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Abstract. A ladder is a 2× k grid graph. When does a graph class C
exclude some ladder as a minor? We show that this is the case if and
only if all graphs G in C admit a proper vertex coloring with a bounded
number of colors such that for every 2-connected subgraph H of G, there
is a color that appears exactly once in H. This type of vertex coloring is
a relaxation of the notion of centered coloring, where for every connected
subgraph H of G, there must be a color that appears exactly once in
H. The minimum number of colors in a centered coloring of G is the
treedepth of G, and it is known that classes of graphs with bounded
treedepth are exactly those that exclude a fixed path as a subgraph, or
equivalently, as a minor. In this sense, the structure of graphs excluding
a fixed ladder as a minor resembles the structure of graphs without long
paths. Another similarity is as follows: It is an easy observation that
every connected graph with two vertex-disjoint paths of length k has
a path of length k + 1. We show that every 3-connected graph which
contains as a minor a union of sufficiently many vertex-disjoint copies of
a 2× k grid has a 2× (k + 1) grid minor.

Our structural results have applications to poset dimension. We show
that posets whose cover graphs exclude a fixed ladder as a minor have
bounded dimension. This is a new step towards the goal of understanding
which graphs are unavoidable as minors in cover graphs of posets with
large dimension.
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1. Introduction

Graphs with no long paths are relatively well understood. In particular, if
a graph G does not contain a path on k + 1 vertices as a subgraph, then G
has a centered coloring with at most k colors. Conversely, if G has a centered
coloring with at most k colors, then G does not contain a path on 2k vertices.
Here, a centered coloring of G is a vertex coloring of G such that for every
connected subgraph H of G, some color is assigned to exactly one vertex
of H. The minimum number of colors used in a centered coloring of G is
known as the treedepth of G, denoted td(G).

In this paper, we show an analogous result for graphs excluding a fixed
ladder as a minor. We show that such graphs can be characterized as graphs
that admit a 2-connected centered coloring with a bounded number of colors.
Here, a 2-connected centered coloring of a graph G is a vertex coloring of G
such that for every connected subgraph H of G having no cutvertex, some
color is assigned to exactly one vertex of H.1 The minimum number of colors
in a 2-connected centered coloring of G is denoted td2(G).

Before stating our theorem formally, we introduce a related type of coloring.
A cycle centered coloring of G is a vertex coloring of G such that for every
subgraph H of G which is an edge or a cycle, some color is assigned to
exactly one vertex of H. The minimum number of colors in a cycle centered
coloring of G is denoted χcc(G). While every 2-connected centered coloring
of a graph is cycle centered, the converse is not necessarily true.

Let Lk denote the ladder with k rungs (that is, the 2× k grid graph). Our
theorem for graphs excluding a ladder is as follows.

Theorem 1. For every class C of graphs, the following properties are equiv-
alent.

(i) There exists an integer k > 1 such that no graph in C has an Lk minor.
(ii) There exists an integer m > 1 such that td2(G) 6 m for every graph G

in C.
(iii) There exists an integer c > 1 such that χcc(G) 6 c for every graph G

in C.

A second contribution of this paper is as follows. As is well known, every
pair of longest paths in a connected graph intersect, or equivalently, if a
connected graph contains two vertex disjoint paths of order k, then it contains
a path of order k + 1. We show a generalization of this statement where
paths are replaced with ladders, and ‘two’ with ‘many’.

Theorem 2 (Bumping a ladder). For every integer k > 1 there exists an
integer N > 1 with the following property. Every 3-connected graph G
containing a union of N vertex-disjoint copies of Lk as a minor contains
Lk+1 as a minor.

Let us point out the following corollary of Theorem 2. Robertson and
Seymour [17] proved that for every fixed planar graph H and every N > 1,
there exists N ′ > 1 such that every graph G not containing a union of N

1We remark that this definition is slightly different than the one given in the abstract
but is equivalent. Indeed, if H is connected with no cutvertex then H is either a vertex,
an edge, or is 2-connected; edges will make sure that the coloring is proper.
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vertex-disjoint copies of H as a minor has a vertex subset X with |X| 6 N ′
such that G−X has no H minor.

Corollary 3. For every integer k > 1 there exists an integer N ′ > 1 with
the following property. Every 3-connected graph G with no Lk+1 minor has
a vertex subset X with |X| 6 N ′ such that G−X has no Lk minor.

We remark that 3-connectivity in Theorem 2 is necessary. See Figure 1.
On the other hand, we expect that the dependence on k is not. We conjecture
that there exists a constant N0 such that for every k, Theorem 2 holds true
with N = N0. For all we know, this might even be true with N0 = 4.

Figure 1. A 2-connected graph with 8 disjoint copies of L4

and no L5-minor.

We conclude this introduction with an application of our results to poset
dimension. Let P be a poset. For two elements x and y of P , we say that y
covers x if x < y in P and there is no element z in P such that x < z < y in
P . The cover graph of a poset P is the graph on the ground set of P in which
two vertices are adjacent if one of them covers the other in P . Informally,
the cover graph of P is its Hasse diagram seen as an undirected graph. A
realizer of P is a set {61, . . . ,6d} of linear orders on the ground set of P
such that for any two elements x and y of P , we have x 6 y in P if and only
if x 6i y for every i ∈ {1, . . . , d}. The dimension of P , denoted dim(P ), is
the least size of a realizer of P .

We prove the following result, which shows the relevance of 2-connected
centered colorings for studying poset dimension.

Theorem 4. Let P be a poset with cover graph G and let m = td2(G). Then,
P has dimension at most 2m+1 − 2.

When combined with Theorem 1, the above theorem implies the following
result. Proving this result was one of our motivations for studying the
structure of graphs with no long ladder minor.

Corollary 5. For every integer k > 1 there exists an integer d > 1 such
that every poset whose cover graph excludes Lk as a minor has dimension at
most d.

Let us say that a graph H is unavoidable if the cover graph of every poset
with large enough dimension contains H as a minor. Corollary 5 shows that
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Figure 2. (Left) Hasse diagram of the poset of Kelly’s
construction of order k for k = 4. Its definition for an arbi-
trary order k can be inferred from the figure. (Right) A free
redrawing of its cover graph.

Figure 3.

every ladder is unavoidable. Note that the class of unavoidable graphs is
closed under taking minors (thus, fans are also unavoidable, etc.). It is an
open problem to obtain a full characterization of unavoidable graphs. Besides
ladders, the only other positive result known is that K4 is unavoidable [10, 18].
As for negative results, a classic construction of Kelly [13], see Figure 2,
shows that there are posets with unbounded dimension whose cover graphs
are planar and have pathwidth 3. Note that every unavoidable graph must
necessarily be a minor of some graph from Kelly’s construction. We conjecture
that this is precisely the characterization of unavoidable graphs.

Conjecture 6. A graph H is unavoidable if and only if H is a minor of
some graph from Kelly’s construction.

Let us point out the following equivalent reformulation of Conjecture 6: A
graph H is unavoidable if and only if H is a minor of some graph obtained
by gluing copies of K4s along edges in a path-like way, and subdividing all
horizontal edges of the K4s once; see Figure 3. Indeed, every graph from
Kelly’s construction is a minor of a graph in the latter family (see Figure 2
(right)), and vice versa.

We end with a short description of related results about poset dimension.
Unavoidable graphs are very restricted in nature, since they must be minors
of some graph from Kelly’s construction. It is thus natural to consider posets
excluding some fixed but arbitrary graph H as a minor in their cover graphs,
and ask: What kind of unavoidable structure can be found in these posets
when dimension is large? Several results have been obtained in the last decade
when considering long chains as unavoidable structure. Recall that a chain in
a poset is a set of pairwise comparable elements. The maximum length of a
chain is the height of the poset. In general, dimension is not bounded by any
function of the height since there are height-2 posets with arbitrarily large
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dimension. However, in 2014 Streib and Trotter [19] proved the surprising
result that, if the cover graph of a poset is planar, then the poset’s dimension
is bounded from above by a function of its height (see [4, 11, 14] for improved
bounds). This property was then shown to be true more generally if the
cover graph excludes a fixed apex graph as a minor [9]. Then Walczak [21]
showed that this remains true if any fixed graph H is excluded from the cover
graph as a minor, or even as a topological minor (see [15] for a short proof).
This was in turn generalized further: Posets with cover graphs belonging to
a fixed graph class C with bounded expansion have dimension bounded from
above by a function of their height [12]. A simple proof using a family of
graph invariants called weak coloring numbers was given in [8]. Finally, it
was shown in [8] that nowhere dense graph classes2 can be characterized in
terms of dimension of bounded-height posets with cover graphs in the class.

Thus, long chains are unavoidable in posets with large dimension and
well-behaved sparse cover graphs. In the case of posets with planar cover
graphs, Howard, Streib, Trotter, Walczak, and Wang [7] strengthened this
further by showing that two long incomparable chains can be found when
dimension is large. They conjectured that this remains true more generally
when any fixed graph H is forbidden as a minor from the cover graph.

The paper is organized as follows. We introduce some basic definitions
and notations in Section 2. Then we prove Theorem 1 in Section 3 and apply
it in Section 4 to prove Theorem 4 about poset dimension. Finally, we prove
Theorem 2 in Section 5.

2. Preliminaries

In this section we recall some standard definitions. For a graph G and
a subset X of vertices, we denote by G−X the subgraph of G induced on
the set of vertices V (G) \X. For a vertex x ∈ V (G), we will use G− x as
shorthand notation for G− {x}. A cutvertex of a graph G is a vertex v of G
such that G− v has more connected components than G. A separation of a
graph G is a pair (A1, A2) of vertex subsets in G such that A1 ∪A2 = V (G)
and every edge of G has both endpoints in A1 or in A2. The order of the
separation is the number |A1 ∩ A2|, and a k-separation is a separation of
order at most k. A separation (A1, A2) of G is trivial if A1 = V (G) or
A2 = V (G), and nontrivial otherwise. For k > 1, we say that a graph is
k-connected if it has at least k + 1 vertices and does not admit a nontrivial
(k − 1)-separation.

A subdivision of a graph H is a graph obtained by replacing some edges of
H with new paths between their endpoints such that none of the paths has
an inner vertex in V (H) or on another new path. An H-model in a graph G
is a function φ which assigns to each vertex u ∈ V (H) a connected subgraph
φ(u) of G, such that

(i) the graphs φ(u) and φ(v) are vertex-disjoint for distinct vertices u and
v of H, and

(ii) G has an edge between φ(u) and φ(v) for every edge uv ∈ E(H).

2See Nešetřil and Ossona de Mendez [16] for background on classes with bounded
expansion and on nowhere dense classes.
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A graph H is a minor of a graph G if and only if there is an H-model in G.
For two vertex subsets A and B in a graph G, an A–B path is a path

with one endpoint in A and the second in B, and with no internal vertex in
A ∪B. For two vertices a and b of G, by an a–b path we mean an {a}–{b}
path. If u and v are vertices on a path P , then the only u–v path in P is
denoted by uPv.

For a positive integer k, the ladder Lk is the graph with vertex set
{1, 2} × {1, . . . , k} in which two vertices (i, j) and (i′, j′) are adjacent if
|i − i′| + |j − j′| = 1. Since the maximum degree of Lk is at most 3, the
ladder Lk is a minor of a graph G if and only if G has a subgraph isomorphic
to a subdivision of Lk.

If (z1, z2) is a pair of vertices in a graph H and φ is an Lk-model in H
such that z1 ∈ V (φ((1, k))) and z2 ∈ V (φ((2, k))), then we say that φ is
rooted at the pair (z1, z2).

3. 2-connected centered colorings

The goal of this section is to prove Theorem 1. We start by establishing
some basic properties of 2-connected centered colorings.

Lemma 7. For every graph G and subset X ⊆ V (G) we have

td2(G−X) > td2(G)− |X|.

Proof. Let ϕ be a 2-connected centered coloring of G − X using at most
td2(G−X) colors, and extend it to a coloring ϕ′ of G using at most td2(G−
X)+|X| colors by assigning new distinct colors to the vertices of X. Consider
a connected subgraph H of G which does not have a cutvertex. If H contains
a vertex from X, then the color of that vertex is unique in G and thus in
H. If H ⊆ G−X, then some color is assigned to exactly one vertex of H
because ϕ is a 2-connected centered coloring of G − X. Hence ϕ′ is a 2-
connected centered coloring of G using td2(G−X)+ |X| colors, and therefore
td2(G) 6 td2(G−X) + |X|, so indeed td2(G−X) > td2(G)− |X|. �

Lemma 8. If (A1, A2) is a separation of order 6 1 of a graph G, then

td2(G) = max{td2(G[A1]), td2(G[A2])}.

Proof. If ϕ is a 2-connected centered coloring of G, then the restrictions
of ϕ to A1 and A2 are 2-connected centered colorings of G[A1] and G[A2],
respectively, and these colorings use no more colors than ϕ. Therefore
td2(G[Ai]) 6 td2(G) for i ∈ {1, 2}.

Let m = max{td2(G[A1]), td2(G[A2])}, and let ϕ1 : A1 → {1, . . . ,m} and
ϕ2 : A2 → {1, . . . ,m} be 2-connected centered colorings of G[A1] and G[A2],
respectively. Since |A1 ∩ A2| 6 1, after permuting the colors in one of
the colorings ϕ1 or ϕ2 we may assume that they agree on A1 ∩ A2. Let
ϕ : V (G)→ {1, . . . ,m} be a vertex coloring such that its restriction to Ai is
ϕi for i ∈ {1, 2}. For every connected subgraph H of G which does not have
a cutvertex, the separation (A1 ∩ V (H), A2 ∩ V (H)) of H must be trivial,
so V (H) ⊆ Ai for some i ∈ {1, 2}. Since the restriction of ϕ to Ai is a
2-connected centered coloring of G[Ai], some vertex of H receives a color not
used for any other vertex of H. This proves that ϕ is a 2-connected centered
coloring of G and td2(G) 6 m as required. �
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Lemma 9. Every graph G contains a connected subgraph B without a
cutvertex such that td2(B) = td2(G).

Proof. We prove the lemma by induction on the size of the graph. If G is
connected and does not have a cutvertex, then the lemma holds with B = G.
Otherwise, let (A1, A2) be a nontrivial separation of order 6 1 of G. Without
loss of generality we assume that td2(G[A1]) 6 td2(G[A2]). By Lemma 8, we
have td2(G[A2]) = td2(G). By induction hypothesis applied to G[A2] (which
is a proper subgraph of G), there is a connected subgraph B of G[A2] without
a cutvertex such that td2(B) = td2(G[A2]) = td2(G), which completes the
proof. �

We will also need the following classical result by Erdős and Szekeres [3].

Theorem 10 (Erdős-Szekeres Theorem). Let k > 1 be an integer, let n =

(k − 1)2 + 1, and let a1, . . . , an be a sequence of distinct integers. Then there
exist integers i1, . . . , ik with 1 6 i1 < · · · < ik 6 n such that ai1 < · · · < aik
or ai1 > · · · > aik .

Recall that Lk denotes the ladder with k rungs, with vertex set {1, 2} ×
{1, . . . , k}, and an Lk-model φ is rooted at a pair (z1, z2) if zi ∈ V (φ((i, k)))
for i ∈ {1, 2}.

Lemma 11. Let k > 1 and t > 1 be integers, let s = (k − 1)2 + 2, let
G be a 2-connected graph, and let x1 and x2 be distinct vertices of G. If
td2(G) > t · s, then at least one of the following holds:

(i) G has an Lk minor, or
(ii) G has an Lt-model rooted at the pair (x1, x2).

Proof. We prove the lemma by induction on t. Suppose first t = 1. Since G
is connected, there is an x1–x2 path in G, and so (ii) holds.

Now suppose that t > 2. By 2-connectivity of G, there exist two internally
disjoint x1–x2 paths P and P ′. By Menger’s Theorem, either there exist
s + 1 disjoint V (P )–V (P ′) paths in G, or there exists a set of at most s
vertices separating V (P ) from V (P ′).

Case 1: there exist s + 1 disjoint V (P )–V (P ′) paths Q1, . . . , Qs+1.
We assume that the paths are listed in the order in which they intersect
the path P when traversing it from x1 to x2. Let π be a permutation of
{1, . . . , s + 1} such that Qπ(1), . . . , Qπ(s+1) is the order in which the paths
intersect P ′ when traversing it from x1 to x2. The paths P and P ′ are
internally disjoint, so for 2 6 i 6 s, the path Qi has two distinct endpoints.
Consider the sequence π(2), . . . , π(s) of length s − 1 = (k − 1)2 + 1. By
Theorem 10 applied to that sequence, there exist indices 2 6 i1 < · · · < ik 6 s
such that either π(i1) < · · · < π(ik), or π(i1) > · · · > π(ik). In both cases
G has a subgraph isomorphic to a subdivision of Lk obtained as a union of
a subpath of P , a subpath of P ′ and the paths Qi1 , . . . , Qik . Hence (i) is
satisfied. See Figure 4.

Case 2: there is a set X of at most s vertices separating V (P )
from V (P ′). See Figure 5. We have td2(G) > t · s, so by Lemma 7, we
also have td2(G − X) > td2(G) − |X| > ts − |X| > ts − s. Hence by
Lemma 9 there exists a connected subgraph B of G−X without a cutvertex
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x1 x2x2 x1

P P

P ′ P ′

Figure 4. Case 1: two ways how the paths P , P ′ and
Qi1 , . . . , Qik induce a subdivision of Lk.

such that td2(B) > ts − s. Since td2(B) > ts − s > 2s − s > 2, we have
|V (B)| > 2. By 2-connectivity of G, there exist two disjoint {x1, x2}–V (B)
paths Q1 and Q2 in G with xi ∈ V (Qi) for i ∈ {1, 2}. Let yi denote the
endpoint of Qi in B for i ∈ {1, 2}. Since td2(B) > ts − s = (t − 1)s, we
can apply induction hypothesis to k, t − 1, B, y1 and y2. If B has an Lk
minor, then so does G, so (i) holds. Otherwise, there is an Lt−1-model
φ′ in B such that yi is in φ′((i, t − 1)) for i ∈ {1, 2}. Since B ⊆ G − X
and the set X separates V (P ) from V (P ′), the model φ′ intersects at most
one of the paths P and P ′. Without loss of generality, let us assume that
φ′ does not intersect P . For each i ∈ {1, 2}, we have xi ∈ V (P ) ∩ V (Qi),
so V (P ) ∩ V (Qi) 6= ∅. Let R be a V (Q1)–V (Q2) subpath of P . Since R
is disjoint from the model φ′, we can see that (ii) is witnessed by an Lt-
model φ such that φ((i, j)) = φ′((i, j)) for (i, j) ∈ {1, 2} × {1, . . . , t − 1},
φ((1, t)) = Q1 − y1 and φ((2, t)) = (Q2 − y2) ∪ (R− V (Q1)). �

x1 x2

P

P ′

X

B

Figure 5. Case 2: An L3-model in B extended to an
L4-model rooted at (x1, x2) in G.

Let k > 1 and let H be a graph isomorphic to a subdivision of Lk. Then
the graph H is a union of k + 2 paths P1, P2, Q1, . . . , Qk, where

(i) the paths P1 and P2 are disjoint,
(ii) Q1, . . . , Qk are disjoint V (P1)–V (P2) paths which intersect the paths

P1 and P2 in the order in which they are listed,
(iii) the paths Q1 and Qk have their endpoints in the endpoints of the paths

P1 and P2.

For such paths P1, P2, Q1, . . . , Qk, we call the tuple (P1, P2;Q1, . . . , Qk) a
subdivision model of Lk in H.
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Lemma 12. Let c > 1 be an integer, let H be a graph isomorphic to a
subdivision of L2c with a subdivision model (P1, P2;Q1, . . . , Q2c), and let ϕ
be a cycle centered coloring of H. If the sets of colors used by ϕ on the paths
Q1, . . . , Q2c are all the same, then ϕ uses more than c colors.

Proof. We prove the lemma by induction on c. It clearly holds true for c = 1,
so suppose that c > 2 and the coloring ϕ on each path Qi uses exactly the
same set of colors, say A. Since ϕ is a cycle centered coloring, there exists
a vertex of unique color on the cycle P1 ∪ P2 ∪Q1 ∪Q2c . Let x be such a
vertex. We have ϕ(x) 6∈ A, because every color in A appears on both Q1

and Q2c . Hence x lies either on P1 or on P2, and its color is unique in the
whole graph H. After possibly exchanging P1 and P2, we may assume that
x ∈ V (P1), and possibly reversing the order of the paths Q1, . . . , Q2c , we
may assume that x does not lie on the V (Q1)–V (Q2c−1) subpath of P1. The
graph H contains a subgraph H1 isomorphic to a subdivision of L2c−1 with
subdivision model (P ′1, P

′
2;Q1, . . . , Q2c−1), where P ′1 is the V (Q1)–V (Q2c−1)

subpath of P1 and P ′2 is the V (Q1)–V (Q2c−1) subpath of P2. By induction
hypothesis, ϕ uses more than c − 1 colors on H1, and all these colors are
distinct from ϕ(x). Hence ϕ uses more than c colors on H. �

We may now prove Theorem 1, which we restate for convenience.

Theorem 1. For every class C of graphs, the following properties are equiv-
alent.

(i) There exists an integer k > 1 such that no graph in C has an Lk minor.
(ii) There exists an integer m > 1 such that td2(G) 6 m for every graph G

in C.
(iii) There exists an integer c > 1 such that χcc(G) 6 c for every graph G

in C.

Proof. Let us first show the implication (i) ⇒ (ii). We prove the contrapos-
itive. Let C be a class of graphs such that for every integer m > 1 there
exists a graph G in C with td2(G) > m. We need to show that for every
k > 1 there exists a graph in C with an Lk minor. Fix k > 1 and let
m = k((k − 1)2 + 2) + 1. Let G be a graph in C such that td2(G) > m. By
Lemma 9, there exists a connected subgraph B of G which does not have a
cutvertex such that td2(B) > m. Since m > 2, the subgraph B has at least
two vertices. Let x1 and x2 be distinct vertices of B. By Lemma 11 with
t = k, B has an Lk minor, and thus so does G. The implication (i) ⇒ (ii)
follows.

The implication (ii) ⇒ (iii) is straightforward, since every 2-connected
centered coloring is a cycle centered coloring.

It remains to show the implication (iii)⇒ (i). We prove the contrapositive.
More precisely, we show that for every integer c > 1, every graph G containing
an L4c minor satisfies χcc(G) > c. Thus, fix an integer c > 1 and let G be a
graph with an L4c minor. The graph G contains a subgraph isomorphic to a
subdivision of L4c with a subdivision model (P1, P2;Q1, . . . , Q4c).

Towards a contradiction, suppose that there is a cycle centered coloring of
G which uses at most c colors. For every i ∈ {1, . . . , 4c}, let Ai denote the set
of colors used on the path Qi. By the pigeonhole principle, for k = 2c, there
are indices i1, . . . , ik with 1 6 i1 < · · · < ik 6 4c such that Ai1 = · · · = Aik .
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Let P ′1 be the V (Qi1)–V (Qik) subpath of P1 and let P ′2 be the V (Qi1)–V (Qik)
subpath of P2. Then P ′1 ∪ P ′2 ∪Qi1 ∪ · · · ∪Qik is a subgraph isomorphic to a
subdivision of L2c with a subdivision model (P ′1, P

′
2;Qi1 , . . . , Qik) such that

the paths Qij all use the same set of colors. By Lemma 12, ϕ uses more than
c colors on this subgraph, contradiction. �

4. An application to poset dimension

In this section we show Theorem 4. In a poset P = (X,6P ), we consider
the relation 6P as a subset of X2 = X × X. A linear order 6 on X is a
linear extension of P if 6P ⊆ 6. For a set S ⊆ X, we denote by P [S] the
subposet of P induced by S, that is P [S] = (S,6P ∩ S2).

The next lemma is folklore, a proof is included for completeness.

Lemma 13. Let d > 1 be an integer and let C be a class of graphs closed
under taking subgraphs such that every poset whose cover graph is in C has
dimension at most d. Let P = (X,6P ) be a poset with cover graph G such
that G− z ∈ C for some vertex z of G. Then dim(P ) 6 2d.

Proof. Let U = {x ∈ X : x >P z} and let D = {x ∈ X : x 6P z}. It
is easy to observe that the cover graphs of P [X \ U ] and P [X \ D] are
(induced) subgraphs of G− z, and thus are in C. Hence dim(P [X \ U ]) 6 d
and dim(P [X \D]) 6 d. Let 61, . . . ,6d be a realizer of P [X \ U ], and let
6d+1, . . . ,62d be a realizer of P [X \D]. Finally, let 6U be a linear extension
of P [U ] and let 6D be a linear extension of P [D].

We construct a realizer 6′1, . . . ,6
′
2d of P as follows:

6′i =

{
6i ∪ (X \ U)× U ∪6U for i ∈ {1, . . . , d},
6D ∪D × (X \D) ∪6i for i ∈ {d+ 1, . . . , 2d}.

Now it remains to show that 6′1, . . . ,6
′
2d is a realizer of P . It is straight-

forward to verify that each 6′i is a linear extension of 6P , so if x 6P y,
then x 6′i y for i ∈ {1, . . . , 2d}. It remains to show that if x and y are
incomparable in P , then there exists i ∈ {1, . . . , 2d} such that y <′i x. If
{x, y} ⊆ X \ U , then there exists i ∈ {1, . . . , d} such that y <i x and thus
y <′i x. Similarly, if {x, y} ⊆ X \D, then there exists i ∈ {d+1, . . . , 2d} such
that y <i x, so y <′i x. Hence we are left with the case when {x, y} ∩ U 6= ∅
and {x, y} ∩ D 6= ∅. Since D × U ⊆ 6P and the elements x and y are
incomparable in P , this implies one of the elements x or y is equal to z. If
x = z, then y 6∈ U , so (y, x) ∈ (X \ U) × U ⊆<′1. Similarly, if y = z, then
x 6∈ D, so (y, x) ∈ D × (X \D) ⊆<′d+1. Therefore 6′1, . . . ,6

′
2d is indeed a

realizer of P . �

We will also need the following theorem. Recall that a block of a graph G
is a maximal connected subgraph of G without a cutvertex. The blocks can
be of three types: maximal 2-connected subgraphs, cut edges together with
their endpoints, and isolated vertices. Two blocks have at most one vertex
in common, and such a vertex is always a cutvertex.

Theorem 14 (Trotter, Walczak and Wang [20]). Let d > 1 be an integer
and let C be a class of graphs such that every poset whose cover graph is in
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C has dimension at most d. If P is a poset such that all blocks of its cover
graph are in C, then dim(P ) 6 d+ 2.

We are now ready to prove Theorem 4, which we restate first.

Theorem 4. Let P be a poset with cover graph G and let m = td2(G). Then,
P has dimension at most 2m+1 − 2.

Proof. Let us show the following slightly stronger statement, which will
help the induction go through: If the cover graph G of a poset P satisfies
td2(G) 6 m, then dim(P ) 6 2m+1 − 2; furthermore, dim(P ) 6 2m+1 − 4 if
G is 2-connected. We prove the statement by induction on m.

For the base case (m = 1), G has no edges, and thus P is an antichain,
that is, a poset in which no pair of distinct elements is comparable. Hence
dim(P ) 6 2; indeed, if the elements of P are x1, . . . , xn, then P has a
realizer {6,6′} where x1 < · · · < xn and xn <

′ · · · <′ x1. As 2m+1 − 2 = 2,
the statement holds. (Note that in this case G cannot be 2-connected, so
the second part of the statement holds vacuously.)

For the inductive case (m > 2), we first establish the case where G
is 2-connected. Consider a 2-connected centered coloring of G with m
colors. There is a vertex z of G whose color is unique in this coloring.
Thus td2(G − z) 6 m − 1. By induction and Lemma 13, we deduce that
dim(P ) 6 2 · (2m−1+1 − 2) = 2m+1 − 4, as desired.

Now we turn to the case that G is not 2-connected. Then each block of
G is either 2-connected, or isomorphic to K1 or K2. Using that our claim
holds in the 2-connected case, and the obvious fact that a poset whose cover
graph is isomorphic to K1 or K2 has dimension 1 6 2m+1 − 4, we deduce
from Theorem 14 that dim(P ) 6 (2m+1 − 4) + 2 = 2m+1 − 2. �

5. Bumping a ladder

In this section, we prove Theorem 2.
In a graph G, if A is the set of cutvertices, and B is the set of blocks of

G, then the block graph of G is the bipartite graph on A ∪ B, where a ∈ A
is adjacent to B ∈ B if a ∈ V (B). The block graph of a graph is always a
forest.

Lemma 15. Let m and p be positive integers. Let G be a graph with at least
pm vertices and with td2(G) 6 m. Then there exists a set Z ⊆ V (G) with
|Z| 6 m− 1 such that G− Z has at least p blocks.

Proof. We prove the lemma by induction on m. If m = 1, then the lemma
works with Z = ∅: since td2(G) 6 1, every vertex in G is an isolated vertex
forming a block.

Now suppose that m > 2. Fix a 2-connected centered coloring of G using
at most m colors. If G has at least p blocks, then the lemma holds with
Z = ∅. Let us suppose that G has less than p blocks. Then some block
of G has at least pm−1 vertices. Let B0 be such a block, and let x be a
vertex of unique color in B0. Thus, td2(B0 − x) 6 m − 1. By induction
hypothesis, there exists a vertex subset Y in B0 − x with |Y | 6 m− 2 such
that (B0 − x) − Y has at least p blocks. Let Z = Y ∪ {x}. It remains to
show that G− Z has at least p blocks. The graph (B0 − x)− Y = B0 − Z
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is a subgraph of G− Z, so every block of B0 − Z is contained in a block of
G− Z. Since B0 − Z has at least p blocks, it suffices to show that no block
of G− Z contains two blocks of B0 − Z.

Towards a contradiction, suppose that a block B of G− Z contains two
distinct blocks B1 and B2 of B0−Z. In particular, we have |V (B)∩V (B0)| >
|V (B1) ∪ V (B2)| > 2. Since two blocks of G have at most one vertex in
common, this implies that B0 is the (unique) block of G containing the block
B of G−Z. But B ⊆ B0 ∩ (G−Z) = B0 −Z, so B is a block of B0 −Z, so
B1 ⊆ B and B2 ⊆ B imply B1 = B = B2, contradiction. This concludes the
proof. �

Observation 16. If G is a 3-connected graph on at least 5 vertices and e is
an edge in G such that G/e is not 3-connected, then G admits a nontrivial
separation (A1, A2) of order 3 such that both endpoints of e lie in A1 ∩A2.

The following lemma is due to Halin [5]. Since we are not aware of a
published proof in English3, we include one for the reader’s convenience.

Lemma 17 (Halin [5]). Let G be a 3-connected graph. Let e ∈ E(G). If
neither G/e nor G− e is 3-connected, then some endpoint of e has degree 3.

Proof. Suppose that G/e and G− e are not 3-connected. As a 3-connected
graph, G has at least 4 vertices. If |V (G)| = 4, then G is complete and the
lemma holds as all vertices are of degree 3. Hence we assume that |V (G)| > 5.

Since G − e is not 3-connected and has at least 5 vertices, we can fix a
nontrivial 2-separation (A1, A2) of G− e. As a 3-connected graph, G does
not admit a nontrivial 2-separation, so neither A1 nor A2 contains both
endpoints of e. Hence e has an endpoint v1 in A1 \A2 and an endpoint v2 in
A2 \A1.

By Obervation 16, we can fix a nontrivial order-3 separation (B1, B2) of G
with {v1, v2} ⊆ B1 ∩B2. Let w denote the vertex of B1 ∩B2 other than v1
and v2. As (A1, A2) is a separation of G− v1v2 and (B1, B2) is a separation
of G with {v1, v2} ⊆ B1 ∩B2, the pair (Ai ∩Bj , A3−i ∪B3−j) is a separation
of G for i, j ∈ {1, 2}.

We claim that (A1 ∩ A2) \ B1 6= ∅ and (A1 ∩ A2) \ B2 6= ∅. Towards a
contradiction, suppose that it is not the case. After possibly swapping B1

and B2 we may assume that

A1 ∩A2 ⊆ B2. (1)

Consider the separations (A1 ∩ B1, A2 ∪ B2) and (A2 ∩ B1, A1 ∪ B2) of G.
The order of those separations is at most 2 as by (1), for i ∈ {1, 2} we have

(Ai ∩B1) ∩ (A3−i ∪B2) = (Ai ∩B1 ∩A3−i) ∪ (Ai ∩B1 ∩B2)

⊆ (Ai ∩B1 ∩B2) = {vi, w}

Since G is 3-connected, both separations (A1 ∩ B1, A2 ∪ B2) and (A2 ∩
B1, A1 ∪B2) must be trivial. However, by nontriviality of (B1, B2), B1 is a
proper subset of V (G), and thus A1 ∩B1 and A2 ∩B1 are proper subsets of

3We note however that the lemma appears as an exercise in Diestel’s textbook [2,
Chapter 3, exercise 10].
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V (G) as well. Therefore it must be the case that A2∪B2 = A1∪B2 = V (G),
and thus by (1)

V (G) = (A2 ∪B2) ∩ (A1 ∪B2) = (A1 ∩A2) ∪B2 = B2,

contradicting the nontriviality of (B1, B2). This contradiction proves our
claim that (A1 ∩A2) \B1 6= ∅ and (A1 ∩A2) \B2 6= ∅.

The order of the separation (A1, A2) is at most 2, so the fact that (A1 ∩
A2) \ B1 6= ∅ and (A1 ∩ A2) \ B2 6= ∅ implies that A1 ∩ A2 = {y1, y2} for
some two vertices y1 ∈ B1 \B2 and y2 ∈ B2 \B1.

Since w 6∈ A1 ∩ A2, either w ∈ A1 \ A2 or w ∈ A2 \ A1. The two cases
are symmetric, so let us assume that w ∈ A2 \ A1. Summarizing, we have
vi ∈ B1 ∩ B2 ∩ Ai \ A3−i and yi ∈ A1 ∩ A2 ∩ Bi \ B3−i for i ∈ {1, 2},
w ∈ A2 \A1, and A1 ∩A2 ∩B1 ∩B2 is empty. Hence (A1 ∩B1, A2 ∪B2) and
(A1 ∩B2, A2 ∪B1) are separations of G with

(A1 ∩B1) ∩ (A2 ∪B2) = {v1, y1} and (A1 ∩B2) ∩ (A2 ∪B1) = {v1, y2}.
The 3-connectedness of G implies that the two separations are trivial and
thus A1 = {v1, y1, y2}. As (A1, A2) is a separation of G− e, this implies that
v1 can be adjacent only to the vertices y1, y2 and v2, so the degree of v1 is at
most 3. Since G is 3-connected, the degree of v1 is at least 3, so the vertex
z = v1 satisfies the lemma. �

The next result demonstrates the usefulness of vertices of degree three
when attempting to preserve 3-connectivity while taking minors. The result
is also due to Halin [6]; see [1] for an alternate proof in English.

Lemma 18 (Halin [6]). Let G be a 3-connected graph on at least 5 vertices
and let v ∈ V (G) be a vertex of degree 3. Then there exists an edge e incident
to v such that G/e is 3-connected.

Lemma 19. Let G be a 3-connected graph, let P be an induced path in G,
and let Z ⊆ V (G) \ V (P ) be such that every internal vertex of P has all its
neighbors in V (P ) ∪ Z. If the length of P is at least 2|Z| + 3, then there
exists an edge e ∈ E(P ) such that G/e is 3-connected.

Proof. By the 3-connectivity of G, every internal vertex of P has a neighbor
in Z. Hence, when we fix k = |Z| and ` to be the length of P , we have k > 1
and ` > 2k + 3 > 5.

For each v ∈ V (G), let N(v) denote the set of neighbors of v in G. Let
v0, v1, . . . , v` be the vertices of P in the order in which they appear on the
path. For each i ∈ {1, . . . , ` − 1}, let Xi =

⋃
j<iN(vj) ∩ Z and let Yi =⋃

j>iN(vj) ∩ Z. Since X1 ⊆ · · · ⊆ X`−1 and |X`−1| 6 |Z| = k, there exist
at most k indices i with 1 6 i 6 `− 2 such that Xi 6= Xi+1. Symmetrically,
there are at most k indices i with 1 6 i 6 `− 2 such that Yi 6= Yi+1. Since
`− 2 > 2k, there exists i such that 1 6 i 6 `− 2 and (Xi, Yi) = (Xi+1, Yi+1).
So N(vi) ∩ Z ⊆ N({v0, . . . , vi−1}) and N(vi+1) ∩ Z ⊆ N({vi+2, . . . , v`}).

Let e be the edge vivi+1 of P . We claim G/e is 3-connected. Arguing by
contradiction, suppose that G/e is not 3-connected. By Observation 16 there
is a nontrivial separation (A1, A2) of G of order 3 with vi, vi+1 ∈ A1 ∩ A2.
Let u /∈ {vi, vi+1} denote the third vertex of A1∩A2. Clearly, we can assume
that u does not lie on v0Pvi−1 or that u does not lie on vi+2Pv`. We will
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continue the proof assuming the former; the other case has a symmetric
proof.

Lest (A1 \ {vi}, A2) form a 2-separation in G, there exists a vertex a ∈
A1\A2 such that a is a neighbor of vi in G. Since vi is an internal vertex of P
we have a ∈ Z or a = vi−1. If a ∈ Z, then since a ∈ Xi+1 = Xi, there exists
an edge of G joining a to a vertex vj1 with j1 < i, and since a ∈ A1 \ A2,
we have vj1 ∈ A1. If a = vi−1, then for j1 = i− 1 the vertex vj1 lies in A1.
Thus, in either case, there exists j1 < i such that vj1 ∈ A1.

Swapping A1 and A2 in the above reasoning, there must be a vertex vj2
with j2 < i, such that vj2 ∈ A2. Therefore vj1Pvj2 intersects A1 ∩A2, which
contradicts that v0Pvi−1 has no vertices in A1 ∩A2. We conclude that G/e
is 3-connected, as claimed. �

The following observation will be used in the proof of Lemma 21.

Observation 20. Let k be an integer with k > 2, let H be a graph isomorphic
to a subdivision of Lk, and let φ be an Lk-model in H. For any two distinct
vertices x and y of Lk,

(i) if x and y are adjacent in Lk, then there is exactly one edge between
φ(x) and φ(y) in H, and

(ii) if x and y are nonadjacent in Lk, then there are no edges between φ(x)
and φ(y) in H.

Proof. If this is not true, then there exists an edge e in H such that φ is
an Lk-model in H − e. Hence there exists a proper subgraph of H which
is isomorphic to a subdivision of Lk, which is impossible since Lk has no
vertices of degree 1. �

Lemma 21. Let k be an integer with k > 2, let H be a graph isomorphic to
a subdivision of Lk, and let φ be an Lk-model in H. If z1 and z2 are distinct
vertices of H with z1 ∈ V (φ((i1, j1))), z2 ∈ V (φ((i2, j2))) and 1 6 j1 6 j2 6
k, then there exists an Lj1-model rooted at (z1, z2) and an Lk−j2+1-model
rooted at (z1, z2).

Proof. We only show the existence of an Lj1-model rooted at (z1, z2) since
an Lk−j2+1-model rooted at (z1, z2) can be obtained in a similar way using a
symmetry of the ladder.

If j1 = 1, the existence of the desired model follows from connectedness
of H. Let us hence assume that j1 > 2. Let A =

⋃
16j<j1 V (φ((1, j))) ∪

V (φ((2, j))). As H is 2-connected, we can fix two disjoint A–{z1, z2} paths
R1 and R2. By Observation 20, in H there are exactly two edges between A
and V (H) \A, and thus, since z1 and z2 do not lie in A, one of the paths R1

and R2 has an endpoint in V (φ((1, j1−1))), and the other in V (φ((2, j1−1))).
We assume that R1 has an endpoint v1 in V (φ((1, j1 − 1))) and R2 has an
endpoint v2 in V (φ((2, j1 − 1))). Since H − A is connected, we can fix a
V (R1)–V (R2) path S in H−A. Consider the Lj1-model φ′ defined as follows.

φ′((i, j)) =


φ((i, j)) if j < j1,

R1 − v1 if (i, j) = (1, j1),

(R2 − v2) ∪ (S − V (R1)) if (i, j) = (2, j1).



EXCLUDING A LADDER 15

The model φ′ is rooted at (z1, z2) or (z2, z1), so after possibly swapping all
φ′((1, j)) with φ′((2, j)) we obtain the desired model. �

Lemma 22. Let k be an integer with k > 2 and let H be a graph isomorphic
to a subdivision of Lk. For every 3-element vertex subset Z in H there exists
a pair (z1, z2) of distinct vertices in Z and an Ld(k+1)/2e-model in H rooted
at (z1, z2).

Proof. Fix an Lk-model φ in H. Let Z = {z1, z2, z3}, and let (i1, j1), (i2, j2)
and (i3, j3) be three vertices of Lk such that za ∈ V (φ((ia, ja))) for a ∈
{1, 2, 3}. Without loss of generality we assume that j1 6 j2 6 j3. By
Lemma 21, there exist an Lk−j2+1-model rooted at (z1, z2) and an Lj2-model
rooted at (z2, z3). One of these models contains a desired rooted model of
Ld(k+1)/2e. �

Lemma 23. Let k and m be integers with k > 2 and m > 1, let G be a

graph, and let H1, . . . , Hm2+1 be disjoint subgraphs of G each isomorphic to
a subdivision of Lk. If G contains as a subgraph a forest F with at most m
components, such that for every i ∈ {1, . . . ,m2 + 1} the graph H i intersects
each component of F in at most one vertex and H i contains vertices from at
least three components of F , then G has an Lk+1 minor.

Proof. By Lemma 22, for every i ∈ {1, . . . ,m2 + 1} there exists a pair (zi1, z
i
2)

of vertices from V (H i) ∩ V (F ) such that there exists an Ld(k+1)/2e-model

φi in H i which is rooted at (zi1, z
i
2). The vertices zi1 and zi2 lie in distinct

components of F , and by the pigeonhole principle, there exist distinct indices

i and j in {1, . . . ,m2 + 1} such that the vertices zi1 and zj1 lie in the same

component of F , and the vertices zi2 and zj2 lie in the same component of F .

Let P1 be the zi1–z
j
1 path in F and let P2 be the zi2–z

j
2 path in F . Gluing

the Ld(k+1)/2e-models φi and φj using paths P1 and P2, we obtain a model
of Lk+1 in G. �

We may now turn to the proof of Theorem 2, which we restate first.

Theorem 2 (Bumping a ladder). For every integer k > 1 there exists an
integer N > 1 with the following property. Every 3-connected graph G
containing a union of N vertex-disjoint copies of Lk as a minor contains
Lk+1 as a minor.

Proof. Let us first observe that if k = 1, then the theorem holds trivially
because every 3-connected graph contains a cycle of length at least 4, which
is isomorphic to a subdivision of L2. Thus, we may assume that k > 2. Fix
m to be the minimum positive integer such that every graph G with no Lk+1

minor satisfies td2(G) 6 m. Note that m is well defined by Theorem 1. Let
λ0, λ, and p be positive integers defined as follows.

λ0 := ((2m+ 2)(4k + 1) + 4)(m2 + 2k3(m− 1) + 1);

λ := 6m(λ0 + 3) + 2;

p := ((m− 1)2 + 4(m− 1))(m2 + 4(m− 1))(λ+ 1).

We show that the theorem holds for N = pm. Suppose not and fix G to
be a minor minimal 3-connected graph which contains a union of N disjoint
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copies of Lk as a minor, but which does not contain Lk+1 as a minor. Hence
we can choose disjoint subgraphs H1, . . . , HN of G such that each Hi is
isomorphic to a subdivision of Lk. Choose such H1, . . . , HN which minimize
the value of |V (H1 ∪ · · · ∪HN )|.

Let H = H1 ∪ · · · ∪HN . For each Hi fix a 4-element vertex subset Xi such
that the graph obtained from Hi by suppressing every vertex of degree two
which is not in X results in a graph isomorphic to Lk. Let X = X1∪· · ·∪XN .

Claim 1. Every vertex of G adjacent to a vertex not in V (H) has degree 3
and belongs to X.

Proof. Let v ∈ V (G) be a vertex adjacent to a vertex u ∈ V (G) \V (H) in G.
Both G/uv and G−uv contain H as a minor, so by minimality, neither G/uv
nor G− uv is 3-connected. By Lemmas 17 and 18, there exists x ∈ {u, v} of
degree 3 in G and an edge e incident to x such that G/e is 3-connected. If
some endpoint of e is not in V (H) then again G/e contains H as a minor,
and we have a contradiction to minimality. Thus, both endpoints of e are
in V (H), and hence x = v. As v has degree 3 in G and u ∈ V (G) \ V (H)
is its neighbor, we conclude that v has degree exactly two in H and that
e ∈ E(H). Finally, if v /∈ X, then H/e contains as a minor N disjoint copies
of Lk and we see that G/e contradicts the minimality of our counterexample
G. Thus, v ∈ X. ♦

Since G has no Lk+1 minor, we have td2(G) 6 m. We have |V (G)| > N =
pm, so by Lemma 15, there exists a vertex subset Z of G with |Z| 6 m− 1
such that G− Z has at least p blocks. Fix such a set Z.

Let us mark each vertex v of G− Z which satisfies

a) v ∈ V (H) and v is adjacent in H to a vertex from Z ∩ V (H), or
b) v ∈ V (G) \ V (H) and v is adjacent in G to a vertex from X ∩ Z.

Since |Z| 6 m− 1 and the maximum degree of H is at most 3, the number
of vertices which satisfy a) is at most 3(m− 1). As every vertex in X with a
neighbor in V (G) \ V (H) has degree 3 by Claim 1, there are at most m− 1
vertices which satisfy b). We deduce the following.

Claim 2. There are at most 4m− 4 marked vertices.

Claim 3. G− Z has at most (m− 1)2 + 4(m− 1) components.

Proof. Suppose to the contrary that G−Z has (m− 1)2 +4m−4+1 distinct

components C1, . . . , C(m−1)2+4m−3. By Claim 2, we can assume without

loss of generality that none of the components C1, . . . , C(m−1)2+1 contains
a marked vertex. For each i ∈ {1, . . . , (m− 1)2 + 1}, choose an arbitrary
vertex v of Ci. If v is in H, let H i denote the (unique) subgraph among
H1, . . . , HN which contains v. If v is not in H, then, by Claim 1, v has a
neighbor u ∈ X. As v is not marked, u 6∈ Z and therefore u lies in Ci as well.
Fix such a neighbor u and let H i be the component of H containing the
vertex u. Since Ci does not contain a marked vertex, H i must be a subgraph
of Ci.

For every i ∈ {1, . . . , (m− 1)2 + 1} we have |V (Ci)| > 4, since Ci contains
a subdivision of Lk. The 3-connectivity of G implies that the set Z has at least
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three vertices. By Menger’s theorem, for every i ∈ {1, . . . , (m− 1)2 + 1}, we
can fix three disjoint V (H i)–Z paths Qi1, Qi2 and Qi3 with all internal vertices

contained in V (Ci). Let F =
⋃(m−1)2+1
i=1 (Qi1 ∪Qi2 ∪Qi3). Each component of

the graph F is the union of a number of paths which have a common endpoint
in Z but are otherwise disjoint. Thus F is a forest, and since |Z| 6 m− 1,

it has at most m− 1 components. For every i ∈ {1, . . . , (m− 1)2 + 1} the
subgraph H i intersects three components of F , each in one vertex. By
Lemma 23, G has an Lk+1 minor, contradiction. ♦

Claim 4. The block graph of every component of G − Z is a tree with at
most m2 + 4(m− 1) leaves.

Proof. Suppose to the contrary that there is a component C of G−Z whose
block graph T is a tree with more than m2 + 4(m− 1) leaves. Let B1, . . . ,

Bm2+4(m−1)+1 be distinct leaves of T , and for each i ∈ {1, . . . ,m2 + 4(m−
1) + 1}, let ai be the cutvertex of G−Z adjacent to Bi in T . By Claim 2, we
may assume without loss of generality that for i ∈ {1, . . . ,m2+1}, there is no
marked vertex in Bi − ai. For each i ∈ {1, . . . ,m2 + 1} we show there exists
a component H i of H contained in Bi. Fix an index i ∈ {1, . . . ,m2 + 1} and
let v be a vertex of Bi − ai. If v ∈ V (H), fix H i to be the component of H
which contains v. If v ∈ V (G) \ V (H), then v has at least three neighbors
all of which must be contained in X. Fix a neighbor u ∈ X \ {ai} of v. As v
is not marked, u is a vertex of Bi. In this case, fix H i to be the component
of H which contains u. Since Bi − ai has no marked vertex, no edge of H i

connects Bi − ai to Z. Since ai is the only cutvertex of G − Z in Bi and
since Hi is 2-connected, we conclude that H i is contained in Bi.

Note that Bi − ai is a component of G− (Z ∪ {ai}). As G is 3-connected,
this implies that |Z ∪ {ai}| > 3. Hence by Menger’s theorem, there exist
three disjoint paths from V (H i) to the set Z ∪ {ai} with all internal vertices
contained in Bi− ai. Fix such three disjoint V (H i)–(Z ∪{ai}) paths Qi1, Qi2
and Qi3.

Let T be a tree in G − Z which contains all vertices a1, . . . , am
2+1

but none of the vertices of Bi − ai for i ∈ {1, . . . ,m2 + 1}, and let F =

T∪
⋃m2+1
i=1 (Qi1∪Qi2∪Qi3). Each component of F is either a tree obtained as the

union of paths which have a common endpoint in Z but are otherwise disjoint,
or a tree obtained as the union of T and paths with one endpoint at ai ∈ V (T )
for some i ∈ {1, . . . ,m2 + 1}. Since |Z| 6 m − 1, this implies that F is a
forest with at most m components. Moreover, for every i ∈ {1, . . . ,m2 + 1},
the graph H i intersects each component of F in at most one vertex, and H i

has a non-empty intersection with at least three components of F . Hence by
Lemma 23, G has an Lk+1 minor, contradiction. ♦

Recall that the graph G− Z has at least p > ((m− 1)2 + 4(m− 1))(m2 +
4(m − 1))(λ + 1) blocks. Hence by Claim 3, there exists a component C
of G− Z with at least (m2 + 4(m− 1))(λ+ 1) blocks. Let T be the block
graph of C. By Claim 4, T has at most (m2 + 4(m− 1)) leaves, and thus T
contains a path on λ+ 1 blocks and λ cutvertices. Let B0a1B1a2 . . . aλBλ
be such a path. Let T ′ denote the subgraph of T obtained by removing
all edges of the form aiBi with i ∈ {1, . . . , λ}. For every i ∈ {0, . . . , λ} let
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Wi be the set of all vertices contained in those blocks of C which lie in the
same component of T ′ as Bi. The sets W0, . . . , Wλ obtained this way induce
connected subgraphs of C whose union is C, and for every i ∈ {1, . . . , λ}, we
have

(W0 ∪ · · · ∪Wi−1) ∩ (Wi ∪ · · · ∪Wλ) = Wi−1 ∩Wi = {ai}.
See Figure 6.

B1B0
. . . Bλ−1 Bλ

a1 a2 a3 aλ

B2

W2

Figure 6. Blocks of the component C of G−Z. The block
graph T of C contains a long path B0a1B1a2 . . . aλBλ. The
remaining blocks are grouped into bundles. The bundle W2

is highlighted in gray.

Claim 5. There exists an index i0 with 1 6 i0 and i0 + λ0 6 λ− 1 such that

(i) Wi0 ∪ · · · ∪Wi0+λ0 does not contain a marked vertex, and
(ii) there exist two disjoint (W0 ∪ · · · ∪Wi0−1)–(Wi0+λ0+1 ∪ · · · ∪Wλ) paths

in G which are internally disjoint from C. See Figure 7.

Wi0 Wi0+1 Wi0+λ0

i0−1⋃
0

Wi

ai0+1

. . .
λ⋃

i0+λ0+1

Wi

ai0+λ0+1ai0

Z

Figure 7. Wi0 ∪ · · · ∪Wi0+λ0 does not contain a marked
vertex, and there are two disjoint paths connecting outside
regions and internally disjoint with C.

Proof. For each z ∈ Z, let Jz denote the set of the two largest indices
i ∈ {2, . . . , λ− 1} such that z is adjacent to a vertex from Wi \ {ai} (if there
are less than two such indices, let Jz consist of all these indices, possibly
Jz = ∅). Let J =

⋃
z∈Z Jz. As |Z| < m, we have |J | < 2m.
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By Claim 2, there are less than 6m indices i ∈ {2, . . . , λ − 1} such that
i ∈ J or Wi\{ai+1} contains a marked vertex. Consider the set {2, . . . , λ−1}
of λ − 2 consecutive indices. As λ − 2 = 6m(λ0 + 3), by the pigeonhole
principle we can find in this set at least λ0 + 3 consecutive indices i such that
i 6∈ J and Wi \ {ai+1} does not contain a marked vertex. We fix a sequence
of λ0 + 2 such indices: Let i0 be an index with 2 6 i0 and i0 +λ0 + 1 6 λ− 1
such that i 6∈ J and Wi \ {ai+1} does not contain a marked vertex, for every
i ∈ {i0, . . . , i0 + λ0 + 1}. We have

i0+λ0⋃
i=i0

Wi ⊆
i0+λ0+1⋃
i=i0

Wi \ {ai+1}.

By the choice of i0, the right-hand side does not contain a marked vertex,
therefore the index i0 satisfies (i).

Partition the set V (C) \ {ai0} into the sets U1, U2 and U3, where

U1 = (W0 ∪ · · · ∪Wi0−1) \ {ai0},
U2 = (Wi0 ∪ · · · ∪Wi0+λ0) \ {ai0}, and

U3 = (Wi0+λ0+1 ∪ · · · ∪Wλ) \ {ai0+λ0+1}.

Since G is 3-connected, the graph G− ai0 is 2-connected. We have |U1| > 2
as i0 > 2, and |U2 ∪ U3| > 2 as λ− i0 > λ0 > 2, so there exist two disjoint
U1–(U2 ∪ U3) paths P1 and P2 in G− ai0 . For i ∈ {1, 2}, let vi denote the
endpoint of Pi contained in U2 ∪U3, and let zi denote the vertex adjacent to
vi in Pi. Since ai0 is a cutvertex in C, we deduce that {z1, z2} ⊆ Z.

Each of the paths P1 and P2 is internally disjoint from V (C) and has one
endpoint in U1, but the other endpoint possibly lies in U2 and not in U3 as
required by (ii). We will show however that if for some i ∈ {1, 2} we have
vi ∈ U2, then zi is adjacent to at least two vertices in U3. This will imply
that by replacing the endpoints of P1 and P2 contained in U2 we can obtain
two disjoint U1–U3 paths in G which are internally disjoint from V (C), thus
proving that i0 satisfies (ii).

Let us hence fix an index i ∈ {1, 2} such that vi ∈ U2, and let j ∈
{i0, . . . , i0 + λ0} be such that vi ∈ Wj \ {aj}. By our choice of i0, we have
j 6∈ Jzi . Since zi is adjacent to the vertex vi ∈ Wj \ {aj}, the definition of
Jzi implies that |Jzi | = 2 and both elements of Jzi are greater than i0 + λ0.
Therefore zi is indeed adjacent to at least two vertices in U3, completing the
proof of (ii) ♦

Let us fix an index i0 as in Claim 5.

Claim 6. For every index i ∈ {i0, . . . , i0 + λ0 − 2}, either

(i) some component of H has all its vertices contained in one of the sets
Wi, Wi+1 or Wi+2, or

(ii) there is a path in H between ai and ai+1 with all vertices in Wi.

Proof. For the contrary, suppose that for a fixed index i ∈ {i0, . . . , i0+λ0−2}
both items do not hold. By Claim 1, V (G)\V (H) is an independent set in G.
As Wi+1 contains two endpoints of an edge in the block Bi+1, this implies that
V (H) ∩Wi+1 6= ∅. Fix a component H0 of H such that V (H0) ∩Wi+1 6= ∅.
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Since the set Wi ∪Wi+1 ∪Wi+2 does not contain a marked vertex, no
edge of H0 connects a vertex in Wi ∪Wi+1 ∪Wi+2 to a vertex in Z. As ai+1

and ai+2 are cutvertices of G[Wi ∪Wi+1 ∪Wi+2] and H0 is 2-connected, this
implies that if V (H0) ⊆ Wi ∪Wi+1 ∪Wi+2, then (i) holds. Let us hence
assume that

V (H0) \ (Wi ∪Wi+1 ∪Wi+2) 6= ∅.

Let U = (V (G) \ (Wi ∪Wi+1 ∪Wi+2)) ∪ {ai, ai+3}. Note that ai ∈ V (H0)
as otherwise ((Wi ∪ Wi+1 ∪ Wi+2) ∩ V (H0), U ∩ V (H0)) is a nontrivial
1-separation of the 2-connected H0. Moreover, if ai+1 6∈ V (H0), then
((Wi+1 ∪Wi+2) ∩ V (H0), (U ∪Wi) ∩ V (H0)) is a nontrivial 1-separation of
H0, so ai+1 ∈ V (H0). Therefore {ai, ai+1} ⊆ V (H0).

Towards a contradiction, suppose that H0 does not contain a path between
ai and ai+1 with all vertices in Wi, and let D be the component of H0[Wi ∩
V (H0)] which contains ai but not ai+1. In such case we obtain a nontrivial
1-separation ((Wi ∪Wi+1 \ V (D)) ∩ V (H0), (Wi+2 ∪ U ∪ V (D)) ∩ V (H0)) of
H0, which is a contradiction. Hence (ii) holds. ♦

Claim 7. Among any (2m+2)(4k+1)+3 consecutive indices in {i0, . . . , i0 +
λ0} we can find an index i such that some component of H has all its vertices
contained in Wi.

Proof. Suppose to the contrary that there is an index α with i0 6 α and
α+ (2m+ 2)(4k+ 1) + 2 6 i0 + λ0 such that for every i ∈ {α, . . . , α+ (2m+
2)(4k + 1) + 2} there is no j ∈ {1, . . . , N} with V (Hj) ⊆Wi.

By Claim 6 applied to all indices i ∈ {α, . . . , α+ (2m+ 2)(4k+ 1)}, we can
fix a component H0 of H and a path P contained in H0 with endpoints in aα
and aα+(2m+2)(4k+1)+1 which traverses the vertices aα, . . . , aα+(2m+2)(4k+1)+1

in that order and the subpath of P from ai to ai+1 has all its vertices in Wi

for i ∈ {α, . . . , α+ (2m+ 2)(4k + 1)}.
The graph H0 contains 2k vertices which are of degree 3 or belong to X.

Such vertices lie in at most 4k of the sets Wα, . . . , Wα+(2m+2)(4k+1). Hence
there exists an index α′ with α 6 α′ and α′+(2m+1) 6 α+(2m+2)(4k+1)
such that Wα′ ∪ · · · ∪Wα′+(2m+1) does not contain a vertex of degree 3 in H0

nor a vertex from V (H0) ∩X. This in particular implies that the subgraph
of H0 induced by those vertices which lie in Wi is the subpath aiPai+1 for
i ∈ {α′, . . . , α′ + 2m+ 1}. Let us fix such an index α′.

We claim that actually aiPai+1 contains all vertices in Wi for i ∈
{α′, . . . , α′ + 2m+ 1}. Suppose to the contrary that for some index i there
is a vertex v ∈ Wi \ V (aiPai+1). We consider two cases: when v ∈ V (H)
and when v 6∈ V (H). In the former case, the component of H containing
v must contain all its vertices in Wi as Wi has no marked vertices and
{ai, ai+1} ⊆ V (P ) ⊆ V (H0), and this is a contradiction. In the latter case,
by Claim 1, every neighbor of v lies in X. But v cannot have neighbors in
X ∩ Z because Wi does not contain marked vertices, and X ∩Wi = ∅ by
our choice of α′. Hence v must be an isolated vertex in G, contradicting its
3-connectedness. This completes the proof that aiPai+1 contains all vertices
in Wi.



EXCLUDING A LADDER 21

Note finally that aiPai+1 is an induced path in G, as otherwise we could
replace the component H0 of H with a subdivision of Lk whose vertex set is
a proper subset of V (H0) thus contradicting the minimality of |V (H)|.

Hence P ′ := aα′Paα′+2m+2 is an induced path in G of length at least
2m+ 2 > 2|Z|+ 3 such that each internal vertex of P ′ has all its neighbors in
V (P ′)∪Z. By Lemma 19, there is an edge e of P ′ whose contraction preserves
the 3-connectivity of G. As H0/e is still isomorphic to a subdivision of Lk,
we get a contradiction to the minimality of |V (H)|. The lemma follows. ♦

By Claim 7 and the choice of λ0, there exists a set of indices I with
|I| > m2 + 2k3(m− 1) + 1 with the property that for every i ∈ I, there exists
j ∈ {1, . . . , N} such that Hj ⊆Wi, and for distinct i, i′ ∈ I, the sets Wi and
Wi′ are disjoint, that is, |i′ − i| > 2.

For each i ∈ I, let H i be one of the graphs H1, . . . , HN that is contained
in Wi. For every i ∈ I, fix a linkage Qi1, Q

i
2, Q

i
3 from {ai, ai+1} ∪ Z to

V (H i) in which the number of paths having an endpoint in {ai, ai+1} is
largest possible. Note that V (Qij) ⊆Wi ∪ Z for j = 1, 2, 3. We can classify

the linkages Qi1, Q
i
2, Q

i
3 by whether zero, one or two of the paths have and

endpoint in {ai, ai+1}. For j ∈ {0, 1, 2}, define Ij ⊆ I to be the subset of
indices i ∈ I such that exactly j of the paths Qi1, Q

i
2, Q

i
3 have an endpoint in

{ai, ai+1}.
Claim 8. I0 = ∅.
Proof. Suppose to the contrary that there exists i ∈ I0. Let R be a path from
{ai, ai+1} to V (H i∪Qi1∪Qi2∪Qi3) in Wi. The path R intersects at most one
of the paths Qi1, Qi2, Qi3, so without loss of generality we may assume that R
does not intersect Qi1 ∪Qi2. In Qi3 ∪R we can find a path Q′ from {ai, ai+1}
to H i. The path Q′ does not intersect Qi1 nor Qi2, so after replacing Qi3 with
Q′ we obtain a linkage with one more path with an endpoint in {ai, ai+1},
contradiction. ♦

Claim 9. |I1| 6 m2.

Proof. Without loss of generality, assume that for every i ∈ I1, the path Qi1
has an endpoint in {ai, ai+1}. For every i ∈ I1, fix Ri to be a path from
{ai, ai+1} \ V (Qi1) to V (H i ∪Qi1 ∪Qi2 ∪Qi3) in Wi. Since the linkage Qi1, Qi2,
Qi3 maximizes the number of endpoints in {ai, ai+1}, the path Ri must have
an endpoint in Qi1, as otherwise we would reroute one of the paths Qi2 or Qi3
to {ai, ai+1} \ V (Qi1). Thus, Qi1 ∪Ri is a tree, which contains ai, ai+1 and a
vertex of H i. Let P be an a1–aλ path in G− Z such that for every i ∈ I1,
we have P [Wi ∩ V (P )] ⊆ Qi1 ∪Ri.

Let F be the union of P and all paths Qij with i ∈ I1 and j ∈ {1, 2, 3}.
Every component of F is either a union of paths having a common endpoint
in a vertex from Z but otherwise disjoint, or the union of P and paths Qi1
with i ∈ I1. Thus F has at most |Z| + 1 components, and each H i with
i ∈ I1 intersects three components of F , each in one vertex. The graph G
does not have an Lk+1 minor, so by Lemma 23 applied to the graphs Hi

with i ∈ I1, we have |I1| 6 (|Z|+ 1)2 6 m2. ♦

By Claims 8 and 9 and the bound on |I|, we see that |I2| > 2k3(m −
1). Without loss of generality, for all i ∈ I2, assume that Qi1 has ai as
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an endpoint and Qi2 has ai+1 as an endpoint. It follows that Qi3 has an
endpoint in Z. For every i ∈ I2, fix an Lk-model φi of Lk in H i, and for
each j ∈ {1, 2, 3}, let t(i, j) be the index such that Qij has an endpoint in

φi((1, t(i, j))) ∪ φi((2, t(i, j))). Thus, t(i, j) ∈ {1, . . . , k} for all i and j.
As |I2| > 2k3(m− 1), there exist indices i, i′ and i′′ in I2 with i < i′ < i′′

and a vertex z ∈ Z such that t(i, j) = t(i′, j) = t(i′′, j) for all j ∈ {1, 2, 3}, and

the paths Qi3, Q
i′
3 and Qi

′′
3 all have z as an endpoint. Using the symmetries

of a ladder, we may assume that t(i, 1) 6 t(i, 2), and thus t(i′, 1) 6 t(i′, 2)
and t(i′′, 1) 6 t(i′′, 2).

There are now three cases to consider: t(i, 3) 6 t(i, 1),
t(i, 1) < t(i, 3) < t(i, 2), and t(i, 2) 6 t(i, 3). In each case, we find

two paths R1 and R2 linking H i and H i′′ such that by joining a rooted
ladder minor in H i to a rooted ladder minor in H i′′ , we show that G has
an Lk+1 minor, yielding a contradiction. The rooted ladder minors will be
obtained by applying Lemma 21.

Wi

. . .

z

Wi′

. . .

Wi′′

. . . . . .

Hi Hi′ Hi′′

P

Figure 8. Illustration of Case 1. The paths R1 and R2 are
depicted in bold.

Case 1: t(i, 3) 6 t(i, 1). See Figure 8 for an illustration

of this case. Let R1 be a V (H i)–V (H i′′) path contained in

V (Qi3∪Qi
′
3∪H i′∪Qi′2 )∪Wi′+1∪· · ·∪Wi′′−1∪V (Qi

′′
1 ). Thus, R1 links a vertex of

φi((1, t(i, 3)))∪φi((2, t(i, 3))) to a vertex of φi
′′
((1, t(i′′, 1)))∪φi′′((2, t(i′′, 1)))

and is internally disjoint from H i∪H i′′ . The path R1 has only one vertex not
contained in C, namely z. Hence by our choice of i0, there exists a path P
between W0 ∪ · · · ∪Wi0−1 and Wi0+λ0+1 ∪ · · · ∪Wλ that is internally disjoint

from C and does not contain the vertex z. Let R2 be a V (H i)–V (H i′′) path

contained in V (Qi1) ∪W0 ∪ · · · ∪Wi−1 ∪ V (P ) ∪Wi′′+1 ∪ · · · ∪Wλ ∪ V (Qi
′′
2 ).

Thus, the path R2 links a vertex of φi((1, t(i, 1))) ∪ φi((2, t(i, 1))) to a

vertex of φi
′′
((1, t(i′′, 2))) ∪ φi′′((2, t(i′′, 2))) and is internally disjoint from

H i ∪H i′′ and completely disjoint from R1. By Lemma 21, H i contains an
Lk−t(i,1)+1-model rooted on the endpoints of R1 and R2, and H i′′ has an
Lt(i′′,1)-model rooted on the endpoints of R1 and R2. Together, we see that
G contains an Lk+1 minor.

Case 2: t(i, 1) < t(i, 3) < t(i, 2). Let R1 be the path formed by the union

of Qi3 and Qi
′′
3 . Thus, R1 links a vertex of φi((1, t(i, 3))) ∪ φi((2, t(i, 3)))

to a vertex of φi
′′
((1, t(i′′, 3))) ∪ φi

′′
((2, t(i′′, 3))) and is internally dis-

joint from H i ∪ H i′′ . Let R2 be a V (H i)–V (H i′′) path contained in
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V (Qi2) ∪ Wi+1 ∪ · · · ∪ Wi′′−1 ∪ V (Qi
′′
1 ). The path R2 links a vertex of

φi((1, t(i, 2)))∪φi((2, t(i, 2))) to a vertex of φi
′′
((1, t(i′′, 1)))∪φi′′((2, t(i′′, 1))).

By Lemma 21, Hi contains an Lt(i,3)-model rooted on the endpoints of R1

and R2, and Hi′′ contains an Lk−t(i′′,3)+1-model rooted on the endpoints of
R1 and R2, implying that G contains an Lk+1 minor.

Case 3: t(i, 2) 6 t(i, 3). Let R1 be a V (H i)–V (H i′′) path contained in

V (Qi2)∪Wi+1∪· · ·∪Wi′−1∪V (Qi
′
1 ∪H i′∪Qi′3 ∪Qi

′′
3 ). Thus, R1 links a vertex of

φi((1, t(i, 2)))∪φi((2, t(i, 2))) to a vertex of φi
′′
((1, t(i′′, 3)))∪φi′′((2, t(i′′, 3)))

and is internally disjoint from H i∪H i′′ . The path R1 has only one vertex not
contained in C, namely z. Hence by our choice of i0, there exists a path P
between W0∪· · ·∪Wi0−1 and Wi0+λ0+1∪· · ·∪Wλ which is internally disjoint

from C and does not contain the vertex z. Let R2 be a V (H i)–V (H i′′) path

contained in V (Qi1) ∪W0 ∪ · · · ∪Wi−1 ∪ V (P ) ∪Wi′′+1 ∪ · · · ∪Wλ ∪ V (Qi
′′
2 ).

Thus, the path R2 links a vertex of φi((1, t(i, 1))) ∪ φi((2, t(i, 1))) to a

vertex of φi
′′
((1, t(i′′, 2))) ∪ φi′′((2, t(i′′, 2))) and is internally disjoint from

H i ∪H i′′ and completely disjoint from R1. By Lemma 21, H i contains an
Lk−t(i,2)+1-model of rooted on the endpoints of R1 and R2, and H i′′ has an
Lt(i′′,2)+1-model rooted on the endpoints of R1 and R2. Together, we see
that G contains an Lk+1 minor.

In each case, we showed that G contains an Lk+1 minor, and thus, in
each case we arrive at a contradiction to our assumptions on the graph G,
completing the proof of the theorem. �
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