Skip to main content
Log in

Input-to-state stability for a class of hybrid dynamical systems via averaging

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

Input-to-state stability (ISS) properties for a class of time-varying hybrid dynamical systems via averaging method are considered. Two definitions of averages, strong average and weak average, are used to approximate the time-varying hybrid systems with time-invariant hybrid systems. Closeness of solutions between the time-varying system and solutions of its weak or strong average on compact time domains is given under the assumption of forward completeness for the average system. We also show that ISS of the strong average implies semi-global practical (SGP)-ISS of the actual system. In a similar fashion, ISS of the weak average implies semi-global practical derivative ISS (SGP-DISS) of the actual system. Through a power converter example, we show that the main results can be used in a framework for a systematic design of hybrid feedbacks for pulse-width modulated control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubin JP, Lygeros J, Quincampoix M, Sastry S, Seube N (2002) Impulse differential inclusions: a viability approach to hybrid systems. IEEE Trans Autom Control 47: 2–20

    Article  MathSciNet  Google Scholar 

  2. Beker O, Hollot CV, Chait Y (2002) Plant with integrator: an example of reset control overcoming limitations of linear feedback. IEEE Trans Autom Control 46: 1797–1799

    Article  MathSciNet  Google Scholar 

  3. Bitmead RR, Johnson CR Jr (1987) Discrete averaging principles and robust adaptive identification. In: Control and dynamics: advances in theory and applications, vol XXV. Academic Press, New York

  4. Bolzem P, Spinellin W (2004) Quadratic stabilization of a switched affine system about a nonequilibrium point. In: Proceeding of the 2004 American Control Conference Boston, Massachusetts, pp 3890–3895

  5. Cai C, Teel AR (2005) Results on input-to-state stability for hybrid systems. In: Proceedings of the 44th IEEE conference on decision and control, and European control conference, no 5403–5406, Sevilla, Spain

  6. Cai C, Teel AR (2009) Characterizations of input-to-state stability for hybrid systems. Syst Control Lett. 58: 47–53

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai C, Teel AR, Goebel R (2007) Smooth Lyapunov functions for hybrid systems. Part I: existence is equivalent to robustness. IEEE Trans Autom Control 52: 1264–1277

    Article  MathSciNet  Google Scholar 

  8. Cai C, Teel AR, Goebel R (2008) Smooth Lyapunov functions for hybrid systems. Part II: (pre)asymptotically stable compact sets. IEEE Trans Autom Control 53: 734–748

    Article  MathSciNet  Google Scholar 

  9. Cervanters I, Perez-Pinal FJ, Torres AM (2009) Hybrid Control of DC-DC power converters. In: Renewable energy, pp 173–196. InTech

  10. Clarke FH (1990) Optimization and nonsmooth analysis. Classic applied mathematics

  11. Czarkowski D, Pujara LR, Kazimierczuk MK (1995) Robust stability of state-feedback control of PWM DC-DC push-pull converter. IEEE Trans Ind Electron 42: 108–111

    Article  Google Scholar 

  12. Donchev T, Grammel G (2005) Averaging of functional differential inclusions in Banach spaces. J Math Anal Appl 311: 402–416

    Article  MathSciNet  MATH  Google Scholar 

  13. Donchev T, Slavov I (1999) Averaging method for one-sided Lipschitz differential inclusions with generalized solutions. SIAM J Control Optim 37: 1600–1613

    Article  MathSciNet  MATH  Google Scholar 

  14. Engell S, Kowalewski S, Schulz C, Stursberg O (2000) Continuous-discrete interactions in chemical processing plants. Proc IEEE 88: 1050–1068

    Article  Google Scholar 

  15. Goebel R, Sanfelice RG, Teel AR (2009) Hybrid dynamical systems. IEEE Control Syst Mag 29: 28–93

    Article  MathSciNet  Google Scholar 

  16. Goebel R, Teel AR (2006) Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica 42: 573–587

    Article  MathSciNet  MATH  Google Scholar 

  17. Iannelli L, Johansson KH, Jonsson UT, Vasca F (2004) Dither shape in the averaging of switched systems. Proceedings of the 2004 American Control Conference, vol 6, pp 5812–5817

  18. Iannelli L, Johansson KH, Jonsson UT, Vasca F (2006) Averaging of nonsmooth systems using dither. Automatica 42: 669–676

    Article  MathSciNet  MATH  Google Scholar 

  19. Kassakian JG, Schlecht MF, Verghese GC (1991) Principles of power electronics. Addison-Wesley, New York

    Google Scholar 

  20. Khalil HK (2002) Nonlinear systems. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  21. Krein PT, Bentsman J, Bass RM, Lesieutre BL (1990) On the use of averaging for the analysis of power electronic systems. IEEE Trans Power Electron 5: 182–190

    Article  Google Scholar 

  22. Lehman B, Bass RM (1996) Extensions of averaging theory for power electronics systems. IEEE Trans Power Electron 11: 542–553

    Article  Google Scholar 

  23. Liu YM, Huang XF, Zhang B, Yin LY (2008) Hybrid feedback switching control in a buck converter. In: Proceedings of the IEEE international conference on automation and logistics, no 207–210, Qingdao, China

  24. Livadas C, Lygeros J, Lynch N (2000) High-level modeling and analysis of the traffic alert and collision avoidance system. Proc IEEE 88: 926–948

    Article  Google Scholar 

  25. Lygeros J, Johansson KH, Simić SN, Zhang J, Sastry SS (2003) Dynamical properties of hybrid automata. IEEE Trans Autom Control 48: 2–17

    Article  Google Scholar 

  26. Mariéthoz S, Almér S, Baja M et al (2010) Comparison of hybrid control techniques for buck and boost DC-DC converters. IEEE Trans Control Syst Technol 18: 1126–1145

    Article  Google Scholar 

  27. McShane EJ (1934) Extension of range of functions. Bull Am Math Soc 40: 837–842

    Article  MathSciNet  Google Scholar 

  28. Nešić D, Teel AR (2001) Input-to-state stability for nonlinear time-varying systems via averaging. Math Control Signals Syst 14: 257–280

    Article  MATH  Google Scholar 

  29. Papafotiou G, Geyer T, Morari M (2004) Hybrid modelling and optimal control of switched-mode DC-DC converters. In: Proceedings of the IEEE workshop on computers in power electronics, no 148–155, Zhangjiajie, China

  30. Porfiri M, Roberson DG, Stilwell DJ (2008) Fast switching analysis of linear switched systems using exponential splitting. SIAM J Control Optim 47: 2582–2597

    Article  MathSciNet  Google Scholar 

  31. Sanders JA, Verhulst F (1985) Averaging methods in nonlinear dynamical systems. Springer, New York

    MATH  Google Scholar 

  32. Song M, Tarn T-J, Xi N (2000) Integration of task scheduling, action planning and control in robotic manufacturing systems. Proc IEEE 88: 1097–1107

    Article  Google Scholar 

  33. Sreekumar C, Agarwal V (2008) A hybrid control algorithm for voltage regulation in DC-DC boost converter. IEEE Trans Ind Electron 55: 2530–2538

    Article  Google Scholar 

  34. Sun J, Mitchell DM, Greuel MF, Krein PT, Bass RM (2001) Averaged modeling of PWM converters operating in discontinuous conduction mode. IEEE Trans Power Electron 16: 482–492

    Article  Google Scholar 

  35. Teel AR, Moreau L, Nešić D (2003) A unified framework for input-to-state stability in systems with two time scales. IEEE Trans Autom Control 48: 1526–1544

    Article  Google Scholar 

  36. Teel AR, Moreau L, Nešić D (2004) Input-to-state set stability for pulse width modulated control systems with disturbances. Syst Control Lett 51: 23–32

    Article  MATH  Google Scholar 

  37. Teel AR, Nešić D (2010) Averaging theory for a class of hybrid systems. Dyn Contin Discrete Impuls Syst 17: 829–851

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

This study was supported by the Australian Research Council under the Discovery Project, Future Fellow program, AFOSR (Grant FA9550-09-1-0203) and NSF (Grants ECCS-0925637 and CNS-0720842).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Nešić, D. & Teel, A.R. Input-to-state stability for a class of hybrid dynamical systems via averaging. Math. Control Signals Syst. 23, 223–256 (2012). https://doi.org/10.1007/s00498-011-0070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-011-0070-y

Keywords

Navigation