Vertex covers by edge disjoint cliques

Tom Bohman Alan Frieze* Miklós Ruszinkó ${ }^{\dagger}$
Lubos Thoma ${ }^{\ddagger}$
Department of Mathematical Sciences, Carnegie Mellon University.

June 6, 2000

Abstract

Let H be a simple graph having no isolated vertices. An (H, k)-vertex-cover of a simple graph $G=(V, E)$ is a collection H_{1}, \ldots, H_{r} of subgraphs of G satisfying 1. $H_{i} \cong H, \quad$ for all $i=1, \ldots, r$, 2. $\cup_{i=1}^{r} V\left(H_{i}\right)=V$, 3. $E\left(H_{i}\right) \cap E\left(H_{j}\right)=\emptyset, \quad$ for all $i \neq j$, and 4. each $v \in V$ is in at most k of the H_{i}.

We consider the existence of such vertex covers when H is a complete graph, $K_{t}, t \geq 3$, in the context of extremal and random graphs.

1 Introduction

Let H be a simple graph having no isolated vertices. For the purposes of this discussion we say that the simple graph $G=(V, E)$ has property $\mathcal{C}_{H, k}$ if there is a collection H_{1}, \ldots, H_{r} of subgraphs of G satisfying

P1. $H_{i} \cong H, \quad$ for all $i=1, \ldots, r$,
P2. $\cup_{i=1}^{r} V\left(H_{i}\right)=V$,
P3. $E\left(H_{i}\right) \cap E\left(H_{j}\right)=\emptyset, \quad$ for all $i \neq j$, and
P4. each $v \in V$ is in at most k of the H_{i}.

[^0]We call the family $\left\{H_{1}, \ldots, H_{r}\right\}$ an (H, k)-vertex-cover of G. Thus when $k=1$ we ask for the existence of a partition of V into vertex disjoint copies of H i.e. the existence of an H-factor. In this case we assume the necessary divisibility condition, i.e. that $|V(H)|$ divides $|V|$. We study this property when G is a random graph and also when G is extremal w.r.t. minimum degree. In the main we will focus on the case where H is a complete graph K_{t} and denote our property by $\mathcal{C}_{t, k}$.

Random Graphs. The precise threshold for the occurrence of $\mathcal{C}_{2,1}$ i.e. the existence of a perfect matching was found by Erdős and Rényi [7] as part of a series of papers which laid the foundations of the theory of random graphs. The precise threshold for the occurrence of $\mathcal{C}_{3,1}$ i.e the existence of a vertex partition into triangles remains as one of the most challenging problems in this area (see, for example, the Appendix by Erdős to the monograph by Alon and Spencer [1]).

The thresholds for H-factors have been studied for example by Ruciński [15] and by Alon and Yuster [3]. For a graph H, let

$$
m_{1}(H)=\max \left(\frac{\left|E\left(H^{\prime}\right)\right|}{\left|V\left(H^{\prime}\right)\right|-1}\right)
$$

where the maximum is taken over all subgraphs H^{\prime} of the graph H with at least two vertices. In [15], Ruciński showed that the probability $p(n)=O\left(n^{-1 / m_{1}(H)}\right)$ is a sharp threshold for the property $\mathcal{C}_{H, 1}$ for any graph H such that $m_{1}(H)>\delta(H)$ where $\delta(H)$ stands, as usual, for the minimum degree of the graph H. Note that, for example, H being a complete graph is excluded. Hence, the first interesting open case is $H=K_{3}$. In [11], Krivelevich showed that the probability $p(n)=O\left(n^{-3 / 5}\right)$ is enough for the random graph to have a K_{3}-factor whp ${ }^{1}$ and, in general, if $p(n)=O\left(n^{-2 t /(t-1)(t+2)}\right)$ then the random graph $G_{n, p}$ contains a K_{t}-factor whp (provided t divides n).
An obvious necessary condition for the existence of a $\left(K_{t}, k\right)$-vertex-cover is that every vertex be incident with at least one copy of K_{t}.

Theorem 1. Let $m=\binom{n}{2}\left((t-1)!\left(\log n+c_{n}\right)\right)^{1 /\binom{t}{2}} n^{-2 / t}$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, m} \text { contains } a\left(K_{t}, 2\right) \text {-vertex-cover }\right)= \begin{cases}0 & c_{n} \rightarrow-\infty \\ e^{-e^{-c}} & c_{n} \rightarrow c \\ 1 & c_{n} \rightarrow \infty\end{cases}
$$

(Here, $G_{n, m}$ stands for the probability space over the set of all graphs on n vertices and with m edges endowed with the uniform probability measure.) We will prove this as a consequence of the slightly stronger hitting time version. We consider the graph process $G_{m}=\left([n], E_{m}\right), m=0,1, \ldots,\binom{n}{2}$, where $E_{0}=\emptyset$ and G_{m} is obtained from G_{m-1} by choosing e_{m} randomly from $\binom{[n]}{2} \backslash E_{m-1}$ and putting

[^1]$E_{m}=E_{m-1} \cup\left\{e_{m}\right\}$. We define two hitting times:
$\tau_{1}=\tau_{1}(t)=\min \left\{m\right.$: Every $v \in[n]$ is contained in a copy of K_{t} in $\left.G_{m}\right\}$,
$\tau_{2}=\tau_{2}(t)=\min \left\{m: G_{m}\right.$ contains a $\left(K_{t}, 2\right)$-vertex-cover $\}$.
Theorem 2. For every fixed $t \geq 3$,
$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\tau_{1}=\tau_{2}\right)=1
$$

Moreover, there exists whp $a\left(K_{t}, 2\right)$-vertex-cover of $G_{\tau_{2}}$ containing $(1+o(1)) \frac{n}{t}$ copies of K_{t}.

Remark 1. In fact, our proof of Theorem 2 implies that $G_{\tau_{2}}$ possesses whp a $\left(K_{t}, 2\right)$-vertex-cover containing at most $\left(\frac{1}{t}+\frac{1}{(\log n)^{1 / t}}\right) n$ copies of K_{t}.
Remark 2. Theorem 2 lends weight to the common conjecture that the threshold for a K_{t}-factor is m of Theorem 1.

We prove Theorem 2 in Section 2 and show how Theorem 1 follows from Theorem 2 in Section 3.

Extremal Graphs. For a graph G on n vertices what is the smallest minimum degree that insures G has $\mathcal{C}_{t, k}$? For $t \geq 3$ and $k \geq 2$ let

$$
f(n, t, k)=\max \left\{d: \exists G \text { such that } \delta(G)=d,|V(G)|=n \text { and } G \notin \mathcal{C}_{t, k}\right\}
$$

We will assume that n is large with respect to t, but k can be arbitrarily large. The smallest minimum degree that guarantees a K_{t}-factor (this would be, up to divisibility considerations, $f(n, t, 1)+1$) was established in the following deep theorem of Hajnal and Szemerédi [9].
Theorem 3 (Hajnal, Szemerédi). If $|V(G)|=n$ and $\delta(G) \geq\left(1-\frac{1}{t}\right) n$ then G contains $\lfloor n / t\rfloor$ vertex-disjoint copies of K_{t}.

Our central result in this section is the following:
Theorem 4. Let $t \geq 3, k \geq 2, n \geq 6 t^{2}-4 t$ and

$$
n=q[(t-1) k+1]+r \text { where } 1 \leq r \leq(t-1) k+1 .
$$

Then

$$
n-q k-\left\lceil\frac{r}{t-1}\right\rceil \leq f(n, t, k) \leq n-q k--\left\lceil\frac{r}{t-1}\right\rceil+1
$$

Note that it follows from Theorem 4 that

$$
\begin{equation*}
f(n, t, k)=\left\lfloor\frac{[(t-2) k+1] n}{(t-1) k+1}\right\rfloor+c \tag{1}
\end{equation*}
$$

where $c \in\{0,1,2\}$. It is tempting to believe that $f(n, t, k)$ equals the lower bound given in Theorem 4. This is not the case in general.

Theorem 5. Let $n \geq 6$ and $k \geq(n-1) / 2$.

$$
f(n, 3, k)=\left\lceil\frac{n}{2}\right\rceil
$$

Note that the value of $f(n, 3, k)$ given in Theorem 5 equals the lower bound in Theorem 4 for n even, but equals the upper bound for n odd. (Here $q=0$ and $r=n$).
For H a simple graph with no isolated vertices and G an arbitrary graph an (H, ∞)-vertex-cover of G is a collection H_{1}, \ldots, H_{r} of subgraphs of G satisfying P1, P2 and P3. Thus, G has an (H, ∞)-vertex-cover if and only if there exists a k such that G has a (H, k)-vertex-cover. To motivate our results on (H, ∞) -vertex-covers, we recall the following well-known extension of Theorem 3. Given an arbitrary graph H, Komlós, Sárközy and Szemerédi [13] showed that there is a constant c (depending only on the graph H) such that if $\delta(G) \geq\left(1-\frac{1}{\chi(H)}\right) n$ for a graph G on n vertices, then there is a union of vertex-disjoint copies of H covering all but at most c vertices of G. Weakening the condition on $\delta(G)$ we show in the following theorem the existence of (H, ∞)-vertex-covers for graphs H having the property that there is a vertex u of H such that $\chi(H \backslash\{u\})=\chi(H)-1 \geq 3$.
Theorem 6. Let H be a graph such that $\chi(H) \geq 4$ and such that there is a vertex u of H with the property that $\chi(H \backslash\{u\})=\chi(H)-1$. Then for every $\epsilon>0$ and every graph G on n vertices, if $\delta(G) \geq\left(1-\frac{1}{\chi(H)-1}+\epsilon\right) n$, then G has an (H, ∞)-vertex-cover provided n is large enough.

Theorems 4, 5 and 6 are proved in Section 4.

2 Proof of Theorem 2

In this section we will use the following Chernoff bounds on the tails of the binomial random variable $B(n, p)$. For $0 \leq \epsilon \leq 1$ and $\theta>0$

$$
\begin{align*}
\operatorname{Pr}(B(n, p) \leq(1-\epsilon) n p) & \leq e^{-\epsilon^{2} n p / 2} \tag{2}\\
\operatorname{Pr}(B(n, p) \geq(1+\epsilon) n p) & \leq e^{-\epsilon^{2} n p / 3} \tag{3}\\
\operatorname{Pr}(B(n, p) \geq \theta n p) & \leq(e / \theta)^{\theta n p} \tag{4}
\end{align*}
$$

All Lemmas introduced in this section will be proven in the subsections that follow.
Let $t \geq 3$ be fixed. We construct a $\left(K_{t}, 2\right)$-vertex-cover in G_{m} by dividing our graph process into 3 phases and using edges from different phases for different purposes. Before describing the phases, we make some preliminary definitions and the observation that we may restrict our attention to G_{m} where m lies in a small interval. Let $\alpha, \beta>0$ be constants such that

$$
\beta^{\binom{t}{2}}>19 / 20 \text { and } \alpha+\beta<1
$$

and let

$$
\begin{gathered}
m_{a}=\alpha\binom{n}{2}((t-1)!\log n)^{1 /\binom{t}{2}} n^{-2 / t}, \text { and } \\
m_{b}=\beta\binom{n}{2}((t-1)!\log n)^{1 /\binom{t}{2}} n^{-2 / t} .
\end{gathered}
$$

Furthermore, for $i=0,1$ let

$$
m_{i}=\binom{n}{2}((t-1)!(\log n-(1-2 i) \log \log n))^{1 /\binom{t}{2}} n^{-2 / t}
$$

Lemma 1.

$$
\operatorname{Pr}\left(\tau_{1} \notin\left[m_{0}, m_{1}\right]\right)=o(1)
$$

We will use the term 'a collection of K_{t} 's' in the graph G, for a family $\mathcal{A} \subseteq\binom{V(G)}{t}$ such that $G[S]$ is complete for all $S \in \mathcal{A}$. For such a collection \mathcal{A} we set

$$
V(\mathcal{A})=\bigcup_{S \in \mathcal{A}} S \quad \text { and } \quad E(\mathcal{A})=\bigcup_{S \in \mathcal{A}}\binom{S}{2}
$$

say \mathcal{A} 'covers' a vertex v if $v \in V(\mathcal{A})$, and say \mathcal{A} 'covers' a set of vertices T if $T \subseteq V(\mathcal{A})$.
We are now ready to describe the 3 phases. In the first phase we simply choose m_{a} edges uniformly at random, producing the graph $G^{1}=\left([n], E^{1}\right)$. Thus,

$$
G^{1}=G_{n, m_{a}}
$$

In the second phase we form the graph $G^{2}=\left([n], E^{2}\right)$ by choosing m_{b} edges uniformly at random. This is done independently of phase 1 and without knowledge of which edges were placed in phase 1. Thus,

$$
G^{2}=G_{n, m_{b}}
$$

and a particular edge may appear in both G^{1} and G^{2}. Let $F=E^{1} \cup E^{2}$ and $m_{-1}=|F|$. The third phase is the graph process $H_{i}=\left([n], F_{i}\right), i=m_{-1}, \ldots, m_{1}$ where $F_{m_{-1}}=F$ and F_{i+1} is the union of F_{i} and the set containing a single edge chosen uniformly at random from $\binom{n}{2} \backslash F_{i}$. In other words, in the third phase we start with the collection of edges generated in phases 1 and 2 and then add new edges one at time until m_{1} edges have been placed. Note that for $m_{a}+m_{b} \leq i \leq m_{1}$ the graphs G_{i} and H_{i} are identically distributed.
We henceforth assume that

$$
m_{a}+m_{b} \leq m \leq m_{1}
$$

and that every vertex in $H_{m}=G_{m}$ lies in at least one copy of K_{t}. We will show that

$$
\begin{equation*}
\text { whp } G_{m} \text { has a }\left(K_{t}, 2\right) \text {-vertex-cover. } \tag{5}
\end{equation*}
$$

Theorem 2 follows from (5) and Lemma 1.
How do we construct the ($K_{t}, 2$)-vertex-cover? We first use the phase one edges to greedily cover as many vertices as possible with vertex disjoint K_{t} 's. Let Ξ be an arbitrary maximal collection of vertex disjoint K_{t} 's in $G^{1}, X \subseteq[n]$ be the set of vertices not covered by Ξ, and

$$
r=\left\lceil\frac{n}{(\log n)^{1 / t}}\right\rceil
$$

We can easily randomise this choice of K_{t} 's so that X is a random $|X|$-subset of $[n]$. This will be used in the proof of Lemma 4.

Lemma 2. Let $G=G_{n, m_{a}}$.

$$
\operatorname{Pr}\left(\exists R \subset[n] \text { such that }|R|=r \text { and } G[R] \text { contains no } K_{t}^{\prime} s\right)=o(1) .
$$

It follows from Lemma 2 that whp

$$
\begin{equation*}
|X| \leq r \tag{6}
\end{equation*}
$$

In other words, after using only a small fraction of the edges in G_{m}, only $o(n)$ vertices remain to be covered. We will use the phase 2 edges (as well as a handful of the phase 1 and phase 3 edges) to form a vertex disjoint collection of K_{t} 's that covers X but does not use any edge in $E(\Xi)$.
Before describing the vertex disjoint collection of K_{t} 's that covers X, we make further definitions and preliminary observations. Our first observation concerns the random graph process $G_{m_{1}}$ alone. Let $\nu_{3}=4, \nu_{4}=3$ and $\nu_{i}=2$ for $i=5,6, \ldots$. We define a cluster to be a collection $\mathcal{C}=\left\{S_{1}, \ldots, S_{l}\right\}$ of K_{t} 's in $G_{m_{1}}$ such that $l \leq 2 \nu_{t}$

$$
\begin{aligned}
& \kappa_{i} \geq 1 \quad \text { for } \quad i=2, \ldots, l \\
\kappa_{i}=t & \Rightarrow \quad \kappa_{i-1}=1 \quad \wedge\left|S_{i} \cap S_{i-1}\right| \geq 2 \\
& \text { and } \quad\left|\left\{i: \kappa_{i} \neq 1\right\}\right|=\nu_{t}
\end{aligned}
$$

where

$$
\kappa_{i}=\left|S_{i} \cap\left(\bigcup_{j=1}^{i-1} S_{j}\right)\right| \quad \text { for } \quad i=2, \ldots, l .
$$

Roughly speaking, a cluster is a small collection of K_{t} 's that have many or large pairwise intersections.

Lemma 3.

$$
\operatorname{Pr}\left(G_{m_{1}} \text { contains a cluster }\right)=o(1)
$$

We now turn our attention to the graph G^{2}. For $v \in[n]$ let Υ_{v} be the collection of K_{t} 's in G^{2} that contain v; to be precise,

$$
\Upsilon_{v}=\left\{S \in\binom{[n]}{t}: v \in S \text { and }\binom{S}{2} \subseteq E^{2}\right\}
$$

Since Υ_{v} depends only on the graph G^{2} while X is small and depends only on the graph G^{1}, it is usually the case that no $V\left(\Upsilon_{v}\right)$ contains many members of X. To make this statement precise, we let

$$
q=\left\lceil\frac{\log n}{\log \log \log n}\right\rceil
$$

Lemma 4.

$$
\operatorname{Pr}\left(\exists v \in[n] \text { such that }\left|V\left(\Upsilon_{v}\right) \cap X\right|>q\right)=o(1) .
$$

We say that

$$
\begin{aligned}
& v \in[n] \text { is large if } \quad\left|\Upsilon_{v}\right| \geq \frac{\log n}{20}, \text { and } \\
& v \in[n] \text { is small if }
\end{aligned}\left|\Upsilon_{v}\right|<\frac{\log n}{20} .
$$

With high probability the small vertices are, with respect to connections via K_{t} 's, far apart. To make this statement precise, we define a chain to be a pair u, v of distinct small vertices and a collection $S_{1}, S_{2}, S_{3}, S_{4} \in\binom{[n]}{t}$ of (not necessarily distinct) sets such that $u \in S_{1}, v \in S_{4}$,

$$
S_{1} \cap S_{2}, S_{2} \cap S_{3}, S_{3} \cap S_{4} \neq \emptyset, \quad \text { and } \quad\binom{S_{i}}{2} \subseteq E\left(G_{m_{1}}\right) \text { for } i=1,2,3,4
$$

Lemma 5.

$$
\operatorname{Pr}\left(G_{m_{1}} \text { contains a chain }\right)=o(1)
$$

We also note that no K_{t} containing a small vertex intersects any other K_{t} in more than a single vertex. A link is a small vertex $u \in[n]$ and distinct $S_{1}, S_{2} \in\binom{[n]}{t}$ such that $u \in S_{1},\left|S_{1} \cap S_{2}\right| \geq 2$, and $\binom{S_{1}}{2},\binom{S_{2}}{2} \subseteq E\left(G_{m_{1}}\right)$.

Lemma 6.

$$
\operatorname{Pr}\left(G_{m_{1}} \text { contains a link }\right)=o(1)
$$

Finally, let

$$
\begin{gathered}
X_{1}=\{v \in X: v \text { is small }\} \\
X_{2}=\{v \in X: v \text { is large }\}, \text { and } \\
\Phi=\left\{S \in\binom{[n]}{t}:\binom{S}{2} \subseteq E\left(G_{m_{1}}\right) \text { and } S \cap X_{1} \neq \emptyset\right\}
\end{gathered}
$$

We are now prepared to describe the remainder of the $\left(K_{t}, 2\right)$-cover.
We henceforth assume (6),

$$
\begin{gather*}
G_{m_{1}} \text { does not contain a cluster, } \tag{7}\\
\forall v \in[n] \quad\left|V\left(\Upsilon_{v}\right) \cap X\right| \leq q \tag{8}\\
G_{m_{1}} \text { does not contain a chain, } \tag{9}\\
G_{m_{1}} \text { does not contain a link, } \tag{10}
\end{gather*}
$$

and that n is sufficiently large (in a sense that is made clear below). We will show that there exist collections Ξ_{1} and Ξ_{2} of vertex disjoint K_{t} 's in G_{m} such that $\Xi_{1} \cup \Xi_{2}$ covers $X_{1} \cup X_{2}$ and

$$
\begin{equation*}
V\left(\Xi_{1}\right) \cap V\left(\Xi_{2}\right)=\emptyset \text { and } E(\Xi) \cap E\left(\Xi_{1} \cup \Xi_{2}\right)=\emptyset \tag{11}
\end{equation*}
$$

If follows from Lemmas $1,2,3,4,5$ and 6 that (11) implies Theorem 2.
We cover X_{1} in a rather crude way. Let Ξ_{1} be an arbitrary collection of K_{t} 's in G_{m} that covers X_{1}. Note that the collection Ξ_{1} uses edges from all 3 phases and that we make use of the fact that every vertex is contained in some K_{t} in G_{m} when forming Ξ_{1}. By (9), Ξ_{1} is vertex disjoint.

We cover

$$
X_{2}^{\prime}:=X_{2} \backslash V\left(\Xi_{1}\right)
$$

in a more sophisticated way: we apply the Lovász Local Lemma. We first 'trim' the Υ_{v} 's. For $v \in X_{2}^{\prime}$ let Υ_{v}^{\prime} be the collection of sets in $S \in \Upsilon_{v}$ such that

$$
\begin{gather*}
S \cap X=\{v\} \\
T \in\binom{[n]}{t} \wedge\binom{T}{2} \subseteq E\left(G_{m_{1}}\right) \Rightarrow|S \cap T| \leq 1, \quad \text { and } \tag{12}\\
S \cap V(\Phi) \subseteq\{v\}
\end{gather*}
$$

In words, we get Υ_{v}^{\prime} from Υ_{v} by throwing away those sets in Υ_{v} that contain an element of X other than v, intersect another K_{t} in more than one vertex, or contain a vertex of a K_{t} that contains a small vertex. By (8) there are at most q sets in Υ_{v} that contain an element of X other than v. We will show
there are $\leq\binom{ 2 \nu_{t} t}{t}$ sets in Υ_{v} that intersect another K_{t} in ≥ 2 vertices.
By (9) at most 1 set in Υ_{v} intersects $V(\Phi)$. Therefore, we may choose $\Theta_{v} \subseteq \Upsilon_{v}^{\prime}$ such that

$$
\begin{equation*}
\left|\Theta_{v}\right|=\left\lceil\frac{\log n}{21}\right\rceil \quad \text { for all } \quad v \in X_{2}^{\prime} \tag{14}
\end{equation*}
$$

Proof of (13) Let $\hat{\Upsilon}_{v}$ denote the collection of K_{t} 's in Υ_{v} which intersect another K_{t} in more than one vertex. Let $B=V\left(\hat{\Upsilon}_{v}\right)$. We construct copies $X_{1}, X_{2}, \ldots, X_{l}$
of K_{t} in $G_{m_{1}}$ as follows: Suppose we have constructed $X_{1}, X_{2}, \ldots, X_{k}$. Either (i) $B \subseteq V_{k}=V\left(X_{1} \cup X_{2} \cup \cdots \cup X_{k}\right)$ or (ii) $B \nsubseteq V_{k}$. In case (ii) choose $X_{k+1} \in \Upsilon_{v}$ which is not contained in V_{k}. If $\left|X_{k+1} \cap V_{k}\right|=1$ then choose X_{k+2} where $\left|X_{k+2} \cap X_{k+1}\right| \geq 2$. If this process continues for ν_{t} iterations we will have produced a cluster. Thus $l \leq 2 \nu_{t}$ and $|B| \leq 2 t \nu_{t}$, which implies (13).

Now, consider the probability space in which each $v \in X_{2}^{\prime}$ chooses $S_{v} \in \Theta_{v}$ uniformly at random and independently of the other vertices. For $u \neq v \in X_{2}^{\prime}, S \in \Theta_{u}$ and $T \in \Theta_{v}$ such that $S \cap T \neq \emptyset$ let $A_{u, v, S, T}$ be the event that $S_{u}=S$ and $S_{v}=T$. These are the 'bad' events in our application of the Lovász Local Lemma. Clearly,

$$
\begin{equation*}
\operatorname{Pr}\left(A_{u, v, S, T}\right)=\frac{1}{\left|\Theta_{v}\right|\left|\Theta_{u}\right|} \leq\left(\frac{21}{\log n}\right)^{2}=: p \tag{15}
\end{equation*}
$$

Events $A_{u_{1}, u_{2}, S_{1}, S_{2}}$ and $A_{v_{1}, v_{2}, T_{1}, T_{2}}$ are dependent if and only if

$$
\left\{u_{1}, u_{2}\right\} \cap\left\{v_{1}, v_{2}\right\} \neq \emptyset
$$

Thus, the degree in the dependency graph is bounded above by

$$
\begin{align*}
d: & =2 \max _{u \in X_{2}^{\prime}} \sum_{S \in \Theta_{u}} \sum_{v \in X_{2}^{\prime}}\left|\left\{T \in \Theta_{v}: S \cap T \neq \emptyset\right\}\right| \\
& \leq 2 \max _{u \in X_{2}^{\prime}} \sum_{w \in V\left(\Theta_{u}\right)}\left|\Upsilon_{w} \cap X\right| \tag{16}\\
& \leq 2 t q\left\lceil\frac{\log n}{21}\right\rceil \quad \text { by (8) } \\
& \leq \frac{t(\log n)^{2}}{10 \log \log \log n} .
\end{align*}
$$

It follows from (15) and (16) that

$$
p d \leq \frac{45}{\log \log \log n}=o(1)
$$

Thus, for n sufficiently large, it follows from the Lovász Local Lemma that there exists a vertex disjoint collection Ξ_{2} of K_{t}^{\prime} 's in G^{2} that covers X_{2}^{\prime} but covers no vertex in $V\left(\Xi_{1}\right)$.

It remains to show that

$$
E(\Xi) \cap E\left(\Xi_{1} \cup \Xi_{2}\right)=\emptyset .
$$

This is an immediate consequence of (10) and (12). We have established (11) and completed the proof.

2.1 Proof of Lemma 1

Let $p_{i}=m_{i} /\binom{n}{2}$ for $i=0,1$.

We first apply Janson's inequality to show that whp every vertex in $G_{n, p_{1}}$ is contained in a copy of K_{t} (we follow the notation of [1, pages 95 and 96]). Let v be a fixed vertex and let and Z denote the number of copies of K_{t} in G which are incident with v. Next let $S_{1}, S_{2}, \ldots, S_{\binom{n-1}{t-1}}$ be an enumeration of the copies of K_{t} in K_{n} which contain v. Letting B_{j} be the event $\binom{S_{j}}{2} \subseteq E\left(G_{n, p_{i}}\right)$, we have

$$
\begin{equation*}
\mu=\sum_{j=1}^{\binom{n-1}{t-1}} \operatorname{Pr}\left(B_{j}\right)=\binom{n-1}{t-1} p_{1}^{\binom{t}{2}}=(\log n+\log \log n)(1+O(1 / n)) \tag{17}
\end{equation*}
$$

and

$$
\begin{align*}
\Delta & =\sum_{\left|S_{j} \cap S_{k}\right| \geq 2} \operatorname{Pr}\left(B_{j} \cap B_{k}\right) \\
& =\binom{n-1}{t-1} \sum_{r=2}^{t-1}\binom{t-1}{r-1}\binom{n-t}{t-r} p_{i}^{2\binom{t}{2}-\binom{r}{2}} \tag{18}\\
& =O\left(\sum_{r=2}^{t-1} n^{2 t-r-1-\frac{2}{t}\left(2\binom{t}{2}-\binom{r}{2}\right)+o(1)}\right) \\
& =O\left(n^{2 t^{-1}-1+o(1)}\right) .
\end{align*}
$$

Then, by Janson's inequality, we have

$$
\begin{align*}
\operatorname{Pr}(Z=0) & \leq \exp \left\{-\mu+\frac{1}{1-\epsilon} \frac{\Delta}{2}\right\} \\
& =\frac{1}{n \log n} \exp \left\{O\left(n^{-1+o(1)}\right)+O\left(n^{2 t^{-1}-1+o(1)}\right)\right\} \tag{19}\\
& =o(1 / n)
\end{align*}
$$

It follows that

$$
\begin{equation*}
\operatorname{Pr}\left(\exists u \in[n]: u \text { is not contained in a copy of } K_{t} \text { in } G_{n, p_{1}}\right)=o(1) \tag{20}
\end{equation*}
$$

The event $\left\{\exists u \in[n]: u\right.$ is not contained in a copy of $\left.K_{t}\right\}$ is monotone decreasing and so (20) implies that whp every vertex in $[n]$ is contained in a copy of K_{t} in $G_{n, m_{1}}$. In other words, $\tau_{1} \leq m_{1}$ whp.
We now turn to the random graph $G_{n, p_{0}}$ in order to establish our almost sure lower bound on τ_{1}. For $v \in[n]$ let Z_{v} be the number of K_{t} 's in $G_{n, p_{0}}$ that contain v, and let Y denote the number of vertices v such that $Z_{v}=0$. Since

$$
\begin{equation*}
M=\left(1-p_{0}\right)^{\binom{n-1}{t-1}}=(1+o(1)) \frac{\log n}{n} \tag{21}
\end{equation*}
$$

is a lower bound on $\operatorname{Pr}\left(Z_{v}=0\right)$ for each $v \in[n]$, we have

$$
\begin{equation*}
\mathbf{E}(Y) \geq(1+o(1)) \log n \tag{22}
\end{equation*}
$$

We now show that $\operatorname{Var}(Y)$ is small. Indeed,

$$
\begin{equation*}
\operatorname{Pr}\left(Z_{1}=Z_{2}=0\right) \leq \operatorname{Pr}\left(\mathcal{E}_{1}\right)+\operatorname{Pr}\left(\overline{\mathcal{E}}_{2} \overline{\mathcal{E}}_{3} \mid \overline{\mathcal{E}}_{1}\right) \tag{23}
\end{equation*}
$$

where, if N_{i} is the set of neighbors of i in $G_{n, p_{0}}$,

$$
\begin{aligned}
& \mathcal{E}_{1}=\left\{\left(\left(1-n^{-\frac{1}{4 t}}\right) n p_{0} \leq\left|N_{1}\right|,\left|N_{2}\right| \leq 2 n p_{0}\right)\right. \\
&\left.\left.\vee\left(\left|N_{1} \cap N_{2}\right| \geq n^{-\frac{1}{4 t}} n p_{0}\right\}\right)\right\} \\
& \mathcal{E}_{2}=\left\{G_{n, p_{0}} \text { contains a copy } H \text { of } K_{t-1} \text { such that } H \subseteq N_{1}\right\} \\
& \mathcal{E}_{3}=\left\{G_{n, p_{0}} \text { contains a copy } H \text { of } K_{t-1} \text { such that } H \subseteq N_{2} \backslash N_{1}\right\} .
\end{aligned}
$$

Applying (2)-(4) we get,

$$
\operatorname{Pr}\left(\mathcal{E}_{1}\right) \leq 5 \exp \left\{-n^{1-\frac{5}{2 t}+o(1)}\right\}
$$

Note that

$$
\operatorname{Pr}\left(\overline{\mathcal{E}_{2}} \wedge \overline{\mathcal{E}_{3}} \mid N_{1}, N_{2}\right)=\operatorname{Pr}\left(\overline{\mathcal{E}_{2}} \mid N_{1}, N_{2}\right) \operatorname{Pr}\left(\overline{\mathcal{E}_{3}} \mid N_{1}, N_{2}\right)
$$

because, conditioning on N_{1} and N_{2}, these events depend on disjoint sets of edges. Let W_{1} and W_{2} be fixed sets that satisfy

$$
\left(1-\frac{1}{n^{\frac{1}{4 t}}}\right) n p_{0} \leq\left|W_{1}\right| \leq 2 n p_{0} \text { and }\left(1-\frac{2}{n^{\frac{1}{4 t}}}\right) \leq\left|W_{2} \backslash W_{1}\right| \leq 2 n p_{0} .
$$

It follows from another application of Janson's inequality that

$$
\begin{aligned}
& \operatorname{Pr}\left(\overline{\mathcal{E}_{2}} \mid N_{1}=W_{1}, N_{2} \backslash N_{1}=W_{2}\right), \operatorname{Pr}\left(\overline{\mathcal{E}_{3}} \mid N_{1}=W_{1}, N_{2} \backslash N_{1}=W_{2}\right) \\
& \leq \exp \left\{-\log n+\log \log n+O\left(n^{-\frac{1}{4 t}+o(1)}\right)+O\left(n^{-1+\frac{2}{t}+o(1)}\right)\right\} .
\end{aligned}
$$

Therefore,

$$
\operatorname{Pr}\left(Z_{1}=Z_{2}=0\right)=\frac{\log ^{2} n}{n^{2}}(1+o(1))
$$

and it follows from (21) that

$$
\operatorname{Var}(Y)=o\left(\log ^{2} n\right)
$$

It then follows from Chebyshev's inequality that

$$
\begin{equation*}
\operatorname{Pr}(Y=0)=o(1) \tag{24}
\end{equation*}
$$

Since the event $\{Y=0\}$ is monotone increasing, it follows from (24) that
Pr (every vertex in $G_{n, m_{0}}$ is contained in a copy of $\left.K_{t}\right)=o(1)$.
In other words, we have shown that whp $\tau_{1}>m_{0}$.

2.2 Proof of Lemma 2

Let $p_{a}=m_{a} /\binom{n}{2}$ and consider the random graph $G=G_{n, p_{a}}$. For $S \in\binom{[n]}{t}$ let B_{S} be the event that the induced graph $G[S]$ is complete. For R a fixed subset of $[n]$ such that

$$
|R|=r=\left\lceil\frac{n}{(\log n)^{1 / t}}\right\rceil
$$

let the random variable X_{R} be the number of copies of K_{t} contained in R. We clearly have

$$
\begin{aligned}
\mu & :=\mathbf{E}\left[X_{R}\right] \\
& =\sum_{S \in\binom{R}{t}} \operatorname{Pr}\left(B_{S}\right) \\
& =\binom{r}{t} p_{a}^{\binom{t}{2}} \\
& =\binom{r}{t} \frac{\alpha^{\binom{t}{2}}(t-1)!\log n}{n^{t-1}} \\
& =\frac{r^{t}}{t!}(1+O(1 / r)) \frac{\alpha^{\binom{t}{2}}(t-1)!}{n^{t-1}} \log n \\
& =\Omega(n)
\end{aligned}
$$

We apply Janson's inequality (again, we follow the notation of [1]) to show that $\operatorname{Pr}\left(X_{R}=0\right)$ is small. In order to do so, we must bound the parameter Δ.

$$
\begin{aligned}
\Delta & =\sum_{S, T \in\binom{R}{t}: 2 \leq|S \cap T| \leq t-1} \operatorname{Pr}\left(B_{S} \wedge B_{T}\right) \\
& =\binom{r}{t} \sum_{i=2}^{t-1}\binom{t}{i}\binom{r-t}{t-i} p_{a}^{2\binom{t}{2}-\binom{i}{2}} \\
& =\sum_{i=2}^{t-1} O\left(n^{2 t-i-\frac{2}{t}\left(2\binom{t}{2}-\binom{i}{2}\right)+o(1)}\right) \\
& =\sum_{i=2}^{t-1} O\left(n^{2+\frac{i(i-1)}{t}-i+o(1)}\right) \\
& =O\left(n^{2 / t+o(1)}\right) .
\end{aligned}
$$

Thus, Janson's inequality gives

$$
\operatorname{Pr}\left(X_{R}=0\right) \leq e^{-c_{1} n}
$$

where c_{1} is a positive constant. Applying the first moment method, we have

$$
\begin{aligned}
\operatorname{Pr}\left(\bigvee_{R \in\binom{[n]}{r}}\left\{X_{R}=0\right\}\right) & \leq\binom{ n}{r} e^{-c_{1} n} \\
& \leq\left(\frac{n e}{r}\right)^{r} e^{-c_{1} n} \\
& =\exp \left\{r\left(1+\frac{\log \log n}{t}\right)-c_{1} n\right\} \\
& =o(1)
\end{aligned}
$$

Since this event is monotone, the same holds for $G_{n, m_{a}}$.

2.3 Proof of Lemma 3

Let $\mathcal{C}=\left\{S_{1}, \ldots, S_{l}\right\}$ be a fixed collection of K_{t}^{\prime} 's in K_{n} such that $l \leq 2 \nu_{t}$

$$
\begin{align*}
& \kappa_{i} \geq 1 \quad \text { for } \quad i=2, \ldots, l \\
\kappa_{i}=t & \Rightarrow \quad \kappa_{i-1}=1 \quad \wedge\left|S_{i} \cap S_{i-1}\right| \geq 2 \tag{25}\\
& \text { and } \quad\left|\left\{i: \kappa_{i} \neq 1\right\}\right|=\nu_{t} \tag{26}
\end{align*}
$$

where

$$
\kappa_{i}=\left|S_{i} \cap\left(\bigcup_{j=1}^{i-1} S_{j}\right)\right| \quad \text { for } \quad i=2, \ldots, l .
$$

Let $a=|V(\mathcal{C})|$ and $b=|E(\mathcal{C})|$.

Claim 7.

$$
a-\frac{2 b}{t}<-\frac{1}{t}
$$

Proof. We observe this difference as we 'build' the collection \mathcal{C} one K_{t} at a time. For $j=1, \ldots, l$ let $\mathcal{C}_{j}=\left\{S_{1}, \ldots, S_{j}\right\}, a_{j}=\left|V\left(\mathcal{C}_{j}\right)\right|, b_{j}=\left|E\left(\mathcal{C}_{j}\right)\right|$ and $d_{j}=$ $a_{j}-2 b_{j} / t$. Note that

$$
d_{1}=1,
$$

and

$$
\begin{equation*}
d_{i+1}-d_{i} \leq\left(t-\kappa_{i+1}\right)-\frac{2}{t}\left(\binom{t}{2}-\binom{\kappa_{i+1}}{2}\right)=\left(\kappa_{i+1}-1\right)\left(\frac{\kappa_{i+1}}{t}-1\right) \tag{27}
\end{equation*}
$$

Thus

$$
\begin{gather*}
\kappa_{i+1}=1 \quad \Rightarrow \quad d_{i+1}-d_{i}=0 \\
\text { and } \quad 2 \leq \kappa_{i+1} \leq t-1 \quad \Rightarrow \quad d_{i+1}-d_{i} \leq \frac{2}{t}-1 \tag{28}
\end{gather*}
$$

Furthermore, it follows from (25) that

$$
\begin{equation*}
\kappa_{i+1}=t \quad \Rightarrow \quad b_{i+1} \geq b_{i}+t-2 \quad \Rightarrow \quad d_{i+1}-d_{i} \leq-\frac{2(t-2)}{t} \tag{29}
\end{equation*}
$$

Since (by (28) and (29)) the difference $a_{i}-2 b_{i} / t$ decreases by at least $1-2 / t$ whenever $\kappa_{i+1} \neq 1$, it follows from (26) that $a-2 b / t=d_{l}<-1 / t$.

Let \mathcal{E}_{i} be the event that there exists a cluster in $G_{m_{1}}$ with a vertex set of cardinality i, and let b_{i} be the minimum number of edges in a cluster on i vertices. With $p_{m_{1}}=m_{1} /\binom{n}{2}$ we have

$$
\begin{aligned}
\operatorname{Pr}\left(\mathcal{E}_{i}\right) & \leq\binom{ n}{i} 2^{\binom{i}{t}} p_{m_{1}}^{b_{i}} \\
& =O\left(n^{i-\frac{2 b_{i}}{t}+o(1)}\right) \\
& =O\left(n^{-\frac{1}{t}+o(1)}\right) .
\end{aligned}
$$

The lemma then follows from the fact that the cardinality of the vertex set of a cluster is at most $2 \nu_{t} t$, a constant depending only on t.

2.4 Proof of Lemma 4

We first argue that whp

$$
\begin{equation*}
\left|\Upsilon_{v}\right| \leq 4 \log n \quad \text { for all } v \in[n] \tag{30}
\end{equation*}
$$

We can calculate in $G_{n, p_{b}}$ where $p_{b}=m_{b} / N, N=\binom{n}{2}$ and then use monotonicity to translate the result to G^{2}. It follows from Lemma 3 and (13) that whp after removing $O(1) K_{t}^{\prime}$'s from Υ_{v} we have a collection $\tilde{\Upsilon}_{v}$ of K_{t} 's which are disjoint except for there containing v. So in $G_{n, p_{b}}$

$$
\operatorname{Pr}\left(\left|\tilde{\Upsilon}_{v}\right| \geq \kappa=3.9 \log n\right) \leq \frac{\binom{n-1}{t-1}^{\kappa}}{\kappa!} p_{b}^{\kappa\binom{t}{2}} \leq \frac{(\log n)^{\kappa}}{\kappa!} \leq(e / 3.9)^{3.9 \log n}=o\left(n^{-3 / 2}\right)
$$

This verifies (30).
Now fix a vertex v. Then $\left|V\left(\Upsilon_{v}\right)\right|<4 t \log n$ and $|X| \leq r$. Also, X and $V\left(\Upsilon_{v}\right)$ are chosen independently. It follows that

$$
\begin{aligned}
\operatorname{Pr}\left(\left|V\left(\Upsilon_{v}\right) \cap X\right| \geq q\right) & \leq \frac{\binom{4 t \log n}{q}\binom{n-q}{r-q}}{\binom{n}{r}} \\
& \leq\left(\frac{4 t e r \log n}{q n}\right)^{q} \\
& \leq\left(\frac{4 t e \log \log \log n \log n}{(\log n)^{(t+1) / t}}\right)^{\log n / \log \log \log n} \\
& =O\left(n^{-A}\right)
\end{aligned}
$$

for any constant $A>0$.
There are n choices for v and the lemma follows.

2.5 Proof of Lemmas 5 and 6

Let

$$
p=((t-1)!\log n)^{1 /\binom{t}{2}} n^{-2 / t} \quad \text { and } \quad p_{m_{1}}=\frac{m_{1}}{\binom{n}{2}}
$$

The main work of this section is the following claim.
Claim 8. Let $H=(A, B)$ be a fixed graph whose vertex set A is a subset of $[n]$, and let $x, y \in A$ be distinct fixed vertices. If $b:=|B|$ and $a:=|A| \leq 4 t$ then

1. $\operatorname{Pr}\left((x\right.$ is small $\left.) \wedge\left(H \subseteq G_{m_{1}}\right)\right)=O\left(p_{m_{1}}^{b} n^{-3 / 4}\right)$
2. $\operatorname{Pr}\left((x\right.$ and y are small $\left.) \wedge\left(H \subseteq G_{m_{1}}\right)\right)=O\left(p_{m_{1}}^{b} n^{-3 / 2}\right)$

Proof. We only prove 2; the proof of 1 is both similar and easier. Let \mathcal{R}_{x} be the event that x is small, \mathcal{R}_{y} be the event that y is small, and let \mathcal{R}_{H} be the event $B \subseteq E\left(G_{m_{1}}\right)$. Furthermore, let

$$
N_{x}=\left\{v \in[n]: x \sim_{G^{2}} v\right\} \backslash A \quad \text { and } \quad N_{y}=\left\{v \in[n]: y \sim_{G^{2}} v\right\} \backslash\left(A \cup N_{x}\right),
$$

G_{x} be the induced graph $G^{2}\left[N_{x}\right]$, and $G_{y}=G^{2}\left[N_{y}\right]$. Finally, let $\epsilon>0$ be a constant such that

$$
\begin{equation*}
\beta+\epsilon<1 \text { and }(\beta-\epsilon)^{\binom{t}{2}} \geq \frac{3}{4}+\frac{1}{20}(1+\log 20) . \tag{31}
\end{equation*}
$$

Case 1. $t=3$
We condition on the event that N_{x} and N_{y} are of nearly the expected size. Let \mathcal{R}_{1} be the event that

$$
\begin{equation*}
(\beta-\epsilon) n p \leq\left|N_{x}\right|,\left|N_{y}\right| \leq(\beta+\epsilon) n p, \tag{32}
\end{equation*}
$$

and \mathcal{R}_{2} be the event that

$$
\begin{equation*}
\left|E\left(G_{x}\right)\right|,\left|E\left(G_{y}\right)\right| \leq \frac{\log n}{20} \tag{33}
\end{equation*}
$$

We have

$$
\begin{equation*}
\operatorname{Pr}\left(\mathcal{R}_{H} \wedge \mathcal{R}_{x} \wedge \mathcal{R}_{y}\right) \leq \operatorname{Pr}\left(\mathcal{R}_{2} \mid \mathcal{R}_{1} \wedge \mathcal{R}_{H}\right) \operatorname{Pr}\left(\mathcal{R}_{H}\right)+\operatorname{Pr}\left(\overline{\mathcal{R}_{1}}\right) \tag{34}
\end{equation*}
$$

Now the Chernoff bounds show that in $G_{n, p_{m_{1}}}$ we have

$$
\begin{equation*}
\operatorname{Pr}\left(\overline{\mathcal{R}}_{1}\right)=O\left(\exp \left\{-n^{1-\frac{2}{t}+o(1)}\right\}\right) \tag{35}
\end{equation*}
$$

and we can inflate this by $O(n)$ to show the same for $G_{m_{1}}$.
Then, where $N=\binom{n}{2}$

$$
\begin{align*}
\operatorname{Pr}\left(\mathcal{R}_{H}\right) & \leq\left(\begin{array}{c}
a \\
2 \\
b
\end{array}\right) \\
& =O\binom{N-b}{m_{1}-b} /\binom{N}{m_{1}} \tag{36}
\end{align*}
$$

To bound $\operatorname{Pr}\left(\mathcal{R}_{2}\right)$ we condition on $N_{x}=S, N_{y}=T$ satisfying (32), where S, T are fixed subsets of $[n]$. Now let $\hat{\mathcal{R}}_{2}$ denote the event

$$
|E(S)|,|E(T)| \leq \frac{\log n}{20}
$$

We show that for $\gamma \geq \beta-\epsilon$, in $G_{n, \gamma p}$ we have

$$
\begin{equation*}
\operatorname{Pr}_{\gamma p}\left(\hat{\mathcal{R}}_{2}\right)=O\left(n^{-3 / 2}\right) . \tag{37}
\end{equation*}
$$

The monotonicity of $\hat{\mathcal{R}}_{2}$ plus the concentration of the number of edges of $G_{n, \gamma p}$ around $\gamma N p$ then allows us to assert (37) for G^{2}. Indeed, then

$$
O\left(n^{-3 / 2}\right)=\operatorname{Pr}_{\gamma p}\left(\hat{\mathcal{R}}_{2}\right)=\sum_{m}\binom{N}{m}(\gamma p)^{m}(1-\gamma p)^{N-m} \operatorname{Pr}_{m}\left(\hat{\mathcal{R}}_{2}\right)
$$

and so taking $\beta-\epsilon \leq \gamma$ we see that if $\operatorname{Pr}_{m_{1}}\left(\hat{\mathcal{R}}_{2}\right) \geq A n^{-3 / 2}$ then $\operatorname{Pr}_{\gamma p}\left(\hat{\mathcal{R}}_{2}\right) \geq$ $A n^{-3 / 2} / 2$.
The random variable $X=\left|E\left(G_{x}\right)\right|$ (in $G_{n, \gamma p}$) is a binomial random variable $B(s, p)$ where $s=\binom{|S|}{2}$, having mean μ where

$$
(\beta-\epsilon)^{3} \log n<\mu<(\beta+\epsilon)^{3} \log n .
$$

So,

$$
\begin{aligned}
\operatorname{Pr}_{\gamma p}\left(X \leq \frac{\log n}{20}\right) & \leq \sum_{l=0}^{\left\lfloor\frac{\log n}{20}\right\rfloor}\binom{s}{l}(\gamma p)^{l}(1-\gamma p)^{s-l} \\
& \leq(1+o(1)) \sum_{l=0}^{\left\lfloor\frac{\log n}{20}\right\rfloor} e^{-\mu} \frac{\mu^{l}}{l!} \\
& \leq 2 e^{-\mu} \frac{\mu^{\left\lfloor\frac{\log n}{20}\right\rfloor}}{\left\lfloor\frac{\log n}{20}\right\rfloor!} \\
& \leq 3 \exp \left\{-\log n\left((\beta-\epsilon)^{3}-\frac{1}{20}(1+\log 20)\right)\right\} \\
& \leq 3 n^{-3 / 4}
\end{aligned}
$$

We apply the same argument to $\left|E\left(G_{y}\right)\right|$ (adding the appropriate conditioning on the number of edges within N_{y}). The proof now follows from (34) - (37).

Case 2. $t \geq 4$
We bound $\operatorname{Pr}\left(\mathcal{R}_{x} \wedge \mathcal{R}_{y} \wedge \mathcal{R}_{H}\right)$ by conditioning on the event that the neighborhoods of x and y are of nearly the expected size and have nearly the expected number of edges. Let \mathcal{R}_{3} is the event that

$$
\begin{gathered}
(\beta-\epsilon) p n \leq\left|N_{x}\right|,\left|N_{y}\right| \leq(\beta+\epsilon) p n \\
(\beta-\epsilon) p\binom{\left|N_{x}\right|}{2} \leq\left|E\left(G_{x}\right)\right| \leq(\beta+\epsilon) p\binom{\left|N_{x}\right|}{2}, \text { and } \\
(\beta-\epsilon) p\binom{\left|N_{y}\right|}{2} \leq\left|E\left(G_{y}\right)\right| \leq(\beta+\epsilon) p\binom{\left|N_{y}\right|}{2} .
\end{gathered}
$$

Let \mathcal{R}_{4} be the event that both G_{x} and G_{y} contain fewer than $\frac{\log n}{20}$ copies of K_{t}. We now bound the probability of $\mathcal{R}_{x} \wedge \mathcal{R}_{y} \wedge \mathcal{R}_{H}$ as follows:

$$
\begin{align*}
\operatorname{Pr}\left(\mathcal{R}_{x} \wedge \mathcal{R}_{y} \wedge \mathcal{R}_{H}\right) & \leq \operatorname{Pr}\left(\mathcal{R}_{4} \mid \mathcal{R}_{H} \wedge \mathcal{R}_{3}\right) \operatorname{Pr}\left(\mathcal{R}_{H}\right)+\operatorname{Pr}\left(\overline{\mathcal{R}_{3}}\right) \\
& \leq \operatorname{Pr}\left(\mathcal{R}_{4} \mid \mathcal{R}_{H} \wedge \mathcal{R}_{3}\right) O\left(p_{m_{1}}^{b}\right)+O\left(\exp \left\{-n^{1-\frac{2}{t}+o(1)}\right\}\right) \tag{38}
\end{align*}
$$

We bound $\operatorname{Pr}\left(\mathcal{R}_{4} \mid \mathcal{R}_{H} \wedge \mathcal{R}_{3}\right)$ by an application of the Poisson approximation on the number of K_{t} 's in the random graph $G_{n, m}$ given by Theorem 6.1 of [8, page $68]$. We let n^{\prime} and m^{\prime} be integers satisfying

$$
\begin{gather*}
(\beta-\epsilon) p n \leq n^{\prime} \leq(\beta+\epsilon) p n, \text { and } \tag{39}\\
(\beta-\epsilon) p\binom{n^{\prime}}{2} \leq m^{\prime} \leq(\beta+\epsilon) p\binom{n^{\prime}}{2}, \tag{40}
\end{gather*}
$$

and condition on the event that $\left|N_{x}\right|=n^{\prime}$ and $\left|E\left(G_{x}\right)\right|=m^{\prime}$. Note that under this conditioning G_{x} can be viewed as the random graph $G_{n^{\prime}, m^{\prime}}$. Following the notation of [8], we have

$$
\frac{1}{2}\left(n^{\prime}\right)^{2-\frac{2}{t-2}} \omega_{1} \leq m^{\prime} \leq \frac{1}{2}\left(n^{\prime}\right)^{2-\frac{2}{t-2}} \omega_{2}
$$

where

$$
\omega_{1}=(\beta-\epsilon)^{\frac{t}{t-2}}((t-1)!\log n)^{1 /\binom{t-1}{2}}
$$

and

$$
\omega_{2}=(\beta+\epsilon)^{\frac{t}{t-2}}((t-1)!\log n)^{1 /\binom{t-1}{2}} .
$$

Let $X=X_{K_{t}}$ be the number of copies of K_{t} in $G_{n^{\prime}, m^{\prime}}$. The expected number of such K_{t} 's, $\lambda:=\mathbf{E}[X]$, is then bounded as follows:

$$
(\beta-\epsilon)^{\binom{t}{2}} \log n \leq \lambda \leq(\beta+\epsilon)^{\binom{t}{2}} \log n .
$$

It then follows from Theorem 6.1 of [8] that

$$
\begin{aligned}
\operatorname{Pr}\left(X \leq \frac{\log n}{20}\right) & \leq(1+o(1)) \sum_{k=0}^{\left\lfloor\frac{\log n}{20}\right\rfloor} e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& \leq 2 e^{-\lambda} \frac{\lambda^{\left\lfloor\frac{\log n}{20}\right\rfloor}}{\left\lfloor\frac{\log n}{20}\right\rfloor!} \\
& \leq 2 e^{-\lambda}\left(\frac{20 e \lambda}{\log n}\right)^{\frac{\log n}{20}} \\
& \leq 2 \exp \left\{-(\beta-\epsilon)^{\binom{t}{2}} \log n\right\}(20 e)^{\frac{\log n}{20}} \\
& =2 \exp \left\{-\log n\left((\beta-\epsilon)^{\binom{t}{2}}-\frac{1}{20}(1+\log 20)\right)\right\} \\
& \leq 2 n^{-3 / 4}
\end{aligned}
$$

With (38) this completes the proof.
Proof of Lemma 5. Let \mathcal{S}_{1} be the event that there is a chain in $G_{m_{1}}$. For a fixed collection \mathcal{A} of K_{t} 's in K_{n} and distinct $u, v \in[n]$ which define a possible chain, it follows from an argument along the line of the proof of Claim 7 that

$$
|V(\mathcal{A})| \leq 1+\frac{2|E(\mathcal{A})|}{t}
$$

and it follows from Claim 8 that
$\operatorname{Pr}\left((u\right.$ and v are small $\left.) \wedge E(\mathcal{A}) \subseteq E\left(G_{m_{1}}\right)\right) \leq O\left(p_{m_{1}}^{|E(\mathcal{A})|} n^{-3 / 2}\right)$.
Applying the first moment method we have

$$
\begin{aligned}
\operatorname{Pr}\left(\mathcal{S}_{1}\right) & \leq\binom{ n}{2} \sum_{i=t}^{4 t-3}\binom{n-2}{i-2} 2^{\binom{i}{t}} O\left(p_{m_{1}}^{\frac{(i-1) t}{2}} n^{-3 / 2}\right) \\
& \leq \sum_{i=t}^{4 t-3} O\left(n^{i-\frac{2}{t} \frac{(i-1) t}{2}-\frac{3}{2}+o(1)}\right) \\
& \leq \sum_{i=t}^{4 t-3} O\left(n^{-\frac{1}{2}+o(1)}\right) \\
& =o(1)
\end{aligned}
$$

Proof of Lemma 6. Let \mathcal{S}_{2} be the event that there is a link in $G_{m_{1}}$. For fixed $S, T \in\binom{[n]}{t}$ such that $|S \cap T| \geq 2$ and $x \in S \cup T$ it follows from Claim 8 that

$$
\operatorname{Pr}\left((x \text { is small }) \wedge\binom{S}{2} \cup\binom{T}{2} \subseteq E\left(G_{m_{1}}\right)\right)=O\left(p_{m_{1}}^{\binom{t}{2}-\binom{|S \cap T|}{2}} n^{-3 / 4}\right)
$$

Applying the first moment method we have

$$
\begin{aligned}
\operatorname{Pr}\left(\mathcal{S}_{2}\right) & \leq n\binom{n-1}{t-1} \sum_{i=2}^{t-1}\binom{t}{i}\binom{n-t}{t-i} O\left(p_{m_{1}}^{2\binom{t}{2}-\binom{i}{2}} n^{-3 / 4}\right) \\
& \leq \sum_{i=2}^{t-1} O\left(n^{2 t-i-2(t-1)+\frac{2}{t}\binom{i}{2}-\frac{3}{4}+o(1)}\right) \\
& \leq \sum_{i=2}^{t-1} O\left(n^{\frac{5}{4}-i+\frac{i(i-1)}{t}+o(1)}\right) \\
& =o(1)
\end{aligned}
$$

3 Proof of Theorem 1.

For a graph G and a vertex v, we defined prior to (21) $Z_{v}(G)=Z_{v}$ to be the number of K_{t}^{\prime} 's in G that contain v and $Y(G)=Y$ to be the number of vertices u with $Z_{u}=0$.

In view of Theorem 2 we need only prove that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(Y\left(G_{n, m}\right)=0\right)= \begin{cases}0 & c_{n} \rightarrow-\infty \tag{41}\\ e^{-e^{-c}} & c_{n} \rightarrow c \\ 1 & c_{n} \rightarrow \infty\end{cases}
$$

Using Theorem 2 of Łuczak [14] we can derive (41) from the more easily obtained

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(Y\left(G_{n, p}\right)=0\right)= \begin{cases}0 & c_{n} \rightarrow-\infty \tag{42}\\ e^{-e^{-c}} & c_{n} \rightarrow c \\ 1 & c_{n} \rightarrow \infty\end{cases}
$$

where $p=m /\binom{n}{2}$. Furthermore we need only consider the case $c_{n} \rightarrow c$ as the others follow by monotonicity. Equation (42) can be proved by showing that $Y\left(G_{n, p}\right)$ is asymptotically Poisson. In particular we need only show that for $k=O(1)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k} \operatorname{Pr}\left(Z_{i}\left(G_{n, p}\right)=0,1 \leq i \leq k\right)=e^{-c k} \tag{43}
\end{equation*}
$$

and then apply e.g. Theorem 20 of Bollobás [5].
Equation (43) follows from

$$
\begin{equation*}
\operatorname{Pr}\left(Z_{i}\left(G_{n, p}\right)=0 \mid Z_{j}\left(G_{n, p}\right)=0,1 \leq j<i\right) \sim \frac{e^{-c}}{n} \tag{44}
\end{equation*}
$$

for $1 \leq i \leq k$.
Using N_{j} to denote the neighbourhood of j in $G_{n, p}$ we let

- ν_{1} denote the number of K_{t-1} in $N_{i} \backslash \bigcup_{j=1}^{i-1} N_{j}$.
- ν_{2} denote the number of K_{t-1} in N_{i} which use a vertex of $\bigcup_{j=1}^{i-1} N_{j}$.

We then let $\mathcal{C}_{i}=\left\{Z_{j}\left(G_{n, p}\right)=0,1 \leq j<i\right\}$ and write

$$
\begin{equation*}
\operatorname{Pr}\left(Z_{i}\left(G_{n, p}\right)=0 \mid \mathcal{C}_{i}\right)=\operatorname{Pr}\left(\nu_{1}=0 \mid \mathcal{C}_{i}\right)\left(1-\operatorname{Pr}\left(\nu_{2} \neq 0 \mid \nu_{1}=0, \mathcal{C}_{i}\right)\right) \tag{45}
\end{equation*}
$$

Then $\operatorname{Pr}\left(\nu_{1}=0 \mid \mathcal{C}_{i}\right) \sim e^{-c} / n$ follows from Janson's inequality and $\operatorname{Pr}\left(\nu_{2} \neq 0 \mid\right.$ $\left.\nu_{1}=0, \mathcal{C}_{i}\right) \leq \operatorname{Pr}\left(\nu_{2} \neq 0\right)=o(1 / n)$ follows from the FKG inequality and a first moment calculation.

4 Proofs of Theorems 4-6

We prove Theorem 4 via an application of the following theorem of Hajnal and Szemerédi. For $k \leq n$ the Turán $\operatorname{graph} T_{k}(n)$ is the complete k-partite graph on n vertices where the parts in the vertex partition have cardinalities

$$
\left\lfloor\frac{n}{k}\right\rfloor,\left\lfloor\frac{n+1}{k}\right\rfloor, \ldots,\left\lfloor\frac{n+k-1}{k}\right\rfloor .
$$

In other words, the parts in the partition are as near as possible to being equal (i.e. the partition is a so-called equipartition). Below we use the following theorem proved by Hajnal and Szemerédi (cf. Theorem 3).
Theorem 7 (Hajnal, Szemerédi). If G is a graph on n vertices having maximum degree $\Delta(G)=\Delta$ then

$$
G \subseteq T_{\Delta+1}(n)
$$

For a graph G, let \bar{G} be the complement of G. It is easy to see that Theorem 7 is equivalent to
Theorem 8. If G is a graph on n vertices having minimum degree $\delta(G)=\delta$ then

$$
\overline{T_{n-\delta}(n)} \subseteq G
$$

Let a (K_{t}, l)-vertex-cover be a K_{t}-vertex-cover in which each vertex appears in at most l copies of K_{t}.

Proof of Theorem 4. We establish the lower bound by example. Consider the complete t-partite graph on n vertices having parts V_{1}, \ldots, V_{t} such that $\left|V_{1}\right|=q$ and

$$
\left|V_{2}\right|, \ldots,\left|V_{t}\right| \in\left\{l q+\left\lceil\frac{r}{t-1}\right\rceil, l q+\left\lfloor\frac{r}{t-1}\right\rfloor\right\} .
$$

If $q=0$ then G contains no t-clique and therefore has no $\left(K_{t}, l\right)$-vertex-cover. If $q>0$ then, by the definition of r, there exists V_{i} such that $\left|V_{i}\right|>q l$, and G has no (K_{t}, l)-vertex-cover.

Suppose G is a graph on n vertices having

$$
\delta(G) \geq n-q l-\left\lceil\frac{r}{t-1}\right\rceil+2
$$

Let

$$
s=q l+\left\lceil\frac{r}{t-1}\right\rceil-2 .
$$

It follows from Theorem 8 that $\overline{T_{s}(n)} \subseteq G$. In words, there exists an equipartition $V(G)=V_{1} \cup \cdots \cup V_{s}$ such that the induced graph $G\left[V_{i}\right]$ is complete for $i=1, \ldots s$. We will show that the collection of cliques $G\left[V_{1}\right], \ldots, G\left[V_{s}\right]$ can be transformed into a (K_{t}, l)-vertex-cover.

Claim 9.

$$
t-1 \leq\left|V_{i}\right| \leq t \text { for } i=1, \ldots, s
$$

Proof. We merely observe that $s(t-1)<n$ while $s t \geq n$.

$$
\begin{aligned}
{\left[q l+\left[\frac{r}{t-1}\right]-2\right](t-1) } & \leq q l(t-1)+\left(\frac{r}{t-1}+1\right)(t-1)-2(t-1) \\
& \leq q l(t-1)+r-(t-1) \\
& <n .
\end{aligned}
$$

On the other hand,

$$
\begin{align*}
{\left[q l+\left[\frac{r}{t-1}\right]-2\right] t } & \geq\left[q l+\frac{r}{t-1}-2\right] t \tag{46}\\
& =n+q(l-1)+\frac{r}{t-1}-2 t
\end{align*}
$$

Now, since $n \geq 6 t^{2}-4 t$, at least one of the following holds:

- $r \geq 2 t(t-1)$
- $q \geq 2 t$
- $q(t-1) l \geq 4 t(t-1)$.

In any of these situations, the expression in (46) is greater than or equal to n.
If follows from Claim 9 that we may assume that for some m we have $\left|V_{1}\right|=\cdots=$ $\left|V_{m}\right|=t-1$ and $\left|V_{m+1}\right|=\cdots=\left|V_{s}\right|=t$.

Claim 10.

$$
m<(l-1)(q+1) .
$$

Proof. Since V_{1}, \ldots, V_{s} is a partition, we must have $(t-1) m+t(s-m)=n$. However,

$$
\begin{aligned}
(t-1)(l-1)(q+1)+t & {\left[q l+\left[\frac{r}{t-1}\right]-2-(l-1)(q+1)\right] } \\
& =q[(t-1) l+1]+t\left[\frac{r}{t-1}\right]+1-l-2 t \\
& \leq q[(t-1) l+1]+t\left(\frac{r}{t-1}+\frac{t-2}{t-1}\right)+1-l-2 t \\
& \leq n+\frac{1}{t-1}+t \frac{t-2}{t-1}+1-2 t \\
& =n-t \\
& <n
\end{aligned}
$$

We transform $G\left[V_{1}\right], \ldots, G\left[V_{s}\right]$ into a $\left(K_{t}, l\right)$-vertex-cover by expanding the clique V_{i} by one vertex for $i=1, \ldots, m$. To be precise, we will show that there exist $x_{1}, \ldots, x_{m} \in V(G)$ such that

1. $x_{i} \sim v \quad \forall v \in V_{i}$,
2. $\left|\left\{x_{i}: x_{i}=v\right\}\right| \leq l-1 \quad \forall v \in V(G)$,
3. $x_{i} \in V_{j} \Rightarrow x_{j} \notin V_{i}$,
4. $x_{i} \notin V_{i}$.

Note that the third condition must be included to prevent two of the expanded cliques from containing a common edge. For $i=1, \ldots, m$ let

$$
A_{i}=\left\{v \in V(G) \backslash V_{i}: v \sim u \quad \forall u \in V_{i}\right\}
$$

Claim 11. $\left|A_{i}\right| \geq q+t$ for $i=1, \ldots m$.
Proof. Since, for $v \in V_{i}$,

$$
\begin{aligned}
\left|\left\{x \in V(G) \backslash V_{i}: x \nsim v\right\}\right| & \leq n-1-\delta(G) \\
& \leq q l+\left\lceil\frac{r}{t-1}\right\rceil-3,
\end{aligned}
$$

we have

$$
\begin{aligned}
\mid\left\{x \in V(G) \backslash V_{i}: \exists v \in V_{i}\right. & \text { such that } x \nsim v\} \mid \\
& \leq(t-1)\left[q l+\left[\frac{r}{t-1}\right]-3\right] \\
& \leq q l(t-1)+(t-1)\left(\frac{r}{t-1}+\frac{t-2}{t-1}\right)-3(t-1) \\
& =q l(t-1)+r-2 t+1
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left|A_{i}\right| & =\left|V(G) \backslash V_{i}\right|-\mid\left\{x \in V(G) \backslash V_{i}: \exists v \in V_{i} \text { such that } x \nsim v\right\} \mid \\
& \geq n-(t-1)-[q l(t-1)+r-2 t+1] \\
& =q+t
\end{aligned}
$$

Now, we choose the x_{i} 's one at a time in an order $x_{1}=x_{i_{1}}, x_{i_{2}}, \ldots x_{i_{m}}$ as follows. Suppose $x_{i_{1}}, \ldots, x_{i_{k}}$ have been chosen.

$$
\begin{equation*}
\text { If } x_{i_{k}} \in V_{j} \text { and } j \notin\left\{i_{1}, \ldots, i_{k}\right\} \text { then } j=i_{k+1} . \tag{47}
\end{equation*}
$$

Otherwise i_{k+1} is chosen arbitrarily from $\{j: 1 \leq j \leq m\} \backslash\left\{i_{1}, \ldots, i_{k}\right\}$. In other words, we chose the x_{i} 's in an order such that at most one x_{i} falls in V_{j} before x_{j} is chosen. For $k=1, \ldots, m$ let

$$
U_{k}=\left\{v \in V(G):\left|\left\{1 \leq j<k: x_{i_{j}}=v\right\}\right|=l-1\right\}
$$

In words, U_{k} is the set of vertices that satisfy 2 . with equality after $x_{i_{1}}, \ldots, x_{i_{k-1}}$ have been determined. Thus, we must have $x_{i_{k}} \notin U_{k}$. By Claim 10

$$
\begin{equation*}
\left|U_{k}\right| \leq\left\lfloor\frac{m-1}{l-1}\right\rfloor<q+1 \tag{48}
\end{equation*}
$$

For $k=1, \ldots, m$ let

$$
R_{k}=\bigcup_{1 \leq j<k: x_{i_{j}} \in V_{k}} V_{i_{j}}
$$

(Note that the union here is over zero or one set only). By condition 3. we must have $x_{i_{k}} \notin R_{k}$. By the construction of the ordering given in (47),

$$
\begin{equation*}
\left|R_{k}\right| \leq t-1 \tag{49}
\end{equation*}
$$

An arbitrary $x_{i_{k}} \in\left(A_{i_{k}} \backslash U_{k}\right) \backslash R_{k}$ satisfies 1,2 , and 3. By (48), (49) and Claim 11 such an element exists.

Proof of Theorem 6. Let $\epsilon>0$ and let G be a graph on n vertices with $\delta(G)=\delta \geq\left(1-\frac{1}{\chi(H)-1}+\epsilon\right) n$. We show that any collection of edge disjoint copies of H that does not cover $V(G)$ can be extended to cover at least one new vertex. To be precise, we show that if a family $\mathcal{F}=\left\{\Gamma_{1}, \ldots, \Gamma_{m}\right\}$ of copies of H in G and a vertex $v \in V(G)$ satisfy

$$
\begin{align*}
& m<n \\
& \Gamma_{i}=\left(V\left(\Gamma_{i}\right), E\left(\Gamma_{i}\right)\right) \text { are copies of } H \text { in } G \text { for all } i, \tag{50}\\
& E\left(\Gamma_{i}\right) \cap E\left(\Gamma_{j}\right)=\emptyset \text { for all } i \neq j
\end{align*}
$$

and

$$
v \notin \cup_{i=1}^{m} V\left(\Gamma_{i}\right)
$$

then there exists a family $\mathcal{F}^{\prime}=\left\{\Upsilon_{1}, \ldots, \Upsilon_{l}\right\}$ such that for all $i \Upsilon_{i}=\left(V\left(\Upsilon_{i}\right), E\left(\Upsilon_{i}\right)\right)$ are copies of H in G

$$
\begin{equation*}
E\left(\Upsilon_{i}\right) \cap E\left(\Upsilon_{j}\right)=\emptyset \text { for all } i \neq j \tag{51}
\end{equation*}
$$

and

$$
\cup_{i=1}^{l} V\left(\Upsilon_{i}\right) \supseteq\left(\bigcup_{i=1}^{m} V\left(\Gamma_{i}\right)\right) \cup\{v\}
$$

Note that we include the possibility of $m=0$. Clearly, an inductive argument based on (50) and (51) above implies the theorem. Further, we may assume $m<n$ in (50). Suppose, on the contrary, that we have a family $\mathcal{F}^{*}=\left\{\Gamma_{1}, \ldots, \Gamma_{m}\right\}, m \geq n$, constructed inductively by (50) and (51) such that it does not cover all vertices. However, by the inductive construction of \mathcal{F}^{*} every vertex is already in some copy of H included in the family \mathcal{F}^{*}. A contradiction.

To proceed with the proof we need to establish some notational conventions. Let u be the vertex of H such that $\chi(H \backslash\{u\})=\chi(H)-1$. Set $H^{\prime}=H \backslash\{u\}, h=|V(H)|$, and $e_{H}=|E(H)|$. For \mathcal{F} and a vertex v as in (50), let N_{v} be the set of neighbors of $v, d_{v}=\left|N_{v}\right|$ and $F=\cup_{i=1}^{m} E\left(\Gamma_{i}\right)$. Our analysis will focus on the consideration of the subgraphs $L=G\left[N_{v}\right]$ and $L^{\prime}=\left(N_{v}, E(L) \backslash F\right)$. We extend \mathcal{F} to \mathcal{F}^{\prime} by simply finding a copy of H which contains v but no edges in F. Clearly, if there exists a copy of H^{\prime} in L^{\prime}, then this H^{\prime} together with v gives a copy of H that extends \mathcal{F}. (Note H^{\prime} is a subgraph of $L=G\left[N_{v}\right]$).
We have for $|E(L)| \geq \frac{d_{v}}{2}\left(\delta-\left(n-d_{v}\right)\right)$. Since $\delta \geq\left(\frac{\chi-2}{\chi-1}+\epsilon\right) n$ is equivalent to $\delta-n \geq-\frac{1}{\chi-2} \delta+\epsilon n \frac{\chi-1}{\chi-2}$, we get

$$
\begin{aligned}
|E(L)| & \geq \frac{d_{v}}{2}\left(\delta-\left(n-d_{v}\right)\right) \\
& \geq \frac{d_{v}}{2}\left(d_{v}-\frac{1}{\chi-2} \delta+\epsilon n \frac{\chi-1}{\chi-2}\right) \\
& \geq \frac{d_{v}^{2}}{2} \cdot \frac{\chi-3}{\chi-2}+\epsilon n \frac{d_{v}}{2} \cdot \frac{\chi-1}{\chi-2}
\end{aligned}
$$

Since we are assuming that $|\mathcal{F}|<n$, we have

$$
|F \cap E(L)| \leq|F| \leq e_{H} n,
$$

and it follows

$$
\begin{aligned}
\left|E\left(L^{\prime}\right)\right|= & |E(L)|-|F \cap E(L)| \\
\geq & \frac{d_{v}^{2}}{2} \cdot \frac{\chi-3}{\chi-2}+\epsilon n \cdot \frac{d_{v}}{2} \cdot \frac{\chi-1}{\chi-2}-e_{H} n \\
\geq & \binom{d_{v}}{2} \cdot \frac{\chi-3}{\chi-2}+\frac{1}{2} \epsilon\binom{d_{v}}{2} \frac{\chi-1}{\chi-2} \\
& +\left(\frac{1}{2} \epsilon\binom{d_{v}}{2} \frac{\chi-1}{\chi-2}+\frac{d_{v}}{2} \cdot \frac{\chi-3}{\chi-2}+\epsilon \frac{d_{v}}{2} \cdot \frac{\chi-1}{\chi-2}-e_{H} n\right) .
\end{aligned}
$$

Letting $\epsilon^{\prime}=\frac{1}{2} \cdot \frac{\chi-1}{\chi-2} \cdot \epsilon$ and d_{v} be large enough (i.e. n large enough), we conclude that

$$
\frac{1}{2} \epsilon\binom{d_{v}}{2} \frac{\chi-1}{\chi-2}+\frac{d_{v}}{2} \cdot \frac{\chi-3}{\chi-2}+\epsilon \frac{d_{v}}{2} \cdot \frac{\chi-1}{\chi-2}-e_{H} n \geq 0
$$

and thus, $\left|E\left(L^{\prime}\right)\right| \geq\left(\frac{\chi-3}{\chi-2}+\epsilon^{\prime}\right)\binom{d_{v}}{2}$. By the Erdős - Stone theorem there exists a copy of H^{\prime} in L^{\prime}. Taking this copy of H^{\prime} together with v and edges needed gives us a new copy of H by which we extend \mathcal{F} to \mathcal{F}^{\prime}.

Proof of Theorem 5. We are going to determine the exact value of $f(n, 3, k), k \geq$ $\frac{n-1}{2}$ and $n \geq 6$. First, note that in any ($\left.K_{3}, \infty\right)$-vertex-cover of a graph G on n vertices no vertex lies in more than $\frac{n-1}{2}$ copies of K_{3}. In order to get a tight result we assume G is a graph on n vertices with $\delta(G) \geq\lceil n / 2\rceil+1$. Let $\mathcal{F}=\left\{\Gamma_{1}, \ldots, \Gamma_{m}\right\}$ and v be as in (50) with $H=K_{3}$. We use the notation introduced in the proof of Theorem 6. Unlike in the proof of Theorem 6, in order to get a tight result it does not suffice to simply add a new K_{3} to \mathcal{F}. Our argument includes consideration of several different kinds of modifications of \mathcal{F}.

It follows from our minimal degree condition that

$$
\begin{equation*}
d_{L}(x) \geq 2, \quad \text { for all } x \in N_{v} \tag{52}
\end{equation*}
$$

If there is an edge in L not contained in $F=\cup_{i=1}^{m} E\left(\Gamma_{i}\right)$ then this edge together with v gives an extension of \mathcal{F} that contains v, and therefore we can assume

$$
\begin{equation*}
E(L) \subset F \tag{53}
\end{equation*}
$$

It follows from (52) and (53) that $|F \cap E(L)| \geq d_{v}=\left|N_{v}\right|$, and therefore

$$
\begin{equation*}
3\left|\mathcal{F}_{3}\right|+\left|\mathcal{F}_{2}\right| \geq d_{v} \geq \frac{n}{2}+1 \tag{54}
\end{equation*}
$$

where $\mathcal{F}_{j}=\{\Gamma \in \mathcal{F}:|V(\Gamma) \cap V(L)|=j\}, j=2,3$. Since $H=K_{3}$, to simplify the description we identify $\Gamma \in \mathcal{F}$ with its vertex set, i.e. $\Gamma=\left\{x_{1}, x_{2}, x_{3}\right\}$. Consider
$\Gamma_{A}=\left\{x_{1}, x_{2}, y\right\} \in \mathcal{F}_{2}$ with $x_{1}, x_{2} \in N_{v}$ and $y \in V(G) \backslash\left(N_{v} \cup\{v\}\right)$. If there exists $\Gamma_{B} \in \mathcal{F}, \Gamma_{B} \neq \Gamma_{A}$, such that $y \in \Gamma_{B}$ then $\left(\mathcal{F} \backslash\left\{\Gamma_{A}\right\}\right) \cup\left\{\left\{x_{1}, x_{2}, v\right\}\right\}$ is an extension of \mathcal{F} containing v. Therefore, we can assume

$$
\begin{equation*}
\left|\mathcal{F}_{2}\right| \leq\left|V(G) \backslash\left(N_{v} \cup\{v\}\right)\right| \leq \frac{n}{2}-2, \tag{55}
\end{equation*}
$$

because otherwise there exists a pair $\Gamma_{A}, \Gamma_{B} \in \mathcal{F}, \Gamma_{A}=\left\{x_{1}, x_{2}, y\right\}, \Gamma_{B}=\left\{z_{1}, z_{2}, y\right\}$ as above. It follows from (54) and (55) that $\left|\mathcal{F}_{3}\right| \geq 1$. Now, consider $\Gamma_{A} \in \mathcal{F}_{3}$. If there exists $\Gamma_{B} \in \mathcal{F}$ such that $\Gamma_{A} \cap \Gamma_{B}=\{x\}$ then $\left(\mathcal{F} \cup\left\{\Gamma_{A} \backslash\{x\} \cup\{v\}\right\}\right) \backslash\left\{\Gamma_{A}\right\}$ is an extension of \mathcal{F} containing v. So, we can henceforth assume

$$
\begin{equation*}
\Gamma_{A} \in \mathcal{F}_{3}, \Gamma_{B} \in \mathcal{F} \Longrightarrow \Gamma_{A} \cap \Gamma_{B}=\emptyset . \tag{56}
\end{equation*}
$$

Once again, we consider $\Gamma_{A}=\left\{x_{1}, x_{2}, x_{3}\right\} \in \mathcal{F}_{3}$. Since $d_{G}\left(x_{i}\right) \geq n / 2+1>3$ (here we use our assumption on n) there exists $u \in V \backslash\left\{v, x_{1}, x_{2}, x_{3}\right\}$ and $a \neq b \in\{1,2,3\}$ such that u is adjacent to both x_{a} and x_{b}. Let $c=\{1,2,3\} \backslash\{a, b\}$ and set

$$
\mathcal{F}^{\prime}=\mathcal{F} \backslash\left\{\Gamma_{A}\right\} \cup\left\{\left\{x_{a}, x_{b}, u\right\},\left\{x_{a}, x_{c}, v\right\}\right\} .
$$

By (56) the family \mathcal{F}^{\prime} is edge-disjoint and covers v.
In order to prove the lower bound on $f(n, 3, k)$ we consider the following two graphs. If $n=2 m, H_{n}^{e}$ is the complete bipartite graph on the vertex set $Z_{1} \cup$ $Z_{2},\left|Z_{1}\right|=\left|Z_{2}\right|=m$. In the case $n=2 m+1, H_{n}^{o}$ consists of the edges of the complete bipartite graph on the vertex set $Z_{1} \cup Z_{2},\left|Z_{1}\right|=m+1,\left|Z_{2}\right|=m$. Moreover, if $\left|Z_{1}\right|$ is even, H_{n}^{o} contains edges of a perfect matching of Z_{1} and in the case $\left|Z_{1}\right|$ is odd, H_{n}^{o} contains edges of a maximal matching, say M, of Z_{1} together with a single edge $\{x, y\}$ where x is the vertex of Z_{1} which does not belong to M and y is any vertex of $Z_{1} \backslash\{x\}$. Clearly, $\delta\left(H_{n}^{e}\right)=\lceil n / 2\rceil$ and $\delta\left(H_{n}^{o}\right)=\lceil n / 2\rceil$. Further, neither of H_{n}^{e} and H_{n}^{o} contains a $\left(K_{3}, \infty\right)$-vertex-cover because H_{n}^{e} does not contain any copy of K_{3} and H_{n}^{o} contains only at most $\lceil(n+1) / 4\rceil$ copies of K_{3}.

References

[1] N. Alon, J. H. Spencer, The Probabilistic Method, John Wiley and Sons, 1991.
[2] N. Alon, R. Yuster, Almost H-factors in dense graphs, Graphs \& Comb. 8 (1992), 95-102.
[3] N. Alon, R. Yuster, Threshold functions for H-factors, Combinatorics, Probability, \& Computing 2 (1993), 137-144.
[4] N. Alon, R. Yuster, H-factors in dense graphs, J. Comb. Theory B, to appear.
[5] B. Bollobás, Random graphs, Academic press, 1985.
[6] F. Chung, R. Graham, Erdős on graphs - his legacy of unsolved problems, A.K. Peters, 1998.
[7] P. Erdős and A. Rényi, On the existence of a factor of degree one of a connected random graph, Acta. Math. Acad. Sci. Hungar. 17 (1966) 359-368.
[8] A.M. Frieze, On small subgraphs of random graphs, Proceedings of Random Graphs '89, (A.M.Frieze and T.Łuczak Eds.) John Wiley and Sons, 1992, 67-90.
[9] A. Hajnal, E. Szemerédi, Proof of a conjecture of Erdős, Comb. Theory and Appl. II, Colloq. Math. Soc. J. Bolyai 4, North-Holland, 1970, 601-623.
[10] S. Janson, Poisson approximation for large deviations, Random Structures and Algorithms 1 (1990), 221-229.
[11] M. Krivelevich, Triangle factors in random graphs, Combinatorics, Probability, and Computing 6 (1997), 337-347.
[12] D.E. Knuth, R. Motwani and B.G. Pittel, Stable husbands, Random Structures and Algorithms 1 (1990), 1-14.
[13] J. Komlós, G. N. Sárközy, E. Szemerédi, Proof of the Alon - Yuster conjecture, in preparation.
[14] T. Luczak, On the equivalence of two basic models of random graphs, Proceedings of Random Graphs '87 (M.Karoński, J.Jaworski and A.Ruciński, Eds.) John Wiley and Sons, 1990, 151-157.
[15] A. Ruciński, Matching and covering the vertices of a random graph by copies of a given graph, Discrete Math. 105 (1992), 185-197.
[16] N. C. Wormald, The perturbation method and triangle-free random graphs, Random Structures and Algorithms 9 (1996), 253-270.

[^0]: *Supported in part by NSF grant CCR-9530974.
 \dagger Permanent Address: Computer and Automation Research Institute of the Hungarian Academy of Sciences, Budapest, P.O.Box 63, Hungary-1518.
 Research was partially supported by OTKA Grants T 030059 and T 29074, FKFP 0607/1999 and by the Bolyai Foundation.
 ${ }^{\ddagger}$ Supported in part by NSF grant DMS-9970622.

[^1]: ${ }^{1}$ A sequence of events \mathcal{E}_{n} occurs with high probability, whp, if $\operatorname{Pr}\left(\mathcal{E}_{n}\right)=1-o(1)$.

