Vertex covers by edge disjoint cliques

Tom Bohman Alan Frieze* Miklés Ruszinkof
Lubos Thomat

Department of Mathematical Sciences,
Carnegie Mellon University.

June 6, 2000

Abstract
Let H be a simple graph having no isolated vertices. An (H, k)-vertez-cover of a simple
graph G = (V, E) is a collection Hi,..., H, of subgraphs of G satisfying
1. H; 2 H, foralli=1,...,r,
2. Ui, V(H:) =V,
3. E(H;))NE(H;)=0, foralli+#j, and
4. each v € V is in at most k of the H;.

We consider the existence of such vertex covers when H is a complete graph, K;,t > 3, in
the context of extremal and random graphs.

1 Introduction

Let H be a simple graph having no isolated vertices. For the purposes of this
discussion we say that the simple graph G = (V, E) has property Cp if there is a
collection Hy, ..., H, of subgraphs of G satisfying

Pl1. H;=H, foralli=1,...,r,

P2. U_,V(H;) =V,

P3. E(H;)NE(H;) =0, foralli#j, and
P4. each v € V is in at most k of the H;.
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We call the family {Hq,...,H,} an (H, k)-vertex-cover of G. Thus when k =1
we ask for the existence of a partition of V into vertex disjoint copies of H i.e.
the existence of an H-factor. In this case we assume the necessary divisibility
condition, i.e. that |V(H)| divides |V|. We study this property when G is a
random graph and also when G is extremal w.r.t. minimum degree. In the main
we will focus on the case where H is a complete graph K, and denote our property

by Ct,k'

Random Graphs. The precise threshold for the occurrence of Cy; i.e. the
existence of a perfect matching was found by Erdés and Rényi [7] as part of a
series of papers which laid the foundations of the theory of random graphs. The
precise threshold for the occurrence of Cs3; i.e the existence of a vertex partition
into triangles remains as one of the most challenging problems in this area (see,
for example, the Appendix by Erdés to the monograph by Alon and Spencer [1]).

The thresholds for H-factors have been studied for example by Rucinski [15] and
by Alon and Yuster [3]. For a graph H, let

my(H) = max(%)

where the maximum is taken over all subgraphs H’ of the graph H with at least
two vertices. In [15], Rucinski showed that the probability p(n) = O(n~*/™#)) is
a sharp threshold for the property Cg; for any graph H such that my(H) > §(H)
where 6(H) stands, as usual, for the minimum degree of the graph H. Note that, for
example, H being a complete graph is excluded. Hence, the first interesting open
case is H = K3. In [11], Krivelevich showed that the probability p(n) = O(n=3/%)
is enough for the random graph to have a Ks-factor whp! and, in general, if
p(n) = O(n~2/¢-1t+2)) then the random graph G, , contains a K,-factor whp
(provided t divides n).

An obvious necessary condition for the existence of a (K, k)-vertex-cover is that
every vertex be incident with at least one copy of K;.

Theorem 1. Let m = (3)((t — 1)!(logn + Cn))l/(é)n_w. Then

0 Cp — —O0
lim Pr(G, ., contains a (Ki,2)-vertez-cover) = ¢ e ¢ ¢, — ¢
—
nee 1 Cp —> OO

(Here, G, ,, stands for the probability space over the set of all graphs on n vertices
and with m edges endowed with the uniform probability measure.) We will prove
this as a consequence of the slightly stronger hitting time version. We consider
the graph process G, = ([n],En),m = 0,1,... ,(Z), where Fy = 0 and G,,
is obtained from G,,_; by choosing e,, randomly from ([’2‘}) \ E,,_1 and putting

LA sequence of events &, occurs with high probability, whp, if Pr(£,) = 1 — o(1).



E, = E,_1U{e,}. We define two hitting times:
71 =71(t) = min{m : Every v € [n] is contained in a copy of K; in G,,},
Ty = 72(t) = min{m: G,, contains a (K, 2)-vertex-cover}.

Theorem 2. For every fixed t > 3,

lim Pr(r =7n) =1.
n—oo

Moreover, there erists whp a (Ky,2)-vertez-cover of G, containing (1 + o(1))%
copies of K.

Remark 1. In fact, our proof of Theorem 2 implies that G,, possesses whp a
(K}, 2)-vertex-cover containing at most <% + W) n copies of K.

Remark 2. Theorem 2 lends weight to the common conjecture that the threshold
for a K;-factor is m of Theorem 1.

We prove Theorem 2 in Section 2 and show how Theorem 1 follows from Theorem 2
in Section 3.

Extremal Graphs. For a graph G on n vertices what is the smallest minimum
degree that insures G has C;;? For t > 3 and k > 2 let

f(n,t, k) = max{d : 3G such that §(G) =4, |V(G)| =n and G & C}.

We will assume that n is large with respect to ¢, but k£ can be arbitrarily large.
The smallest minimum degree that guarantees a K;-factor (this would be, up
to divisibility considerations, f(n,t,1) + 1) was established in the following deep
theorem of Hajnal and Szemerédi [9)].

Theorem 3 (Hajnal, Szemerédi). If |V(G)| =n and §(G) > (1 — 1)n then G

contains |n/t| vertez-disjoint copies of K.

Our central result in this section is the following:

Theorem 4. Lett >3, k> 2, n > 6t — 4t and
n=gq[(t—1)k+1+r wherel <r <(t—1)k+1.

Then

Note that it follows from Theorem 4 that
[(t —2)k+ 1|n
t. k)= 1
R e )

where ¢ € {0, 1,2}. It is tempting to believe that f(n,t, k) equals the lower bound
given in Theorem 4. This is not the case in general.




Theorem 5. Letn >6 and k > (n—1)/2.

n
3,k) = H
Fn3,0) =[5
Note that the value of f(n,3,k) given in Theorem 5 equals the lower bound in
Theorem 4 for n even, but equals the upper bound for n odd. (Here ¢ = 0 and
r =n).

For H a simple graph with no isolated vertices and G an arbitrary graph an
(H, c0)-vertez-cover of G is a collection Hy, ..., H, of subgraphs of G satisfying
P1, P2 and P3. Thus, G has an (H, oo)-vertex-cover if and only if there exists
a k such that G has a (H,k)-vertex-cover. To motivate our results on (H,co)-
vertex-covers, we recall the following well-known extension of Theorem 3. Given

an arbitrary graph H, Komléds, Sarkozy and Szemerédi [13] showed that there is a
constant ¢ (depending only on the graph H) such that if 6(G) > (1 — ﬁ) n for a
graph G on n vertices, then there is a union of vertex-disjoint copies of H covering
all but at most ¢ vertices of G. Weakening the condition on §(G) we show in the
following theorem the existence of (H, co)-vertex-covers for graphs H having the
property that there is a vertex w of H such that x(H \ {u}) = x(H) — 1> 3.

Theorem 6. Let H be a graph such that x(H) > 4 and such that there is a vertex
u of H with the property that x(H \ {u}) = x(H) — 1. Then for every e > 0

and every graph G on n vertices, if 6(G) > (1 — m + 6>TL, then G has an

(H, 00)-vertez-cover provided n is large enough.

Theorems 4, 5 and 6 are proved in Section 4.

2 Proof of Theorem 2

In this section we will use the following Chernoff bounds on the tails of the binomial
random variable B(n,p). For 0 <e<1land § >0

Pr(B(n,p) < (1 —e)np) < e </ (2)
Pr(B(n,p) > (1 + €)np) e—€np/3 (3)
Pr(B(n,p) > 6np) (e/6)°™ (4)

All Lemmas introduced in this section will be proven in the subsections that follow.

<
<

Let t > 3 be fixed. We construct a (K, 2)-vertex-cover in G,, by dividing our
graph process into 3 phases and using edges from different phases for different
purposes. Before describing the phases, we make some preliminary definitions and
the observation that we may restrict our attention to G,, where m lies in a small
interval. Let o, 3 > 0 be constants such that

5G) >19/20 and a + 4 < 1,

4



and let
((t—1) logn)l/(é) n~%t and

)
(n

<
Mg =
2

my =3

2)(@-—1)uogny/6)n-w,

Furthermore, for ¢ = 0,1 let

m; = (Z) ((t—1)!(logn — (1 — 27) loglogn))l/(;)n’Z/t.

Lemma 1.

Pr(rm ¢ [mg,m1]) = o(1) .
V(@)

We will use the term ‘a collection of K;’s’ in the graph G, for a family A C ( :

such that G|[S] is complete for all S € A. For such a collection A we set

VA =[S miEw:U<®,

SeA SeA

say A ‘covers’ a vertex v if v € V(A), and say A ‘covers’ a set of vertices T if
T CV(A).

We are now ready to describe the 3 phases. In the first phase we simply choose
m, edges uniformly at random, producing the graph G' = ([n], E'). Thus,

G' = Gpm,-

In the second phase we form the graph G? = ([n], E?) by choosing m; edges uni-
formly at random. This is done independently of phase 1 and without knowledge
of which edges were placed in phase 1. Thus,

2
G" = Gn,m;,v

and a particular edge may appear in both G! and G?. Let F = E' U E? and
m_1 = |F|. The third phase is the graph process H; = ([n], F}),i = m_1,...,m
where F,,, , = F' and Fj; is the union of F; and the set containing a single edge
chosen uniformly at random from (g) \F;. In other words, in the third phase we
start with the collection of edges generated in phases 1 and 2 and then add new
edges one at time until m, edges have been placed. Note that for m,+my < i < my
the graphs G; and H; are identically distributed.

We henceforth assume that
mg +mpy < m < my

and that every vertex in H,, = G,, lies in at least one copy of K;. We will show
that

whp G,, has a (K}, 2)-vertex-cover. (5)



Theorem 2 follows from (5) and Lemma 1.

How do we construct the (K, 2)-vertex-cover? We first use the phase one edges
to greedily cover as many vertices as possible with vertex disjoint K;’s. Let = be
an arbitrary maximal collection of vertex disjoint K;’s in G', X C [n] be the set
of vertices not covered by =, and

"= |

We can easily randomise this choice of K;’s so that X is a random |X|-subset of
[n]. This will be used in the proof of Lemma 4.

Lemma 2. Let G = Gy, -
Pr (3R C [n] such that |R| =1 and G[R] contains no K;’s) = o(1).

It follows from Lemma 2 that whp
X[ <. (6)

In other words, after using only a small fraction of the edges in G,,, only o(n)
vertices remain to be covered. We will use the phase 2 edges (as well as a handful
of the phase 1 and phase 3 edges) to form a vertex disjoint collection of K;’s that
covers X but does not use any edge in E(ZE).

Before describing the vertex disjoint collection of K;’s that covers X, we make
further definitions and preliminary observations. Our first observation concerns
the random graph process G,,,, alone. Let v3 =4, vy =3 and v; = 2fori = 5,6, .. ..
We define a cluster to be a collection C = {Si,..., 5} of K;’s in G,,, such that
1 <2y,

k;>1 for 1=2,...,1
Ki=t = Ki_1=1 A |Siﬂ5i_1| > 2
and |{i:k; #1} =1

i—1
SiN <U Sj>
j=1

Roughly speaking, a cluster is a small collection of K;’s that have many or large
pairwise intersections.

where

KR; =

Lemma 3.

Pr(G,,, contains a cluster) = o(1).



We now turn our attention to the graph G*. For v € [n] let T, be the collection
of K’s in G? that contain v; to be precise,

T,,:{Se<[?]>:vesand (*;)gEZ}

Since T, depends only on the graph G? while X is small and depends only on the
graph G, it is usually the case that no V(Y,) contains many members of X. To
make this statement precise, we let

B logn
7= logloglogn |

Pr(3v € [n] such that |V(T,) N X| > q) = o(1).

Lemma 4.

We say that

v € [n]is large if |T,| > 1°2g0", and
v € [n] is smallif |Y,| < 1°2g0 :

With high probability the small vertices are, with respect to connections via K,;’s,
far apart. To make this statement precise, we define a chain to be a pair u,v
of distinct small vertices and a collection Sy, .55, 53,54 € ([ZL}) of (not necessarily
distinct) sets such that u € S1, v € Sy,

S;

51052,52053,530547&(0, and (2

) C E(Gy,) fori=1,2,3,4.
Lemma 5.
Pr(G,,, contains a chain) = o(1).

We also note that no K; containing a small vertex intersects any other K; in more
than a single vertex. A [link is a small vertex u € [n] and distinct Sy, Sy € (["])

t
such that u € Sy, |S1 N S3| > 2, and (521), (522) C E(Gm,)-
Lemma 6.

Pr(G,,, contains a link) = o(1).

Finally, let

X; ={v € X :vis small},
Xy ={v e X :vislarge}, and

o — {SG (“Z]) : <§> C E(Gp,) and SN X, %(b}.



We are now prepared to describe the remainder of the (K, 2)-cover.

We henceforth assume (6),

7
8
9
0

G, does not contain a cluster,
Vo en] |V(T,)NX|<gq,
G, does not contain a chain,

—_ o~~~

)
)
)
G, does not contain a link, (10)
and that n is sufficiently large (in a sense that is made clear below). We will

show that there exist collections =; and = of vertex disjoint K;’s in GG, such that
=1 U =9 covers X; U X5 and

If follows from Lemmas 1, 2, 3, 4, 5 and 6 that (11) implies Theorem 2.

We cover X; in a rather crude way. Let =; be an arbitrary collection of K;’s in
G, that covers X;. Note that the collection Z; uses edges from all 3 phases and
that we make use of the fact that every vertex is contained in some K; in GG,, when
forming =;. By (9), Z; is vertex disjoint.

We cover
Xé = XQ\V(EI)

in a more sophisticated way: we apply the Lovasz Local Lemma. We first ‘trim’
the T,’s. For v € X} let Y. be the collection of sets in S € T, such that

SNX = {v}
T e <[7Z]) A <§) CEGnm)=|SNT| <1, and (12)
SNV(®) C {v}.

In words, we get T/ from YT, by throwing away those sets in T, that contain
an element of X other than v, intersect another K; in more than one vertex, or
contain a vertex of a K, that contains a small vertex. By (8) there are at most ¢
sets in T, that contain an element of X other than v. We will show

there are < (2’;“5) sets in T, that intersect another K; in > 2 vertices.  (13)

By (9) at most 1 set in T, intersects V(®). Therefore, we may choose 0, C Y/
such that

1
1©,| = [ o2g1n-‘ for all v e Xj. (14)

Proof of (13) Let Y, denote the collection of K,’s in Y, which intersect another

A

K, in more than one vertex. Let B = V(T,). We construct copies X1, Xa,... ,X;



of K; in G,,, as follows: Suppose we have constructed X, Xs,... , Xj. Either (i)
B CV, =V (XjUXoU---UXy) or (ii) B € Vi. In case (ii) choose Xy 1 € T, which
is not contained in Vj. If | X} 1NV} | = 1 then choose Xy 2 where | Xy 0N Xy 1| > 2.
If this process continues for v, iterations we will have produced a cluster. Thus
| < 2v; and |B| < 2ty;, which implies (13).

Now, consider the probability space in which each v € X} chooses S, € O, uni-
formly at random and independently of the other vertices. Foru # v € X},5 € 0,
and T € ©, such that SNT # 0 let A, , 57 be the event that S, =S and S, =T
These are the ‘bad’ events in our application of the Lovasz Local Lemma. Clearly,

1 21 \?2
e < = .
Pr(uvs) = 516, = (iam) =7 (15)

Events Ay, u,,8,,5, and Ay, », 1,1, are dependent if and only if

{u1,uz} N {v1,v2} # 0.
Thus, the degree in the dependency graph is bounded above by

d::2um€:§,(}écz Z HT € ©,:SNT # 0}
S€O, veX]

< 2max Z T, NX]|
X2 weV (0y) (16)

|
< 2tg [ °2gﬂ by (8)

t(logn)?
~ 10logloglogn’

It follows from (15) and (16) that

45
d< —————
~ logloglogn

= o(1).

Thus, for n sufficiently large, it follows from the Lovasz Local Lemma that there
exists a vertex disjoint collection =5 of K,’s in G? that covers X/, but covers no
vertex in V (Z,).

It remains to show that
E(E)NE(E,UZ,) =0.

This is an immediate consequence of (10) and (12). We have established (11) and
completed the proof. a

2.1 Proof of Lemma 1

Let p; = m;/(}) for i =0, 1.



We first apply Janson’s inequality to show that whp every vertex in G,,, is
contained in a copy of K; (we follow the notation of [1, pages 95 and 96]). Let v
be a fixed vertex and let and Z denote the number of copies of K; in G which are

incident with v. Next let S1,5,,... ,S(n 1 be an enumeration of the copies of K;
t—1

in K, which contain v. Letting B; be the event ( /) C E(Gyp,), we have

n 1

= Z Pr(B (t B 11>p£;) = (logn + loglogn)(1 4+ O(1/n)) (17)
and
A = Y Pr(B;nB)
18;NSk|>2

S H)> (i:i) (1= ¢ 1s)

_ <Zn2t r-1-7(2(3) (5))+o(1)>

= O(n¥ i)y

Then, by Janson’s inequality, we have

1 A
Pr(Z =0) Sexp{ ,u—i———}

1—€2
_ 1 exp {O(n—l—i—o(l)) I O(n2t_1—1+o(1))} (19)
nlogn
=o(1/n).
It follows that
Pr(3u € [n] : w is not contained in a copy of K; in G,,,,) = o(1). (20)

The event {Ju € [n] : u is not contained in a copy of K,} is monotone decreasing
and so (20) implies that whp every vertex in [n] is contained in a copy of K; in
Gnm,- In other words, 3 < m; whp.

We now turn to the random graph G,, ,, in order to establish our almost sure lower
bound on 7. For v € [n] let Z, be the number of K;’s in G, ,, that contain v, and
let Y denote the number of vertices v such that Z, = 0. Since

e 1
M = (1 =)o) = (14 0(1)) =220 (21)
is a lower bound on Pr(Z, = 0) for each v € [n], we have
E(Y)> (1+0(1))logn. (22)

10



We now show that Var(Y') is small. Indeed,
Pr(Z, = Z, = 0) < Pr(&) + Pr(&:E | &) (23)
where, if N; is the set of neighbors of ¢ in G,, ,,

& = {((1 — n’ﬁ)npo < |Nql, [N < 2Tlpo>

N (|N1 NNz > n_%tnpo})}

& = {Gn,p, contains a copy H of K;_; such that H C Ny}
Es {Gpp, contains a copy H of K; 1 such that H C Ny \ N;}.

Applying (2)—(4) we get,
Pr(&;) < 5exp {—nl_%“(l)} :
Note that
Pr(& A &Ny, Np) = Pr(&| Ny, No)Pr(E3| Ny, Ny)

because, conditioning on /N; and N,, these events depend on disjoint sets of edges.
Let W; and W5 be fixed sets that satisfy

1 2
(1— 1)nP0§|Wl|§2npo and <1— 1) < |Wa \ Wy| < 2npy.
nat nat

It follows from another application of Janson’s inequality that

Pr(&|Ny = Wi, No \ Ny = W3), Pr(&|Ny = Wi, Ny \ Ny = W)

Therefore,

log?n
Pr(Z, = Zs = 0) = 52 (1+ o(1)),

and it follows from (21) that
Var(Y) = o(log® n).
It then follows from Chebyshev’s inequality that
Pr(Y =0) = o(1). (24)
Since the event {Y = 0} is monotone increasing, it follows from (24) that
Pr(every vertex in Gy, is contained in a copy of K;) = o(1).

In other words, we have shown that whp 7 > m,.

11



2.2 Proof of Lemma 2

Let p, = mg/ (g) and consider the random graph G = G,,,,. For S € ([Ttl]) let Bg
be the event that the induced graph G|[S] is complete. For R a fixed subset of [n]
such that

== | oy

let the random variable Xz be the number of copies of K; contained in R. We
clearly have

p = E[Xg]

= ) Pr(By)

se(¥)

()

B (r) al2)(t — 1)llogn

t nt-1
rt o) — 1)1
=3 (1+0(1/r)) —éfl L)' logn
= Q(n)

We apply Janson’s inequality (again, we follow the notation of [1]) to show that
Pr(Xg = 0) is small. In order to do so, we must bound the parameter A.

A = Z PI‘(BS VAN BT)

S,re(M):2<|SnT|<t—1

-(7) Z () (- ©

0 (net-=1CC)-(@)o00)

o~
[aey

o~ ﬁ .
|
= N

2

0 <n2+@7i+o(l))

(2

=0

n2/t—|—o(1)) _

Thus, Janson’s inequality gives

Pr(Xp=0)<e @"

12



where ¢, is a positive constant. Applying the first moment method, we have

Pr| \/ {Xp=0} g(”)wm
Re (1) "
ne\rT —cin
<(7)e

logl
= exp {r <1 + w> — cln}

=o(1)

Since this event is monotone, the same holds for G, .,

2.3 Proof of Lemma 3

Let C ={S1,...,S5} be a fixed collection of K;’s in K, such that [ < 2y,
ki >1 for 1=2,...,1
Ki=t = K;.1=1 A |SZﬂSz,1|Z2 (25)
and |{i:k; #1} =1 (26)

i—1
Sin <U sj>
j=1

Let a = |V(C)| and b = |E(C)|.
Claim 7.

where

K; =

2b 1
a——<-—=
t t
Proof. We observe this difference as we ‘build’ the collection C one K; at a time.
FOI‘j = ]_,...,l let Cj = {Sl,...,Sj}, a; = |V(CJ)|, bj = |E(CJ)| and dj =
a; — 2b;/t. Note that

dy =1,
and
div —di < (t— ki) — 2 <<t> B <m+1>> = (Kis1 — 1) (“"“ - 1) . @7)
t 2 2 t
Thus
kivi=1 = diyy—d;=0
and 2<k;1<t—1 = di+1—di§%—1. (28)

13



Furthermore, it follows from (25) that

2t — 2)

Kit1 = t = bi_|_1 > bz +t—2 = di_|_1 — dz < — (29)

Since (by (28) and (29)) the difference a; — 2b;/t decreases by at least 1 — 2/t
whenever k; 11 # 1, it follows from (26) that a — 2b/t = d; < —1/t. O

Let &; be the event that there exists a cluster in G,,, with a vertex set of cardinality
1, and let b; be the minimum number of edges in a cluster on ¢ vertices. With
Pmy = m1/(}) we have

prce) < ()20,

1
=0 (ni—sz—Q—o(l))
= O(n_%+°(1)).

The lemma then follows from the fact that the cardinality of the vertex set of a
cluster is at most 214t, a constant depending only on ¢.

2.4 Proof of Lemma 4

We first argue that whp
T, <4logn  for all v € [n]. (30)

We can calculate in Gy, ,, where p, = my/N, N = (g) and then use monotonicity

to translate the result to G?. It follows from Lemma 3 and (13) that whp after
removing O(1) K,’s from T, we have a collection T, of K;’s which are disjoint
except for there containing v. So in G, p,

n—1\F
- [t 1 .
Pr(|YT,| > k =3.9logn) < (t—l') pb(z) < @ < (6/3.9)3‘91"5" _ 0(n73/2),
R K!

This verifies (30).

Now fix a vertex v. Then |V (T,)| < 4tlogn and | X| < r. Also, X and V(7T,) are
chosen independently. It follows that

() )

(")

< (4ter logn> ?
qn

4telogloglognlogn
(log n)t+1)/t
= O(n 4

Pr([V(T,)NX|>q) <

) logn/logloglogn

14



for any constant A > 0.

There are n choices for v and the lemma follows.

2.5 Proof of Lemmas 5 and 6

Let

p=((t—1Dlogn)/B) =2/ and pmf%

2)
The main work of this section is the following claim.

Claim 8. Let H = (A, B) be a fized graph whose vertex set A is a subset of [n],
and let z,y € A be distinct fized vertices. If b:= |B| and a := |A| < 4t then

1. Pr((z is small ) A (H C G,)) = O(pb, n %)
2. Pr((z and y are small) A (H C G,,)) = O(p%, n%?)

Proof. We only prove 2; the proof of 1 is both similar and easier. Let R, be the
event that z is small, R, be the event that y is small, and let Ry be the event
B C E(Gp,). Furthermore, let

N,={ven]:z~gv}\A and Ny,={ven]:y~gv}\(AUN,),

G be the induced graph G*[N,], and G, = G*[N,]. Finally, let € > 0 be a constant
such that
1

ﬂ+e<1and(ﬁ—e)(;)2 50

+ —(1 + log 20). (31)

>~ w

Case 1l. t =3

We condition on the event that IV, and N, are of nearly the expected size. Let
R be the event that

(8 — €e)np < [Na, |Ny| < (B + €)np, (32)
and R, be the event that
logn
[B(Go)l, |B(Gy) < <5 (33)
We have
PI‘(RH A 'R,x VAN Ry) S PI‘(R2|R1 N RH)PI'(RH) + Pr(ﬁl) (34)

Now the Chernoff bounds show that in G, ;,, we have

Pr(Ry) = O(exp{—n'"t+W}), (35)
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and we can inflate this by O(n) to show the same for G, .

Then, where N = (’2’)

a N-—b N
Pr(Ry) < (@
@ = () (o )/ (o)
= O(ph,)- (36)
To bound Pr(R;) we condition on N, = S, N, = T satisfying (32), where S, T are
fixed subsets of [n]. Now let R, denote the event

logn
E E(T)| < :
IB(S)),|B(T)| < 2

We show that for v > 3 — ¢, in G, 5, we have

Pr.,(Ra) = O(n~2), (37)
The monotonicity of R, plus the concentration of the number of edges of Gnp
around yNp then allows us to assert (37) for G*. Indeed, then

Ol #%) = Proy(Re) = 3 (1) (9)"(1 = 30)" "Prn(Re)

m

and so taking § — e < v we see that if Pr,, (Ry) > An 3/2 then Prw(ﬁa) >
An=3/2/2.

The random variable X = |E(G,)| (in Gyp) is a binomial random variable B(s, p)
where s = (‘g‘), having mean p where

(B—e€)logn < p < (B +¢€)*logn.

So,
LIOZg()n
logn ] _
Pr,(x<=2") < (vp)'(1 — yp)*~"
20 — l
logn
S0
<(140(1) Y et
1=0
logn
< 26’“ulL )
— ognJ!
20
1
< 3exp {—logn ((ﬁ - 2—0(1 + 10g20)> }
< 3p 3/

We apply the same argument to |E(G,)| (adding the appropriate conditioning on
the number of edges within N, ). The proof now follows from (34) — (37).
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Case 2. t >4

We bound Pr(R, AR, ARg) by conditioning on the event that the neighborhoods
of x and y are of nearly the expected size and have nearly the expected number
of edges. Let R3 is the event that

(B — €)P<|]\2Tw|> < |E(G,)| < (ﬁ+e)p<|]\2[m|>, and

(6 - e)p(“gy') <|B(Gy)| < <ﬁ+e>p(“§y').

Let R4 be the event that both G, and G, contain fewer than 102%" copies of K;.
We now bound the probability of R, A Ry, A Ry as follows:

Pr(R. ARy, ARu) < Pr(R4Ru A R3)Pr(Ry) + Pr(R;)

) (38)
< Pr(Ra[Ru A R3)O(anl) + O(exp{—nt—i oM}

We bound Pr(R4|Rg A R3) by an application of the Poisson approximation on
the number of K;’s in the random graph G, , given by Theorem 6.1 of [8, page
68]. We let n' and m' be integers satisfying

(8—opn <’ < (8 +opn, and (59
o-an(y) < <@+an(y), (40

and condition on the event that |N,| = n' and |E(G,)| = m'. Note that under
this conditioning G, can be viewed as the random graph G, ,,. Following the
notation of [8], we have

1 1
5 (M) < m < (')
where
— _ t—2 _ | /( 21)
wy = (B—€)=2((t—1)!logn)
and

wy = (B+e€)e ((t — 1)!10gn)1/(t;1) :

Let X = Xk, be the number of copies of K; in G ,,. The expected number of
such Ky’s, A := E[X], is then bounded as follows:

B - B logn < A < (B+ ) logn.

17



It then follows from Theorem 6.1 of [8] that
Llo2g0n J

Pr (X < 1°2g0n> <(1+0(1) Y e_A%

k=0

With (38) this completes the proof. O

Proof of Lemma 5. Let S; be the event that there is a chain in G,,,. For a fixed
collection A of K,’s in K,, and distinct u,v € [n| which define a possible chain, it
follows from an argument along the line of the proof of Claim 7 that

vy <1+ 284
and it follows from Claim 8 that
Pr ((u and v are small ) A E(A) C E(G,,,)) < O(p‘,fl(A)‘n_S/z).
Applying the first moment method we have

Pr(S;) < <Z> MZ?’ <’Z:22>2(i)o(pfﬁ”n—3/z)

1=t

O

Proof of Lemma 6. Let Sy be the event that there is a link in G,,,. For fixed
S, T € ([7;]) such that |[SNT| > 2 and z € SUT it follows from Claim 8 that

Pr <(:c is small ) A <§> U (Z) C E(Gm1)> = O( 553‘('5?%—3/4).

18



Applying the first moment method we have

n—1\ <= [t\ (n—t\ ., 2()-() 4
< mz 2),.—3/4
Pr<52>—"(t_1>§<i)<t_i)0@1 o/t
t—1 ‘
< Z O(n2t—i—2(t—1)+%(;)—%Jro(l))
=2

t—1
< 3 ot )
=2

=o(1)

3 Proof of Theorem 1.

For a graph G and a vertex v, we defined prior to (21) Z,(G) = Z, to be the
number of K;’s in G that contain v and Y(G) = Y to be the number of vertices u
with Z, = 0.

In view of Theorem 2 we need only prove that

0 Cp —> —00
lim Pr(Y(Gnpm)=0)=<S e°° ¢, —c (41)
e 1 Cp — 00

Using Theorem 2 of Luczak [14] we can derive (41) from the more easily obtained

0 Cp —> —O0
lim Pr(Y(G,,)=0)=<¢ e¢° ¢, —~c (42)
noree 1 Cp — OO

where p = m/ (g) . Furthermore we need only consider the case ¢,, — ¢ as the others
follow by monotonicity. Equation (42) can be proved by showing that Y (G, ;) is
asymptotically Poisson. In particular we need only show that for £ = O(1),

lim n*Pr(Z;(Gp,) =0, 1 <i<k)=e (43)
n— 00

and then apply e.g. Theorem 20 of Bollobas [5].
Equation (43) follows from

—C

Pr(Zi(Gnp) = 0| Zj(Gnyp) = 0,1 < j <) ~ en

for 1 < <k.

Using N, to denote the neighbourhood of j in G,,, we let
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e v; denote the number of K; 7 in N; \ U;:ll Nj.

e 1, denote the number of K, _; in NN; which use a vertex of U;;ll Nj.

We then let C; = {Z;(G,,) =0,1 < j < i} and write
Pr(Zi(Gn,p) =0 | Cz) = PI'(I/1 =0 | CZ)(l - PI'(I/Q 7é 0 | v = O,Cz)) (45)

Then Pr(vy =0 | C;) ~ e ¢/n follows from Janson’s inequality and Pr(vy # 0 |
v = 0,C;) < Pr(vy # 0) = o(1/n) follows from the FKG inequality and a first
moment calculation. O

4 Proofs of Theorems 4 — 6

We prove Theorem 4 via an application of the following theorem of Hajnal and
Szemerédi. For k < n the Turdn graph Ti(n) is the complete k-partite graph on
n vertices where the parts in the vertex partition have cardinalities

) )

In other words, the parts in the partition are as near as possible to being equal
(i.e. the partition is a so-called equipartition). Below we use the following theorem
proved by Hajnal and Szemerédi (cf. Theorem 3).

Theorem 7 (Hajnal, Szemerédi). If G is a graph on n vertices having maxi-
mum degree A(G) = A then

G g TA_H_(TL).

For a graph G, let G be the complement of G. It is easy to see that Theorem 7 is
equivalent to

Theorem 8. If G is a graph on n vertices having minimum degree 6(G) = 0 then

Tn_(;(n) g G.

Let a (K, [)-vertex-cover be a K;-vertex-cover in which each vertex appears in at
most [ copies of K;.

Proof of Theorem 4. We establish the lower bound by example. Consider the
complete t-partite graph on n vertices having parts Vi, ..., V; such that V| = ¢

and
T T
|‘/2|,,|V;5| € {lq-i— ’Vt_—l—‘ ,lq+ Lp—lJ}
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If ¢ = 0 then G contains no ¢-clique and therefore has no (Kj,[)-vertex—cover. If
g > 0 then, by the definition of 7, there exists V; such that |V;| > ¢l, and G has
no (K3, [)-vertex—cover.

Suppose G is a graph on n vertices having

5(G)>n—ql— [tiJH.

Let

It follows from Theorem 8 that Ts(n) C G. In words, there exists an equipartition
V(G) = V1 U---UV; such that the induced graph G[V;] is complete fori = 1,...s.
We will show that the collection of cliques G[V4],...,G[V;] can be transformed
into a (K3, [)-vertex-cover.

Claim 9.

t—1<|Vi|<tfori=1,...,s.
Proof. We merely observe that s(t — 1) < n while st > n.

{ql%—[t_%-‘ —2} (t—1)gq1(t—1)+<t_L1+1> (t—1)—2(t—1)

<qlt—1)+r—(t—1)
<n

On the other hand,

[ | o]z s o] -

,
= [—1 — — 2t.
n + q( )—l—t_l

Now, since n > 6t2 — 4t, at least one of the following holds:

o >2t(t—1)
e q>2t
o q(t—1)l > 4t(t —1).

In any of these situations, the expression in (46) is greater than or equal to n. [

If follows from Claim 9 that we may assume that for some m we have |Vj| = =
[Vl =t —1and |Vyia| = = |V =t
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Claim 10.
m<(l—1)(g+1).
Proof. Since Vi,...,V, is a partition, we must have (¢t — 1)m + t(s — m) = n.

However,

t—1

(t—1)(1—1)(g+ 1)+t [ql + [Lw —2—(1-1)(g+ 1)}

:q[(t—l)l+1]+t[t TJ +1—-1-2t
r t—2
<qt-DI+1]+t|——+— 1—-1—-2t
< q[(t—1)I+1] + <t—1+t—1>+
1 t—2

< —— +t——+1-2t

<n+ F 1 + F 1 +

=n-—1

<n

O

We transform G[Vi],...,G[Vy] into a (K%, 1)-vertex-cover by expanding the clique
V; by one vertex for ¢ = 1,...,m. To be precise, we will show that there exist

T1,...,T,m € V(G) such that

l.x;~v YveV,

2. Hzitzi=v} <1-1 YveV(G),
3.z, €Vy=ux; ¢V,

4. x; ¢ V.

Note that the third condition must be included to prevent two of the expanded
cliques from containing a common edge. For i =1,...,m let

Ai={veV(G)\Viiv~u YueV}
Claim 11. [A4;| > g+t fori=1,...m.
Proof. Since, for v € V,
Hz e V(G)\V;:z £ v} <n—1-§G)

,
<gl+ | —| -
_q+L_J 3,

22



we have

{z € V(G)\V;i : v € V; such that = £ v}|
<(t—1) {ql—i— [ﬁw —3}

T t—2

<qlt-1)+(-1) (t_1+;>—3(t_1)

=ql(t—1)+7r—2t+1.

Therefore
|A;| = |V(G)\Vi|] — {z € V(G)\V; : Jv € V; such that x % v}|
>n—(t—1)—[ql(t—1)+7r—2t +1]
O
Now, we choose the z;’s one at a time in an order z; = z;,, z;,,...z;, as follows.
Suppose z;,,...,z; have been chosen.
If z;, € V;and j & {i1,...,0,} then j = ij4q. (47)

Otherwise i1 is chosen arbitrarily from {j : 1 < j < m}\{i1,...,é}. In other
words, we chose the z;’s in an order such that at most one z; falls in V; before z;
is chosen. For k =1,...,m let

Up={veV(G):{1<j<k:z; =v}=1-1}

In words, Uy, is the set of vertices that satisfy 2. with equality after x;,,...,z;,
have been determined. Thus, we must have z;, ¢ Ui. By Claim 10

1
U] < W_—lJ <q+1. (48)

For k=1,...,mlet

R= |J W

1§j<k:zij eV

(Note that the union here is over zero or one set only). By condition 3. we must
have z;, ¢ Ry. By the construction of the ordering given in (47),

IRy <t—1. (49)

An arbitrary z;, € (A;, \Uk)\Ry satisfies 1, 2, and 3. By (48), (49) and Claim 11
such an element exists. O
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Proof of Theorem 6 Let ¢ > 0 and let G be a graph on n vertices with
)(G) =46 > (1 — x(H) - + €)n. We show that any collection of edge disjoint

copies of H that does not cover V(G) can be extended to cover at least one new
vertex. To be precise, we show that if a family F = {I'y,...,I',,} of copies of H
in G and a vertex v € V(G) satisfy

m < m,

r; = (V(Ty), E(T;)) are copies of H in G for all 1, (50)

E(,)NET;) =0 forall i#j,

and

v g UL V(L)
then there exists a family 7' = {Y,..., T} such that for all¢ Y; = (V(Y;), E(Y,))
are copies of H in G

E(Y;,)NE(Y;)=0 forall i#j (51)

and

V(T D (Q V(Pi)> U {v}.

Note that we include the possibility of m = 0. Clearly, an inductive argument based
on (50) and (51) above implies the theorem. Further, we may assume m < n in
(50). Suppose, on the contrary, that we have a family F* = {T'y,...,T'),},m > n,
constructed inductively by (50) and (51) such that it does not cover all vertices.
However, by the inductive construction of F* every vertex is already in some copy
of H included in the family F*. A contradiction.

To proceed with the proof we need to establish some notational conventions. Let u
be the vertex of H such that x(H \{u}) = x(H)—1.Set H' = H\{u},h = |V(H)|,
and ey = |E(H)|. For F and a vertex v as in (50), let N, be the set of neighbors
of v, d, = |N,| and F = U™ E(T;). Our analysis will focus on the consideration of
the subgraphs L = G[N,] and L' = (N,, E(L) \ F). We extend F to F' by simply
finding a copy of H which contains v but no edges in F. Clearly, if there exists a
copy of H' in L', then this H' together with v gives a copy of H that extends F.
(Note H' is a subgraph of L = G[N,]).

We have for |E(L)| > %”(5 —(n— dv)>. Since ¢ > <§—j + e)n is equivalent to
d—n> —ﬁ&—ken;—:;, we get

d,
B > Z(6-(n—dy))
dv X—]_
> 2 -
= 2<d” —25+6"X—2>
A —
> b x=3, b x—1
2 x—2 2 x—2



Since we are assuming that |F| < n, we have
FAB(L)| < |F| < enn,
and it follows

|E(L)] = [E(L)| - [FnE(L)

v

[V
+ N

2
1 (d\x—1 d, -3 d, -1
2\2)x—2 2 x-—-2 2 x—2
Letting ¢ = % : i—:l - € and d, be large enough (i.e. n large enough), we conclude

that 1 (d 1 d 3 d 1
v\ X — v X v X T

- A AT AT T >0

26<2>X—2+2 N—2 g g =

and thus, |E(L")| > (i—:g + 6’> (dz”) By the Erdds - Stone theorem there exists a

copy of H' in L'. Taking this copy of H' together with v and edges needed gives
us a new copy of H by which we extend F to F'.

Proof of Theorem 5. We are going to determine the exact value of f(n,3, k), k >

"T’l and n > 6. First, note that in any (K3, 00)-vertex-cover of a graph G on n

vertices no vertex lies in more than "T_l copies of K3. In order to get a tight result
we assume G is a graph on n vertices with 6(G) > [n/2]+1. Let F = {I'y,..., '}
and v be as in (50) with H = K3. We use the notation introduced in the proof of
Theorem 6. Unlike in the proof of Theorem 6, in order to get a tight result it does
not suffice to simply add a new K3 to F. Our argument includes consideration of
several different kinds of modifications of F.

It follows from our minimal degree condition that
dr(z) > 2, forall z € N,. (52)

If there is an edge in L not contained in F' = U™, E(T';) then this edge together
with v gives an extension of F that contains v, and therefore we can assume

E(L)C F. (53)
It follows from (52) and (53) that |FFN E(L)| > d, = |N,|, and therefore
31| + Pl 2 d = 5 41, (54)

where F;, ={T' e F: |[V(I')NV(L)| =j},j = 2,3. Since H = K3, to simplify the
description we identify I' € F with its vertex set, i.e. I' = {z;, 25, z3}. Consider
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La ={z1,22,y} € Fp with 21,25 € N, and y € V(G) \ (N, U {v}). If there exists
I'p € F,I'g # ', such that y € I'g then (F\{T'4}) U{{z1, z2,v}} is an extension
of F containing v. Therefore, we can assume

Rl IVIEO\ N UL < 5 -2, (55)

because otherwise there exists a pair I'4, I'g € F,T'4 = {z1,22,y}, s = {21, 22, ¥}
as above. It follows from (54) and (55) that |F3| > 1. Now, consider I'y € F3. If
there exists I's € F such that 'y NI'g = {z} then (F U {La\{z} U {v}})\{Ta}
is an extension of F containing v. So, we can henceforth assume

FAEf3,FBEf:>FAﬂFB:@. (56)

Once again, we consider I'y = {x, 22, 23} € F3. Since dg(z;) > n/2+1 > 3 (here
we use our assumption on n) there exists u € V\{v,z1, 22, z3} and a # b € {1, 2,3}
such that u is adjacent to both z, and z;. Let ¢ = {1,2,3}\{a, b} and set

F'=F\{Ta} U{{za, zs, u},{q, zc, v}}-
By (56) the family F' is edge-disjoint and covers v.

In order to prove the lower bound on f(n,3,k) we consider the following two
graphs. If n = 2m, H¢ is the complete bipartite graph on the vertex set Z; U
Z3,|Z1| = |Z3] = m. In the case n = 2m + 1, H? consists of the edges of the
complete bipartite graph on the vertex set Z; U Zy,|Z1] = m + 1,|Z3| = m.
Moreover, if | Z;| is even, H? contains edges of a perfect matching of Z; and in the
case |Z1| is odd, H? contains edges of a maximal matching, say M, of Z; together
with a single edge {z,y} where z is the vertex of Z; which does not belong to
M and y is any vertex of Z; \ {z}. Clearly, 6(H¢) = [n/2] and §(HZ) = [n/2].

Further, neither of H¢ and H? contains a (K3, 00)-vertex-cover because HE does

not contain any copy of K3 and H? contains only at most [(n + 1)/4| copies of
K. O
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