Skip to main content
Log in

Arc-length-based Lyapunov tests for convergence and stability with applications to systems having a continuum of equilibria

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In this paper, fundamental relationships are established between convergence of solutions, stability of equilibria, and arc length of orbits. More specifically, it is shown that a system is convergent if all of its orbits have finite arc length, while an equilibrium is Lyapunov stable if the arc length (considered as a function of the initial condition) is continuous at the equilibrium, and semistable if the arc length is continuous in a neighborhood of the equilibrium. Next, arc-length-based Lyapunov tests are derived for convergence and stability. These tests do not require the Lyapunov function to be positive definite. Instead, these results involve an inequality relating the right-hand side of the differential equation and the Lyapunov function derivative. This inequality makes it possible to deduce properties of the arc length function and thus leads to sufficient conditions for convergence and stability. Finally, it is shown that the converses of all the main results hold under additional assumptions. Examples are included to illustrate how our results are particularly suited for analyzing stability of systems having a continuum of equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell SL, Rose NJ (1979) Singular perturbation of autonomous linear systems. SIAM J Math Anal 10: 542–551

    Article  MATH  MathSciNet  Google Scholar 

  2. Bernstein DS, Bhat SP (1995) Lyapunov stability, semistability, and asymptotic stability of matrix second-order systems. ASME Trans J Vib Acoust 117: 145–153

    Article  Google Scholar 

  3. Bhat SP, Bernstein DS (2003) Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria. SIAM J Control Optim 42(5): 1745–1775

    Article  MATH  MathSciNet  Google Scholar 

  4. Erdi P, Toth J (1988) Mathematical models of chemical reactions: theory and applications of deterministic and stochastic models. Princeton University Press, Princeton

    Google Scholar 

  5. Feinberg M (1995) The existence and uniqueness of steady states for a class of chemical reaction networks. Arch Ration Mech Anal 132: 311–370

    Article  MATH  MathSciNet  Google Scholar 

  6. Sontag ED (2001) Structure and stability of certain chemical networks and applications to the kinetic proofreading model of t-cell receptor signal transduction. IEEE Trans Autom Control 46: 1028–1047

    Article  MATH  MathSciNet  Google Scholar 

  7. Chellaboina V, Bhat SP, Haddad WM, Bernstein DS (2009) Modeling and analysis of mass-action kinetics: nonnegativity, realizability, reducibility, and semistability. IEEE Control Syst Mag 29(4): 60–78

    Article  MathSciNet  Google Scholar 

  8. Ilchmann A (1993) Non-identifier-based high gain adaptive control. Springer, London

    MATH  Google Scholar 

  9. Mudgett DR, Morse AS (1985) Adaptive stabilization of linear systems with unknown high-frequency gain. IEEE Trans Autom Control 30(6): 549–554

    Article  MATH  MathSciNet  Google Scholar 

  10. Narendra KS, Annaswamy AM (1989) Stable adaptive systems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  11. Nussbaum RD (1983) Some remarks on a conjecture in parameter adaptive control. Syst Control Lett 3: 243–246

    Article  MATH  MathSciNet  Google Scholar 

  12. Helmcke U, Moore JB (1994) Optimization and dynamical systems. Springer-Verlag, London

    Google Scholar 

  13. Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 49(9): 1520–1533

    Article  MathSciNet  Google Scholar 

  14. Arcak M (2007) Passivity as a design tool for group coordination. IEEE Trans Autom Control 52(8): 1380–1390

    Article  MathSciNet  Google Scholar 

  15. Hui Q, Haddad WM, Bhat SP (2008) Finite-time semistability and consensus for nonlinear dynamical networks. IEEE Trans Autom Control 53(8): 1887–1900

    Article  MathSciNet  Google Scholar 

  16. Hirsch M (1989) Convergent activation dynamics in continuous time networks. Neural Netw 2: 331–349

    Article  Google Scholar 

  17. Forti M, Tesi A (2004) Absolute stability of analytic neural networks: an approach based on finite trajectory length. IEEE Trans Circuits Syst I 51(12): 2460–2469

    Article  MathSciNet  Google Scholar 

  18. Absil P-A, Mahony R, Andrews B (2005) Convergence of the iterates of descent methods for analytic cost functions. SIAM J Optim 16(2): 531–547

    Article  MATH  MathSciNet  Google Scholar 

  19. Aulbach B (1984) Continuous and discrete dynamics near manifolds of equilibria. Springer-Verlag, Berlin

    MATH  Google Scholar 

  20. Łojasiewicz S (1984) Sur les trajectoires du gradient d’une fonction analytique. In: Seminari di Geometria 1982–1983. Dipartimento di Matematica, Istituto di Geometria, Università di Bologna, Bologna, Italy, pp 115–117

  21. Kurdyka K, Mostowski T, Parusiński A (2000) Proof of the gradient conjecture of R. Thom. Ann Math 152: 763–792

    Article  MATH  Google Scholar 

  22. Absil P-A, Kurdyka K (2006) On the stable equilibrium points of gradient systems. Syst Control Lett 55: 573–577

    Article  MATH  MathSciNet  Google Scholar 

  23. Lageman C (2007) Pointwise convergence of gradient-like systems. Math Nachr 280(13–14): 1543–1558

    Article  MATH  MathSciNet  Google Scholar 

  24. Forti M, Nistri P, Quincampoix M (2006) Convergence of neural networks for programming problems via a nonsmooth Łojasiewicz inequality. IEEE Trans Neural Netw 17(6): 1471–1486

    Article  Google Scholar 

  25. Bolte J, Daniilidis A, Lewis A (2007) The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J Optim 17(4): 1205–1223

    Article  MATH  MathSciNet  Google Scholar 

  26. Bhatia NP, Hajek O (1969) Local semi-dynamical systems. In: Lecture notes in mathematics, vol 90. Springer-Verlag, Berlin

  27. Iggidr A, Kalitine B, Outbib R (1996) Semidefinite Lyapunov functions stability and stabilization. Math Control Signal Syst 9: 95–106

    Article  MATH  MathSciNet  Google Scholar 

  28. Bhat SP, Bernstein DS (2003) Arc-length-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria. In: Proceedings of American control conference, Denver, CO, June 2003, pp 2961–2966

  29. Bhat SP, Bernstein DS (1999) Lyapunov analysis of semistability. In: Proceedings of the American control conference, San Diego, CA, June 1999, pp 1608–1612

  30. Hartman P (1982) Ordinary differential equations, 2nd edn. Birkhäuser, Boston

    MATH  Google Scholar 

  31. Kartsatos AG (1980) Advanced ordinary differential equations. Mariner Publishing Company, Inc., Tampa

    MATH  Google Scholar 

  32. Rouche N, Habets P, Laloy M (1977) Stability theory by Liapunov’s direct method. Applied mathematical sciences. Springer-Verlag, New York

    Google Scholar 

  33. Yoshizawa T (1975) Stability theory and the existence of periodic solutions and almost periodic solutions. Springer-Verlag, New York

    MATH  Google Scholar 

  34. Apostol TM (1974) Mathematical Analysis, 2nd edn. Addison-Wesley Publishing Company, Inc.

  35. Bhatia NP, Szegö GP (1970) Stability theory of dynamical systems. Springer-Verlag, Berlin

    MATH  Google Scholar 

  36. LaSalle JP (1960) Some extensions of Liapunov’s second method. IRE Trans Circuit Theory CT-7(4): 520–527

    MathSciNet  Google Scholar 

  37. Byrnes CI, Martin CF (1995) An integral-invariance principle for nonlinear systems. IEEE Trans Autom Control 40: 983–994

    Article  MATH  MathSciNet  Google Scholar 

  38. Teel A, Panteley E, Loría A (2002) Integral characterizations of uniform asymptotic and exponential stability with applications. Math Control Signal Syst 15: 177–201

    Article  MATH  Google Scholar 

  39. Blanchini F, Miani S (2008) Set-theoretic methods in control. Birkhäuser, Boston

    MATH  Google Scholar 

  40. Garling DJH (2007) Inequalities: a journey into linear analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  41. Munkres JR (1975) Topology a first course. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  42. Brockett RW (1983) Asymptotic stability and feedback stabilization. In: Millman RS, Brockett RW, Sussmann HJ (eds) Differential geometric control theory. Birkhäuser, Boston, pp 181–191

    Google Scholar 

  43. Filippov AF (1988) Differential equations with discontinuous right-hand sides. Kluwer, Dordrecht

    MATH  Google Scholar 

  44. Aubin JP, Frankowska H (1990) Set-valued analysis. In: Systems and control: foundations and applications, vol 2. Birkhäuser, Boston

  45. Rockafellar RT, Wets RJ-B (1998) Variational analysis. In: Comprehensive studies in mathematics, vol 317. Springer-Verlag, Berlin

  46. Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay P. Bhat.

Additional information

Preliminary versions of the results of this paper appeared in the proceedings of the American Control Conference, 1999 and 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhat, S.P., Bernstein, D.S. Arc-length-based Lyapunov tests for convergence and stability with applications to systems having a continuum of equilibria. Math. Control Signals Syst. 22, 155–184 (2010). https://doi.org/10.1007/s00498-010-0054-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-010-0054-3

Keywords

Navigation