Skip to main content
Log in

Local exact controllability for Berger plate equation

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We study the exact controllability of a nonlinear plate equation by the means of a control which acts on an internal region of the plate. The main result asserts that this system is locally exactly controllable if the associated linear Euler–Bernoulli system is exactly controllable. In particular, for rectangular domains, we obtain that the Berger system is locally exactly controllable in arbitrarily small time and for every open and nonempty control region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ball JM (1973) Initial-boundary value problems for an extensible beam. J Math Anal Appl 42: 61–90

    Article  MATH  MathSciNet  Google Scholar 

  2. Bardos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J Control Optim 30: 1024–1065

    Article  MATH  MathSciNet  Google Scholar 

  3. Berger HM (1955) A new approach to the analysis of large deflections of plates. J Appl Mech 22: 465–472

    MATH  MathSciNet  Google Scholar 

  4. Burq N, Zworski M (2004) Geometric control in the presence of a black box. J Am Math Soc 17: 443–471

    Article  MATH  MathSciNet  Google Scholar 

  5. Dickey RW (1970) Free vibrations and dynamic buckling of the extensible beam. J Math Anal Appl 29: 443–454

    Article  MATH  MathSciNet  Google Scholar 

  6. Dickey RW (1973) Dynamic stability of equilibrium states of the extensible beam. Proc Am Math Soc 41: 94–102

    Article  MATH  MathSciNet  Google Scholar 

  7. Dolecki S, Russell DL (1977) A general theory of observation and control. SIAM J Control Optim 15: 185–220

    Article  MATH  MathSciNet  Google Scholar 

  8. Jaffard S (1990) Contrôle interne exact des vibrations d’une plaque rectangulaire. Port Math 47: 423–429

    MATH  MathSciNet  Google Scholar 

  9. Kahane J-P (1962) Pseudo-périodicité et séries de Fourier lacunaires. Ann Sci École Norm Sup 79(3): 93–150

    MATH  MathSciNet  Google Scholar 

  10. Lasiecka I, Triggiani R (1991) Exact controllability and uniform stabilization of Euler–Bernoulli equations with boundary control only in \({\Delta w\vert_\Sigma}\) . Boll Un Mat Ital B 5(7): 665–702

    MATH  MathSciNet  Google Scholar 

  11. Lebeau G (1992) Contrôle de l’équation de Schrödinger. J Math Pures Appl 71(9): 267–291

    MATH  MathSciNet  Google Scholar 

  12. Menzala GP, Zuazua E (2000) Timoshenko’s beam equation as limit of a nonlinear one-dimensional von Kármán system. Proc R Soc Edinburgh Sect A 130: 855–875

    Article  MATH  MathSciNet  Google Scholar 

  13. Miller L (2005) Controllability cost of conservative systems: resolvent condition and transmutation. J Funct Anal 218: 425–444

    Article  MATH  MathSciNet  Google Scholar 

  14. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. In: Pure and applied mathematics. Wiley, New York

  15. Perla Menzala G, Pazoto AF, Zuazua E (2002) Stabilization of Berger–Timoshenko’s equation as limit of the uniform stabilization of the von Kármán system of beams and plates. M2AN Math Model Numer Anal 36: 657–691

    Article  MATH  MathSciNet  Google Scholar 

  16. Ramdani K, Takahashi T, Tenenbaum G, Tucsnak M (2005) A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator. J Funct Anal 226: 193–229

    Article  MATH  MathSciNet  Google Scholar 

  17. Tenenbaum G, Tucsnak M (2009) Fast and strongly localized observation for the Schrödinger equation. Trans Am Math Soc 361: 951–977

    Article  MATH  MathSciNet  Google Scholar 

  18. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Birkhäuser advanced texts: Basler lehrbücher [Birkhäuser advanced texts: Basel textbooks]. Birkhäuser, Basel, pp xii + 483

  19. Tucsnak M, Weiss G (2000) Simultaneous exact controllability and some applications. SIAM J Control Optim, 38: 1408–1427 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zuazua E (1987) Contrôlabilité exacte d’un modèle de plaques vibrantes en un temps arbitrairement petit. C R Acad Sci Paris Sér I Math 304: 173–176

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Tucsnak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cîndea, N., Tucsnak, M. Local exact controllability for Berger plate equation. Math. Control Signals Syst. 21, 93–110 (2009). https://doi.org/10.1007/s00498-009-0042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-009-0042-7

Keywords

Navigation