, then φ(d) ∈ {ck+3, ck+4}. Note
since φ(a) = c1 and φ(b) = c4, we have I1 = {c1, c4, c6}. Thus NC(I1) = {c7, c2, c3, c5}. Since φ does not extend
to G, we have that I2 = {c1, c4, c6}, and so without loss of generality, φ(c) = c1 and φ(d) = c4. Since φ(a) = φ(c),
this is a contradiction.

Let G′ be the graph obtained from G \ (V (Sa ∪ Sb ∪ Sc ∪ Sd) \ {a, b, c, d}) by adding a 4-string Sac with
endpoints a and c, and a 4-string Sad with endpoints a and d. Note by assumption a 6= c and a 6= d. It follows
that G′ does not contain a cycle of length three or five, since a cycle containing either Sad or Sac has length at
least six. Note if G′ admits a homomorphism φ to C, then φ extends to G by Claim 1, since φ(a) 6∈ {φ(d), φ(c)}.
Thus G′ is not homomorphic to C7, and so it contains a C7-critical subgraph G′′. Since G′′ 6∈ {C3, C5}, since
v(G′′) < v(G) and since G is a minimum counterexample, it follows that p(G′′) ≤ 2. Note since G′′ has minimum
degree two and G′′ 6⊂ G, we have that G′′ contains at least one of Sac and Sad.

Suppose first G′′ contains exactly one of Sac and Sad; without loss of generality, assume Sac ⊂ G′′. Let F be
the graph obtained fromG′′ by deleting Sac and adding SauvSc. Then F ⊂ G, and p(F ) = p(G′′)+17(4)−15(4)≤
10. By Lemma 3.2, either F = G or G ∈ P5(F ). But since Sd 6⊂ F and Sb 6⊂ F , this is a contradiction.

We may therefore assume G′′ contains both Sac and Sad. Let F be the graph obtained from G′′ by deleting
Sac and Sad, and adding in Sa, Sc, Sd, and the edge uv. Since this is a net addition of 3 vertices and 3 edges,
we have p(F ) = p(G′′) + 17(3)− 15(3) ≤ 8. By Lemma 3.2, F = G. But since Sb 6⊂ F , this is a contradiction.

Thus we may assume a ∈ {c, d}. Without loss of generality, assume a = c. We now break into two cases
depending on whether or not b = d.
Case 1: b = d. Let G1 = G \ (V (Sa ∪Sb ∪Sc ∪Sd) \ {a, b}). Note since G is C7-critical and G1 ⊂ G, G1 admits
a homomorphism φ to C7 = c1...c7c1, with φ(a) = c1 and φ(b) ∈ {c1, c2, c3, c4}. Note φ(b) = c4, as otherwise φ

extends to G, a contradiction. To see this, see Figure 4.
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Let G2 ∈ P2(G1) be the graph obtained from G1 by adding an (a, b)-path P of length 2. Note if G2 admits
a homomorphism φ to C7, then φ extends to G since there does not exist a homomorphism φ′ : G2 → C7 with
φ′(a) = c1 and φ′(b) = c4. Thus G2 contains a C7-critical subgraph G′

2. Suppose G′
2 is a triangle. Then ab is

an edge in G. But then C = Sa ∪ Sc ∪ uv and C′ = Sb ∪ Sa ∪ ab are two 9-cycles that intersect in a 3-string
Sa, contradicting Lemma 3.2. Suppose next that G′

2 is a 5-cycle. Then there exists an (a, b)-path Q of length
3 in G. Let F = Sa ∪ Sb ∪ Sc ∪ Sd ∪ uv ∪ Q. Since v(F ) = 18 and e(F ) = 20, the potential of F is given
by p(F ) = 17(18) − 15(20) = 6. By Lemma 3.2, F = G. But since there exists a homomorphism φ of Q to
C7 with φ(a) = c1 and φ(b) = c2, we have that φ extends to a homomorphism of G to C7, contradicting the
fact that G is C7-critical. Thus we may assume G′

2 6∈ {C3, C5}, and since v(G′
2) < v(G) and G is a minimum

counterexample, it follows that p(G′
2) ≤ 2. Note since G′

2 6⊂ G and G′
2 has minimum degree at least 2 by Lemma

2.1, the path P is contained in G′
2. Let F be the graph obtained from G′

2 by deleting V (P ) \ {a, b} and adding
Sa ∪ Sb. The potential of F is given by p(F ) = p(G′

2) + 17(6) − 15(6) ≤ 14. By Lemma 3.2, either F = G or
G ∈ P5(F ) ∪ P4(F ) ∪ P3(F ). But since one of u and v is not contained in F and deg(u) = deg(v) = 3, this is a
contradiction.
Case 2: b 6= d. Let G′ be the graph obtained from G \ (V (Sa ∪ Sb ∪ Sc ∪ Sd) \ {a, b, d}) by adding a 4-string Sbd

with endpoints b and d. Note since b 6= d, G′ does not contain a cycle of length 3 or 5, since a cycle containing
Sbd has length at least 6.

Suppose G′ admits a homomorphism φ to C7. Without loss of generality, we may assume φ(a) = c1 and
φ(b) ∈ {c1, c2, c3, c4}. Note φ(b) 6= φ(d), since Bφ(b|d, Sbd) = V (C7)− φ(b).
Claim 2. The homomorphism φ extends to G.

Proof. Let I1 = Bφ(v|a, Sa) ∩ Bφ(v|b, Sb) and I2 = Bφ(u|a, Sc) ∩ Bφ(u|d, Sd). Note since G is C7 critical, it
follows that I1 ∩ NC7

(I2) = ∅ as otherwise φ extends to G. Since each of Sa, Sb, Sc, and Sd is a 3-string, by
Lemma 2.5 each of |Bφ(v|a, Sa)|, |Bφ(v|b, Sb)|, |Bφ(u|a, Sc)|, and |Bφ(u|d, Sd)| is at least 5. Note since I1 and I2
are each the intersection of two subsets of V (C7) of size at least 5, it follows that |I1| ≥ 3 and |I2| ≥ 3. Suppose
|I1| ≥ 4. Then |NC7

(I1)| ≥ 5 by Lemma 2.4, and so NC7
(I1)∩ I2 6= ∅. But then φ extends to G, a contradiction.

Therefore I1 (and symmetrically, I2) is a set of size exactly 3.
Since φ(a) = c1, it follows that Bφ(v|a, Sa) = {c1, c3, c4, c5, c6}. Since φ(b) ∈ {c1, c2, c3, c4} and Bφ(v|b, Sb) =

{ci : i ∈ [7], i 6= φ(b) ± 1}, it follows that φ(b) ∈ {c2, c4}.
Suppose φ(b) = c2. Then we have

I1 = Bφ(v|a, Sa) ∩Bφ(v|b, Sb)

= {c1, c3, c4, c5, c6} ∩ {c2, c4, c5, c6, c7}

= {c4, c5, c6}.

But then |NC7
(I1)| = 5, and so it follows that I2 ∩NC7

(I1) 6= ∅ since I2 is a set of size 3. This contradicts the
fact that φ does not extend to G. Thus we may assume φ(b) = c4.

Similarly, we may assume φ(d) 6= c2, and symmetrically, φ(d) 6= c7. Thus φ(d) ∈ {c4, c5}. Since φ(d) 6= φ(b),
we have that φ(d) = c5. But then I1 = {c1, c4, c6} and so N(I1) = {c2, c3, c5, c7}. Since I2 = {c1, c3, c5}, we
have that N(I1) ∩ I2 6= ∅, and so that φ extends to G.

Since G is C7-critical, Claim 2 is a contradiction and so we may assume that G′ does not admit a homomor-
phism φ to C7. Thus G′ contains a C7-critical subgraph G′′. Note since G′ does not contain a cycle of length
3 or 5, it follows that G′′ 6∈ {C3, C5}. Furthermore, since v(G′′) < v(G) and G is a minimum counterexample,
we have that p(G′′) ≤ 2. Note at least one edge in E(Sbd) is contained in E(G′′) since G′′ 6⊂ G. Furthermore,
since G′′ has minimum degree 2 by Lemma 2.1, it follows that Sbd ⊂ G′′. Let F be the graph obtained from G′′

by deleting Sbd \ {b, d} and adding SbuvSd. Since this is a net addition of 4 vertices and 4 edges, it follows that
p(F ) = p(G′′) + 17(4) − 15(4) ≤ 10. By Lemma 3.2, it follows that either F = G or G ∈ P5(F ). But this is a
contradiction, since Sa 6⊂ F and Sc 6⊂ F .

4 Discharging

Now that we have established the required structure of G, this section will be dedicated to proving Theorem 1.4
via discharging. The discharging will proceed in five stages: in each stage, charge will only be sent to structures
that have not received charge in previous stages. It follows, then, that a structure in need of charge will only
ever receive charge in a single stage.

Let X ⊆ V (G) be the set of vertices of degree at least three. We assign an initial charge of ch0(v) =
15 deg(v) − 2wt(v) − 34 to each vertex v ∈ X , and ch0(v) = 0 for each v ∈ V (G) \X . Note

∑

v∈X(15 deg(v) −
2wt(v) − 34) =

∑

v∈X(15 deg(v) − 34) −
∑

v∈V (G)\X 4, since every vertex v of degree 2 contributes to the
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weight of two distinct vertices in X (namely, the endpoints of the string that contain v). Since
∑

v∈V (G)\X 4 =
∑

v∈V (G)\X(34− 15 deg(v)), we have

∑

v∈V (G)

ch0(v) =
∑

v∈V (G)

(15 deg(v)− 34)

= 15
∑

v∈V (G)

deg(v) −
∑

v∈V (G)

34

= 30e(G)− 34v(G)

= −2p(G)

≤ −6, since p(G) ≥ 3 and potential is integral. (1)

We will redistribute the charge amongst the vertices and cells until every vertex and cell has non-negative charge,
contradicting the fact that the sum of the charges is at most −6. The proof will be done in two sections: in
Section 4.1, we will show that after discharging no structures that start with non-negative charge end with
negative charge. In Section 4.2, we will show that all structures that start with negative charge end with
non-negative charge.

For simplicity, we define the following term.

Definition 4.1. A vertex is poor if it has negative charge.

Note by Lemma 2.9, if v is a vertex in V (G), then wt(v) ≤ 5 deg(v)−7. For a vertex v ∈ X , we therefore have
ch0(v) ≥ 15 deg(v)− 2(5 deg(v)− 7)− 34 = 5 deg(v)− 20. Therefore the only possibly poor vertices are vertices
of degree three. If v has degree three and is poor, then it has weight at least six since ch0(v) = 11− 2wt(v). By
Lemma 2.9, vertices of degree three (and thus poor vertices) have weight at most eight. By Lemmas 3.10, 3.11,
and 3.12 the only poor vertices of weight eight are of type (4,2,2). The poor vertices of weight seven are of type
(4,3,0), (4,2,1), (3,3,1), or (3,2,2), and the poor vertices of weight six are of type (4,2,0), (4,1,1), (3,3,0), (3,2,1),
or (2,2,2).

We will discharge in steps: for i ∈ {1, 2, 3, 4}, Step i consists of a single rule Ri that will be carried out
instantaneously throughout the graph. Step 5 consists of iteratively applying Rule 5 x times, where x is the
number of vertices of degree three and weight five in G. Each application of R5 will be carried out instantaneously
throughout the graph. For convenience, since a single rule is carried out in each step, we will refer to the rules
and steps interchangeably. At the end of Step i, the resulting charge of each cell and vertex will be denoted by
chi. Finally, a k-string in G will be called short if k ≤ 2.

R1. Each vertex contained in a cell sends all of its charge to the cell that contains it. (Since cells are disjoint
by Lemma 3.7, this is unambiguous.)

R2. Let u and v share a short string. If u is in a cell C and v is poor after Step 1, C sends −ch1(v) charge to v.

R3. Let u and v share a short string with deg(u) ≥ 4. If v is poor after Step 2, u sends −ch2(v) charge to v.

R4. Let u and v share a short string with deg(u) = 3 and wt(u) ≤ 4. If v is poor after Step 3, u sends −ch3(v)
charge to v.

R5. Let u and v share a short string with deg(u) = 3 and wt(u) = 5. If v is the only poor vertex that shares a
short string with u, then u sends −ch4(v) charge to v. (Note in this step, each vertex sends charge to at
most one other vertex, though each vertex might receive charge from several others.)

Before proceeding with the proof, we note two important facts regarding the discharging rules. First, the
rules are performed sequentially. This ensures that in the later steps of the discharging process, we will have
uncovered a significant amount of information regarding the local structure of the vertices and cells receiving
charge. Second, vertices and cells only send charge along short strings. If a vertex or cell sends charge to many
poor structures, it follows that the vertex or cell sending charge has relatively low weight and so consequently
has a large amount of charge to spare.

4.1 No New Negative Structures are Created

In this section, we will show that no cell or vertex x with initial charge ch0(x) ≥ 0 has negative final charge
after discharging. First we will show that all cells have non-negative charge at the end of the discharging process
(Lemma 4.3). We will then prove that no vertex with degree at least four is poor after Step 5 (Lemma 4.4).
Finally with Lemmas 4.5 and 4.6, we will prove that all vertices of degree 3 and weight at most 5 have non-
negative final charge. In Section 4.2, we will prove that all vertices of degree 3 and weight at least 6 have
non-negative final charge. As cells and vertices are the only structures that carry charge at any point during the
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discharging, this will show that the sum of the charges is non-negative, contradicting our initial assumption and
completing the proof of Theorem 1.4.

Throughout the analysis, we will use the following observation repeatedly.

Observation 4.2. If v is a vertex that is poor after Step 1, then ch1(v) ≥ −3. If v is incident with a 4-string,
v is not poor after Step 1.

This follows from the fact that all vertices v with ch0(v) = −5 are incident with a 4-string, and by Lemma
3.4 all vertices incident with 4-strings are contained in cells (and so have ch1(v) = 0).

Lemma 4.3. Let C be a cell in G. At the end of Step 2, ch2(C) ≥ 0.

Proof. LetX be the set of vertices in C of degree at least three. At the end of Step 1, ch1(C) =
∑

v∈X(15 deg(v)−
2wt(v)− 34). Rewriting,

ch1(C) =
∑

v∈X

((15 deg(v)− 30)− (2wt(v) + 4))

= 15
∑

v∈X

(deg(v)− 2)− 2
∑

v∈X

(wt(C) + 2).

But since
∑

v∈X(wt(v) + 2) = wt(C) + 14 and
∑

v∈X(deg(v) − 2) = deg(C), we have ch1(C) = 15 deg(C)−
28 − 2wt(C). We will split our further analysis into two cases depending on the degree of the cell C. Note
deg(C) ≥ 3 by Lemma 2.13.

Case 1: deg(C) ≥ 4. Suppose that immediately after Step 1, there are p poor vertices that are each the
endpoint of a short string whose other endpoint is in C. Note each of these p strings contributes at most 2 to the
weight of C. For each poor vertex u we have ch1(u) ≥ −3 by Observation 4.2, and so ch2(C) ≥ ch1(C) − 3p =
15 deg(C)− 28− 2wt(C) − 3p. Since wt(C) ≤ 4(deg(C)− p) + 2p, we have

ch2(C) ≥ 15 deg(C)− 28− 2(4(deg(C)− p) + 2p)− 3p

= 7deg(C) − 28 + p.

Since deg(C) ≥ 4, ch2(C) ≥ p ≥ 0, as desired.

Case 2: deg(C) = 3. Suppose for a contradiction that ch2(C) < 0.
Suppose first |X | = 2. Then X contains a single vertex of degree 3, and a single vertex of degree 4. Note

all vertices that are poor immediately after Step 1 have weight at most seven, by Observation 4.2. Let v be
the vertex of degree 3 in X . Let the three strings incident with v be S1, S2 and S3, named such that S1 and
S2 are contained in C. Suppose that S1 is a 4-string. By Lemma 3.4, S2 ∪ S3 is contained in a cell C′ 6= C,
contradicting Lemma 3.7. Thus we may assume S1 is not a 4-string. Symmetrically, S2 is not a 4-string. Since
|X | = 2 by assumption, we may therefore assume without loss of generality that S1 is a 3-string and S2 is a
2-string. Note S3 is therefore a 0-string. (To see this, suppose not. Then by Lemma 3.5 applied to v and S1, we
have that S2 ∪ S3 (and in particular, S2) is contained in either a cell or a 9-cycle C′ 6= C. We claim this cannot
be: to see this, it suffices to note that S2 ∈ C ∩ C′, but by Lemma 3.7 distinct cells are vertex-disjoint and by
Lemma 3.8, cells and 9-cycles are edge-disjoint.) Let v1 be the vertex that shares S3 with v. Note if ch1(v1) < 0,
then v1 is not incident with a 4-string by Observation 4.2. Since v1 is incident with a 0-string S3, we have that
wt(v1) ≤ 6. Thus if ch1(v1) < 0, it follows that ch1(v1) = −1. Let u be the vertex of degree 4 in X , and let
S4 6⊆ C and S5 6⊆ C be the strings incident with u, with endpoints u1 6= u and u2 6= u, respectively. Note since
ch1(C) = 17− 2wt(C), if wt(C) ≤ 5, then ch2(C) ≥ 0 since C pays at most 1 to v1 in Step 2, and at most 3 to
each of u1 and u2 in Step 2. Thus we may assume wt(C) ≥ 6. Note also if neither u1 nor u2 is poor immediately
after Step 1, then ch2(C) ≥ 0 since ch2(C) ≥ 17 − 2wt(C) − ch1(v1), and wt(C) ≤ 8 by Lemma 2.14. Thus we
may assume at least one of u1 and u2 receives charge from C in Step 2, and so that at least one of S4 and S5 is a
short string. Note that G does not contain a k-string with k ≥ 5 by Lemma 2.6. Furthermore, since at least one
of S4 and S5 is short, S4 and S5 together contribute at most 6 to the weight of C. Thus wt(v) ≤ 6, and since
wt(C) ≥ 6, it follows that wt(C) = 6. Since S3 is a 0-string and at least one of S4 and S5 is a short string, it
follows that exactly one of S4 and S5 is a short string, and so that C sends charge to exactly one of u1 and u2.
But then ch2(C) ≥ 0, since ch1(C) = 17− 2wt(C) = 5 and C sends at most 1 to v1 and 3 to one of u1 and u2.

Thus we may assume |X | = 3. Since deg(C) = 3, it follows that X contains three vertices of degree
three. Let S0 be a k-string with k ≤ 2 and endpoints u, v such that v ∈ V (C). Suppose that u is poor after
Step 1. Then u is a degree three vertex not contained in a cell. Let S1 and S2 be the other strings incident with u.

Claim 1. The weight of u is exactly six.

17



Proof. Suppose not. Note as u is poor after Step 1, it has weight at least six. Note neither S1 nor S2 is a
4-string by Observation 4.2. Suppose now k ∈ {1, 2} (i.e. that S0 is either a 1- or 2-string). First suppose that
S1 is a 3-string and that S2 is not a 0-string. Then by Lemma 3.5 applied to u and S1, there exists an edge
vv1 ∈ E(C) contained in a cell or 9-cycle C′ 6= C. If C′ is a 9-cycle, this is a contradiction since 9-cycles and cells
are edge-disjoint by Lemma 3.8. If C′ is a cell, this too is a contradiction since distinct cells are vertex-disjoint
by Lemma 3.7. Thus if S1 is a 3-string, we may assume S2 is a 0-string. Symmetrically, if S2 is a 3-string, we
may assume S1 is a 0-string.

If k ≥ 1, then S1 and S2 therefore contribute at most 4 to the weight of C. If k = 0, since neither S1 nor S2

is a 4-string, they contribute at most 6 to the weight of C. Note by assumption k ≤ 2. Thus u has weight at
most six. Since by assumption ch2(u) < 0, it follows that u has weight exactly six.

As wt(u) = 6, we have that ch2(u) = −1. Let A be the set of vertices that are poor immediately after Step
1, and that are incident with a short string incident with C. Let |A| = p. Since C has degree 3, it follows that
p ≤ 3. After Step 2, we have ch2(C) = ch1(C) − p = 17− 2wt(C) − p. Note if wt(C) ≤ 7, then since p ≤ 3 we
have that ch2(C) ≥ 0, a contradiction. Thus we may assume that wt(C) ≥ 8. Note also that by Lemma 2.14,
wt(C) ≤ 8, and so we may assume wt(C) = 8. Since ch2(C) < 0, we have p ≥ 2. Thus at least two of the strings
incident with C each contribute at most 2 to the weight of C. Since C has weight 8, it follows that C is incident
with a 4-string and so that p ≤ 2. Thus we may assume p = 2, and since wt(C) = 8, it follows that C is a cell
of type (4, 2, 2).

Let S = u0u1u2u3 be a 2-string incident with C, such that u0 ∈ V (C). Note since u3 is poor after Step 2, it
is not contained in a cell. Let u4 and u5 be the neighbours of u3 that are not contained in S.

Let G′ be the graph obtained from G by identifying u4 and u5 to a new vertex z. Note G′ contains a cell of
weight nine, and so G′ is not C7-critical by Lemma 2.14. Furthermore, G′ admits no homomorphism to C7, as
any such homomorphism φ extends to G by setting φ(u4) = φ(u5) = φ(z). Therefore G′ contains a C7-critical
subgraph G′′, and since G′′ 6⊂ G, we have z ∈ V (G′′). G′ contains no 5-cycles nor triangles, since u3 ∈ V (G) is
not contained in a 7-cycle by assumption. Since v(G′′) ≤ v(G), G′′ is not a counterexample to Theorem 1.4 and
thus p(G′′) ≤ 2. Note at least one string incident with C or at least one string S′ ⊂ C is not contained in G′′,
as otherwise C has weight 9 in G′′, contradicting Lemma 2.14.

Suppose first u3 6∈ V (G′′). Since G′′ has minimum degree at least 2 by Lemma 2.1, it follows that u2 6∈ V (G′′).
Let F be the graph obtained from G′′ by splitting z back to u4, u5 and adding in the path u4u3u5. Then
p(F ) = p(G′′) + 17(2)− 15(2) ≤ 6. Since u2 6∈ V (G′′) and since F ⊂ G, this contradicts Lemma 3.2.

We may therefore assume that u3 ∈ V (G′′), and so there exists a string S′ 6= S whose internal vertices are
not contained in V (G′′). Note either S′ is incident with C, in which case it has at least 2 internal vertices, or
S′ ⊂ C, in which case V (C) ∩ V (G′′) = ∅ since G′′ contains no k-string with k ≥ 5 by Lemma 2.6. Thus we
have V (G) \ V (G′′) 6= ∅. Let F be the graph obtained from G′′ by splitting z back to u4 and u5, and adding
edges to create the path u4u3u5. Then p(G) = p(G′′) + 17(1)− 15(1) ≤ 6. Since F ⊂ G but F ( G, again this
contradicts Lemma 3.2.

Lemma 4.4. Let v ∈ V (G) be a vertex of degree at least four. At the end of Step 3, ch3(v) ≥ 0.

Proof. Suppose not. Let A be the set of vertices that are poor immediately after Step 2 and that each share a
short string with v. Let p = |A|. Note none of the p vertices in A are contained in cells, as they are poor after
Step 2; furthermore, v is not contained in a cell, as this cell would send charge to the vertices in A in Step 2.
By Observation 4.2, v sends at most 3p units of charge to the vertices of A in Step 3.

First, suppose deg(v) ≥ 5. At the end of Step 3, we have ch3(v) ≥ ch2(v)−3p = 15 deg(v)−2wt(v)−34−3p.
Note since v is incident with p short strings and the remaining deg(v)−p strings incident with v each contribute
at most 4 to the weight of v, it follows that wt(v) ≤ 4(deg(v)− p) + 2p. Thus ch3(v) ≥ 15 deg(v)− 2(4 deg(v)−
2p)− 34− 3p = 7deg(v)− 34+ p ≥ 1+ p, since deg(v) ≥ 5. Since p is non-negative, ch3(v) ≥ 0, a contradiction.

Thus we may assume deg(v) = 4. Since v is not contained in a cell, by Lemma 3.6 v is not incident with a
4-string. Since v is incident with at least p short strings and at most (deg(v)− p) k-strings with k = 3, it follows
that v has weight at most 3(deg(v) − p) + 2p = 12− p, and so

ch3(v) ≥ ch2(v) − 3p = 15 deg(v)− 2wt(v)− 34− 3p

≥ 60− 2(12− p)− 34− 3p

= 2− p.

Thus if p ≤ 2, we have ch3(v) ≥ 0, a contradiction.
Since p ≤ deg(v) = 4, we may therefore assume p ∈ {3, 4}. Note if wt(v) ≤ 7, since

ch3(v) ≥ 15 deg(v)− 2wt(v)− 34− 3p

≥ 60− 14− 34− 3p

= 12− 3p
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it follows that ch3(v) ≥ 0, a contradiction.
Thus v has weight at least 8 and is incident with at least three short strings. It follows that v is either a

vertex of type (3, 2, 2, 2), (2, 2, 2, 2), or (3, 2, 2, 1). Note if v shares a short string with a poor vertex v′ of weight
6, then v pays v′ only 1 and each of the other (p − 1) vertices in A at most 3. Thus v pays the vertices in A

at most 3(p − 1) + 1, and so it follows that ch3(v) ≥ 4 − p. Since p ∈ {3, 4}, this is non-negative. Thus we
may assume that v pays at least three poor vertices of weight 7. We finish the proof after the following two claims.

Claim 1. v is not of type (2, 2, 2, 2).

Proof. Suppose not. Recall v only pays a subset of the vertices of degree 3 that are not contained in cells.
Furthermore, since v is of type (2, 2, 2, 2), v only pays vertices that are incident with 2-strings. Since the only
vertices of degree 3 and weight 7 not contained in cells and incident with 2-strings are vertices of type (3, 2, 2),
we may assume v pays at least three vertices of type (3, 2, 2). Since each vertex of type (3, 2, 2) in A is not in a
cell, by Lemma 3.5 they are each contained in 9-cycles. Thus there exist vertices a 6= b in A of type (3, 3, 2), such
that Sa = aa1a2v is a 2-string shared by v and a, Sb is a 2-string shared by v and b, and Sab is a 2-string shared
by a and b. Similarly, there exist vertices c 6= d in A such that c is of type (3, 2, 2), Sc is a 2-string shared by v

and c, Sd is a 2-string shared by v and d, and Scd is a 2-string shared by c and d. Let C be the 9-cycle formed by
Sa ∪ Sb ∪ Sab. Let G

′ be the graph obtained from G by identifying v and a1 to a new vertex z, and deleting a2.
Note G′ does not admit a homomorphism φ to C7 as otherwise φ extends to G by setting φ(v) = φ(a1) = φ(z)
and φ(a2) ∈ NC7

(φ(z)). Furthermore, G′ itself is not C7-critical, as the cycle C′ obtained from C with the
identification of v and a1 is a cell of weight 10 in G′, contradicting Lemma 2.14. Thus G′ contains a C7-critical
subgraph G′′.

Note G′′ does not contain at least one string incident with C′ or one string in E(C′). We claim one of these
strings not contained in G′′ contains at least one internal vertex. To see this, suppose not. Note C′ is incident
with four strings: Sc, Sd, and two 3-strings S′

a and S′
b incident with a and b, respectively. Since these four strings

all have internal vertices, we may assume they are all contained in G′′. Since Sab and Sb are both 2-strings,
we may assume they are both contained in G′′. Thus G′ does not contain the edge az. But then Sab ∪ S′

a is a
6-string contained in G′′, contradicting Lemma 2.6.

Thus we may assume there is a vertex in V (G) \ {a1, a2, v} that is not contained in V (G′′).
Since G′′ 6⊂ G, it follows that G′′ contains the new vertex z. Note G′′ does not contain a triangle or 5-cycle,

since Sa is contained in a 9-cycle in G and so is not contained in a cell by Lemma 3.8. Since v(G′′) < v(G′), it
follows that p(G′′) ≤ 2.

Let F be the graph obtained from G′′ by splitting z back into the vertices v and a1 and adding in the path
va2a1. Then p(F ) = p(G′′) + 17(2)− 15(2) ≤ 6. But since F 6= G, this contradicts Lemma 3.2.

Claim 2. v is not a vertex of type (3, 2, 2, 2).

Proof. Suppose not. Since v is of type (3, 2, 2, 2), v only pays vertices that are incident with 2-strings. Since
the only vertices of degree 3 and weight 7 not contained in cells and incident with 2-strings are vertices of type
(3, 2, 2), we may assume v pays three vertices of type (3, 2, 2). Since each vertex of type (3, 2, 2) in A is not in
a cell, by Lemma 3.5 they are each contained in 9-cycle. Let a 6= b 6= c be the three vertices of type (3, 2, 2) in
A. Let Sa, Sb, and Sc be the 2-strings shared by v with a, b, and c, respectively. Let S′

a be the other 2-string
incident with a. By Lemma 3.5, S′

a ∪Sa is contained in a 9-cycle C. Since v has degree exactly 4 and is incident
only with 2-strings and a 3-string, one of Sb and Sc is contained in C. Without loss of generality, we may assume
C = Sa ∪ S′

a ∪ Sb, and so that S′
a is shared by b and a. Similarly, let S′

c 6= Sc be a 2-string incident with c. By
Lemma 3.5, Sc ∪ S′

c is contained in a 9-cycle C′ 6= C. Since v has degree exactly 4 and is incident only with
2-strings and a 3-string, it follows that there exists a 2-string S 6= Sc incident with v that is contained in C′.
Thus Sa or Sb is contained in C′. But this contradicts Lemma 3.9, since Sb ∪ Sa ⊂ C.

The only remaining possibility is then that v is of type (3,2,2,1). Since |A| ≥ 3 and each vertex in A has
weight 7, we may assume v shares its incident 2-strings S1 and S2 with two poor (3, 2, 2) vertices u1 and u2, and
its incident 1-string S3 with a poor (3, 3, 1) vertex u3. By applying Lemma 3.5 to u1, u2, and u3, we find each
of S1 and S2 is contained in two 9-cycles, contradicting Lemma 3.9.

Lemma 4.5. Let v ∈ V (G) be a vertex of degree 3 and weight at most 4. At the end of Step 4, ch4(v) ≥ 0.

Proof. Suppose not. Let A be the set of vertices that are poor immediately after Step 3 and that each share a
short string with v. Let p = |A|. Note none of the p vertices in A are contained in cells, as otherwise they have
charge at least 0 at the end of Step 1. Furthermore, v is not contained in a cell, as otherwise this cell sends
charge to the vertices in A in Step 2. Note since all vertices of degree 3 and weight 8 are contained in cells by
Lemma 3.4, each vertex in A has weight at most 7, and so v sends at most 3p units of charge in Step 3.
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Note if A contains p ≤ 3 vertices of weight 6, then v sends only 3 units of charge in Step 4, and so

ch4(v) ≥ ch3(v) − 3

= 15 deg(v)− 2wt(v)− 34− 3

≥ 45− 8− 34− 3

= 0, a contradiction.

We may therefore assume A contains a vertex u of weight at least 7. Since A only contains vertices of weight
at most seven, we may assume u has weight exactly 7. Furthermore, if p = 1 (and so v sends charge to only one
vertex in Step 4), then ch4(v) = ch3(v) − 3 = 0, a contradiction. Thus we may assume p ≥ 2. Since vertices of
type (4, 3, 0) and (4, 2, 1) are contained in cells and thus have charge 0 after Step 1, we may assume u is either
of type (3, 3, 1) or of type (3, 2, 2).

First suppose u is of type (3, 2, 2). Let u1 be the other vertex that shares a 2-string with u. Note if u1 is
contained in a cell, then ch3(u) = 0 by Step 2, and so u 6∈ A, a contradiction. Furthermore, if deg(u1) ≥ 4,
then ch3(u) = 0 by Step 3, and so again u 6∈ A. We may therefore assume u1 has degree three. But then this
contradicts Lemma 3.14, as neither v nor u1 is contained in a cell.

Thus we may assume u is of type (3, 3, 1). Let S1 and S3 be the two 3-strings incident with u, and let S2 be
the 1-string shared by u and v (see Figure 5). By Lemma 3.5, since u is a (3, 3, 1)-vertex not contained in a cell,
we have that S2 ∪S3 is contained in a 9-cycle C. Similarly, S1 ∪S2 is contained in a 9-cycle C′ 6= C. Since both
9-cycles contain S2, we have that C′ ∩ C = S2 by Lemma 3.9. Let S4 and S5 be the other two strings incident
with v. Without loss of generality, suppose S4 ⊂ C′ and S5 ⊂ C. Note since p ≥ 2, one of S4 and S5 is shared
by v with a vertex in A. Without loss of generality, we may assume S4 is shared by v and a vertex w in A. Since
v has weight at most four and is incident with a 1-string S2, it follows that at least one of S4 and S5 is not a
2-string.

First suppose S4 is not a 2-string. Since w ∈ A, we have that w has degree three and wt(w) ≥ 6. Furthermore,
since w is not contained in a cell, w is not incident with a 4-string by Lemma 3.4. Since the internal vertices
of two of the strings incident with w are contained in C′ \ V (S1 ∪ S2), together these two strings contribute at
most 1 to the weight of w. But then w has weight at most 4, a contradiction.

Thus we may assume S4 is a 2-string, and since w has weight at least 6, we have that w is a vertex of type
(3, 2, k) with k ≥ 1.

Let S6 denote the third string incident with w (so w is incident with S1, S4, and S6). By Lemma 3.5 applied
to w, S4 and S6 are contained in a 9-cycle C′′. Since S4 is contained in C′∩C′′, this contradicts Lemma 3.9.

v

u
S1

S2

S3

S4 S5

Figure 5: Figure for Lemma 4.5. v has weight at most four and degree three. The white vertices are of unknown
degree, though their degree is at least that shown. The black vertices’ degrees are as illustrated.

Lemma 4.6. Let v ∈ V (G) be a vertex of degree 3 and weight 5 that shares a short string with only one poor
vertex either during Step 5. At the end of Step 5, ch5(v) ≥ 0.

Proof. Suppose not. Let u be the poor vertex with that shares a short string with v during Step 5. Suppose
wt(u) = 6. Then ch4(u) = −1, and so

ch5(v) = ch4(v) − ch4(u)

= 15 deg(v)− 2wt(v)− 34− 1

= 45− 10− 34− 1

= 0, a contradiction.

We may therefore assume u has weight at least seven. Note since ch4(u) < 0, u is not contained in a cell by
the discharging rules. By Lemma 3.4, it follows that u is not of type (4,2,2), (4,3,0), or (4,2,1). Thus we may
assume u is a vertex of type either (3,3,1), or (3,2,2). By Lemma 3.14, if u is a (3,2,2)-vertex it has charge at
least 0 by either Step 1, 2, or 3.
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Therefore we may assume u is a vertex of type (3,3,1), and hence the string shared by u and v is a 1-string.
Note v is not incident with a 4-string as otherwise it is contained in a cell by Lemma 3.6 and so ch2(u) ≥ 0,
a contradiction. Thus since v has degree 3 and weight 5 and is incident with a 1-string, it is either a vertex of
type (3,1,1) or of type (2,2,1).

First suppose v is of type (3, 1, 1). Let S1 and S2 be the two 1-strings incident with v, named such that S1 is
shared by u and v. Let S3 be the 3-string incident with v. Let the two 3-strings incident with u be named S4 and
S5. Note S4 and S5 do not have the same two endpoints by Lemma 2.7. Furthermore v and u share only S1 by
Lemma 2.7. By Lemma 3.5 applied to u and S4, since u is not contained in a cell S1∪S5 is contained in a 9-cycle
C. Note since v has degree 3, it follows that either S2 or S3 is contained in C. Since v(S1∪S5∪S3) = 11, we may
assume that S2 ⊂ C. Similarly, by Lemma 3.5 applied to u and S5, we have that S4∪S1 is contained in a 9-cycle
C′. Note since v has degree 3, it follows that either S2 or S3 is contained in C′. Since v(S1 ∪ S4 ∪ S3) = 11, it
follows that S2 ⊂ C′. Since S1 ∪ S2 ⊂ C ∩ C′, this contradicts Lemma 3.9.

Therefore we may assume v is a (2, 2, 1)-vertex. Let a and b be the two vertices that share a 2-string with v.
Note a 6= b by Lemma 2.7. Let Sa be the string shared by a and v, and let Sb be the 2-string shared by b and v.
Let S1, S2 and S3 be the three strings incident with u, named such that S1 is shared by u and v. Note S2 and
S3 do not have the same endpoints by Lemma 2.7. By Lemma 3.5 applied to u and S2, since u is not contained
in a cell we have that S3 ∪ S1 is contained in a 9-cycle C. Similarly, by applying Lemma 3.5 to u and S3, we
have that S2 ∪ S1 is contained in a 9-cycle C′. Thus without loss of generality, we may assume S2 is shared by
a and u, and that S3 is shared by b and u.

Let G′ be the graph obtained from G by deleting u, v, and all of the internal vertices of their incident strings.
Since G is C7-critical, G

′ has a homomorphism φ to a cycle C = c1c2c3c4c5c6c7c1. Without loss of generality, we
may assume φ(a) = c1 and φ(b) ∈ {c1, c2, c3, c4}. Since φ does not extend to G, φ(b) = c4. (To see the extensions
of all other homomorphisms to G, see Figure 6.) Let G′′ be the graph obtained from G′ by adding a new vertex
z and edges az and bz. Note now the following:

Claim 1. There does not exist a homomorphism φ : G′′ → C with φ(a) = c1 and φ(b) = c4.

Proof. Suppose φ : G′′ → C is such that φ(a) = c1. Note φ(b) ∈ Bφ(b|a, azb). But Bφ(b|a, azb) = NC(NC(c1)) =
{c1, c3, c6}.

Thus if G′′ admits a homomorphism to C, this homomorphism extends to a homomorphism of G to C, since
by Claim 1 there does not exist a homomorphism φ from G′′ to C with φ(a) = c1 and φ(b) = c4. We may thus
assume G′′ contains a C7-critical subgraph G′′′, and since G′′′ 6⊂ G, we have z ∈ V (G′′′). Furthermore, since G′′′

has minimum degree at least two, {az, zb} ∈ E(G′′′).
Suppose G′′′ is a triangle. Then ab is an edge in E(G). But then abSaSb is a cell C′′ with Sa ⊂ C′′ ∩ C′,

contradicting Lemma 3.8. Suppose now G′′′ is a 5-cycle. Then there exists an (a, b)-path P of length 3. But
then P ∪ Sa ∪ Sb is a 9-cycle C′′ with Sa ⊂ C′′ ∩ C′, contradicting Lemma 3.9.

Thus we may assume that G′′′ is not a triangle or 5-cycle. Since v(G′′′) < v(G), it follows that G′′′ is not a
counterexample to Theorem 1.4, and so p(G′′′) ≤ 2. Let F be the graph obtained from G′′′ by deleting z and
adding Sa ∪ Sb. Then p(F ) = p(G′′′) + 17(4)− 15(4) ≤ 10. But since u is a vertex of degree 3 and u 6∈ V (F ),
this contradicts Lemma 3.2.

4.2 All Poor Structures Receive Charge

We have shown that no new poor vertices or cells are created through discharging. Since no cell is initially poor,
it remains to show only the following lemma.

Lemma 4.7. Let v ∈ V (G) have ch0(v) < 0. At the end of Step 5, ch5(v) ≥ 0.

Proof. Suppose not. Since ch0(v) < 0, we may assume v is a vertex of degree 3 and weight at least 6. We may
assume v is not contained in a cell, as otherwise v receives −ch0(v) charge from its cell in Step 1, resulting in
ch5(v) = ch1(v) = 0. Since v is not in a cell, by Lemma 3.4 v is not incident with a 4-string. It follows that v
is not of type (4, 2, 2), (4, 3, 0), (4, 2, 1), (4, 2, 0), or (4, 1, 1). We may also assume v does not share a short string
with a vertex in a cell or a vertex of degree at least 4, as otherwise v receives charge at least −ch0(v) in either
Step 2 or Step 3, a contradiction. Furthermore, we may assume v does not share a short string with a vertex
of degree 3 of weight at most 4, as otherwise ch5(v) ≥ 0 by Step 4. Finally, by Step 5 we may assume that if v
shares a short string with a vertex u of degree 3 and weight 5, then v is not the only poor vertex that shares a
short string with u.

Note v is not a vertex of type (3, 2, 2). To see this, suppose not. Let a and b be the vertices that share a
short string with v. Note a 6= b by Lemma 2.7. Since ch5(v) < 0, neither a nor b is contained in a cell, and both
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Figure 6: Figure for Claim 4.6. Extensions of φ to G. The white vertices are of unknown degree, though their
degree is at least that shown. The black vertices’ degrees are as illustrated.

a and b have degree 3. But by Lemma 3.14, since v is not contained in a cell and deg(a) = deg(b) = 3, at least
one of a and b is contained in a cell, a contradiction.

Note furthermore the following claim.

Claim 4.8. v is not of type (2, 2, 2).

Proof. Suppose not. By Lemma 3.15, either v is contained in a cell, v shares a short string with a cell, or v

shares a short string with a vertex of degree at least 4. But then v receives charge in either Step 1, Step 2, or
Step 3, contradicting that ch5(v) < 0.

Thus v is either a vertex of type (3,3,0), (3,2,1), or (3,3,1).

Claim 4.9. v is not of type (3,3,1).

Proof. Suppose not, and let u be the vertex with which v shares its short string. Since ch5(v) < 0, it follows
that u is either a vertex of degree 3 and weight at least 6, or a vertex of degree 3 and weight 5 that shares short
strings with at least two vertices that are poor after Step 5. Let A be the set of vertices that share a short string
with u and that have negative charge after Step 5.

Let S1 and S3 be the 3-strings incident with v, and let S2 be the 1-string shared by u and v. Let a and b be
the other endpoints of the strings S1 and S3, respectively. Note a 6= b by Lemma 2.7. By Lemma 3.5 applied
to v, since v is not contained in a cell by assumption, S2 ∪ S3 is contained in a 9-cycle C1. Similarly, S2 ∪ S1 is
contained in a 9-cycle C2. Let S4 6= S2 and S5 6∈ {S2, S4} be the other two strings adjacent with u, such that at
least one edge from S5 contained in C1. Note C2 does not contain an edge e in S5 as otherwise eS2 ⊂ C1 ∩ C2,
contradicting Lemma 3.9. Since u has degree 3, and the distance from each of a and b to u along C2 and C1,
respectively, is at most three, we have that u has weight at most five. Since wt(u) ≥ 5, we have therefore that
wt(u) = 5, and so that S4 and S5 are 2-strings with endpoints a, u and b, u, respectively. Furthermore, since
|A| ≥ 2, at least one of a and b has negative final charge. Without loss of generality, we may assume a ∈ A,
and so that a has degree 3 and wt(a) ≥ 6. Let S4 be the 2-string shared with u by a. Let S6 6∈ {S1, S4} be the
third string incident with a. Since a has weight at least six, since S1 is a 3-string, and since S4 is a 2-string, we
have that S6 is a k-string with k ≥ 1. But then Lemma 3.5 applies to a, and so S6 and S4 are contained in a
9-cycle C3. Since S4 ⊂ C3 ∩C1, this contradicts Lemma 3.9. We may therefore assume v is not a vertex of type
(3, 3, 1).

Claim 4.10. v is not a vertex of type (3,2,1).

Proof. Suppose not. Let a, b, and c be the vertices that share a 1-string, 2-string, and 3-string, respectively,
with v. Let Sa, Sb and Sc be the three strings incident with v, such that Sa is incident with a, Sb is incident
with b, and Sc is incident with c. Note a 6= b and a 6= c since G has girth at least 7 by Lemma 3.3. Furthermore,
b 6= c since v is not contained in a cell by assumption. By Lemma 3.5, Sb ∪ Sa is contained in a 9-cycle C. Let
Sab be the (a, b)-path of length 4 in C with v 6∈ V (Sab). Since ch5(v) < 0, it follows from the discharging rules
that each of a and b has degree 3, is not contained in a cell, and has weight at least 5.
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Figure 7: Figure for Claim 4.10. Extensions of φ to G.

Suppose first that Sab is a 3-string. Since a has weight at least 5, it is incident with a k-string Sd, with k ≥ 1.
By Lemma 3.5, Sa∪Sd is contained in a 9-cycle C′ 6= C. Note E(Sb)∩E(C′) = ∅, as otherwise Sa∪Sb ⊂ C ∩C′,
contradicting Lemma 3.9. Thus we may assume Sc is contained in C′, and so k ≤ 2.

Suppose first that k = 2. Let G′ = G\ (V (Sa∪Sb∪Sc∪Sd∪Sab)\ {b, c}). Since G′ ( G and G is C7-critical,
G′ admits a homomorphism φ to C = c1c2c3c4c5c6c7c1. Without loss of generality, we may assume φ(b) = c1 and
φ(c) ∈ {c1, c2, c3, c4}. Note φ(c) = c3 as otherwise φ extends to G. To see this, see Figure 7. Let G1 ∈ P3(G

′)
be the graph obtained from G′ by adding a (b, c)-path P of length 3.

Claim 1. There does not exist a homomorphism φ : G1 → C with φ(b) = c1 and φ(c) = c3.

Proof. Suppose φ : G1 → C is such that φ(b) = c1. Note φ(c) ∈ Bφ(c|b, P ). But Bφ(c|b, P ) = NC(NC(NC(c1))),
and NC(NC(NC(c1))) = {c2, c7, c4, c5}.

By Claim 1, it follows that G1 does not admit a homomorphism to C7. Therefore G1 contains a C7-
critical subgraph G2. Since G2 6⊂ G and G2 has minimum degree 2, P ⊂ G2. Note since b 6= c, it follows
that G2 is not a triangle. Suppose G2 is a 5-cycle. Then there exists a (b, c)-path Q of length 2 in G. Let
F = Q∪Sa∪Sb∪Sc∪Sd∪Sab. Note v(F ) = 16 and e(F ) = 18, and so it follows that p(F ) = 17(16)−15(18) = 2.
This contradicts Lemma 3.2. We may therefore assume that G2 is not a triangle or 5-cycle. Since v(G2) < v(G)
and G is a minimum counterexample, it follows that p(G2) ≤ 2. Let F be the graph obtained from G2 by
deleting P \ {a, b} and adding Sd ∪ Sab. Then p(F ) = p(G2) + 17(4)− 15(4) ≤ 10. By Lemma 3.2, either F = G

or G ∈ P5(F ). But since v is not contained in F and deg(v) = 3, this is a contradiction.
We may therefore assume that k = 1. Since a is not contained in a cell, a is not incident with a 4-string by

Lemma 3.4. Since a is incident with two 1-strings and has weight at least 5, it follows that a is a vertex of type
(3,1,1). Note since a has weight 5, it follows from the discharging rules that a shares each of its short strings
with a vertex that is poor immediately after Step 4. Otherwise a sends charge to v in Step 5. Let d 6= a be an
endpoint of Sd. Note d is adjacent to c which has degree at least 3 since it is the endpoint of a string. Thus d is
adjacent to a 0-string and a 1-string. Since ch4(d) < 0, it follows that d has degree 3 and weight at least 6. But
then d is adjacent to a k-string with k ≥ 5, contradicting Lemma 2.6.

We may therefore assume Sab is not a 3-string. But then Sab contributes at most 2 to wt(a) + wt(b). Let
S1 be the third string incident with a, with S1 6⊂ Sab and S1 6= Sa. Similarly, let S2 be the third string
incident with b, with S2 6⊂ Sab and S2 6= Sb. Let ma and mb be integers chosen such that S1 is an ma-string,
and S2 is an mb-string. Since a is incident with a 1-string Sa and b is incident with a 2-string Sb, we have
wt(a) + wt(b) ≤ 2 + 2 + 1 +ma +mb. Since each of a and b has weight at least 5, it follows that ma +mb ≥ 5.
Hence at least one of ma and mb is at least three. Suppose first mb ≥ 3. Note mb ≤ 3, since otherwise by Lemma
3.4 b is contained in a cell, contrary to assumption.

First suppose b is a vertex of type (3, 2, 0). Then since b has weight 5, it shares each of its short strings with
a poor vertex as otherwise b sends charge to v in Step 5. Thus b shares its 0-string with a vertex w of degree 3
and weight at least six. Note w ∈ Sab, and Sab contributes at most 2 to the weight of w by assumption. But then
since w has weight at least 6, it is the endpoint of a 4-string and so is contained in a cell. This is a contradiction,
as vertices contained in cells are not poor after Step 1.

We may therefore assume that b is either of type (3, 2, 1) or of type (3, 2, 2). But then Sab contributes at
most 1 to the weight of a. Since a has weight at least 5 and is not contained in a cell, we have that ma = 3,
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and Sab contributes 1 to the weight of each of a and b. Note wt(a) = 5. By assumption, a shares both its short
strings with vertices that are poor after Step 4. Let w′ ∈ Sab be the vertex of degree at least 3 that shares a
1-string with each of a and b. Since w′ is poor after Step 4, it has degree 3 and weight at least 6. But then w′

is incident with a 4-string, and so by Lemma 3.4 it is contained in a cell. This is a contradiction, as vertices
contained in cells are not poor after Step 1.

Thus we may assume mb ≤ 2, and so ma ≥ 3. Since a is not contained in a cell, a is not incident with a
4-string by Lemma 3.4. Thus ma = 3. Note since wt(a) ≥ 5, we have that Sab contributes at least 1 to the
weight of a. Thus a is either of type (3, 1, 1) or (3,2,1).

Suppose first a is of type (3,1,1). By the discharging rules, since ch5(v) < 0 it follows that a shares a 1-string
with a vertex w′′ ∈ V (Sab) such that ch4(w

′′) < 0. But then wt(w′′) ≥ 6 and w′′ has degree 3. Since Sab

contributes at most 2 to the weight of w′′, it follows that w′′ is incident with an r-string with r ≥ 4. But this is
a contradiction, as by Lemma 3.4 vertices of degree 3 incident with 4-strings are contained in cells.

Thus we may assume a is of type (3,2,1). But then Sab contributes 0 to the weight of b. Since b is not
contained in a cell, b is not incident with a 4-string by Lemma 3.4. Thus it follows that since wt(b) ≥ 5, b is of
type (3, 2, 0). Note since ch5(v) < 0 and wt(b) = 5, it follows from Rule 5 that b shares its 0-string with a vertex
w∗ of degree 3 and weight at least 6, such that ch4(w

∗) < 0. Thus w∗ is not contained in a cell. But since Sab

contributes at most 2 to the weight of w∗ and w∗ has weight at least 6, it follows that w∗ is incident with a
4-string. By Lemma 3.4, w∗ is contained in a cell —a contradiction.

The only remaining possibility is then that v is a vertex of type (3,3,0). Let u be the vertex that shares a
0-string with v. Since ch5(v) < 0, we have that u has degree 3 and weight at least 5. Note u is not incident
with a 4-string as otherwise by Lemma 3.4 v is contained in a cell, a contradiction. Since u is incident with a
0-string, it follows that u is either of type (3,3,0) or (3,2,0). Suppose first u is of type (3,2,0). Since ch5(v) < 0,
and wt(u) = 5, it follows that u shares its incident 2-string with another vertex w with ch4(w) < 0. Otherwise,
u shares only one short string with a vertex that is poor after Step 4: thus u sends −ch4(v) to v in Step 5,
contradicting that ch5(v) < 0. Since w is not contained in a cell, by Lemma 3.4 w is not incident with a 4-string.
It follows that w is not of type (4, 2, 2), (4, 2, 1), or (4, 2, 0). Furthermore, by Lemma 3.14, w is not a vertex of
type (3, 2, 2). Since w is the endpoint of a 2-string, it is thus of type (3,2,1) or (2,2,2). But by Claim 4.10, if w
is of type (3,2,1) then ch5(w) ≥ 0. Similarly, by Claim 4.8 w is not of type (2,2,2).

Therefore we may assume u is of type (3, 3, 0). But then by Lemma 3.16, u is contained in a cell C. Since v

receives charge from C in Step 2, ch5(v) ≥ 0 —a contradiction.

We now prove our main theorem.

Proof of Theorem 1.4. Suppose not. Let G be a minimum counterexample. At the end of the discharging process
described above, all structures in G have non-negative charge. But as shown in Equation (1), the charge carried
by the graph is at most −6. Since the total charge did not change throughout the discharging process, this is a
contradiction.

5 Open Questions

A natural question to wonder is whether or not the density bound obtained in Theorem 1.4 is best possible. We
suspect not. Kostochka and Yancey [9] showed that if G is k-critical and k ≥ 4, then e(G) ≥ (k2 − 1

k−1 )v(G) −
k(k−3)
2(k−1) . Later, they showed this is tight for graphs6 obtained via a construction given by Ore in [12]. A k-critical

graph given by Ore’s construction is called a k-Ore graph.
Given a (2t + 2)-critical graph, there is a seemingly natural way to obtain a C2t+1-critical graph by edge

subdivisions. Indeed, we have the following:

Proposition 5.1. If G is a (2t+2)-critical graph, then the graph G′ obtained from G by subdividing every edge
(2t− 2) times is C2t+1-critical.

The proof of this proposition is omitted, but the key observation is the following: for each edge uv ∈ E(G), let
Puv ⊂ G′ be the (u, v)-path obtained by subdividing uv (2t− 2) times. If φ is a mapping from u to a vertex c in
C2t+1, then there exists an extension of φ : Puv → C2t+1 with φ(v) = c′ for precisely the set {c′ : c′ ∈ V (C)− c}.
In this way, Puv restricts colourings of its endpoints in the same manner as an edge does in ordinary vertex
colouring7.

Since the edge-density obtained by Kostochka and Yancey for k-critical graphs is tight for k-Ore graphs, it
seems reasonable that the corresponding density obtained from subdividing a (2t+ 2)-Ore graph could be best
possible for C2t+1-critical graphs. This idea motivates the following.

6They showed further that this bound is tight only for the graphs obtained via Ore’s construction.
7This idea is formalized in Lemma 2.5.
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Proposition 5.2. Let t ≥ 1 be an integer, and let G be a (2t+2)-Ore graph. Let G′ be the graph obtained from

G by subdividing each edge in E(G) (2t− 2) times. Then e(G′) = t(2t+3)v(G′)−(t+1)(2t−1)
2t2+2t−1 .

We therefore find it reasonable by setting t = 3 to conjecture that if G is a C7-critical graph, then e(G) ≥
27v(G)−20

23 . More generally, we ask the following question.

Question 5.3. Let t ≥ 3. Does every C2t+1-critical graph G satisfy e(G) ≥ t(2t+3)v(G)−(t+1)(2t−1)
2t2+2t−1 ?

We note that the family of graphs described in Proposition 5.2 show that it is impossible to prove Conjecture
1.2 using only a density bound. When t = 3 for example, the graphs described in Proposition 5.2 have an
asymptotic density of 27

23 . However, using Euler’s formula for planar graphs, we have that if G is a planar graph

of girth at least g, then e(G) ≤ g
g−2 (v(G) − 2) —or, asymptotically, that e(G)

v(G) ≤ g
g−2 . In order to obtain a

density argument that implies a relaxation of Conjecture 1.2, it follows that the girth bound g chosen in the
relaxation will satisfy g

g−2 ≤ 27
23 —or in other words, that g ≥ 14. A proof of Conjecture 1.2 will thus not be a

purely density-based argument: it will require additional tools (for instance tools exploiting planarity).
More generally, we note that a negative answer to Question 5.3 together with Euler’s formula for planar

graphs implies that if G is a planar graph with girth at least 4t+ 2, then G admits a homomorphism to C2t+1.
The girth bound of 4t+ 2 is of particular interest as no counterexamples to the primal version of the conjecture
with edge-connectivity 4t+2 have been found. Indeed, all counterexamples found in [6] are at most (4t+1)-edge
connected.
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