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Abstract Lyapunov–Krasowskii functionals are used to design quantized control
laws for nonlinear continuous-time systems in the presence of constant delays in the
input. The quantized control law is implemented via hysteresis to avoid chattering.
Under appropriate conditions, our analysis applies to stabilizable nonlinear systems
for any value of the quantization density. The resulting quantized feedback is parame-
trized with respect to the quantization density. Moreover, the maximal allowable delay
tolerated by the system is characterized as a function of the quantization density.

Keywords Nonlinear systems · Time-delay systems · Quantized systems · Switched
systems · Hysteresis

1 Introduction

Quantized control systems [3,12] are systems in which the control law is a piece-wise
constant function of time taking values in a finite set. The design of quantized control
systems is based on a partition of the state space. One value of the control law is
associated to each set of the partition, and whenever the state crosses the boundary
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between two sets of the partition, the control law takes the new value associated to the
set which the state has just entered.

When dealing with the problem of stabilizing the origin of the state space for lin-
ear discrete-time systems, the paper [3] has shown the effectiveness of logarithmic
quantization in which the partition of the state space is coarser away from the origin
and denser in its vicinity. It has also introduced the notion of quantization density,
that is the number of regions of the partition per unit of space. Intuitively, the larger
is the quantization density, the easier is the quantized control problem, since as the
quantization density gets larger, the quantized control law approaches a control law
without quantization. The paper [12] deals with a similar problem but for nonlinear
continuous-time systems which can be made input-to-state stable with respect to the
quantization error. Recently, the paper [1] has investigated quantized control systems
in the framework of discontinuous control systems, discussing appropriate notions
of solutions, namely Krasowskii and Carathéodory solutions. In this framework, the
effect of quantization is viewed as an additional disturbance whose effect is attenuated
by a Lyapunov redesign of the control law. Namely, given any nonlinear continuous-
time process which is stabilizable by a continuous feedback, and given any value of
the quantization density, it is always possible to find a new feedback depending on the
quantization density, in such a way that the process in closed-loop with the quantized
control law is practically stable with a basin of attraction which can be made arbitrarily
large. Other notions of robustness (namely, robustness in the sense of the L2-gain) in
connection with quantized control problems have been examined in [5] and [1]. More-
over, in the former, an adaptive quantized control scheme has been investigated.

Since quantized controls take values in a finite set, they lend themselves to be imple-
mented over a finite data-rate communication channel. Data transmitted over a channel
are usually delivered at the other end of channel after a delay. The problem of quantized
control systems in the presence of delays then arises very naturally. Such a problem
has been examined for the first time in [13], where the connection between Razumik-
hin-type theorems and the ISS small-gain theorem established in [20] was exploited.
In recent years, besides [20], other contributions in the area of nonlinear time-delay
systems have appeared (see, for instance, [4,8,9,14–18] and references therein). In
particular, the paper [14] has proposed a Lyapunov–Krasowskii-functional approach
to study the stabilizability of nonlinear systems in the presence of a delay in the input.

The aim of this paper is to pursue the approach of [14] in the analysis and design
of quantized time-delay control systems. Besides the use of Lyapunov–Krasowskii
functionals, there are other important features of the approach which make our paper
different from other contributions. We implement the quantized control with the hys-
teretic mechanism suggested in [5] to avoid chattering. It is known from [2] that, in
the case no delay is present, the analysis of such hysteretic solutions can be reduced to
the analysis of Krasowskii and Carathéodory solutions considered in [1]. In the case
of quantized time-delay systems, the adoption of the hysteretic solution is desirable.
First, because it allows us to avoid technical issues related to more general notions of
solutions of time-delay quantized (that is, discontinuous) systems. Second, the exis-
tence of more general solutions such as Carathéodory solutions is guaranteed only
under additional conditions (see, e.g. [1]). Another feature which is worth mentioning
is that, as in [1], our analysis applies to stabilizable nonlinear systems for any value
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Stability of quantized time-delay nonlinear systems 339

of the quantization density, provided that suitable conditions are satisfied. Then, the
quantized feedback which stabilizes the closed-loop system despite the delay turns
out to be parametrized with respect to the quantization density.

Our approach leads to a set of conditions to design quantized control systems
which are robust with respect to delays. Since we employ the results of [14] based on
Lyapunov–Krasowskii functionals, our conditions represent an alternative to the con-
ditions derived using Razumikhin-like theorems in [13,20]. Other conditions could
be derived using recent results on input-to-state stability of time-delay systems via
Lyapunov–Krasowskii functionals ([4,18] where a few comments in this regard have
been presented). However, this investigation is beyond the scope of the paper.

In the next section, we present a few preliminaries, such as the definition of the
quantizer and the notion of solution we adopt. The main result along with the standing
assumptions and a couple of examples are examined in Sect. 3. Proof of the main
result is given in Sect. 4. Conclusions are drawn in Sect. 5.

Notation, definitions
– R≥0 (respectively, R>0) denotes the set of non-negative (positive) real numbers.
– Let r1, r2 be two real numbers such that r1 < r2. Let C1([r1, r2],Rm) (respectively,

C
1
([r1, r2],Rm)) denote the set of continuously differentiable (respectively, piece-

wise continuously differentiable) functions φ(·) : [r1, r2] → R
m .

– Norms. | · | stands for the Euclidean norm, ||φ||c = supt∈[r1,r2] |φ(t)| stands for
the norm of a function φ ∈ C1([r1, r2],Rm).

– sgn(r), r ∈ R, denotes the sign function, i.e. the function such that sgn(r) = 1 if
r > 0, sgn(r) = −1 if r < 0, and sgn(r) = 0 if r = 0.

– To simplify the notation, we will frequently use the notation of the Lie derivative.
More precisely, if f : R

n → R
n is a vector field and h : R

n → R is a scalar
function, we may use the notation L f h(x) for ∂h

∂x (x) f (x).
– A continuous function k : [0,∞) → [0,∞) is of class K provided it is zero at

zero and strictly increasing. A class K∞ function is a class K function which in
addition is unbounded.

– We shall often omit arguments of functions to simplify notation.
– For a real-valued function z(t), we denote by z(t+) the right limit limm>t,m→t z(m).

2 Problem formulation

We are interested in investigating the stability property of systems when the feedback
control law undergoes quantization and delays. This problem arises in (idealized) sce-
narios in which a finite bandwidth channel lies in the feedback loop and introduces a
delay. In the sub-sections below, we recall what is meant by quantization and what is
a quantizer, we introduce the quantized time-delay system and the notion of solution
we adopt, and finally the formulation of the problem.

2.1 Quantizers

To the purpose of describing our system in more formal terms, we introduce the follow-
ing multi-valued map, which will be referred to henceforth as the quantizer. Let u0 > 0
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and 0 < ρ < 1 be real numbers, let ui = ρi u0 and U = {0,±ui ,±ui (1 + δ)−1,

i = 0, 1, . . . , j}, with j ≥ 1 an integer. Let δ = (1 − ρ)(1 + ρ)−1 and

�(u) =

⎧
⎪⎨

⎪⎩

ui sgn(u), 1
1+δ ui < |u| ≤ 1

1−δ ui , 0 ≤ i ≤ j
ui

1+δ sgn(u), 1
(1+δ)2 ui < |u| ≤ 1

(1+δ)(1−δ)ui , 0 ≤ i ≤ j

0, 0 ≤ |u| ≤ 1
1+δ u j .

(1)

A picture of the map is given in Fig. 1. Observe for later use that

ρ = 1 − δ

1 + δ
(2)

and

ui =
(

1 − δ

1 + δ

)i

u0, ∀i ∈ {0, 1, . . . , j}. (3)

A few remarks are in order:

– The range of the quantizer, i.e. its interval of definition, is
[
− u0

1−δ ,
u0

1−δ
]
. We do

not define �(u) for |u| > u0
1−δ , since we will design the parameter u0 in such a

way that the control |u(t − τ)|, which is the actual argument of the map �, never
exceeds this upper bound.

– The logarithmic quantizer with a finite number of quantization levels, which is a
truncated version of the quantizer with an infinite number of quantization levels,
was introduced in [3, Sect. V], and it is as follows:

�(u) =
{

ui sgn(u), 1
1+δ ui < |u| ≤ 1

1−δ ui , 0 ≤ i ≤ j

0, 0 ≤ |u| ≤ 1
1+δ u j .

(4)

Compared with (4), the quantizer (1) considered in this paper has additional quan-
tization levels. To have a pictorial representation of the quantizer (4), one can refer
to Fig. 1 and remove the quantization levels labeled as u0

1+δ and u1
1+δ . The new

quantization levels in (1) are added to avoid chattering. This will be explained in
detail as soon as the system we are interested in and the notion of solution we adopt
are introduced (see Remark 1 below).

– The parameter ρ can be viewed as a measure of the quantization density, since the
smaller is ρ, the coarser is the quantizer [3]. In fact, by (2), as ρ approaches 0, δ
approaches 1, that is the width of the sector bound in Fig. 1 gets larger and, given an
interval of fixed length on the u-axis in Fig. 1, �(u) will have fewer quantization
levels as u ranges over that interval.

– In the quantizer (1), the parameters δ, u0, j appear. Throughout the paper, we shall
assume that δ can take any value in the interval (0, 1) (i.e. the quantization density
can be equal to any value). On the other hand the positive real number u0 (which
defines the range of the quantizer) and the integer j (which gives the number of
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Stability of quantized time-delay nonlinear systems 341

Fig. 1 The multi-valued map �(u) for u > 0, and with j = 1

quantization levels) are to be designed. Although it would be more correct to denote
explicitly the dependence of � on u0, j , i.e. to have � j,u0(u), this is not pursued
in the paper to avoid cumbersome notations.

2.2 Quantized time-delay systems

We are interested in investigating the stability of the quantized time-delay system

ẋ(t) = f (x(t))+ g(x(t))�(u(t − τ)), (5)

with x(t) ∈ R
n , n ≥ 1, f (x), g(x) locally Lipschitz functions, and τ a positive

real number, when u(t) = z(x(t)), with z(·) a continuously differentiable real-valued
function to be designed. Since�(u(t −τ)) is a multi-valued function, we must specify
the rule by which �(u(t − τ)) takes value in U depending on its argument u(t − τ).

Consider the initial condition ϕ ∈ C1([−2τ, 0],Rn) and let T < τ be a suitable
positive number. For t ∈ [0, T ) we focus our attention on �(z̄(t)), where to ease the
notation we have set z̄(t) := z(ϕ(t − τ)). At time t = 0, depending on |z̄(0)|, the
value taken by the quantizer is specified as follows:

�(z̄(0)) =
{

ui sgn(z̄(0)), 1
1+δ ui < |z̄(0)| ≤ 1

1−δ ui , 0 ≤ i ≤ j
0, 0 ≤ |z̄(0)| ≤ 1

1+δ u j .
(6)

For all t ∈ [0, T ), we describe the law according to which �(z̄(t)) evolves as the
argument z̄(t) varies. Before that, in order to have a concise description, we rename
the quantization levels as follows:

ũk :=
{

uk/2 k even
u(k−1)/2

1+δ k odd, k = 0, 1, . . . , 2 j + 1,
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Fig. 2 The graph at the top illustrates the law (7) which describes the evolution of �(u(t)) as u(t) = z̄(t)
varies. Each edge connects two nodes, and is labeled with the condition which triggers the transition from
the starting node to the destination node. The graph at the bottom illustrates the same law but with nodes
and edges now labeled making use of the original values u rather than ũ

and moreover we set ũ2 j+2 := 0. The evolution of �(z̄(t)) obeys the law below (a
pictorial representation of the law is given by the directed graph in Fig. 2), where the
symbol ∧ denotes the logical conjunction ‘and’:

|�(z̄(t))| = ũk ∧ |z̄(t)| = ũk

1 + δ
⇒ |�(z̄(t+))| = ũk+1, for k = 0, 1, . . . , 2 j + 1

|�(z̄(t))| = ũk ∧ |z̄(t)| = ũk

1 − δ
⇒ |�(z̄(t+))| = ũk−1, for k = 1, 2, . . . , 2 j + 1

|�(z̄(t))| = ũk ∧ |z̄(t)| = ũk−1 ⇒ |�(z̄(t+))| = ũk−1, for k = 2 j + 2. (7)

If none of the conditions on the right-hand side of the implications above is satisfied,
then �(z̄(t+)) = �(z̄(t)). Observe that (7) takes into account both the positive and
the negative values of �(z̄(t)). In fact, since �(u)u ≥ 0 for all u, if �(z̄(t)) > 0
(respectively,�(z̄(t)) < 0) so is z̄(t) and�(z̄(t+)). Hence, (7) is in good accordance
with Fig. 2.

We now specify the solution we adopt for the system

ẋ(t) = f (x(t))+ g(x(t))�(z̄(t)) (8)

with t ∈ [0, T ). Set t0 = 0, let �(z̄(t0)) be as in (6), compute �(z̄(t+0 )) according to
(7) above, and consider the solution x(t) of

ẋ(t) = f (x(t))+ g(x(t))�(z̄(t+0 )) (9)

starting from the initial condition x0 = ϕ(0), on the interval [t0, t1], where t1 is
a time at which z̄(t) satisfies one of the conditions which force �(z̄(t)) to take a
new value, provided that the solution of (9) can be extended up to t1. By definition,
�(z̄(t)) = �(z̄(t+0 )) for all t ∈ [t0, t1], and on [t0, t1], x(t) is equivalently the solution
of (8). Then, set x1 = x(t1), compute �(z̄(t+1 )), and consider the solution of

ẋ(t) = f (x(t))+ g(x(t))�(z̄(t+1 )) (10)
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Stability of quantized time-delay nonlinear systems 343

starting from x1, and defined on [t1, t2], where t2 is a time at which a new transi-
tion occurs. Iterating this argument, one finds a sequence t0, t1, . . . , tk, tk+1 (for some
integer k ≥ 0, and where we have conventionally set tk+1 = T ) of switching times,

and the solution x(t) of (8) on [0, T ) is a C
1

function of time such that, for each
i = 0, 1, . . . , k, for all t ∈ [ti , ti+1), it satisfies

ẋ(t) = f (x(t))+ g(x(t))�(z̄(t+i )).

Remark 1 We now explain why chattering is avoided in the interval [0, T ) thanks to
the introduction of additional levels in the quantizer (see also [5]). In the proof of the
main result below it is shown that this property is true for all the times. As a matter
of fact, by the definition of (1), each time �(z̄(t)) makes a transition from one value
to another, some (dwell) time will elapse before a new transition can occur.1 This can
be illustrated with the help of Fig. 1, where u is replaced by z̄(t). Suppose that, at
time t , �(z̄(t)) = u0 and z̄(t) hits the point u0

1+δ . Then �(z̄(t)) takes the new value
u0

1+δ (see Fig. 1). After the switching, the function z̄(t) can increase and eventually
hits the point u0(1 − δ2)−1, or decrease and eventually hits the point u0(1 + δ)−2

(if it hits none of the two points then this means that z̄(t) remains in the interval
(u0(1 + δ)−2, u0(1 − δ2)−1) for the entire interval [t, T ), and no switching occurs in
this interval). In either case, before a new transition takes place, some time will elapse,
because the function z̄(t) must cover an interval of finite length with finite speed. In
fact, for a given initial condition ϕ ∈ C1([−2τ, 0],Rn), with ||ϕ||c ≤ R and R > 0,
the time derivative of z̄(t) = z(ϕ(t − τ)) is continuous and bounded on [0, T ), and in
particular:

∣
∣
∣
∣
dz̄(t)

dt

∣
∣
∣
∣ ≤ max|x |≤R

∣
∣
∣
∣
∂z(x)

∂x

∣
∣
∣
∣ · max

t∈[−2τ,−τ ]

∣
∣
∣
∣
dϕ(t)

dt

∣
∣
∣
∣ .

If, on the other hand, we were adopting the quantizer (4), �(z̄(t)) would have taken
the value u1 rather than u0

1+δ . Immediately after the switching, it could happen that
z̄(t) cannot decrease, thus forcing a transition to the previous value, which would in
turn trigger a new transition to u1, and this would continue to happen again and again.
It is precisely to avoid such fast transitions that new quantization levels were added.
This addition can be seen as a way to add hysteresis to the quantized system, and we
will refer to (1) as a quantizer with hysteresis. 
�
For the analysis to follow, the following observation is important. For each t ∈ [0, T ),
such that t ∈ [ti , ti+1), i = 0, 1, . . . , k, if |z̄(t)| < u0(1 − δ)−1, then the solution x(t)
of (8) satisfies the differential inclusion

ẋ(t) ∈ f (x(t))+ g(x(t))K (�(z̄(t))), (11)

1 For some classes of nonlinear systems, it is possible to estimate a lower bound on such a dwell time [2].
This is particularly important in the case in which the quantized controller is implemented over a network,
since it gives indications on the data-rate needed to transmit the quantized information.
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where K (�(u)), with u = z̄(t), is such that

K (�(u)) ⊆
⎧
⎨

⎩

{v ∈ R : v = (1 + λδ)u, λ ∈ [−1, 1]},
(1 + δ)−1u j < |u| ≤ (1 − δ)−1u0

{v ∈ R : v = λ(1 + δ)u , λ ∈ [0, 1]}, |u| ≤ (1 + δ)−1u j .

(12)

This is easily verified bearing in mind that, by the definition (1) of the map �(u),
�(u) ∈ K (�(u)) for all |u| < u0(1 − δ)−1.

2.3 Problem formulation

Since the control action is zero in the vicinity of the origin due to the dead-zone of the
quantizer (�(u) = 0 for |u| ≤ u j (1 + δ)−1), asymptotic stability of the origin of (5)
is not possible to achieve (except in exceptional cases without interest). We are rather
interested in the following property:

Definition 1 The system

ẋ(t) = f (x(t))+ g(x(t))v(t − τ), (13)

with τ ≥ 0 is semi-globally practically stabilizable by quantized feedback if for any
ε < R < 0 there exist a law z(x), a real number u0 > 0 and an integer j ≥ 1 such
that the solution of

ẋ(t) = f (x(t))+ g(x(t))�(z(x(t − τ))), (14)

starting from R = {ϕ ∈ C1([−2τ, 0],Rn) : ||ϕ||c ≤ R} enters Bε, the closed ball of
radius ε, at some finite time ts ≥ 0, and remains in that set for all t ≥ ts .

In the remaining sections, we propose a solution to the problem formulated above.

Remark 2 The difficulty to achieve asymptotic stability can be seen by rewriting the
system (14) in the form of a nominal stable system affected by a perturbation, namely

ẋ(t) = f (x(t))+ g(x(t))z(x(t))+ g(x(t))[�(z(x(t − τ)))− z(x(t))],

and neglecting the effect of the delay (the presence of the delay worsens the situation).
Consider the situation in which z(x(t)), the quantity which undergoes quantization,
is close to zero, namely |z(x(t))| < (1 + δ)−1u j . Bearing in mind (12), the perturba-
tion |�(z(x(t))) − z(x(t))| is bounded from above by |λ(δ + 1) − 1| |z(x(t))|, with
λ ∈ [0, 1] (the argument will be made clearer later on). Even in the easy case in which
the system is exponentially stable, asymptotic stability cannot be proven unless the
perturbation (in this case [λ(δ + 1) − 1]z(x(t))) is bounded by a linear term γ |x(t)|
and γ is sufficiently small (see e.g. [10, Sect. 5.1]), conditions which are not met in
our scenario. For the majority of the systems, these conditions are not satisfied either
and other notions of stability have been introduced. A notion of stability for solutions
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of systems affected by non-vanishing perturbations is that of uniform ultimate bound-
edness [6,11] which has found wide application in the area of robust control (see, e.g.
[10]). The notion of semi-global practical stabilizability we consider in our paper has
been extensively investigated for problems of robust stabilization of nonlinear systems
(see, e.g. [7, Chapter 12], [21], and references therein). The same notion of stability
has been already studied for quantized time-delay systems as well [13,20].

3 Standing assumptions and main result

3.1 Basic assumptions

The result to be derived below for the system (13) holds under the following standing
assumptions.

(A1) There exist a continuously differentiable positive definite and proper Lyapunov
function V (x), two class K∞ functions κ1, κ2, a positive definite continuous
function W (x) and a continuously differentiable real-valued function z(x),
which is zero at the origin, with W (x) and z(x) both depending on δ, such that,
for all x ∈ R

n ,

κ1(|x |) ≤ V (x) ≤ κ2(|x |),
∂V

∂x
[ f (x)+ g(x)(1 + p)z(x)] ≤ −W (x), p ∈ [−δ, δ]. (15)

Remark 3 It would be slightly more correct to denote W (x) and z(x) by, respectively,
Wδ(x) and zδ(x), since due to the presence of the uncertainty in the input channel,
both these functions are going to depend on the size δ of the uncertainty (see Sect. 3.2
below). However, to ease the notation, we decided not to make the dependence on δ
explicit. 
�
Remark 4 The uncertainty in the input channel is modeled through the parameter p,
whose range depends on the quantization density through δ. Such uncertainty takes
into account the effect due to quantization, as it should be evident from (12). Assump-
tion (A1) amounts to require the system ẋ(t) = f (x(t))+ g(x(t))u(t), with no delay,
to be stabilizable in the presence of quantization. The design of a stabilizing quantized
feedback is carried out, e.g. in [1] (see also Sect. 3.2 below). 
�

The next two assumptions require the system to be robust with respect to delays.
In particular they are needed to guarantee that no finite-escape time phenomenon will
occur, and that the solution stays bounded for all the times. These conditions also
appear in [14] (where no quantization was present), although in a slightly different
form. The difference is due to the fact that the quantization effect adds up to the delay
effect, and in the conditions below also the quantization parameter δ plays a role. More
comments on these two assumptions are postponed to Section 3.3.

(A2) Let  be a positive real number which satisfies  ≥ 16τ . For all x ∈ R
n , for

all ξ ∈ C
1
([0, 2τ ],Rn), for all λ1 ∈ [−1, 1] and for all λ2 ∈ C

0
([0, τ ],R)
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such that λ2(m) ∈ [1 − δ, 1 + δ] for all m ∈ [0, τ ], the inequality

− 1

4
W (x)− T (x, ξ, λ1, λ2)− 1



2τ∫

0

W (ξ(�))d� ≤ 0, (16)

with

T (x, ξ, λ1, λ2) = LgV (x)(1 + λ1δ)

2τ∫

τ

H(ξ(�), ξ(�− τ), λ2(�− τ))d�,

H(a, b, c) = L f z(a)+ Lgz(a)cz(b),

holds.
(A3) There exists a nondecreasing function κ3(·) of class C1 such that for all x ∈ R

n ,
for all L ≥ 0 and for all λ ∈ [−1, 1], the inequality

− 1

2
W (x)+ sup

|a|≤L

{
LgV (x)(1 + λ)[z(a)− z(x)]} ≤ κ3(L)[V (x)+ 1] (17)

holds. Let κ4(L) = 2κ3(L).

The two subsections below provide comments to help the readers to understand the
role played by each assumption in the solution of the problem. However, the reader
who is interested in getting to the statement of the main result immediately, can skip
the next two subsections and go directly to Sect. 3.4.

3.2 Comments on the Assumption (A1)

A number of ways to have Assumption (A1) fulfilled are discussed below.

– Lyapunov Redesign. Suppose that, for the system (13), are known a function V
of class C2, and a function ζ(x) of class C1 such that, instead of (15), only the
weaker condition

L f V (x)+ LgV (x)ζ(x) = −W̃ (x), (18)

with W̃ (x) a continuous positive definite function, is satisfied. Introduce the control
law

z(x) = ζ(x)− α(x)LgV (x), (19)
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Stability of quantized time-delay nonlinear systems 347

with α(x) a positive function to be chosen later. Then we have

∂V

∂x
[ f (x)+ g(x)(1 + p)z(x)]

= ∂V

∂x
[ f (x)+ g(x)ζ(x)] − α(x)

∣
∣LgV (x)

∣
∣2

+pLgV (x)
[
ζ(x)− α(x)LgV (x)

]

≤ −W (x)− α(x)(1 + p)
∣
∣LgV (x)

∣
∣2 + pLgV (x)ζ(x)

≤ −W (x)− α(x)(1 − δ)
∣
∣LgV (x)

∣
∣2 + δ

∣
∣LgV (x)

∣
∣ |ζ(x)|.

A simple completion-of-the-squares argument shows that

∂V

∂x
[ f (x)+ g(x)(1 + p)z(x)] ≤ −3

4
W̃ (x),

provided that

α(x) ≥ δ2

1 − δ

|ζ(x)|2
W̃ (x)

. (20)

Hence, the control law (19), with α(x) defined above and such that limx→0
α(x)LgV (x) = 0, guarantees the fulfillment of Assumption (A1) with
W (x) = 3W̃ (x)/4.

– Sontag’s universal stabilizer [19]. Consider the system

ẋ = f (x)+ g(x)[1 + p]u, (21)

with x ∈ R
n , u ∈ R, p ∈ [−δ, δ], δ ∈ [0, 1). Let us assume that a control Lyapunov

function V (x) is known for the system (21) with p = 0, and set

V̇ (x) = a(x)+ [1 + p]b(x)u, (22)

with

a(x) = L f V (x), b(x) = LgV (x). (23)

Since V is a control Lyapunov function for (21) with p = 0, b(x) = 0 implies
a(x) < 0 when x = 0. Next, consider the control given by Sontag’s formula:

u(x) = K
−a(x)− √

a(x)2 + b(x)4

b(x)
when b(x) = 0,

u(x) = 0 when b(x) = 0,

(24)

and where K is a positive real number to be selected later. Then, when b(x) = 0,
the derivative of V along the trajectories of (21) in closed-loop with u(x) defined
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in (24) satisfies

V̇ (x) = a(x)+ [1 + p]b(x)K −a(x)− √
a(x)2 + b(x)4

b(x)

= a(x)− [1 + p]K a(x)− [1 + p]K
√

a(x)2 + b(x)4 (25)

= [1 − (1 + p)K ]a(x)− [1 + p]K
√

a(x)2 + b(x)4.

We choose K = 2
1−δ > 0. Then, when a(x) ≥ 0, we have

V̇ (x) ≤ −a(x)− [1 + p]K
√

a(x)2 + b(x)4, (26)

and, when a(x) < 0,

V̇ (x) = a(x)− [1 + p]K (a(x)+
√

a(x)2 + b(x)4) < 0. (27)

When b(x) = 0, then

V̇ (x) = a(x) < 0 if x = 0. (28)

Under the small control property [19] one can prove that the control law introduced
above is smooth everywhere except at the origin where it may be only continuous.
However, in many cases, the control law turns out to be also continuously differ-
entiable at the origin, and then a continuously differentiable function z(x) which
guarantees the inequality (15) is obtained.

– Lyapunov stable systems. Consider again system (21), and assume that a Lyapunov
function V (x) such that a(x) ≤ 0, and b(x) = 0 when x = 0 and a(x) = 0, is
known. Then, selecting

u = −ξ(x)b(x), (29)

where ξ is any C1 positive function, we obtain, for all x ∈ R
n

V̇ (x) ≤ a(x)− [1 − δ]ξ(x)b(x)2 (30)

and the function a(x)−[1 − δ]ξ(x)b(x)2 is negative definite. Inequality (15) then
holds with z(x) = −ξ(x)b(x) and W (x) = −a(x)+ [1 − δ]ξ(x)b(x)2.

– Dissipation inequality [1,5]. Consider the system (13). Suppose that a Lyapunov
function V (x) is known such that for all x ∈ R

n

L f V (x)− 1

4
(1 − δ2)

(
LgV (x)

)2 ≤ −W̃ (x).

Then, for any p ∈ [−δ, δ] it is also true that

L f V (x)− 1

4
(1 − p2)

(
LgV (x)

)2 ≤ −W̃ (x).
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Define now

z(x) = −1

2
LgV (x)

and observe that the inequality above rewrites as

L f V (x)+ 1

4
p2 (

LgV (x)
)2 + z(x)LgV (x)+ z(x)2 ≤ −W̃ (x),

or, equivalently,

∂V

∂x
( f (x)+ g(x)z(x))+ 1

4
p2 (

LgV (x)
)2 + z(x)2 ≤ −W̃ (x). (31)

We remark incidentally [1] that the latter inequality implies the existence of a
control u = z(x) which renders the system

{
ẋ = f (x)+ g(x)u + g(x)w
z = u

strictly dissipative with respect to the supply rate q(w, z) = −z2 + p−2w2.
Observe now that

pz(x)LgV (x) ≤ 1

4
p2 (

LgV (x)
)2 + z(x)2

and therefore (31) implies that

∂V

∂x
( f (x)+ g(x)z(x))+ pz(x)LgV (x) ≤ −W̃ (x),

that is (15) with W (x) = W̃ (x).

3.3 Comments on the Assumptions (A2) and (A3)

The two Assumptions (A2) and (A3) describe, in terms of the Lyapunov function V ,
how robust with respect to delays in the input channel the system ẋ(t) = f (x(t)) +
g(x(t))u(t) should be in order to find a stabilizing feedback despite the delay. The
role of these assumptions for systems with no quantization was already investigated
in [14]. To better assess such a role, let us neglect the effect due to the quantization,
and let us set δ = 0. Then, in Assumption (A1), p = 0 and (15) becomes a standard
stabilizability assumption. The inequality (16) in (A2) becomes

− 1

4
W (x)− T (x, ξ)− 1



2τ∫

0

W (ξ(�))d� ≤ 0, (32)
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with

T (x, ξ) = LgV (x)

2τ∫

τ

H(ξ(�), ξ(�− τ))d�,

H(a, b) = L f z(a)+ Lgz(a)z(b).

Similarly, in (17), λ = 0, and the inequality implies that for all ξ ∈ C1([0, 2τ ],Rn),
there exists a positive constant κξ such that, for all x ∈ R

n , for all t ∈ [0, 2τ ],

− 1

2
W (x)+ LgV (x)[z(ξ(t))− z(x)] ≤ κξ [V (x)+ 1]. (33)

The conditions (32), (33) coincide with those found in [14] to prove that the origin of

ẋ(t) = f (x(t))+ g(x(t))z(x(t − τ)) (34)

is uniformly globally asymptotically stable. Compared with [14], the stronger condi-
tions we have in this paper are due to the fact that both quantization and delay affect
the system.

In the case no quantization is present, the role of (32), (33) to guarantee stability of
time-delay systems is easier to describe (see [14] for details). The condition (33), for
instance, guarantees that no finite-time escape of the solution occurs. As a matter of
fact, the time derivative of V computed along the solutions of (34) obeys the equations

V̇ (x(t)) = L f V (x(t))+ LgV (x(t))z(x(t − τ))

= L f V (x(t))+ LgV (x(t))z(x(t))+ LgV (x(t))[z(x(t − τ))− z(x(t))]
≤ −W (x(t))+ LgV (x(t))[z(x(t − τ))− z(x(t))].

As t ranges in the interval [0, τ ], x(t −τ) can be viewed as a function ξ ∈ C1([−τ, 0],
R

n), and bearing in mind (33), we have V̇ (x(t)) ≤ Kξ (V (x(t)) + 1). From this we
infer that no finite escape-time can exist on [t0, t0 + τ ]. Iterating the argument, one
can prove that the solution is defined for all t .

The condition (32) guarantees that a suitable Lyapunov–Krasowskii functional is
strictly decreasing along the solutions of the closed-loop system (again, the interested
reader is referred to [14] for more details). The purpose of the rest of the paper is to
show how, taking advantage of Assumptions (A1)–(A3), the arguments of [14] can
be modified to take into account the additional constraints due to the presence of the
quantizer.

We stress that the conditions (32), (33) require the system to be robust with respect
to (quantization and) delays and are essential to design stabilizing control laws for
nonlinear (quantized) time-delay systems. Analogous conditions are found in other
contributions on the topic. In [20], using an approach based on Razumikhin-like the-
orems, uniform asymptotic stability with restriction� on the norm ||ϕ||c of the initial
condition and with offset ε (a notion of stability very similar to what we have in Defi-
nition 1) is proven. To be more precise, suppose the system is stabilizable, that is (A1)
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holds (with p = δ = 0). Also suppose for the sake of simplicity that W (x) is replaced
by the class-K∞ function α3(|x |). Then it is possible to design a smooth invertible
function G(x) and a class-K∞ function γθ such that

|x(t)| ≥ γθ (|θ(t)|) ⇒ V̇ (t) ≤ −1

2
α3(|x(t)|), (35)

with

θ(t) = −G−1(x(t))[z(x(t))− z(x(t − τ))]

= −G−1(x(t))

t∫

t−τ

∂z(x)

∂x

∣
∣
∣
∣
x=x(s)

[ f (x(s))+ g(x(s))z(x(s − τ))]ds.

Further, one can find a class-K function γ1 such that

|θ(t)| ≤ τγ1

(

sup
t−2τ≤s≤t

|x(s)|
)

. (36)

Hence, combining (35) and (36), one obtains:

|x(t)| ≥ γθ

(

τγ1

(

sup
t−2τ≤s≤t

|x(s)|
))

⇒ V̇ (t) ≤ −1

2
α3(|x(t)|).

Under the small-gain condition

κ−1
1 ◦ κ2 ◦ γθ (τγ1(s)) < s, for all ε < s < �, (37)

the inequality above shows that the zero solution of the system

ẋ(t) = f (x(t))+ g(x(t))ζ(x(t − τ))

is uniformly asymptotically stable with restriction � on the norm ||ϕ||c of the initial
condition, and with offset δ.2

The condition (37) represents an alternative way to express robustness of the system
with respect to delays to infer stability results using Razumikhin-like theorems.

3.4 Main result

We are ready to state the main result of our work. As already made clear in the problem
formulation (Definition 1), the two main design parameters are the range u0 and the
number j of levels of the quantizer. Intuitively, to design u0 we need to quantify the

2 In the terminology of [21], the offset is the size of the set where the state converges at some finite time
and stays there from that time on—in our paper such a parameter is denoted by ε.
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“overshoot” of the state variable and we expect this to depend on the size of the initial
condition. Regarding the number of quantization levels j , it is not hard to figure out
that in general the closer one wants to confine the state to the origin (i.e. the smaller ε
is in Definition 1), the larger the number of quantization levels must be. On the other
hand, having fixed the width of the quantizer, the number of the quantization levels
will increase with the range u0 and in turn with R. Such a dependence is made clear in
the statement below. The proof is constructive and provides the explicit expressions
for u0 and j .

Proposition 1 Let us assume that the system (13) satisfies Assumptions (A1)–(A3).
Then the origin of (13) is semi-globally practically stabilizable by quantized feed-
back. Namely, there exist a positive, continuous and non-decreasing function u0(·) :
R≥0 → R>0, and a positive continuous function j (·, ·) : R

2≥0 → R>0 such that,
for any R > ε > 0, if u0 ≥ u0(R), j ≥ j (ε, R) and z is the feedback provided by
Assumption (A1) satisfying (15), then the solution of (14) starting from R = {ϕ ∈
C1([−2τ, 0],Rn) : ||ϕ||c ≤ R} enters Bε, the closed ball of radius ε, at some finite
time ts ≥ 0, and remains in that set for all t ≥ ts .

The proof of the result is postponed to the next section. Before ending Sect. 3, we
discuss two examples in which the proposition above is applied.

3.5 Example 1

We illustrate Proposition 1 by showing how it applies when the functions f and g in
(13) are linear. Thus, we consider the system

ẋ(t) = Ax(t)+ B�(u(t − τ)), (38)

where A ∈ R
n×n and B ∈ R

n×1 are constant matrices. We assume that the pair (A, B)
be stabilizable. Then there exist a positive definite symmetric matrix Q ∈ R

n×n and
a matrix K̃ ∈ R

1×n such that

(A + BK̃ )�Q + Q(A + BK̃ ) = −I

where I ∈ R
n×n denotes the identity matrix. Then, in view of the Lyapunov redesign

we have proposed to determine a control law such that Assumption (A1) is verified,
one can verify that the matrix

K = K̃ − 2αQ B, with α ≥ δ2

1 − δ
|K |2,

is such that, for all x ∈ R
n ,

2x�Q[Ax + B(1 + p)K x] ≤ −cxT x, p ∈ [−δ, δ] (39)
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with c = 3/4. Therefore, Assumption (A1) is satisfied with V (x) = x�Qx ,
z(x) = K x , and W (x) = cx�x . Hence in what follows we let Q, K , c be such
that (39) holds.

We turn now to Assumption (A2). We have

−T (x, ξ, λ1, λ2) = −2(1 + λ1δ)x
T Q B

2τ∫

τ

K {Aξ(l)− Bλ2(�− τ)K ξ(�− τ)}d�

≤ 2(1 + δ)|x | |Q B|
2τ∫

τ

|K A||ξ(�)|d�

+2(1 + δ)2|x | |Q B|
2τ∫

τ

|K BK ||ξ(�− τ)|d�

≤ 2(1 + δ)|x | |Q B|
2τ∫

τ

[G1|ξ(�)| + G2|ξ(�− τ)|]d�

with G1 = |K A|, G2 = (1 + δ)|K BK |. In view of the bounds on T (x, ξ, λ1, λ2),
Assumption (A2) is verified if

− c

4
|x |2 + 2(1 + δ)|x | |Q B|

2τ∫

τ

[G1|ξ(�)| + G2|ξ(�− τ)|]d�− c



2τ∫

0

|ξ(�)|2d� ≤ 0

(40)

with  = 16τ . We easily deduce that (40) is satisfied if

− c

4
|x |2 + 2G3|x |

2τ∫

0

|ξ(�)|d�− c

16τ

2τ∫

0

|ξ(�)|2d� ≤ 0 (41)

with G3 = 2|Q B|(1 + δ)max{G1,G2}. By Young’s inequality applied to the second
term, we deduce that (41) is satisfied if there exists ε > 0 such that

(

− c

4
+ G2

3

ε

)

|x |2 +
(
ε · 2τ − c

16τ

)
2τ∫

0

|ξ(�)|2d� ≤ 0. (42)

The inequality holds if ε = 4G2
3/c and

τ ≤ c

8
√

2G3
≤ c

16(1 + δ)
√

2|Q B| max {|K A|, (1 + δ)|K BK |} . (43)
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Finally we consider Assumption (A3). The left-hand side of (17) becomes

−1

2
W (x)+ sup

|a|≤L
{LgV (x)(1 + λ)[z(a)− z(x)]}

= − c

2
xTx + sup

|a|≤L
{2xT Q B(1 + λ)K [a − x]}

≤ 4|Q BK ||x |[|x | + L]
≤ 4|Q BK |[(L + 1)|x |2 + L]
≤ 4|Q BK |(L + 1)[λ−1

min(Q)V (x)+ 1].

We deduce that one can find a constant � = 4|Q BK | max{λ−1
min(Q), 1} such that

Assumption (A3) is satisfied with κ3(�) = �(� + 1). Summarizing, Assumptions
(A1)–(A3) are satisfied for the system (38). Hence, we can conclude that Proposi-
tion 1 applies, provided that the pair (A, B) is stabilizable, and the delay τ satisfies
(43).

3.6 Example 2

In this section, we consider the classical equations of an actuated pendulum without
friction:

ẋ1 = x2

ẋ2 = − sin x1 + u.
(44)

The control law

u = ζ(x) = sin x1 − x1 − 2x2

and the Lyapunov function

V (x) = xT Qx = xT

( 3
2

1
2

1
2

1
2

)

x

are such that

∂V

∂x
( f (x)+ g(x)ζ(x)) = −|x |2.

Applying the Lyapunov redesign of Sect. 3.2, it is straightforward to see that

z(x) = sin x1 − (α + 1)x1 − (α + 2)x2,
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with α ≥ 16 δ2

1−δ , guarantees Assumption (A1) with W (x) = 3
4 |x |2. To check

Assumption (A2), observe that

−T (x, ξ, λ1, λ2)

≤ 2(1 + δ)|x |
2τ∫

τ

[2(2 + α)|ξ(�)| + (2 + α)(1 + δ)2(2 + α)|ξ(�− τ)|] d�

≤ 2(1 + δ)|x |2(2 + α)

2τ∫

τ

[|ξ(�)| + (2 + α)(1 + δ)|ξ(�− τ)|] d�.

Similarly to the previous example, one can prove that, if

τ ≤ 3

128
√

2(α + 2)2(1 + δ)
,

then Assumption (A2) is fulfilled. Even Assumption (A3) can be easily verified. As a
matter of fact,

−1

2
W (x)+ sup

|a|≤L

{
LgV (x)(1 + λ)[z(a)− z(x)]}

≤ sup
|a|≤L

{2|x |(1 + δ)2(α + 2)[|a| + |x |]}
≤ 4(1 + δ)(α + 2)|x |[|x | + L].

As in the previous example, one can deduce that Assumption (A3) is fulfilled with

κ3(�) = �(� + 1) and � = 4(1 + δ)(α + 2)
√

2√
2−1

. The region under the graph in

Fig. 3 describes the pairs (δ, τ̃ ), with τ̃ = 1
(α+2)2(1+δ) , for which the system (44) is

semi-globally practically stabilizable.

4 Proof of Proposition 1

The proof is based on a Lyapunov–Krasowskii functional given by the sum of the
Lyapunov function V (x) in Assumption (A1) and a term which at time t depends
on the state x(·) restricted to the interval [t − 2τ, t]. Hence, in order to use such a
Lyapunov–Krasowskii functional, we need to first prove that all solutions of the closed-
loop system we consider exist for all t ∈ [−2τ, 2τ ]. To this purpose, we will only
make use of the Lyapunov function V (x). Then we will prove that the solutions can be
extended beyond 2τ , showing that the Lyapunov–Krasowskii functional is bounded
for all the time and finally that the solutions converge in finite time to a ball around
the origin of radius ε.

123



356 C. De Persis, F. Mazenc

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

δ

τ

Fig. 3 The region under the graph represents the set of pairs (δ, τ̃ ) for which the system (44) is semi-glob-
ally practically stabilizable. In the picture, τ̃ is simply denoted as τ . As δ tends to 0 (no quantization) the
normalized maximal allowable delay τ̃ approaches its maximum

4.1 Existence of solutions for t ∈ [−2τ, 2τ ]

As a first step, we need to define the function u0(·) by which we define the range
u0. We have already observed that to find such a function, we need to estimate the
region where the state is confined for all the times. We will obtain such an estimate
by steps, first estimating a bound on |x(t)| on the interval [0, τ ], then a bound on the
interval [0, 2τ ], and finally a bound on [0,+∞). Let us then introduce such sequence
of bounds as functions of the nonnegative real-valued parameter R, the radius of the
ball of initial conditions:

α(R) = κ−1
1

(
eκ4(R)τ (κ2(R)+ 1)− 1

)
, (45)

γ (R) = α(α(R)), (46)

ω(R) = κ−1
1

(

κ2(γ (R))+ τ

4
sup

|a|≤γ (R)
W (a)

)

+ R, (47)

where κ1, κ2, κ4 are the class K∞ functions defined in Sect. 3.1. Observe that the
functions α, γ, ω are continuous and for all R ≥ 0, the inequalities

ω(R) ≥ γ (R) ≥ α(R) ≥ R (48)

are satisfied. It will be proven below that |x(t)| ≤ ω(R) for all t ≥ −2τ . Define

u0(R) = sup
|a|≤ω(R)

|z(a)| + 1 (49)

and let u0 ≥ u0(R). Having defined u0 we can proceed with the rest of the proof.
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Consider the solution x(t) of (14) with an initial condition ϕ ∈ C1([−2τ, 0],Rn)

such that ||ϕ||c ≤ R. Let us show first that this solution is defined over [−2τ, τ ]. To
prove this, let us proceed by contradiction. Suppose it is not defined over [−2τ, τ ].
Observe that, since ||ϕ||c ≤ R, then |z(ϕ(t − τ))| < (1 − δ)−1u0 for all t ∈ [0, τ ], by
definition of u0(·) (see (49)). Hence,�(z(ϕ(t − τ))) is well-defined for all t ∈ [0, τ ].
Next, we deduce that, necessarily there exists T ∈ (0, τ ] such that the solution exists
for all t ∈ [0, T ). Such solution satisfies, for all t ∈ [0, T ) such that t ∈ [ti , ti+1),
i = 0, 1, . . . , k, the differential inclusion

ẋ(t) ∈ f (x(t))+ g(x(t))K (�(z(ϕ(t − τ)))), (50)

where K (�(z(ϕ(t −τ)))) denotes the set (12) with u = z(ϕ(t −τ)). For all t ∈ [0, T )
such that t ∈ [ti , ti+1), i = 0, 1, . . . , k, we are interested in finding an upper bound
for the term

L f V (x(t))+ LgV (x(t))v, (51)

for any v ∈ K (�(z(ϕ(t − τ)))). Indeed, since for any t ∈ [ti , ti+1), i = 0, 1, . . . , k,
the derivative of V along the trajectories of the system we consider satisfies

V̇ (t) = L f V (x(t))+ LgV (x(t))�(z(ϕ(t − τ)))

then

V̇ (t) = L f V (x(t))+ LgV (x(t))v

for some v ∈ K (�(z(ϕ(t − τ)))), and finding an upper bound for (51) means provid-
ing an upper bound for V̇ (t). Observe that to find an upper bound for (51), it suffices
to find an upper bound for

va := L f V (x(t))+ LgV (x(t))(1 + λδ)z(ϕ(t − τ))

+ LgV (x(t))(λ− 1)z(ϕ(t − τ))�
(52)

for all t ∈ [0, T ), with λ any number in the interval [−1, 1] and where � = 1 or 0. As
a matter of fact, since in (51), v ∈ K (�(z(ϕ(t − τ)))), then, by (12), either

v = (1 + λδ)z(ϕ(t − τ)),withλ ∈ [−1, 1]

(provided that (1 + δ)−1u j < |z(ϕ(t − τ))| ≤ (1 − δ)−1u0, in which case � = 0) or

v = λ(1 + δ)z(ϕ(t − τ)),withλ ∈ [0, 1]

(provided that |z(ϕ(t − τ))| ≤ (1 + δ)−1u j , in which case � = 1).
Hence, for a fixed t , the set of values in (51) obtained as v ranges over K (�

(z(ϕ(t − τ)))) is contained in the set of values of va as λ ∈ [−1, 1] and � ∈ {0, 1}.
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Now, adding and subtracting LgV (x(t))(1 + λδ)z(x(t)) on the right-hand side of
the equality (52), and taking advantage of (15), we deduce that

va ≤ −W (x(t))+ LgV (x(t))(1 + λδ)[z(ϕ(t − τ))− z(x(t))]
+LgV (x(t))(λ− 1)z(ϕ(t − τ))�. (53)

Since δ ∈ (0, 1), for any t ∈ [0, T ) and λ ∈ [−1, 1], the quantity LgV (x(t))
(1 + λδ)[z(ϕ(t − τ))− z(x(t))] belongs to the set

{LgV (x(t))(1 + λ)[z(ϕ(t − τ))− z(x(t))], λ ∈ [−1, 1]}.

Hence, if one finds a bound for

−W (x(t))+ LgV (x(t))(1 + λ)[z(ϕ(t − τ))− z(x(t))]
+LgV (x(t))(λ− 1)z(ϕ(t − τ))�, (54)

then one also finds a bound for va .
Now, inequality (17) in Assumption (A3) implies that

− 1

2
W (x(t))+LgV (x(t))(1+λδ)[z(ϕ(t−τ))−z(x(t))]≤κ3(R)[V (x(t))+1]

(55)

and that, for all λa ∈ [−1, 1],

− 1

2
W (x)+ LgV (x)(1 + λa)[−z(x)] ≤ κ3(R)[V (x)+ 1]. (56)

Therefore, for all λ ∈ [−1, 1],

− 1

2
W (x(t))+ LgV (x(t))(−1 + λ)z(x(t))� ≤ κ3(R)[V (x(t))+ 1] (57)

with � = 1 or 0. Next, from (54), (55) and (56), we deduce that

−W (x(t))+ LgV (x(t))(1 + λ)[z(ϕ(t − τ))− z(x(t))]
+LgV (x(t))(λ− 1)z(ϕ(t − τ))�

≤ 2κ3(R)[V (x(t))+ 1] = κ4(R)[V (x(t))+ 1],

and, therefore,

va ≤ κ4(R)[V (x(t))+ 1].

We deduce that necessarily, for all t ∈ [0, T ) such that t ∈ [ti , ti+1), i = 0, 1, . . . , k,
(i.e. at all inter-switching times) we have

V̇ (t) ≤ κ4(R)[V (x(t))+ 1]. (58)
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On the other hand, for any ti ∈ [0, T ), with i = 0, 1, . . . , k, (i.e. at the switching
times)

V (x(t+i )) = V (x(ti )). (59)

We conclude as in [14] that no finite escape time can exist. Indeed, for any t ∈ [0, T ),
let t ∈ [ti , ti+1) for some i . Then, integrating (58) from ti to t , we obtain

V (x(t))+ 1 ≤ eκ4(R)(t−ti )(V (x(t+i ))+ 1) = eκ4(R)(t−ti )(V (x(ti ))+ 1),

where the latter equality follows from (59). Similarly

V (x(ti ))+ 1 ≤ eκ4(R)(ti −ti−1)(V (x(t+i−1))+ 1)

= eκ4(R)(ti −ti−1)(V (x(ti−1))+ 1)

≤ eκ4(R)(ti −ti−1)eκ4(R)(ti−1−ti−2)(V (x(t+i−2))+ 1)

= eκ4(R)(ti −ti−1)eκ4(R)(ti−1−ti−2)(V (x(ti−2))+ 1)
...

≤ eκ4(R)(ti −ti−1)eκ4(R)(ti−1−ti−2) . . . eκ4(R)(t1−t0)(V (x(t0))+ 1)

≤ eκ4(R)(ti −t0)(V (x(t0))+ 1).

Recalling that t0 = 0, it follows that:

V (x(t))+ 1 ≤ eκ4(R)t (V (x(0))+ 1),

which shows that no finite escape time can actually exist. This fact and

|z(ϕ(t − τ))| < (1 − δ)−1u0(R),∀t ∈ [0, τ ] (60)

imply that x(t) can be extended beyond T . This yields a contradiction with the defi-
nition of T . It follows that x(t) is defined for all t ∈ [0, τ ]. As before, by integrating
(58) and bearing in mind (59), we infer that, for all t ∈ [0, τ ],

V (x(t))+ 1 ≤ eκ4(R)t [V (x(0))+ 1]. (61)

It follows immediately from (15) that, for all t ∈ [0, τ ],

κ1(|x(t)|) ≤ eκ4(R)τ [κ2(|x(0)|)+ 1] − 1

≤ eκ4(R)τ [κ2(R)+ 1] − 1.
(62)

It follows that, for all t ∈ [0, τ ],

|x(t)| ≤ α(R), (63)
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where α(·) is the function defined in (45). Observe that (63) and the inequality ||ϕ||c ≤
R imply that, for all t ∈ [τ, 2τ ], |z(x(t −τ))| ≤ sup|a|≤α(R) |z(a)|. Since ω(·) ≥ α(·),
it follows that, for all t ∈ [τ, 2τ ],

|z(x(t − τ))| < (1 − δ)−1u0(R). (64)

Hence,�(z(x(t −τ))) is well-defined for all t ∈ [τ, 2τ ]. Moreover, the time derivative
of z(x(t − τ)), namely

d

dt
z(x(t − τ)) = ∂z(x)

∂x

∣
∣
∣
∣
x=x(t−τ)

[ f (x(t − τ))+ g(x(t − τ))�(z(ϕ(t − 2τ)))],

is bounded for all t ∈ [τ, 2τ ], hence the length of the inter-switching intervals is
bounded away from zero on [τ, 2τ ], and therefore, the switching times in that interval
do not accumulate in finite time. Next, arguing exactly as before one can prove that
x(t) is defined for all t ∈ [τ, 2τ ] and that, for all t ∈ [τ, 2τ ],

|x(t)| ≤ α(α(R)) = γ (R). (65)

4.2 Extending solutions for t > 2τ

To extend further the solution, we proceed by contradiction.
Let us assume that

sup {t : x(s) exists and |x(s)| ≤ ω(R), ∀s ∈ [−2τ, t]} (66)

is a finite real number that we denote again T . From the inequality ||ϕ||c ≤ R, (63)
and (65) and the facts that R > 0 and W is positive definite, we deduce that T > 2τ .
Next, observe that the continuity of the solutions and the definition of u0(·) in (49)
and (48) imply that, for all t ∈ [−2τ, T ),

|z(x(t))| ≤ sup
|a|≤ω(R)

{|z(a)|} < u0(R)

1 − δ
. (67)

We exploit this inequality to derive first an upper bound for V̇ (t) and later on for U̇(t),
where U is a Lyapunov–Krasowskii functional to be introduced below.

Arguing as before (see (52) and the sentence following it), we claim that to find an
upper bound for V̇ (t), we need to find an upper bound to the expression below for all
t ∈ [2τ, T ),

vb(t) := L f V (x(t))+ LgV (x(t))(1 + λδ)z(x(t − τ))

+LgV (x(t))(λ− 1)z(x(t − τ))� (68)

with λ any number in the interval [−1, 1] and � ∈ {0, 1}. Recall that � = 1 if and only
if |z(x(t − τ))| ≤ (1 + δ)−1u j . Thanks to Assumption (A1), we deduce that, for all
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t ∈ [2τ, T ),

vb(t) ≤ −W (x(t))+ LgV (x(t))(1 + λδ)[z(x(t − τ))− z(x(t))]
+LgV (x(t))(λ− 1)z(x(t − τ))�. (69)

We now set z(x(t − τ))− z(x(t)) in a form which allows us to use Assumption (A2).
Let ti j , j = 1, . . . , k be the switching times in the interval (t − τ, t) and set without
loss of generality ti0 = t − τ , tik+1 = t . We observe as before that the switching times
do not accumulate in finite time. Hence we can write

z(x(t))− z(x(t − τ))

= z(x(t))− z(x(tik ))+ z(x(tik )) . . .− z(x(ti1))+ z(x(ti1))− z(x(t − τ))

=
k∑

j=0

[z(x(ti j+1))− z(x(ti j ))].

For each m ∈ [ti j , ti j+1), j = 0, 1, . . . , k,

z(x(ti j+1))− z(x(ti j ))

=
ti j+1∫

ti j

∂z

∂x
(x(m))[ f (x(m))+ g(x(m))�(z(x((ti j − τ)+)))]dm

=
ti j+1∫

ti j

∂z

∂x
(x(m))[ f (x(m))+ g(x(m))�(z(x(m − τ)))]dm

=
ti j+1∫

ti j

∂z

∂x
(x(m))[ f (x(m))+ g(x(m))ψ1(m − τ)z(x(m − τ))]dm

where3 ψ1(·) is a class C1 function taking value in [1 − δ, 1 + δ]. Overall we have

3 Let�(z(x(m −τ))) = ũi for m ∈ [ti j , ti j+1 ), where ũi = ui or ũi = ui (1+δ)−1. Then (1+δ)−1ũi <

z(x(m − τ)) ≤ (1 − δ)−1ũi . At each m ∈ [ti j , ti j+1 ), z(x(m − τ)) = α(m − τ)(1 + δ)−1ũi + (1 −α(m −
τ))(1 − δ)−1ũi , where α(·) takes value in [0, 1]. Observe also that, since (1 + δ)−1ũi , (1 − δ)−1ũi are
constants, and z(x(m − τ)) is a class C1 function on the interval [ti j , ti j+1 ), so is α(m − τ). Moreover,

�(z(x(m − τ))) = ũi = [α(m − τ)(1 + δ)−1 + (1 − α(m − τ))(1 − δ)−1]−1z(x(m − τ)),

where the functionψ1(m − τ) = [α(m − τ)(1+ δ)−1 + (1−α(m − τ))(1− δ)−1]−1 is a class C1 function
which spans the interval [1 − δ, 1 + δ]. Similar considerations hold when ũi is negative or equal to zero.

123



362 C. De Persis, F. Mazenc

z(x(t))− z(x(t − τ))

=
t∫

t−τ

∂z

∂x
(x(m))[ f (x(m))+ g(x(m))ψ2(m − τ)z(x(m − τ))]dm

with ψ2(·) : [t − 2τ, t − τ ] → [1 − δ, 1 + δ] a class C
0

function, and hence

vb(t) ≤ −W (x(t))+ LgV (x(t))(1 + λδ)

t∫

t−τ

∂z

∂x
(x(m))[ f (x(m))

+g(x(m))ψ2(m − τ)z(x(m − τ))]dm + ∂V

∂x
g(x(t))(λ− 1)z(x(t − τ))�.

We deduce from Assumption (A2), that we have, for all t ∈ [2τ, T ),

vb(t) ≤ −3

4
W (x(t))+ 1



t∫

t−2τ

W (x(�))d�

+LgV (x(t))(λ− 1)z(x(t − τ))�. (70)

Since � = 1 if and only if |z(x(t −τ))| ≤ (1+δ)−1u j , we have that, for all t ∈ [2τ, T ),

vb(t) ≤ −3

4
W (x(t))+ 1



t∫

t−2τ

W (x(�))d�+ 2
∣
∣LgV (x(t))

∣
∣ (1 + δ)−1u j ,

and therefore

V̇ (t) ≤ −3

4
W (x(t))+ 1



t∫

t−2τ

W (x(�))d�+ 2
∣
∣LgV (x(t))

∣
∣ (1 + δ)−1u j , (71)

Next, with an abuse of notation, we define the following Lyapunov–Krasowskii func-
tional

U(t) = V (x(t))+ 1

8τ

t∫

t−2τ

t∫

s

W (x(�))d�ds. (72)
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We deduce from (71) that, for all t ∈ [2τ, T ), the derivative of U along the trajectories
of the system we consider satisfies

U̇(t) ≤ −1

2
W (x(t))+

(
1


− 1

8τ

) t∫

t−2τ

W (x(�))d�+ 2
∣
∣LgV (x(t))

∣
∣ (1 + δ)−1u j

≤ −1

2
W (x(t))− 1

16τ

t∫

t−2τ

W (x(�))d�+ 2
∣
∣LgV (x(t))

∣
∣ (1 + δ)−1u j , (73)

where the last inequality is a consequence of the condition  ≥ 16τ . Let κ5 be a
positive increasing function of class C1 such that for all x ∈ R

n

∣
∣LgV (x)

∣
∣ ≤ κ5(V (x)), (74)

and set κ6(R) = κ5(κ2(ω(R))) (observe that κ6 is continuous). From (74), (15), the
definition of κ6 and the definition of T , we infer that, for all t ∈ [2τ, T ),

U̇(t) ≤ −1

2
W (x(t))− 1

16τ

t∫

t−2τ

W (x(�))d�+ 2κ6(R)(1 + δ)−1u j

≤−1

2
W (x(t))− 1

32τ 2

t∫

t−2τ

t∫

s

W (x(�))d�ds+2κ6(R)(1 + δ)−1u j . (75)

Next, we would like to express the first two terms on the right-hand side of the last
inequality in terms of U(t). This is possible according to Lemma 2 in Appendix A.
Namely, one can determine a C1 class-K∞ function κ7τ and a function κ8τ of class
C1, positive and nondecreasing such that, for all x ∈ R

n and z ≥ 0,

κ7τ (V (x)+ z)

κ8τ (V (x)+ z)
≤ 1

2
W (x)+ 1

4τ
z, (76)

where z = 1
8τ

∫ t
t−2τ

∫ t
s W (x(�))d�ds. From (76), it is possible to deduce that, for all

t ∈ [2τ, T ),

U̇(t) ≤ −κ7τ (U(t))
κ8τ (U(t)) + 2κ6(R)(1 + δ)−1u j . (77)

Since, for all t ∈ [2τ, T ), |x(t)| ≤ ω(R), we deduce that for all t ∈ [2τ, T ), V (x(t)) ≤
κ2(ω(R)) and

∫ t
t−2τ

∫ t
s W (x(�))d�ds ≤ 2τ 2 sup|a|≤ω(R) W (a). It follows that

U(t) ≤ κ2(ω(R))+ 2τ 2 sup
|a|≤ω(R)

W (a) =: κ9(R) (78)
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where κ9 is continuous and nondecreasing. Next, let us prove that, for all t ∈ [2τ, T ),
the inequality

U(t) ≤ κ2(γ (R))+ τ

4
sup

|a|≤γ (R)
W (a) (79)

is satisfied. This result is the consequence of (77) and the fact that U(2τ) ≤ κ2(γ (R))+
τ
4 sup|a|≤γ (R) W (a) and

U̇(t) < 0 (80)

when U(t) = κ2(γ (R))+ τ
4 sup|a|≤γ (R) W (a) provided that u j is appropriately cho-

sen.
To see this, observe in particular (recall (3)) that u j can be made small by increasing
the number of quantization levels j . Namely, let

j ≥
∣
∣
∣
∣
∣

(

log
μ(ε, R)(1 + δ)

u0(R)

) (

log
1 − δ

1 + δ

)−1
∣
∣
∣
∣
∣
+ 1 (81)

where μ is continuous and such that, for all the real numbers ε > 0, R > 0,

0 < μ(ε, R) ≤ min {A1(R), A2(ε, R)} (82)

with

A1(R) = κ7τ
(
κ2(γ (R))+ τ

4 sup|a|≤γ (R) W (a)
)

4κ6(R)κ8τ
(
κ2(γ (R))+ τ

4 sup|a|≤γ (R) W (a)
) ,

A2(ε, R) = κ7τ (κ1(ε))

4κ6(R)κ8τ
(
κ2(γ (R))+ τ

4 sup|a|≤γ (R) W (a)
) .

(83)

Observe that (81) and (3) imply

(1 + δ)−1u j ≤ μ(ε, R). (84)

Hence, (77) rewrites as

U̇(t) ≤ −κ7τ (U(t))
κ8τ (U(t)) + 2κ6(R)μ(ε, R). (85)

From this, since μ(ε, R) ≤ A1(ε, R), it is immediate to see that when
U(t) = κ2(γ (R))+ τ

4 sup|a|≤γ (R) W (a), (80) is satisfied and (79) holds.
From (79), it follows immediately that, for all t ∈ [2τ, T ),

|x(t)| ≤ κ−1
1

(

κ2(γ (R))+ τ

4
sup

|a|≤γ (R)
W (a)

)

. (86)
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We deduce from (47) and R > 0 that, for all t ∈ [2τ, T ),

|x(t)| < ω(R). (87)

This inequality and (67) imply that x(t) can be extended beyond T . This yields a con-
tradiction with the definition of T . We deduce that x(t) is defined over [−2τ,+∞)

and bounded in norm by ω(R).

4.3 Practical convergence

Observe that, arguing as before, one can prove that for all t ≥ 2τ , we have

U̇(t) ≤ −κ7τ (U(t))
κ8τ (U(t)) + 2μ(ε, R)κ6(R)

≤ − κ7τ (U(t))
κ8τ

(
κ2(γ (R))+ τ

4 sup|a|≤γ (R) W (a)
) + 2μ(ε, R)κ6(R). (88)

Since, according to (82),

4μ(ε, R)κ6(R) ≤ κ7τ (κ1(ε))

κ8τ
(
κ2(γ (R))+ τ

4 sup|a|≤γ (R) W (a)
) (89)

we deduce that, there exists tL ≥ 0 such that, for all t ≥ tL , the inequality

U(t) ≤ κ1(ε) (90)

is satisfied. It follows that, for all t ≥ tL ,

|x(t)| ≤ ε, (91)

that is the thesis. 
�
Remark 5 It has been observed in the proof that, by the definition (66) of T , for all
t ∈ [2τ, T ), |x(t)| < ω(R), and therefore 1

8τ

∫ t
t−2τ

∫ t
s W (x(�))d�ds ≤ τ

4 sup|a|≤ω(R)
W (a). Set:

κ R
7τ (ξ) = κ7τ (ξ)

κ8τ
(
κ2(ω(R))+ τ

4 sup|a|≤ω(R) W (a)
) . (92)

Then, one can use in the proof the inequality

U̇(t) ≤ −κ R
7τ (U(t))+ 2μ(ε, R)κ6(R), (93)

instead of (77). In particular one can follow exactly the same passages as before, pro-
vided that in the definition (82) of μ(ε, R), the functions A1(R) and A2(ε, R) in (83)
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are defined as

A1(R) = κ R
7τ

(
κ2(γ (R))+ τ

4 sup|a|≤γ (R) W (a)
)

4κ6(R)
,

A2(ε, R) = κ R
7τ (κ1(ε))

4κ6(R)
.

(94)

Then, by replacing the differential inequality (88) with (93), and the inequality (89)
with

4μ(ε, R)κ6(R) ≤ κ R
7τ (κ1(ε)), (95)

we can again conclude that x(t) enters the closed ball of radius ε in finite time and
remains in it thereafter.

This remark is useful to simplify the proof in the particular case where a constant
function can be chosen for the function κ8τ in (76), for instance when the positive
definite function W (x) is lower bounded by a class-K∞ function, as it happens when
system (13) is linear.

Observe, finally, that a function κ R
7τ of class K such that (93) is satisfied can be

found without necessarily relying on the knowledge of κ7τ and κ8τ . In fact, bearing
in mind (75), it suffices to find κ R

7τ such that

1

2
W (x(t))+ 1

4τ
z(t) ≥ κ R

7τ (U(t))

with

z(t) = 1

8τ

t∫

t−2τ

t∫

s

W (x(�))d�ds.

For instance, one can choose κ R
7τ (s) = Ke(

1
2 BS(s)), where

Ke(m) = 1

m

m∫

0

min
l≤|ξ |≤m

W(ξ)dl, m ∈ [0,m],

W(ξ) = 1
2 W (x)+ 1

4τ z, ξ = (xT z)T, m = ω(R)+ zR and BS is defined as

BS(l) = min

{

κ−1
2

(
l

2

)

,
l

2

}

. (96)
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As a matter of fact, for all |ξ | ≤ m,

W(ξ) ≥ min|ξ |≤m
W(ξ) ≥ 1

m̄

|ξ |∫

0

min|ξ |≤m
W(ξ)dl ≥ 1

m̄

|ξ |∫

0

min
l≤|ξ |≤m

W(ξ)dl = Ke(|ξ |).

Now, |x | + z ≤ 2|ξ | and

|x | + z ≥ κ−1
2 (V (x))+ z ≥ BS(V (x)+ z) (97)

with 4 BS(l) as in (96). Hence,

W(ξ) ≥ Ke(|ξ |) ≥ Ke

(
1

2
(|x | + z)

)

≥ Ke(
1

2
BS(V (x)+ z)) = κ R

7τ (V (x)+ z)

and, therefore,

1

2
W (x(t))+ 1

4τ
z(t) = W(ξ(t)) ≥ κ R

7τ (V (x(t))+ z(t)) = κ R
7τ (U (t))

as desired.
We could have stated the result directly in terms of the class-K function κ R

7τ just
derived rather than introducing the two class-K∞ functions κ7τ , κ8τ . We decided to
adopt the latter in order not to have in A1(R), A2(ε, R) (and hence in the conditions
on the number of quantization levels j) a class-K function depending implicitly on the
parameter R. 
�
Remark 6 The proof is constructive: it gives the explicit expressions for the two design
parameters u0 (see (49)), and j (see (81) and (82)). 
�

5 Conclusion

We have presented a Lyapunov–Krasowskii functional approach to solve the problem
of determining quantized feedbacks with delay which semi-globally practically stabi-
lize the origin of nonlinear systems. For a fairly general family of systems, and given
any value of the quantization density, we have characterized the maximal allowable
constant delay which the closed-loop system can tolerate. A problem which in our
opinion would be interesting to investigate is how, for systems with a well-defined
relative degree, our result can be propagated via the backstepping technique.

4 Let α1(r) = κ−1
2 (r), α2(r) = r , α3(r) = min{α1(r), α2(r)}, and 2a = V (x), 2b = z. Then, bearing in

mind that, for any function α of class K∞, α(a + b) ≤ α(2a)+ α(2b), we have

α1(2a)+ α2(2b) ≥ α3(2a)+ α3(2b) ≥ α3(a + b).

This proves κ−1
2 (V (x))+ z ≥ BS(V (x)+ z).
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Appendix A: Technical lemmas

Lemma 1 Let W : R
n → R be a continuous and positive definite function. For all

m ≥ 0, let

Ka(m) =
min{m,1}∫

0

min
l≤|ξ |≤1

W(ξ)dl + max{0,m − 1},

Kb(m) = 1 + Ka(m)

min1≤|ξ |≤max{1,m} W(ξ)
.

(98)

Then Ka belongs to K∞, Kb is continuous, positive and increasing over [0,+∞) and,
for all X ∈ R

n,

Ka(|X |)
Kb(|X |) ≤ W(X). (99)

Proof The fact that W(X) is positive definite implies that both Ka and Kb are well-
defined and continuous. Let us prove that Ka belongs to K∞. Observe that Ka(0) = 0.
When m ∈ [0, 1], Ka(m) = ∫ m

0 minl≤|ξ |≤1 W(ξ)dl. Therefore this function is increas-

ing over [0, 1]. When m > 1, Ka(m) = ∫ 1
0 minl≤|ξ |≤1 W(ξ)dl + m − 1. Therefore,

this function is increasing over [1,+∞) and goes to the infinity when its argument
does. Consequently, Ka is of class K∞. If follows that Kb is a positive and increasing
over [0,+∞).

Next, to establish (99), we distinguish between two cases.
First case: |X | ≤ 1. Then Ka(|X |) = ∫ |X |

0 minl≤|ξ |≤1 W(ξ)dl ≤ |X | min|X |≤|ξ |≤1

W(ξ) ≤ W(X). Moreover, Kb(|X |) ≥ 1. It follows that Ka(|X |)
Kb(|X |) ≤ W(X).

Second case: |X | ≥ 1. Then

Ka(|X |) =
1∫

0

min
l≤|ξ |≤1

W(ξ)dl + |X | − 1 > 0,

Kb(|X |) = 1 + Ka(|X |)
min1≤|ξ |≤|X | W(ξ)

>
Ka(|X |)

min1≤|ξ |≤|X | W(ξ)
> 0.

(100)

Therefore,

min
1≤|ξ |≤|X | W(ξ) >

Ka(|X |)
Kb(|X |) > 0. (101)
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It follows that

W(X) >
Ka(|X |)
Kb(|X |) > 0. (102)

Lemma 2 Let τ > 0, W be a positive definite function. Then one can determine a
function Kc of class K∞ and a function Kd, positive, continuous and increasing over
[0,+∞) such that, for all x ∈ R

n and z ≥ 0,

Kc(V (x)+ z)

Kd(V (x)+ z)
≤ 1

2
W (x)+ 1

4τ
z. (103)

Proof First, observe that the inequalities (15) imply that for all x ∈ R
n , z ≥ 0,

|x | + z ≤ κ−1
1 (V (x))+ z ≤ BL(V (x)+ z) (104)

with

BL(l) = κ−1
1 (l)+ l (105)

and

|x | + z ≥ κ−1
2 (V (x))+ z ≥ BS(V (x)+ z)

with

BS(l) = min

{

κ−1
2

(
l

2

)

,
l

2

}

.

From Lemma 1, it follows immediately that one can determine a function Ka of class
K∞ and a function Kb, positive, continuous and increasing over [0,+∞) such that,
for all x ∈ R

n and z ≥ 0,

Ka(|x | + z)

Kb(|x | + z)
≤ 1

2
W (x)+ 1

4τ
z. (106)

From this inequality, (104) and (97), it follows that

Ka(BS(V (x)+ z))

Kb(BL(V (x)+ z))
≤ 1

2
W (x)+ 1

4τ
z. (107)

This allows us to conclude.
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