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Abstract

Let H be a simple graph having no isolated vertices. An (H; k)-vertex-cover of a simple
graph G = (V;E) is a collection H1; : : : ;Hr of subgraphs of G satisfying

1. Hi
�= H; for all i = 1; : : : ; r;

2. [ri=1V (Hi) = V ,

3. E(Hi) \ E(Hj) = ;; for all i 6= j; and

4. each v 2 V is in at most k of the Hi.

We consider the existence of such vertex covers when H is a complete graph, Kt; t � 3, in
the context of extremal and random graphs.

1 Introduction

Let H be a simple graph having no isolated vertices. For the purposes of this
discussion we say that the simple graph G = (V;E) has property CH;k if there is a
collection H1; : : : ; Hr of subgraphs of G satisfying

P1. Hi
�= H; for all i = 1; : : : ; r;

P2. [r
i=1V (Hi) = V ,

P3. E(Hi) \ E(Hj) = ;; for all i 6= j; and

P4. each v 2 V is in at most k of the Hi.
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We call the family fH1; : : : ; Hrg an (H; k)-vertex-cover of G: Thus when k = 1
we ask for the existence of a partition of V into vertex disjoint copies of H i.e.
the existence of an H-factor. In this case we assume the necessary divisibility
condition, i.e. that jV (H)j divides jV j: We study this property when G is a
random graph and also when G is extremal w.r.t. minimum degree. In the main
we will focus on the case where H is a complete graph Kt and denote our property
by Ct;k.

Random Graphs. The precise threshold for the occurrence of C2;1 i.e. the
existence of a perfect matching was found by Erd}os and R�enyi [7] as part of a
series of papers which laid the foundations of the theory of random graphs. The
precise threshold for the occurrence of C3;1 i.e the existence of a vertex partition
into triangles remains as one of the most challenging problems in this area (see,
for example, the Appendix by Erd}os to the monograph by Alon and Spencer [1]).

The thresholds for H-factors have been studied for example by Ruci�nski [15] and
by Alon and Yuster [3]. For a graph H; let

m1(H) = max
� jE(H 0)j

jV (H 0)j � 1

�
where the maximum is taken over all subgraphs H 0 of the graph H with at least
two vertices. In [15], Ruci�nski showed that the probability p(n) = O(n�1=m1(H)) is
a sharp threshold for the property CH;1 for any graph H such that m1(H) > Æ(H)
where Æ(H) stands, as usual, for the minimum degree of the graph H: Note that, for
example, H being a complete graph is excluded. Hence, the �rst interesting open
case is H = K3: In [11], Krivelevich showed that the probability p(n) = O(n�3=5)
is enough for the random graph to have a K3-factor whp1 and, in general, if
p(n) = O(n�2t=(t�1)(t+2)) then the random graph Gn;p contains a Kt-factor whp
(provided t divides n).

An obvious necessary condition for the existence of a (Kt; k)-vertex-cover is that
every vertex be incident with at least one copy of Kt.

Theorem 1. Let m =
�
n
2

�
((t� 1)!(log n + cn))1=(

t
2)n�2=t. Then

lim
n!1

Pr(Gn;m contains a (Kt; 2)-vertex-cover) =

8<
:

0 cn ! �1
e�e

�c
cn ! c

1 cn !1

(Here, Gn;m stands for the probability space over the set of all graphs on n vertices
and with m edges endowed with the uniform probability measure.) We will prove
this as a consequence of the slightly stronger hitting time version. We consider
the graph process Gm = ([n]; Em);m = 0; 1; : : : ;

�
n
2

�
; where E0 = ; and Gm

is obtained from Gm�1 by choosing em randomly from
�
[n]
2

�
n Em�1 and putting

1A sequence of events En occurs with high probability, whp, if Pr(En) = 1� o(1):
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Em = Em�1 [ femg. We de�ne two hitting times:

�1 = �1(t) = minfm : Every v 2 [n] is contained in a copy of Kt in Gmg ;

�2 = �2(t) = minfm : Gm contains a (Kt; 2)-vertex-coverg:

Theorem 2. For every �xed t � 3,

lim
n!1

Pr(�1 = �2) = 1:

Moreover, there exists whp a (Kt; 2)-vertex-cover of G�2 containing (1 + o(1))n
t

copies of Kt:

Remark 1. In fact, our proof of Theorem 2 implies that G�2 possesses whp a

(Kt; 2)-vertex-cover containing at most
�
1
t

+ 1
(logn)1=t

�
n copies of Kt:

Remark 2. Theorem 2 lends weight to the common conjecture that the threshold
for a Kt-factor is m of Theorem 1.

We prove Theorem 2 in Section 2 and show how Theorem 1 follows from Theorem 2
in Section 3.

Extremal Graphs. For a graph G on n vertices what is the smallest minimum
degree that insures G has Ct;k? For t � 3 and k � 2 let

f(n; t; k) = maxfd : 9G such that Æ(G) = d; jV (G)j = n and G 62 Ct;kg:

We will assume that n is large with respect to t, but k can be arbitrarily large.
The smallest minimum degree that guarantees a Kt-factor (this would be, up
to divisibility considerations, f(n; t; 1) + 1) was established in the following deep
theorem of Hajnal and Szemer�edi [9].

Theorem 3 (Hajnal, Szemer�edi). If jV (G)j = n and Æ(G) � (1� 1
t
)n then G

contains bn=tc vertex-disjoint copies of Kt:

Our central result in this section is the following:

Theorem 4. Let t � 3, k � 2, n � 6t2 � 4t and

n = q[(t� 1)k + 1] + r where 1 � r � (t� 1)k + 1:

Then

n� qk �

�
r

t� 1

�
� f(n; t; k) � n� qk ��

�
r

t� 1

�
+ 1 :

Note that it follows from Theorem 4 that

f(n; t; k) =

�
[(t� 2)k + 1]n

(t� 1)k + 1

�
+ c (1)

where c 2 f0; 1; 2g. It is tempting to believe that f(n; t; k) equals the lower bound
given in Theorem 4. This is not the case in general.
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Theorem 5. Let n � 6 and k � (n� 1)=2.

f(n; 3; k) =
ln

2

m
:

Note that the value of f(n; 3; k) given in Theorem 5 equals the lower bound in
Theorem 4 for n even, but equals the upper bound for n odd. (Here q = 0 and
r = n).

For H a simple graph with no isolated vertices and G an arbitrary graph an
(H;1)-vertex-cover of G is a collection H1; : : : ; Hr of subgraphs of G satisfying
P1, P2 and P3. Thus, G has an (H;1)-vertex-cover if and only if there exists
a k such that G has a (H; k)-vertex-cover. To motivate our results on (H;1)-
vertex-covers, we recall the following well-known extension of Theorem 3. Given
an arbitrary graph H; Koml�os, S�ark�ozy and Szemer�edi [13] showed that there is a

constant c (depending only on the graph H) such that if Æ(G) �
�

1� 1
�(H)

�
n for a

graph G on n vertices, then there is a union of vertex-disjoint copies of H covering
all but at most c vertices of G: Weakening the condition on Æ(G) we show in the
following theorem the existence of (H;1)-vertex-covers for graphs H having the
property that there is a vertex u of H such that �(H n fug) = �(H)� 1 � 3:

Theorem 6. Let H be a graph such that �(H) � 4 and such that there is a vertex

u of H with the property that �(H n fug) = �(H) � 1: Then for every � > 0

and every graph G on n vertices, if Æ(G) �
�

1 � 1
�(H)�1

+ �
�
n; then G has an

(H;1)-vertex-cover provided n is large enough.

Theorems 4, 5 and 6 are proved in Section 4.

2 Proof of Theorem 2

In this section we will use the following Cherno� bounds on the tails of the binomial
random variable B(n; p). For 0 � � � 1 and � > 0

Pr(B(n; p) � (1� �)np) � e��
2np=2 (2)

Pr(B(n; p) � (1 + �)np) � e��
2np=3 (3)

Pr(B(n; p) � �np) � (e=�)�np (4)

All Lemmas introduced in this section will be proven in the subsections that follow.

Let t � 3 be �xed. We construct a (Kt; 2)-vertex-cover in Gm by dividing our
graph process into 3 phases and using edges from di�erent phases for di�erent
purposes. Before describing the phases, we make some preliminary de�nitions and
the observation that we may restrict our attention to Gm where m lies in a small
interval. Let �; � > 0 be constants such that

�(t2) > 19=20 and � + � < 1;

4



and let

ma = �

�
n

2

�
((t� 1)! log n)1=(

t
2) n�2=t; and

mb = �

�
n

2

�
((t� 1)! log n)1=(

t
2) n�2=t:

Furthermore, for i = 0; 1 let

mi =

�
n

2

�
((t� 1)!(log n� (1� 2i) log log n))1=(

t
2)n�2=t:

Lemma 1.
Pr(�1 =2 [m0;m1]) = o(1) :

We will use the term `a collection of Kt's' in the graph G, for a family A �
�
V (G)
t

�
such that G[S] is complete for all S 2 A. For such a collection A we set

V (A) =
[
S2A

S and E(A) =
[
S2A

�
S

2

�
;

say A `covers' a vertex v if v 2 V (A), and say A `covers' a set of vertices T if
T � V (A).

We are now ready to describe the 3 phases. In the �rst phase we simply choose
ma edges uniformly at random, producing the graph G1 = ([n]; E1). Thus,

G1 = Gn;ma:

In the second phase we form the graph G2 = ([n]; E2) by choosing mb edges uni-
formly at random. This is done independently of phase 1 and without knowledge
of which edges were placed in phase 1. Thus,

G2 = Gn;mb
;

and a particular edge may appear in both G1 and G2. Let F = E1 [ E2 and
m�1 = jF j. The third phase is the graph process Hi = ([n]; Fi); i = m�1; : : : ;m1

where Fm�1 = F and Fi+1 is the union of Fi and the set containing a single edge
chosen uniformly at random from

�
n
2

�
nFi. In other words, in the third phase we

start with the collection of edges generated in phases 1 and 2 and then add new
edges one at time until m1 edges have been placed. Note that for ma+mb � i � m1

the graphs Gi and Hi are identically distributed.

We henceforth assume that

ma + mb � m � m1

and that every vertex in Hm = Gm lies in at least one copy of Kt. We will show
that

whp Gm has a (Kt; 2)-vertex-cover. (5)
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Theorem 2 follows from (5) and Lemma 1.

How do we construct the (Kt; 2)-vertex-cover? We �rst use the phase one edges
to greedily cover as many vertices as possible with vertex disjoint Kt's. Let � be
an arbitrary maximal collection of vertex disjoint Kt's in G1, X � [n] be the set
of vertices not covered by �, and

r =

�
n

(log n)1=t

�
:

We can easily randomise this choice of Kt's so that X is a random jXj-subset of
[n]. This will be used in the proof of Lemma 4.

Lemma 2. Let G = Gn;ma.

Pr (9R � [n] such that jRj = r and G[R] contains no Kt's) = o(1):

It follows from Lemma 2 that whp

jXj � r: (6)

In other words, after using only a small fraction of the edges in Gm, only o(n)
vertices remain to be covered. We will use the phase 2 edges (as well as a handful
of the phase 1 and phase 3 edges) to form a vertex disjoint collection of Kt's that
covers X but does not use any edge in E(�).

Before describing the vertex disjoint collection of Kt's that covers X, we make
further de�nitions and preliminary observations. Our �rst observation concerns
the random graph process Gm1 alone. Let �3 = 4, �4 = 3 and �i = 2 for i = 5; 6; : : :.
We de�ne a cluster to be a collection C = fS1; : : : ; Slg of Kt's in Gm1 such that
l � 2�t

�i � 1 for i = 2; : : : ; l

�i = t ) �i�1 = 1 ^ jSi \ Si�1j � 2

and jfi : �i 6= 1gj = �t

where

�i =

�����Si \
 

i�1[
j=1

Sj

!����� for i = 2; : : : ; l:

Roughly speaking, a cluster is a small collection of Kt's that have many or large
pairwise intersections.

Lemma 3.

Pr(Gm1 contains a cluster) = o(1):
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We now turn our attention to the graph G2. For v 2 [n] let �v be the collection
of Kt's in G2 that contain v; to be precise,

�v =

�
S 2

�
[n]

t

�
: v 2 S and

�
S

2

�
� E2

�
:

Since �v depends only on the graph G2 while X is small and depends only on the
graph G1, it is usually the case that no V (�v) contains many members of X. To
make this statement precise, we let

q =

�
log n

log log log n

�
:

Lemma 4.

Pr(9v 2 [n] such that jV (�v) \Xj > q) = o(1):

We say that

v 2 [n] is large if j�vj �
logn
20

; and

v 2 [n] is small if j�vj <
logn
20

:

With high probability the small vertices are, with respect to connections via Kt's,
far apart. To make this statement precise, we de�ne a chain to be a pair u; v
of distinct small vertices and a collection S1; S2; S3; S4 2

�
[n]
t

�
of (not necessarily

distinct) sets such that u 2 S1, v 2 S4,

S1 \ S2; S2 \ S3; S3 \ S4 6= ;; and

�
Si
2

�
� E(Gm1) for i = 1; 2; 3; 4:

Lemma 5.

Pr(Gm1 contains a chain) = o(1):

We also note that no Kt containing a small vertex intersects any other Kt in more
than a single vertex. A link is a small vertex u 2 [n] and distinct S1; S2 2

�
[n]
t

�
such that u 2 S1, jS1 \ S2j � 2, and

�
S1
2

�
;
�
S2
2

�
� E(Gm1).

Lemma 6.

Pr(Gm1 contains a link) = o(1):

Finally, let

X1 = fv 2 X : v is smallg;

X2 = fv 2 X : v is largeg; and

� =

�
S 2

�
[n]

t

�
:

�
S

2

�
� E(Gm1) and S \X1 6= ;

�
:
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We are now prepared to describe the remainder of the (Kt; 2)-cover.

We henceforth assume (6),

Gm1 does not contain a cluster; (7)

8v 2 [n] jV (�v) \Xj � q; (8)

Gm1 does not contain a chain; (9)

Gm1 does not contain a link; (10)

and that n is suÆciently large (in a sense that is made clear below). We will
show that there exist collections �1 and �2 of vertex disjoint Kt's in Gm such that
�1 [ �2 covers X1 [X2 and

V (�1) \ V (�2) = ; and E(�) \ E(�1 [ �2) = ;: (11)

If follows from Lemmas 1, 2, 3, 4, 5 and 6 that (11) implies Theorem 2.

We cover X1 in a rather crude way. Let �1 be an arbitrary collection of Kt's in
Gm that covers X1. Note that the collection �1 uses edges from all 3 phases and
that we make use of the fact that every vertex is contained in some Kt in Gm when
forming �1. By (9), �1 is vertex disjoint.

We cover

X 0
2 := X2nV (�1)

in a more sophisticated way: we apply the Lov�asz Local Lemma. We �rst `trim'
the �v's. For v 2 X 0

2 let �0
v be the collection of sets in S 2 �v such that

S \X = fvg

T 2

�
[n]

t

�
^

�
T

2

�
� E(Gm1) ) jS \ T j � 1; and (12)

S \ V (�) � fvg:

In words, we get �0
v from �v by throwing away those sets in �v that contain

an element of X other than v, intersect another Kt in more than one vertex, or
contain a vertex of a Kt that contains a small vertex. By (8) there are at most q
sets in �v that contain an element of X other than v. We will show

there are �
�
2�tt
t

�
sets in �v that intersect another Kt in � 2 vertices. (13)

By (9) at most 1 set in �v intersects V (�). Therefore, we may choose �v � �0
v

such that

j�vj =

�
log n

21

�
for all v 2 X 0

2: (14)

Proof of (13) Let �̂v denote the collection of Kt's in �v which intersect another

Kt in more than one vertex. Let B = V (�̂v). We construct copies X1; X2; : : : ; Xl
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of Kt in Gm1 as follows: Suppose we have constructed X1; X2; : : : ; Xk. Either (i)
B � Vk = V (X1[X2[� � �[Xk) or (ii) B 6� Vk. In case (ii) choose Xk+1 2 �v which
is not contained in Vk. If jXk+1\Vkj = 1 then choose Xk+2 where jXk+2\Xk+1j � 2.
If this process continues for �t iterations we will have produced a cluster. Thus
l � 2�t and jBj � 2t�t, which implies (13).

Now, consider the probability space in which each v 2 X 0
2 chooses Sv 2 �v uni-

formly at random and independently of the other vertices. For u 6= v 2 X 0
2; S 2 �u

and T 2 �v such that S \T 6= ; let Au;v;S;T be the event that Su = S and Sv = T .
These are the `bad' events in our application of the Lov�asz Local Lemma. Clearly,

Pr(Au;v;S;T ) =
1

j�vjj�uj
�

�
21

log n

�2

=: p: (15)

Events Au1;u2;S1;S2 and Av1;v2;T1;T2 are dependent if and only if

fu1; u2g \ fv1; v2g 6= ;:

Thus, the degree in the dependency graph is bounded above by

d : = 2 max
u2X0

2

X
S2�u

X
v2X0

2

jfT 2 �v : S \ T 6= ;gj

� 2 max
u2X0

2

X
w2V (�u)

j�w \Xj

� 2tq

�
log n

21

�
by (8)

�
t(log n)2

10 log log log n
:

(16)

It follows from (15) and (16) that

pd �
45

log log log n
= o(1):

Thus, for n suÆciently large, it follows from the Lov�asz Local Lemma that there
exists a vertex disjoint collection �2 of Kt's in G2 that covers X 0

2 but covers no
vertex in V (�1).

It remains to show that

E(�) \ E(�1 [ �2) = ;:

This is an immediate consequence of (10) and (12). We have established (11) and
completed the proof. 2

2.1 Proof of Lemma 1

Let pi = mi=
�
n
2

�
for i = 0; 1.
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We �rst apply Janson's inequality to show that whp every vertex in Gn;p1 is
contained in a copy of Kt (we follow the notation of [1, pages 95 and 96]). Let v
be a �xed vertex and let and Z denote the number of copies of Kt in G which are
incident with v. Next let S1; S2; : : : ; S(n�1

t�1)
be an enumeration of the copies of Kt

in Kn which contain v. Letting Bj be the event
�
Sj
2

�
� E(Gn;pi), we have

� =

(n�1
t�1)X
j=1

Pr(Bj) =

�
n� 1

t� 1

�
p
(t2)
1 = (log n + log log n)(1 + O(1=n)) (17)

and

� =
X

jSj\Skj�2

Pr(Bj \Bk)

=

�
n� 1

t� 1

� t�1X
r=2

�
t� 1

r � 1

��
n� t

t� r

�
p
2(t2)�(r2)
i (18)

= O

 
t�1X
r=2

n2t�r�1�
2
t
(2(t2)�(r2))+o(1)

!

= O(n2t
�1�1+o(1)) :

Then, by Janson's inequality, we have

Pr(Z = 0) � exp

�
�� +

1

1� �

�

2

�

=
1

n log n
exp

n
O(n�1+o(1)) + O(n2t

�1�1+o(1))
o

= o(1=n):

(19)

It follows that

Pr(9u 2 [n] : u is not contained in a copy of Kt in Gn;p1) = o(1): (20)

The event f9u 2 [n] : u is not contained in a copy of Ktg is monotone decreasing
and so (20) implies that whp every vertex in [n] is contained in a copy of Kt in
Gn;m1 . In other words, �1 � m1 whp.

We now turn to the random graph Gn;p0 in order to establish our almost sure lower
bound on �1. For v 2 [n] let Zv be the number of Kt's in Gn;p0 that contain v, and
let Y denote the number of vertices v such that Zv = 0. Since

M = (1� p0)
(n�1
t�1) = (1 + o(1))

logn

n
(21)

is a lower bound on Pr(Zv = 0) for each v 2 [n], we have

E(Y ) � (1 + o(1)) log n: (22)
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We now show that Var(Y ) is small. Indeed,

Pr(Z1 = Z2 = 0) � Pr(E1) + Pr( �E2 �E3 j �E1) (23)

where, if Ni is the set of neighbors of i in Gn;p0,

E1 =
n�

(1� n�
1
4t )np0 � jN1j; jN2j � 2np0

�
_
�
jN1 \N2j � n�

1
4tnp0g

�o
E2 = fGn;p0 contains a copy H of Kt�1 such that H � N1g
E3 = fGn;p0 contains a copy H of Kt�1 such that H � N2 nN1g :

Applying (2){(4) we get,

Pr(E1) � 5 exp
n
�n1�

5
2t
+o(1)

o
:

Note that

Pr(E2 ^ E3jN1; N2) = Pr(E2jN1; N2)Pr(E3jN1; N2)

because, conditioning on N1 and N2, these events depend on disjoint sets of edges.
Let W1 and W2 be �xed sets that satisfy�

1�
1

n
1
4t

�
np0 � jW1j � 2np0 and

�
1�

2

n
1
4t

�
� jW2 nW1j � 2np0:

It follows from another application of Janson's inequality that

Pr(E2jN1 = W1; N2 nN1 = W2);Pr(E3jN1 = W1; N2 nN1 = W2)

� exp
n
� log n + log log n + O(n�

1
4t
+o(1)) + O(n�1+

2
t
+o(1))

o
:

Therefore,

Pr(Z1 = Z2 = 0) =
log2 n

n2
(1 + o(1));

and it follows from (21) that

Var(Y ) = o(log2 n):

It then follows from Chebyshev's inequality that

Pr(Y = 0) = o(1): (24)

Since the event fY = 0g is monotone increasing, it follows from (24) that

Pr(every vertex in Gn;m0 is contained in a copy of Kt) = o(1):

In other words, we have shown that whp �1 > m0.

11



2.2 Proof of Lemma 2

Let pa = ma=
�
n
2

�
and consider the random graph G = Gn;pa . For S 2

�
[n]
t

�
let BS

be the event that the induced graph G[S] is complete. For R a �xed subset of [n]
such that

jRj = r =

�
n

(log n)1=t

�

let the random variable XR be the number of copies of Kt contained in R. We
clearly have

� := E[XR]

=
X
S2(Rt)

Pr(BS)

=

�
r

t

�
p
(t2)
a

=

�
r

t

�
�(t2)(t� 1)! log n

nt�1

=
rt

t!
(1 + O(1=r))

�(t2)(t� 1)!

nt�1
log n

= 
(n)

We apply Janson's inequality (again, we follow the notation of [1]) to show that
Pr(XR = 0) is small. In order to do so, we must bound the parameter �.

� =
X

S;T2(Rt):2�jS\T j�t�1

Pr(BS ^BT )

=

�
r

t

� t�1X
i=2

�
t

i

��
r � t

t� i

�
p
2(t2)�(i2)
a

=

t�1X
i=2

O
�
n2t�i�

2
t (2(

t
2)�(i2))+o(1)

�

=

t�1X
i=2

O
�
n2+

i(i�1)
t

�i+o(1)
�

= O
�
n2=t+o(1)

�
:

Thus, Janson's inequality gives

Pr(XR = 0) � e�c1n

12



where c1 is a positive constant. Applying the �rst moment method, we have

Pr

0
B@ _

R2([n]r )

fXR = 0g

1
CA �

�
n

r

�
e�c1n

�
�ne
r

�r
e�c1n

= exp

�
r

�
1 +

log log n

t

�
� c1n

�
= o(1)

Since this event is monotone, the same holds for Gn;ma.

2.3 Proof of Lemma 3

Let C = fS1; : : : ; Slg be a �xed collection of Kt's in Kn such that l � 2�t

�i � 1 for i = 2; : : : ; l

�i = t ) �i�1 = 1 ^ jSi \ Si�1j � 2 (25)

and jfi : �i 6= 1gj = �t (26)

where

�i =

�����Si \
 

i�1[
j=1

Sj

!����� for i = 2; : : : ; l:

Let a = jV (C)j and b = jE(C)j.

Claim 7.

a�
2b

t
< �

1

t

Proof. We observe this di�erence as we `build' the collection C one Kt at a time.
For j = 1; : : : ; l let Cj = fS1; : : : ; Sjg, aj = jV (Cj)j, bj = jE(Cj)j and dj =
aj � 2bj=t. Note that

d1 = 1;

and

di+1 � di � (t� �i+1)�
2

t

��
t

2

�
�

�
�i+1

2

��
= (�i+1 � 1)

��i+1
t

� 1
�
: (27)

Thus

�i+1 = 1 ) di+1 � di = 0

and 2 � �i+1 � t� 1 ) di+1 � di �
2

t
� 1: (28)

13



Furthermore, it follows from (25) that

�i+1 = t ) bi+1 � bi + t� 2 ) di+1 � di � �
2(t� 2)

t
: (29)

Since (by (28) and (29)) the di�erence ai � 2bi=t decreases by at least 1 � 2=t
whenever �i+1 6= 1, it follows from (26) that a� 2b=t = dl < �1=t.

Let Ei be the event that there exists a cluster in Gm1 with a vertex set of cardinality
i, and let bi be the minimum number of edges in a cluster on i vertices. With
pm1 = m1=

�
n
2

�
we have

Pr(Ei) �

�
n

i

�
2(it)pbim1

= O
�
ni�

2bi
t
+o(1)

�
= O(n�

1
t
+o(1)):

The lemma then follows from the fact that the cardinality of the vertex set of a
cluster is at most 2�tt, a constant depending only on t.

2.4 Proof of Lemma 4

We �rst argue that whp

j�vj � 4 log n for all v 2 [n]: (30)

We can calculate in Gn;pb where pb = mb=N; N =
�
n
2

�
and then use monotonicity

to translate the result to G2. It follows from Lemma 3 and (13) that whp after
removing O(1) Kt's from �v we have a collection ~�v of Kt's which are disjoint
except for there containing v. So in Gn;pb

Pr(j~�vj � � = 3:9 logn) �

�
n�1
t�1

��
�!

p
�(t2)
b �

(log n)�

�!
� (e=3:9)3:9 logn = o(n�3=2):

This veri�es (30).

Now �x a vertex v. Then jV (�v)j < 4t log n and jXj � r. Also, X and V (�v) are
chosen independently. It follows that

Pr(jV (�v) \Xj � q) �

�
4t logn

q

��
n�q
r�q

�
�
n
r

�
�

�
4ter log n

qn

�q

�

�
4te log log log n log n

(log n)(t+1)=t

�logn= log log logn

= O(n�A)

14



for any constant A > 0.

There are n choices for v and the lemma follows.

2.5 Proof of Lemmas 5 and 6

Let

p = ((t� 1)! log n)1=(
t
2) n�2=t and pm1 =

m1�
n
2

� :
The main work of this section is the following claim.

Claim 8. Let H = (A;B) be a �xed graph whose vertex set A is a subset of [n],
and let x; y 2 A be distinct �xed vertices. If b := jBj and a := jAj � 4t then

1. Pr ((x is small ) ^ (H � Gm1)) = O(pbm1
n�3=4)

2. Pr ((x and y are small) ^ (H � Gm1)) = O(pbm1
n�3=2)

Proof. We only prove 2; the proof of 1 is both similar and easier. Let Rx be the
event that x is small, Ry be the event that y is small, and let RH be the event
B � E(Gm1). Furthermore, let

Nx = fv 2 [n] : x �G2 vgnA and Ny = fv 2 [n] : y �G2 vgn(A [Nx);

Gx be the induced graph G2[Nx], and Gy = G2[Ny]. Finally, let � > 0 be a constant
such that

� + � < 1 and (� � �)(
t
2) �

3

4
+

1

20
(1 + log 20): (31)

Case 1. t = 3

We condition on the event that Nx and Ny are of nearly the expected size. Let
R1 be the event that

(� � �)np � jNxj; jNyj � (� + �)np; (32)

and R2 be the event that

jE(Gx)j; jE(Gy)j �
log n

20
: (33)

We have

Pr(RH ^Rx ^Ry) � Pr(R2jR1 ^RH)Pr(RH) + Pr(R1): (34)

Now the Cherno� bounds show that in Gn;pm1
we have

Pr( �R1) = O(expf�n1�
2
t
+o(1)g); (35)

15



and we can in
ate this by O(n) to show the same for Gm1.

Then, where N =
�
n
2

�
Pr(RH) �

��a
2

�
b

��
N � b

m1 � b

�
=

�
N

m1

�
= O(pbm1

): (36)

To bound Pr(R2) we condition on Nx = S;Ny = T satisfying (32), where S; T are

�xed subsets of [n]. Now let R̂2 denote the event

jE(S)j; jE(T )j �
log n

20
:

We show that for 
 � � � �, in Gn;
p we have

Pr
p(R̂2) = O(n�3=2): (37)

The monotonicity of R̂2 plus the concentration of the number of edges of Gn;
p

around 
Np then allows us to assert (37) for G2. Indeed, then

O(n�3=2) = Pr
p(R̂2) =
X
m

�
N

m

�
(
p)m(1� 
p)N�mPrm(R̂2)

and so taking � � � � 
 we see that if Prm1(R̂2) � An�3=2 then Pr
p(R̂2) �
An�3=2=2.

The random variable X = jE(Gx)j (in Gn;
p) is a binomial random variable B(s; p)

where s =
�
jSj
2

�
, having mean � where

(� � �)3 log n < � < (� + �)3 log n:

So,

Pr
p

�
X �

log n

20

�
�

b logn
20
cX

l=0

�
s

l

�
(
p)l(1� 
p)s�l

� (1 + o(1))

b logn
20
cX

l=0

e��
�l

l!

� 2e��
�b

logn
20
c

b logn
20
c!

� 3 exp

�
� log n

�
(� � �)3 �

1

20
(1 + log 20)

��
� 3n�3=4

We apply the same argument to jE(Gy)j (adding the appropriate conditioning on
the number of edges within Ny). The proof now follows from (34) { (37).
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Case 2. t � 4

We bound Pr(Rx^Ry^RH) by conditioning on the event that the neighborhoods
of x and y are of nearly the expected size and have nearly the expected number
of edges. Let R3 is the event that

(� � �)pn � jNxj; jNyj � (� + �)pn;

(� � �)p

�
jNxj

2

�
� jE(Gx)j � (� + �)p

�
jNxj

2

�
; and

(� � �)p

�
jNyj

2

�
� jE(Gy)j � (� + �)p

�
jNyj

2

�
:

Let R4 be the event that both Gx and Gy contain fewer than logn
20

copies of Kt.
We now bound the probability of Rx ^Ry ^RH as follows:

Pr(Rx ^Ry ^RH) � Pr(R4jRH ^R3)Pr(RH) + Pr(R3)

� Pr(R4jRH ^R3)O(pbm1
) + O(expf�n1�

2
t
+o(1)g):

(38)

We bound Pr(R4jRH ^ R3) by an application of the Poisson approximation on
the number of Kt's in the random graph Gn;m given by Theorem 6.1 of [8, page
68]. We let n0 and m0 be integers satisfying

(� � �)pn � n0 � (� + �)pn; and (39)

(� � �)p

�
n0

2

�
� m0 � (� + �)p

�
n0

2

�
; (40)

and condition on the event that jNxj = n0 and jE(Gx)j = m0. Note that under
this conditioning Gx can be viewed as the random graph Gn0;m0 . Following the
notation of [8], we have

1

2
(n0)2�

2
t�2!1 � m0 �

1

2
(n0)2�

2
t�2!2

where

!1 = (� � �)
t

t�2 ((t� 1)! log n)1=(
t�1
2 )

and

!2 = (� + �)
t

t�2 ((t� 1)! log n)1=(
t�1
2 ) :

Let X = XKt be the number of copies of Kt in Gn0;m0 . The expected number of
such Kt's, � := E[X], is then bounded as follows:

(� � �)(
t
2) log n � � � (� + �)(

t
2) log n:

17



It then follows from Theorem 6.1 of [8] that

Pr

�
X �

log n

20

�
� (1 + o(1))

b logn
20
cX

k=0

e��
�k

k!

� 2e��
�b

logn
20
c

b logn
20
c!

� 2e��
�

20e�

log n

� logn
20

� 2 exp
n
�(� � �)(

t
2) log n

o
(20e)

logn
20

= 2 exp

�
� log n

�
(� � �)(

t
2) �

1

20
(1 + log 20)

��
� 2n�3=4

With (38) this completes the proof.

Proof of Lemma 5. Let S1 be the event that there is a chain in Gm1. For a �xed
collection A of Kt's in Kn and distinct u; v 2 [n] which de�ne a possible chain, it
follows from an argument along the line of the proof of Claim 7 that

jV (A)j � 1 +
2jE(A)j

t
and it follows from Claim 8 that

Pr ((u and v are small ) ^ E(A) � E(Gm1)) � O(pjE(A)jm1
n�3=2):

Applying the �rst moment method we have

Pr(S1) �

�
n

2

� 4t�3X
i=t

�
n� 2

i� 2

�
2(it)O(p

(i�1)t
2

m1 n�3=2)

�
4t�3X
i=t

O(ni�
2
t
(i�1)t

2
� 3

2
+o(1))

�
4t�3X
i=t

O(n�
1
2
+o(1))

= o(1)

Proof of Lemma 6. Let S2 be the event that there is a link in Gm1. For �xed

S; T 2
�
[n]
t

�
such that jS \ T j � 2 and x 2 S [ T it follows from Claim 8 that

Pr

�
(x is small ) ^

�
S

2

�
[

�
T

2

�
� E(Gm1)

�
= O(p

(t2)�(jS\T j2 )
m1 n�3=4):
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Applying the �rst moment method we have

Pr(S2) � n

�
n� 1

t� 1

� t�1X
i=2

�
t

i

��
n� t

t� i

�
O(p

2(t2)�(i2)
m1 n�3=4)

�
t�1X
i=2

O(n2t�i�2(t�1)+
2
t (

i
2)�

3
4
+o(1))

�
t�1X
i=2

O(n
5
4
�i+ i(i�1)

t
+o(1))

= o(1)

3 Proof of Theorem 1.

For a graph G and a vertex v; we de�ned prior to (21) Zv(G) = Zv to be the
number of Kt's in G that contain v and Y (G) = Y to be the number of vertices u
with Zu = 0:

In view of Theorem 2 we need only prove that

lim
n!1

Pr(Y (Gn;m) = 0) =

8<
:

0 cn ! �1
e�e

�c
cn ! c

1 cn !1
(41)

Using Theorem 2 of  Luczak [14] we can derive (41) from the more easily obtained

lim
n!1

Pr(Y (Gn;p) = 0) =

8<
:

0 cn ! �1
e�e

�c
cn ! c

1 cn !1
(42)

where p = m=
�
n
2

�
: Furthermore we need only consider the case cn ! c as the others

follow by monotonicity. Equation (42) can be proved by showing that Y (Gn;p) is
asymptotically Poisson. In particular we need only show that for k = O(1),

lim
n!1

nkPr(Zi(Gn;p) = 0; 1 � i � k) = e�ck (43)

and then apply e.g. Theorem 20 of Bollob�as [5].

Equation (43) follows from

Pr(Zi(Gn;p) = 0 j Zj(Gn;p) = 0; 1 � j < i) �
e�c

n
(44)

for 1 � i � k.

Using Nj to denote the neighbourhood of j in Gn;p we let
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� �1 denote the number of Kt�1 in Ni n
Si�1

j=1Nj .

� �2 denote the number of Kt�1 in Ni which use a vertex of
Si�1

j=1Nj.

We then let Ci = fZj(Gn;p) = 0; 1 � j < ig and write

Pr(Zi(Gn;p) = 0 j Ci) = Pr(�1 = 0 j Ci)(1�Pr(�2 6= 0 j �1 = 0; Ci)): (45)

Then Pr(�1 = 0 j Ci) � e�c=n follows from Janson's inequality and Pr(�2 6= 0 j
�1 = 0; Ci) � Pr(�2 6= 0) = o(1=n) follows from the FKG inequality and a �rst
moment calculation. 2

4 Proofs of Theorems 4 � 6

We prove Theorem 4 via an application of the following theorem of Hajnal and
Szemer�edi. For k � n the Tur�an graph Tk(n) is the complete k-partite graph on
n vertices where the parts in the vertex partition have cardinalitiesjn

k

k
;

�
n + 1

k

�
; : : : ;

�
n + k � 1

k

�
:

In other words, the parts in the partition are as near as possible to being equal
(i.e. the partition is a so-called equipartition). Below we use the following theorem
proved by Hajnal and Szemer�edi (cf. Theorem 3).

Theorem 7 (Hajnal, Szemer�edi). If G is a graph on n vertices having maxi-

mum degree �(G) = � then

G � T�+1(n):

For a graph G, let G be the complement of G. It is easy to see that Theorem 7 is
equivalent to

Theorem 8. If G is a graph on n vertices having minimum degree Æ(G) = Æ then

Tn�Æ(n) � G:

Let a (Kt; l)-vertex-cover be a Kt-vertex-cover in which each vertex appears in at
most l copies of Kt.

Proof of Theorem 4. We establish the lower bound by example. Consider the
complete t-partite graph on n vertices having parts V1; : : : ; Vt such that jV1j = q
and

jV2j; : : : ; jVtj 2

�
lq +

�
r

t� 1

�
; lq +

�
r

t� 1

��
:
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If q = 0 then G contains no t-clique and therefore has no (Kt; l)-vertex{cover. If
q > 0 then, by the de�nition of r, there exists Vi such that jVij > ql, and G has
no (Kt; l)-vertex{cover.

Suppose G is a graph on n vertices having

Æ(G) � n� ql �

�
r

t� 1

�
+ 2:

Let

s = ql +

�
r

t� 1

�
� 2:

It follows from Theorem 8 that Ts(n) � G. In words, there exists an equipartition
V (G) = V1[ � � � [Vs such that the induced graph G[Vi] is complete for i = 1; : : : s.
We will show that the collection of cliques G[V1]; : : : ; G[Vs] can be transformed
into a (Kt; l)-vertex-cover.

Claim 9.

t� 1 � jVij � t for i = 1; : : : ; s:

Proof. We merely observe that s(t� 1) < n while st � n.�
ql +

�
r

t� 1

�
� 2

�
(t� 1) � ql(t� 1) +

�
r

t� 1
+ 1

�
(t� 1)� 2(t� 1)

� ql(t� 1) + r � (t� 1)

< n:

On the other hand,�
ql +

�
r

t� 1

�
� 2

�
t �

�
ql +

r

t� 1
� 2

�
t

= n + q(l � 1) +
r

t� 1
� 2t:

(46)

Now, since n � 6t2 � 4t, at least one of the following holds:

� r � 2t(t� 1)

� q � 2t

� q(t� 1)l � 4t(t� 1).

In any of these situations, the expression in (46) is greater than or equal to n.

If follows from Claim 9 that we may assume that for some m we have jV1j = � � � =
jVmj = t� 1 and jVm+1j = � � � = jVsj = t.
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Claim 10.

m < (l � 1)(q + 1):

Proof. Since V1; : : : ; Vs is a partition, we must have (t � 1)m + t(s � m) = n.
However,

(t� 1)(l � 1)(q + 1)+t

�
ql +

�
r

t� 1

�
� 2� (l � 1)(q + 1)

�

= q[(t� 1)l + 1] + t

�
r

t� 1

�
+ 1� l � 2t

� q[(t� 1)l + 1] + t

�
r

t� 1
+
t� 2

t� 1

�
+ 1� l � 2t

� n +
1

t� 1
+ t

t� 2

t� 1
+ 1� 2t

= n� t

< n

We transform G[V1]; : : : ; G[Vs] into a (Kt; l)-vertex-cover by expanding the clique
Vi by one vertex for i = 1; : : : ;m. To be precise, we will show that there exist
x1; : : : ; xm 2 V (G) such that

1. xi � v 8v 2 Vi,

2. jfxi : xi = vgj � l � 1 8v 2 V (G),

3. xi 2 Vj ) xj 62 Vi,

4. xi =2 Vi.

Note that the third condition must be included to prevent two of the expanded
cliques from containing a common edge. For i = 1; : : : ;m let

Ai = fv 2 V (G) n Vi : v � u 8u 2 Vig

Claim 11. jAij � q + t for i = 1; : : : m.

Proof. Since, for v 2 Vi,

jfx 2 V (G)nVi : x 6� vgj � n� 1� Æ(G)

� ql +

�
r

t� 1

�
� 3;
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we have

jfx 2 V (G)nVi : 9v 2 Vi such that x 6� vgj

� (t� 1)

�
ql +

�
r

t� 1

�
� 3

�

� ql(t� 1) + (t� 1)

�
r

t� 1
+
t� 2

t� 1

�
� 3(t� 1)

= ql(t� 1) + r � 2t + 1:

Therefore

jAij = jV (G)nVij � jfx 2 V (G)nVi : 9v 2 Vi such that x 6� vgj

� n� (t� 1)� [ql(t� 1) + r � 2t + 1]

= q + t

Now, we choose the xi's one at a time in an order x1 = xi1; xi2 ; : : : xim as follows.
Suppose xi1; : : : ; xik have been chosen.

If xik 2 Vj and j 62 fi1; : : : ; ikg then j = ik+1: (47)

Otherwise ik+1 is chosen arbitrarily from fj : 1 � j � mgnfi1; : : : ; ikg. In other
words, we chose the xi's in an order such that at most one xi falls in Vj before xj
is chosen. For k = 1; : : : ;m let

Uk = fv 2 V (G) : jf1 � j < k : xij = vgj = l � 1g:

In words, Uk is the set of vertices that satisfy 2. with equality after xi1 ; : : : ; xik�1

have been determined. Thus, we must have xik 62 Uk. By Claim 10

jUkj �

�
m� 1

l � 1

�
< q + 1: (48)

For k = 1; : : : ;m let

Rk =
[

1�j<k:xij2Vk

Vij :

(Note that the union here is over zero or one set only). By condition 3. we must
have xik 62 Rk. By the construction of the ordering given in (47),

jRkj � t� 1: (49)

An arbitrary xik 2 (AiknUk)nRk satis�es 1, 2, and 3. By (48), (49) and Claim 11
such an element exists.
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Proof of Theorem 6. Let � > 0 and let G be a graph on n vertices with
Æ(G) = Æ � (1 � 1

�(H)�1
+ �)n: We show that any collection of edge disjoint

copies of H that does not cover V (G) can be extended to cover at least one new
vertex. To be precise, we show that if a family F = f�1; : : : ;�mg of copies of H
in G and a vertex v 2 V (G) satisfy

m < n;

�i = (V (�i); E(�i)) are copies of H in G for all i; (50)

E(�i) \ E(�j) = ; for all i 6= j;

and

v 62 [m
i=1V (�i) ;

then there exists a familyF 0 = f�1; : : : ;�lg such that for all i �i = (V (�i); E(�i))
are copies of H in G

E(�i) \ E(�j) = ; for all i 6= j (51)

and

[l
i=1V (�i) �

� m[
i=1

V (�i)
�
[ fvg :

Note that we include the possibility of m = 0: Clearly, an inductive argument based
on (50) and (51) above implies the theorem. Further, we may assume m < n in
(50). Suppose, on the contrary, that we have a family F� = f�1; : : : ;�mg;m � n;
constructed inductively by (50) and (51) such that it does not cover all vertices.
However, by the inductive construction of F� every vertex is already in some copy
of H included in the family F�: A contradiction.

To proceed with the proof we need to establish some notational conventions. Let u
be the vertex of H such that �(Hnfug) = �(H)�1: Set H 0 = Hnfug; h = jV (H)j;
and eH = jE(H)j: For F and a vertex v as in (50), let Nv be the set of neighbors
of v; dv = jNvj and F = [m

i=1E(�i): Our analysis will focus on the consideration of
the subgraphs L = G[Nv] and L0 = (Nv; E(L) n F ): We extend F to F 0 by simply
�nding a copy of H which contains v but no edges in F: Clearly, if there exists a
copy of H 0 in L0; then this H 0 together with v gives a copy of H that extends F :
(Note H 0 is a subgraph of L = G[Nv]).

We have for jE(L)j � dv
2

�
Æ � (n � dv)

�
: Since Æ �

�
��2
��1

+ �
�
n is equivalent to

Æ � n � � 1
��2

Æ + �n��1
��2

; we get

jE(L)j �
dv
2

�
Æ � (n� dv)

�
�

dv
2

�
dv �

1

�� 2
Æ + �n

�� 1

�� 2

�

�
d2v
2
�
�� 3

�� 2
+ �n

dv
2
�
�� 1

�� 2
:
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Since we are assuming that jFj < n; we have

jF \ E(L)j � jF j � eHn ;

and it follows

jE(L0)j = jE(L)j � jF \ E(L)j

�
d2v
2
�
�� 3

�� 2
+ �n �

dv
2
�
�� 1

�� 2
� eHn

�

�
dv
2

�
�
�� 3

�� 2
+

1

2
�

�
dv
2

�
�� 1

�� 2

+
�1

2
�

�
dv
2

�
�� 1

�� 2
+
dv
2
�
�� 3

�� 2
+ �

dv
2
�
�� 1

�� 2
� eHn

�
:

Letting �0 = 1
2
� ��1
��2

� � and dv be large enough (i.e. n large enough), we conclude

that
1

2
�

�
dv
2

�
�� 1

�� 2
+
dv
2
�
�� 3

�� 2
+ �

dv
2
�
�� 1

�� 2
� eHn � 0

and thus, jE(L0)j �
�
��3
��2

+ �0
��

dv
2

�
: By the Erd}os - Stone theorem there exists a

copy of H 0 in L0: Taking this copy of H 0 together with v and edges needed gives
us a new copy of H by which we extend F to F 0:

Proof of Theorem 5. We are going to determine the exact value of f(n; 3; k); k �
n�1
2

and n � 6: First, note that in any (K3;1)-vertex-cover of a graph G on n

vertices no vertex lies in more than n�1
2

copies of K3: In order to get a tight result
we assume G is a graph on n vertices with Æ(G) � dn=2e+1: Let F = f�1; : : : ;�mg
and v be as in (50) with H = K3: We use the notation introduced in the proof of
Theorem 6. Unlike in the proof of Theorem 6, in order to get a tight result it does
not suÆce to simply add a new K3 to F . Our argument includes consideration of
several di�erent kinds of modi�cations of F .

It follows from our minimal degree condition that

dL(x) � 2; for all x 2 Nv: (52)

If there is an edge in L not contained in F = [m
i=1E(�i) then this edge together

with v gives an extension of F that contains v, and therefore we can assume

E(L) � F: (53)

It follows from (52) and (53) that jF \ E(L)j � dv = jNvj; and therefore

3jF3j+ jF2j � dv �
n

2
+ 1 ; (54)

where Fj = f� 2 F : jV (�) \ V (L)j = jg; j = 2; 3: Since H = K3; to simplify the
description we identify � 2 F with its vertex set, i.e. � = fx1; x2; x3g: Consider

25



�A = fx1; x2; yg 2 F2 with x1; x2 2 Nv and y 2 V (G) n (Nv [ fvg): If there exists
�B 2 F ;�B 6= �A; such that y 2 �B then (Fnf�Ag)[ffx1; x2; vgg is an extension
of F containing v. Therefore, we can assume

jF2j � jV (G) n (Nv [ fvg)j �
n

2
� 2 ; (55)

because otherwise there exists a pair �A;�B 2 F ;�A = fx1; x2; yg;�B = fz1; z2; yg
as above. It follows from (54) and (55) that jF3j � 1. Now, consider �A 2 F3. If
there exists �B 2 F such that �A \ �B = fxg then (F [ f�Anfxg [ fvgg)nf�Ag
is an extension of F containing v. So, we can henceforth assume

�A 2 F3;�B 2 F =) �A \ �B = ;: (56)

Once again, we consider �A = fx1; x2; x3g 2 F3. Since dG(xi) � n=2 + 1 > 3 (here
we use our assumption on n) there exists u 2 V nfv; x1; x2; x3g and a 6= b 2 f1; 2; 3g
such that u is adjacent to both xa and xb. Let c = f1; 2; 3gnfa; bg and set

F 0 = Fnf�Ag [ ffxa; xb; ug; fxa; xc; vgg:

By (56) the family F 0 is edge-disjoint and covers v:

In order to prove the lower bound on f(n; 3; k) we consider the following two
graphs. If n = 2m; He

n is the complete bipartite graph on the vertex set Z1 [
Z2; jZ1j = jZ2j = m: In the case n = 2m + 1; Ho

n consists of the edges of the
complete bipartite graph on the vertex set Z1 [ Z2; jZ1j = m + 1; jZ2j = m:
Moreover, if jZ1j is even, Ho

n contains edges of a perfect matching of Z1 and in the
case jZ1j is odd, Ho

n contains edges of a maximal matching, say M; of Z1 together
with a single edge fx; yg where x is the vertex of Z1 which does not belong to
M and y is any vertex of Z1 n fxg: Clearly, Æ(He

n) = dn=2e and Æ(Ho
n) = dn=2e:

Further, neither of He
n and Ho

n contains a (K3;1)-vertex-cover because He
n does

not contain any copy of K3 and Ho
n contains only at most d(n + 1)=4e copies of

K3: 2
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