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Abstract The problem of semi-global minimal time robust stabilization
of the Brockett integrator (also called Heisenberg system) is addressed and
solved by means of a hybrid state feedback law. It is shown that the solutions
of the closed-loop system converge to the origin, in quasi-minimal time (for
a given bound on the controller), with a robustness property with respect

to small measurement noises, external disturbances and actuator noises.
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1 Introduction

Consider the so-called Brockett system in R?
& = ufi1(z) + uzfo(z), (1)

where, denoting x = (1,22, z3),

0 0 0 0

fl:Tm+w23—m’ f2=a—x2—3316—$3: (2)

and the control function u = (u1,u2) satisfies the constraint
u? +ul < 1. (3)

The system (1), together with the constraint (3), is said to be globally asymp-
totically stabilizable at the origin, if, for each point = of R?, there exists a
control law = — wu(x), satisfying the constraint (3), such that the solution
of (1), associated to this control law, and starting from z, tends to 0 as ¢
tends to +oo.

Note that, due to Brockett’s condition (see [9, Theorem 1, (iii)]), there
does not exist any continuous stabilizing feedback law z — u(z) for (1).
Several control laws have been however derived for control systems of this
type (see e.g. [16,13,3] and references therein).

The robust asymptotic stabilization problem is under current and active
research. There exists a large variety of control laws that solve the robust
asymptotic stabilization problem, such as discontinuous sampling feedbacks

[10,25], time varying control laws [12,11,17,18], patchy feedbacks (as in [1]),
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SRS feedbacks [24], ..., yielding different robustness properties depending

on the errors under consideration in these papers.

The class of feedbacks considered here consists of feedback laws mixing
discrete and continuous components. It gives rise to closed-loop systems with
a hybrid term, studied e.g. in [28,6]. The use of such a class of feedbacks for
the stabilization of nonlinear systems (a priori without discrete state) first
appeared in [20]. It allows to design a switching strategy between different
smooth control laws defined on a partition of the state space. This idea
of defining the control smoothly part by part, and switching between the
different components, is usual in nonlinear control theory (see e.g. [27,2]).
It has also been applied in [23] to chained systems with two commands.
However, in this paper, we provide, as in [23], a hybrid feedback law for
the system (1) with the constraint (3), that is not only robustly stabilizing,
but also enjoys a minimal time property. It consists, on the one hand, of
a minimal time controller, that is smooth on a part of the state space,
and on the other, of a second controller, defined on the complement of this
part, and we define the switching strategy between both control laws. Our
strategy enjoys a minimal time property, and robustness with respect to

(small) measurement noises, actuator errors and external disturbances.

To this aim, we first solve the minimal time control problem, for the
system (1) with the constraint (3), and then, we define a hybrid feedback

law, using a suitable switching strategy (namely, a hysteresis) between this
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minimal time controller and another controller defined on a neighborhood
of the singular set of the optimal control law.

The paper is organized as follows. First, we recall a notion of solution
adapted to hybrid feedback laws, and make precise the notion of stabi-
lization via a minimal time hybrid feedback law. We then state the main
result, namely, that there exists a minimal time hybrid feedback law sta-
bilizing semi-globally and robustly the origin for the system (1) with the
constraint (3) (see Section 3). The rest of the paper is devoted to the proof
of this result. We recall how to solve explicitly the minimal time problem
for the system (1) with the constraint (3), and define our “local” minimal
time control law in Section 4.1, and the “global” one in Section 4.2. The
hybrid feedback law is defined in Section 5, and the main result is proved

in Section 6.

2 Class of controllers and notion of solution

Let n and m be positive integers, and f : R® x R™ — R™ be a continuous
function, which is locally Lipschitzian in € R"™, uniformly for v € R™,

such that f(0,0) = 0. Consider the control system

&= f(,u). (4)
The Brockett system (1) investigated in this paper is of the form (4).
The hybrid feedback laws under consideration admit the following de-

scription (see [28,6])

u = k(ZU,Sd), §q4 = kd(a;:S;)a (5)
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where sq evolves in the finite set {1,2}, the function k : R* x {1,2} - R™
is a continuous function of z, for each fixed sq, and k4 : R® x {1,2} — {1,2}

is a function. The notation s, stands, at this stage only formally, for

s, (t) = £1g% s4(s)- (6)

The set {1,2} is endowed with the discrete topology, i.e. every set is an
open set. The above controller is hybrid, due to the presence of the discrete
dynamics of sq4. It gives rise to a non-classical ordinary differential equation
describing the dynamics of the closed-loop systerm.

We next recall the notion of robustness to a small noise (see [26]). Let
L7e (R™ x [0,400); R*) denote the set of essentially locally bounded func-
tions, with values in R".

Consider two functions e and d satisfying the following regularity as-

sumptions:

6(-, ')ad('a ) € L?:c(R" X [07+OO)§R")5 ( )
7
e(-,t),d(-,t) € CO(R",R™), Vt € [0, +o0).

We introduce these functions as a measurement noise e and an external

disturbance d, and define the perturbed system! with u given by (5), by

&(t) = f(2(t), k(z(t) + e(2(t), 1), sa(t))) + d(2(b), 1),

sa(t) = ka(x(t) + e(2(t), 1), 54 (1))-

(®)

The notion of a solution of such a hybrid perturbed system has been well-

studied in the literature (see e.g. [6,7,15,28,22,23]). To be self-contained,

! we can also consider an actuator noise (see e.g. [14,20]).
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we recall the definition of a solution of (8) and we introduce a non-empty

set RC strictly contained in R™ x {1, 2}.

Definition 1 Given T > 0 and (zo, so) € R™ x {1, 2}, we say that (z, sq) s
a solution of (8) on [0,T), starting from (xg, so), if the following conditions

hold:

— the map z is absolutely continuous on [0,T);

— there holds, for almost every t € [0,T),

&(t) = [ (x(t), k(2(t) + e(z(t),1), 5a(t))) + d(x(t),1);

— for every t € [0,T) such that (z(t),sqa(t)) € RC, the map sq is right-
continuous at t,

— for every t € (0,T) such that s (t) exists, one has

sa(t) = ka(xz(t) + e(z(t),1), 54 (1)); 9)
— there holds (0) = zo, and s4(0) = kq(xo + e(x0,0), s0).

We next define the concept of stabilization of (4) by a minimal time
hybrid feedback law sharing a robustness property with respect to mea-
surement noises and external disturbances. The usual Euclidean norm in
R™ is denoted by | - |. Recall that a function of class K is a function é:
[0, +00) — [0, +00) which is continuous, increasing, satisfying §(0) = 0 and

limp_s 400 6(R) = +00.

Definition 2 Let p : R* — R be a continuous function, which is positive

outside 0. We say that the completeness assumption holds for p if, for all
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(e,d) satisfying the regularity assumptions (7) and

[Osup) |€(2L', )| S p(-T), esssup[0,+oo)|d($7 )| S p(-T), Vx € Rna (10)
;oo

for all (zg,s0) € R* x {1,2}, there exists a mazimal solution of (8) on

[0, +00), starting from (zo, so).

Definition 3 We say that the uniform finite time convergence property
holds if there exists a continuous function p : R® — R, positive outside
0, satisfying the completeness assumption, and if there exists a function §
of class Ko, so that, for every R > 0, there exists 7 > 0 such that, for all
functions e, d satisfying the regularity assumptions (7) and inequalities (10)
for this function p, for every xo € R™, |zo| < R, and every sq € {1,2}, the

mazimal solution (z,s4) of (8), starting from (xo, so), satisfies
|lz(t)| < 6(R), Vt >0, (11)

and

z(t) =0, Vi > 7. (12)

Definition 4 The origin is said to be a semi-globally minimal time robustly
stabilizable equilibrium for the system (4) if, for every € > 0 and every
compact subset K C R", there exists a hybrid feedback law (u,kq) : R™ x
{1,2} = R™ x {1, 2} satisfying the constraint

llk(z, sa)ll < 1, (13)
where || - || stands for the Euclidian norm in R™, such that:

— the uniform finite time convergence property holds;
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— there exists a continuous function p. x : R* = R, positive outside 0,
such that, for all functions e, d satisfying the regularity assumptions (7)
and inequalities (10) for p = pe i, for every o € K, the mazimal
solution of (8), starting from xo, reaches the origin within time T (zg)+¢,
where T(xy) denotes the minimal time to steer the system (4) from xg

to the origin, with the constraint ||ul| < 1.

3 Main result

Theorem 1 The origin is a semi-globally minimal time robustly stabilizable

equilibrium for the system (1) with the constraint (3).

Remark 1 Some observations are in order.

1. An explicit expression for the hybrid feedback law (u,kq) is given in
Section 5.

2. Note that the problem of global robust minimal time stabilization (i.e.
K = R? in Definition 4) cannot be achieved because measurement noises
may then accumulate and slow down the solution reaching the origin
(compare with [8]). However, we provide a globally asymptotically sta-
bilizing hybrid controller, in the sense that the constant R > 0 of the
Definition 3 can be arbitrarily large.

3. Note that the conclusion of Theorem 1 does not hold if, in (10), the
supremum sup is relaxed by esssup (see [20, Theorem 4.2], where it is

proved, in an analogous situation, that there exists a measurement noise
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e satisfying esssup |e| = 0, sup |e] # 0, such that the origin of the

perturbed closed-loop system is not an attractive equilibrium).

Intuitively, the strategy is as follows. For x € R®, let T'(z) denote the
minimal time needed to steer the system (1) from z to the origin, with the
constraint (3). The corresponding minimal time feedback controller, called
local controller, happens to be continuous (even analytic) on R™ \ {z; =
xz9 = 0}. It is therefore necessary to use another controller, called global
controller, in a neigborhood 2 of the line {x; = x5 = 0}. More precisely,
2 will be constructed so as to be cylindric around this line, and conic near
the origin (see Fig. 4 further). In this neighborhood, we define an adequate
switching strategy. Notice that (2 is arbitrarily thin, and thus the time e
needed for the traversing of (2 is arbitrarily small, uniformly with respect
to the initial condition. Therefore, starting from an initial point z, the time

needed to join the origin, using this hybrid strategy, is equal to T'(z) + €.

The rest of the paper is organized as follows. We define the local con-
troller in Section 4.1 and the global one in Section 4.2. The switching strat-
egy between these feedback laws by means of a hysteresis is explained in

Section 5. Theorem 1 is proved in Section 6.
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4 The components of the hysteresis
4.1 The local controller

In this section, we define and compute the local controller, and give some
properties of the Carathéodory solutions of (1) with this feedback law.
Consider the Brockett system (1). It is a standard fact that the minimal
time problem for the system (1), with the constraint (3), is equivalent to
the sub-Riemannian problem in R® associated to the vector fields f; and fo
(see for instance [5]), and moreover, the minimal time 7'(z) needed to steer
the origin to a point z € R? is equal to the sub-Riemannian distance of x
to the origin. Using this fact, the function 7' may be computed explicitly,

and we recall the following result of [4].

Proposition 1 Consider the minimal time problem for the system (1) with
the constraint (3). The minimal time T(x) needed to steer a point x =

(z1, T2, 73) € R® to the origin is given by

0
T(x1,22,23) = Vot +a3+ 2z, (14)
\/0+sin20—sin0cos0 ! 2

where 0 = 6(x1,x2,x3) is the unique solution in [0,7) of

6 —sinfcosd
W(v’ﬁ% + 3) = 2|z3]. (15)

Moreover, the function T is continuous on R®, and is analytic outside the

line x1 = x5 = 0.

Remark 2 The function g, defined by

6 — sinf cos
g(g) = Z=SRTC088 (16)

sin? 6
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for 6 € [0,7), with the agreement that g(0) = 0, is a monotone increasing

diffeomorphism of (0, 7) onto (0,+00). For every 6 € [0, 7), define

0

h(8) = ;
\/9 + sin? 6 — sin 6 cos

with the agreement that h(0) =1 (see Fig. 1).

9(6) h(e)

Fig. 1 The functions g and h.

For every s € R, set F(s) = ho g~!(s). Then, there holds, outside the

line Tl =T = 0,

2|."L'3| .
T(z1,%a,73) = F (m% e \/ 22 + 23 + 2|z

2

It can be checked that T is indeed analytic outside the line z; = x5 = 0,

even though it is not immediate from this expression (see [4]).
Remark 3 Along the line z; = z2 = 0, there holds

T(O, 0, 3&'3) =/ 27r|$3|.

The singular set of the function T, i.e. the set where T is not C!, is the

line z; = z2 = 0 in R3. More precisely, the gradients 0T /0z;, i = 1,2,
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are discontinuous at every point (0,0, z3), £3 # 0. In the context of sub-
Riemannian geometry, this singular line can be interpreted as a cut-locus.
Actually, for every xz3 # 0, there exists an infinite number of optimal

trajectories steering the origin to the point (0,0,z3), given by the set of

curves
_ el :
21(t) = 1/ == (sin(27t + ¢) — sin ),
7r
z2(t) = %(cos@wt + @) — cosp), (17)

|z3]

z3(t) = 23t — oy sin(27t),

for t € [0,1] and ¢ € [0,27] (see for instance [4]).

Remark 4 Using the previous notations, there holds, for every & = (x1,x2,x3) €

R3

?

T(z1,%2,x3) = h(0)\/2? + x3 + |z3], (18)

N

cos b
sin 6 ! 2z

where 0 = 0(z1,x2,23) is the unique solution in [0, ) of (15).

A level set {(z1,2,23) € R® | T(x1,T2,23) = r}, where r > 0, is drawn
on Fig. 2. In the context of sub-Riemannian geometry, it represents the sub-
Riemannian sphere centered at the origin, with radius r, in the Heisenberg
case (see [5]). Observe that it is axial symmetric, with respect to the axis
(Ozs).

On Fig. 3 are drawn intersections of different level sets of 7" with a plane

containing the axis (0z3).
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Fig. 2 Level set {(z1,%2,23) € R® | T(z1, %2, 23) =7}

Remark 5 There exists a one-parameter group of dilations
Oy : (w1, 22, x3) = (Az1, AT2, N223),

so that

T(drz) = AT (),
for every = € R® (see [5]). This property can be observed on Fig. 3.

It follows from the Pontryagin maximum principle and the Hamilton-
Jacobi theory (see [19]) that the minimal time control functions, steering
a point x = (x1,72,73) € R® to the origin, are given by the closed-loop

formula

or oT
(@) = ~5(VT@) o) = =5 (5 + e )
1
2

us(@) = = 5(VT (@), () = -

provided T is C' at z. In particular, this holds outside the line z; = z5 = 0.
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Fig. 3 Intersection of different level sets with a vertical plane.

Outside this line, the smoothness of this optimal controller ensures a
robustness property of the stability. A switching strategy is then necessary
between this optimal controller and another controller which has to be con-
tinuous in a neighborhood of the line ; = x5 = 0. This latter controller,
denoted uy, is called global controller, and is defined in Section 4.2, whereas
the optimal one, denoted w;, is called the local controller. The switching
strategy is achieved by adding a dynamical discrete variable s; and using a
hybrid feedback law (see Section 5).

Below, we give an explicit expression of the optimal controller (local

controller), using the following lemma.

Lemma 1 For every x = (x1,22,73) € R® such that z? + 22 # 0, there

holds

=
= cosf :

0
Oz; N

where 8 = 0(x1, z2,x3) is the unique solution in [0,7) of (15).

T
i=1,2, 3—333 = sign(z3) sinb,
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Remark 6 Notice that, if 27 + 23 # 0, then 6(z1,22,0) = 0, and hence

gTj;(.fL'l,.’EQ,O) =0.

Corollary 1 The minimal time controller u; = (uj1,u2), steering a point

x = (z1,T2,73) € R® such that 22 + x3 # 0 to the origin, writes

; > B ( 2 >) . . ( B ( e ))
up(z) = —= | ——= cos + sign(z3) T3 sin e ,
up(x) = N R cos (gl ( 2|s| — sign(x3) 1 sin (gl ( 2|

2 ,/x%-}-x% -'E%"F.’L’% x%-l—:c% ’

(22)
where the function g is defined by (16).
For all M > 0 and r > 0, we introduce the subset of R®
O = {(21,22,23) € R® | 27 + 23 < min(r, M|z3])}, (23)

and denote its complement in R® by I'yr,.. Near the origin, 2y, is a cone,
otherwise it is a cylinder around the axis (0z3) (see Fig. 4).
The following lemma follows immediately from the behavior of the op-

timal flow (see formulas (17) in Remark 3).

Lemma 2 There exist My > 0 and ro > 0 such that, for all M and r
satisfying 0 < M < My and 0 <r < ry, the subset I'y, is invariant by the

feedback optimal controller ;.

Now this local controller has been defined, we investigate the robustness
properties of the system (1) in closed-loop with this controller. Given e, d :

R3 x [0, +00) — R3, the perturbed closed-loop system under consideration
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A
ro |
Fig. 4 Shape of 2u,r.
in this section is of the form
&(t) = fz(t), m(z(t) + e(z(t),1)) + d(z(t),1). (24)

Below, a robust version of Lemma 2 is stated for every noise vanishing along
the discontinuous set of the local controller. More precisely, all properties

needed to state our main result are summarized in the following lemma.

Lemma 3 There ezist a continuous function p; : R = R, positive outside 0,

and a continuous function &; : [0, +00) — [0, +00) of class Koo, such that:

— Stability: for all M and r satisfying 0 < M < My and 0 < r < rg, all

e,d: R x [0,+00) = R® satisfying the regularity assumptions (7) and

[ sup ) |€(.’L’, )l < pl(z'%-’_xg)a esssup[o,—i-oo)ld(xa )l < pl(x%+x§): Vz € ]R3a
0,400

(25)
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and for every xg € L'y, there exists a unique mazimal Carathéodory
solution z(-) of (24) on [0, 400), starting from xo, satisfying x(t) € I'n,r,
for every t > 0;

— Finite-time convergence: for every R > 0, there exists 7, > 0 such that,
for all e,d : R® x [0, +00) — R® satisfying the reqularity assumptions (7)
and (25), for every o in R® with |z¢| < R, and every mazimal solution

z(+) of (24) starting from xq, one has

z(t) =0, Vi > 7, (27)
and
llui(z(@®)ll <1, Vt > 0; (28)

— Optimality: for every e > 0, and every compact subset K C R3, there
ezists a continuous function p. i : R® — R, positive outside 0, such that,
for all e,d : R® x [0, 4+00) — R® satisfying the reqularity assumptions (7)
and

sup le(x,-)| < min(py (27 + 23), pe i (2)), Vo € R,
[0,400) (29)

esssup[0,+oo)|d(m7 )| < min(pl(x% + x%)aps,K(x))a Vz € R37
and for every xo € K N 'y, the solution of (24), starting from xo,

reaches the origin within time T(xo) + €.

Proof Since Carathéodory conditions hold for the system (24), the existence
of a unique forward Carathéodory solution of (24), for every initial condi-

tion, is ensured. Note that, since the controller u; is the minimal time control
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steering x to the origin under the constraint (3), the inequality (28) holds.
Since the local controller u; defined by (22) is continuous on R® \ {z; =
zs = 0}, Lemma 2 implies the existence of p; : [0,+00) — [0,+00). The
last part of the result follows from (21) and from the continuity of solutions

with respect to disturbances.

4.2 The global controller

In this section we define the second component of the hysteresis, called global
controller and denoted u,. Moreover we give some basic properties of the
Carathéodory solutions of the closed—loop system (4) with such a control
law ug.

Let us consider the feedback law

ug1(z) =1, uga(z) =0. (30)

The closed-loop system considered in this section is of the form

&(t) = f(@(t), ug(x(t) + e(z(t),1))) + d(z(t), ). (31)

The following result, whose proof is obvious using (30), states that the
trajectories of the system (31) enter the region I'ns, in finite time, while

remaining bounded up to this time.

Lemma 4 With the notations of Lemma 3, there exists a continuous func-

tion p, : R — R satisfying

pg(x) >0, Yo #0, (32)
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such that, for every initial condition, the perturbed system (31), where e
and d are two arbitrary functions satisfying the regularity assumptions (7)
and inequalities (10) with p = p,, admits a unique Carathéodory solution,
defined for all t > 0.

Moreover there exists a function 64 of class Ko such that, for all R > 0,
and M and r satisfying 0 < M < My and 0 < r < rg, there ezists a time
Ty = To(M, 7, R) such that all Carathéodory solution x of (81) starting from

xg, with |zo| < R, satisfies

lz(t)] < 4(R), Vt < g, (33)
2(t) € Tapp, VE> 74, (34)

and
llug ()|l < 1, Yt > 0. (35)

5 Definition of the hybrid controller

In this section we define the hybrid controller by using a hysteresis to con-
nect both controllers defined in Sections 4.1 and 4.2.

For every i € {1,...,6}, let M; and r; so that

0<M6<M5<M4<M3<M2<M1<M0, ( )
36

O0<rg<rs<ryg <rg<ry<r; <ro-

For the sake of simplicity, in what follows we set I; = Iy, and (2; =

O, ry, for every ¢ € {1,...,6}. The hybrid controller (k,kq) is defined
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using the following hysteresis between u; and ug on I's and Ih:
k:R x{1,2} - R?
(z,84) = w(z) if s4 =1, (37)
ug(x) if sq = 2,

and

kqe: R x {1,2} — {1,2}
(z,84) — 1 ifx € Iy,
Sq if(L'EF5\F2,

6 Properties of the solutions and proof of Theorem 1

6.1 Properties of the solutions

In this section, we study some properties of the solutions of the perturbed
system (8) in closed—loop with the hybrid controller (37) and (38). Let € > 0

and K be a compact subset of R”. We set?

RC =T x {1,2}\ ((clos(F3) \ 1) x {2} (clos(Ts) \ Iy) x {1}) (39)

(see [21] for a similar but simpler situation). Let p : R*> — R be a continuous
function, positive outside 0, so that:

e for every x € I,

p(z) < min(py(a] + 23), pe,x (7)), (40)

2 For a given subset {2 of R", the closure, the interior and the boundary of 2

are denoted by clos(£2), int(£2) and 012, respectively.
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and, for every x € R® \ I,

p(z) < pg(z), (41)

where p;, p. k and p, are defined in Lemma 3 and Lemma 4;
o the following implication holds, for every i € {1,---,5}, and every

e € R? so that |e| < p(z),

zt+eecl; =>zelg; (42)

e the following implication holds, for every i € {2,---,6}, and every

e € R? so that |e| < p(z),

SL‘+€€E$£I}¢I}71. (43)

Let e and d be two functions satisfying the regularity assumptions (7)
and (10). We now state, without proof, a series of four preliminary results,
which are instrumental to prove Theorem 1. They concern general prop-
erties of solutions of hybrid systems, and the arguments are conceptually

analogous to those of [21,23].

Lemma 5 For all (z0,50) € R® x {1,2}, there exists a solution of (8), in

closed—-loop with (37) and (38), starting from (xg,so).

To describe further properties of the trajectories of the considered system,

we recall the definition of a switch.

Definition 5 A map sq4: [0,T) = {1,2} is said to have a switch at time ¢

if sq is not continuous at t.
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Let (z,s4) be a solution of (8) in closed—loop with (37) and (38). To address

the problem of locating the points where s; may have a switch, consider the

sets
sh@) ={s| In € t,T), tn — t, sa(tn) — s}, (44)
n—oo n—oo
sq (t) ={s | 3ty € [to, 1], tn — 1, s4(tn) — s}, (45)
n—00 n—00

for every ¢ in (0,7).

Lemma 6 Let (x, sq) be a solution of (8), in closed—loop with (37) and (38),
such that sq has a switch at time t € (0,T).
o If the switch is such that 2 € sT'(t) and 1 € sh(t), then z(t) € clos(I3)\
I.
o If the switch is such that 1 € s7'(t) and 2 € sh(t), then z(t) € clos(Is)\

Iy.

Lemma 7 Let (x,54) be a mazimal solution of (8), in closed—loop with (37)

and (38), defined on [0,T). If T < 400, then limsup,_,r |z(t)| = +oo.

Lemma 8 Let (z,s4) be a mazimal solution of (8), in closed—loop with (37)
and (38), defined on [0,T). Then T = 400, and only the following cases
may occur:
1. there exists no switch, and = is a Carathéodory solution of (24) on
[0, +00), contained in Ig;
2. there exists a time o in (0,+00) such that
o z is a Carathéodory solution of (31) on [0,0), and is not in I;

e z is a Carathéodory solution of (24) on [o,+00), contained in Ig;
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3. there exist two switches o1 and oo in (0,+00) such that
o z is a Carathéodory solution of (24) on[0,01), contained in Ig\I;
e z is a Carathéodory solution of (81) on [o1,02), and is not in I'y;

o z is a solution of (24) on [o3,+00), contained in I.

Remark 7 As a consequence of Lemma 8, every solution of the perturbed

system switches at most two times.

6.2 Proof of Theorem 1

Let € be a positive real number, and K be a compact subset of R™.
Consider My > 0 and r¢ > 0 given by Lemma 2, M;, r; for every
i € {1,...,6} satisfying (36), and p: R* — R satisfying (40)-(43). Up to

reducing My and rg, we assume that

every solution of (31) starting from (2 enters I in time less than e,
(46)

and

every solution of (24) starting from Iy enters I in time less than . (47)

The proof splits into three parts.

Completeness
Existence of solutions follows from Lemma 5, and maximality from Lemma

8.
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Uniform finite time convergence

Let R > 0. Consider perturbations e,d : R® x [0, +0c) — R® satisfying the
regularity assumptions (7) and (10), for every z € R3. Let ; € R® such
that |zo| < R, let s € {1,2}, and (z, s4) be the corresponding solution of
(8), in closed—loop with (37) and (38), starting from (¢, so), and defined
on [0, +00).

As a consequence of Lemmas 3, 4 and 8, we have, for every ¢t > 0,

|z(t)| < max(3i(R), 61(d4 (R)), 31(94 (01 (R)))),

i.€.

Thus (11) holds.
Consider now 7 = 7;(0;(04(6;(R)))), where 7; is the time defined in

Lemma 3. From Lemmas 3, 4 and 8, we get, for every ¢t > T,

z(t) = 0.

Minimal time

Let 2o € K. The solution of system (8), in closed—loop with (37) and (38),
starting from =z, switches at most two times and, using (46), (47), and
Lemma 8, enters Iy (let say, at a point z7) in time less than 2e. After the
last switch, Lemma 3 applies, and thus, the solution reaches the origin at
a time less than T'(z1) + €. Since the gradient of T is uniformly bounded

(see Lemma 1), then, up to reducing ro, we get T'(xo) < T(z1) + . As
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a conclusion, the solution reaches the origin in time less than T'(zq) + 4e.

Theorem 1 is proved.
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