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Abstract We develop tools for investigation of input-to-state stability (ISS)
of infinite-dimensional control systems. We show that for certain classes of ad-
missible inputs the existence of an ISS-Lyapunov function implies the input-
to-state stability of a system. Then for the case of systems described by ab-
stract equations in Banach spaces we develop two methods of construction
of local and global ISS-Lyapunov functions. We prove a linearization princi-
ple that allows a construction of a local ISS-Lyapunov function for a system
which linear approximation is ISS. In order to study interconnections of non-
linear infinite-dimensional systems, we generalize the small-gain theorem to
the case of infinite-dimensional systems and provide a way to construct an
ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov func-
tions for subsystems are known and the small-gain condition is satisfied. We
illustrate the theory on examples of linear and semilinear reaction-diffusion
equations.

Keywords nonlinear control systems · infinite-dimensional systems ·
input-to-state stability · Lyapunov methods · linearization

1 Introduction

The concept of input-to-state stability (ISS) introduced in [33] is widely used
to study stability properties of control systems with respect to external inputs.
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Within last two decades different methods for verification of the input-to-state
stability of finite-dimensional systems were developed. For a survey of recent
results in the ISS theory see [35] and [3], the relation of ISS and circle criterion
can be found in [18]. In particular it is known that the method of Lyapunov
functions together with small-gain theorems (see [19], [6], [8], [23]) provides us
with rich tools to investigate input-to-state stability of control systems.

To input-to-state stability of infinite-dimensional systems, with an excep-
tion of time-delay systems (see, e.g. [29], [23]), less attention was devoted.

In [25] ISS of certain classes of semilinear parabolic equations has been
studied with the help of strict Lyapunov functions. In [30] a construction of
ISS-Lyapunov functions for certain time-variant linear systems of hyperbolic
equations (balance laws) has been provided. In [4] it was shown, that for certain
classes of monotone reaction-diffusion systems ISS of the system with diffusion
follows from the ISS of its local dynamics (i.e. of a system without diffusion).

Other results have been obtained for general control systems via vector
Lyapunov functions. In [23] a general vector Lyapunov small-gain theorem for
abstract control systems satisfying weak semigroup property (see also [20],
[22]) has been proved. For this class of systems in [21] the trajectory-based
small-gain results have been obtained and applied to a chemostat model.

In [17] the results on relations between circle-criterion and ISS for systems,
based on equations in Banach spaces, have been proved.

Our guideline in this paper is a development of Lyapunov-type sufficient
conditions for ISS of the infinite-dimensional systems and elaboration of meth-
ods for construction of ISS-Lyapunov functions.

Our first main result is that for abstract control systems under certain
assumptions on the class of input functions from the existence of a (local or
global) ISS-Lyapunov function it follows (local or global) ISS of the system. We
show that our definition of the local ISS-Lyapunov function is consistent with
the standard definition of local ISS-Lyapunov function for finite-dimensional
systems.

In the next part of the paper we exploit semigroup theory methods and
consider infinite-dimensional systems generated by differential equations in
abstract spaces. For such systems we develop two methods for construction of
ISS-Lyapunov functions for control systems.

To study interconnections of n ISS subsystems, we generalize small-gain
theorem for finite-dimensional systems [5], [8] to the infinite-dimensional case.
This theorem allows a construction of a ISS-Lyapunov function for the whole
interconnection if ISS-Lyapunov functions for subsystems are known and the
small-gain condition is satisfied. The ISS of the interconnection follows then
from the existence of an ISS-Lyapunov function for it.

The local ISS of nonlinear control systems can be investigated in an anal-
ogous way (see, e.g., [7]), but also another type of results is possible, namely
linearization technique, well-known for infinite-dimensional dynamical systems
(without inputs) [14]. We prove, that a system is LISS provided its lineariza-
tion is ISS in two ways. The first proof holds for systems with a Banach state
space, but it doesn’t provide a LISS-Lyapunov function. Another proof is based
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on a converse Lyapunov theorem and provides a LISS-Lyapunov function, but
needs that the state space is Hilbert.

Throughout the paper we use either classical solutions of partial differential
equations, or the solutions in the Sobolev spaces. Other function spaces can
be also exploited, see e.g. [2].

The outline of the work is as follows: in Section 2 we introduce notation and
basic notions. In Section 3 we discuss ISS for linear systems. Afterwards the
method of ISS-Lyapunov functions is extended to the abstract control systems
and the results are applied to certain nonlinear reaction-diffusion equation. In
Section 5 we prove a linearization principle. Next, in Section 6 we prove a
small-gain theorem and apply it to certain linear and nonlinear systems.

2 Preliminaries

Throughout the paper let (X, ‖ · ‖X) and (U, ‖ · ‖U ) be the state space and the
space of input values, endowed with norms ‖ · ‖X and ‖ · ‖U respectively.

For linear normed spaces X,Y let L(X,Y ) be the spaces of bounded linear
operators from X to Y and L(X) := L(X,X). A norm in these spaces we
denote by ‖ · ‖.

By C(X,Y ) we denote the space of continuous functions from X to Y ,
C(X) := C(X,X) and by PC(X,Y ) the space of piecewise right-continuous
functions from X to Y . Both are equipped with the standard sup-norm.

Let R+ := [0,∞). We will use throughout the paper the following function
spaces:

– Ck
0 (0, d) is a space of k times continuously differentiable functions

f : (0, d) → R with a support, compact in (0, d).
– Lp(0, d), p ≥ 1 is a space of p-th power integrable functions f : (0, d) → R

with the norm ‖f‖Lp(0,d) =
(

∫ d

0 |f(x)|pdx
)

1
p

.

– W p,k(0, d) is a Sobolev space of functions f ∈ Lp(0, d), which have weak
derivatives of order ≤ k, all of which belong to Lp(0, d). Norm inW p,k(0, d)

is defined by ‖f‖Wp,k(0,d) =
(

∫ d

0

∑

1≤s≤k

∣

∣

∣

∂sf
∂xs (x)

∣

∣

∣

p

dx
)

1
p

.

– W p,k
0 (0, d) is a closure of Ck

0 (0, d) in the norm of W p,k(0, d).

– Hk(0, d) =W 2,k(0, d), Hk
0 (0, d) =W 2,k

0 (0, d).

We use the following axiomatic definition of a control system

Definition 1 The triple Σ = (X,Uc, φ), consisting of the state space X, the
space of admissible input functions Uc ⊂ {f : R+ → U}, both of which are
linear normed spaces, equipped with norms ‖ · ‖X and ‖ · ‖Uc

respectively and
of a transition map φ : Aφ → X, Aφ ⊂ R+ × R+ ×X × Uc is called a control
system, if the following properties hold:

– Existence: For every (t0, φ0, u) ∈ R+ ×X × Uc there exists t > t0: [t0, t]×
{(t0, φ0, u)} ⊂ Aφ.
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– Identity property: For every (t0, φ0) ∈ R+×X it holds φ(t0, t0, φ0, ·) = φ0.
– Causality: For every (t, t0, φ0, u) ∈ Aφ, for every ũ ∈ Uc, such that u(s) =
ũ(s), s ∈ [t0, t] it holds (t, t0, φ0, ũ) ∈ Aφ and φ(t, t0, φ0, u) ≡ φ(t, t0, φ0, ũ).

– Continuity: for each (t0, φ0, u) ∈ R+ ×X × Uc the map t → φ(t, t0, φ0, u)
is continuous.

– Semigroup property: for all t ≥ s ≥ 0, for all φ0 ∈ X, u ∈ Uc so that
(t, s, φ0, u) ∈ Aφ, it follows
– (r, s, φ0, u) ∈ Aφ, r ∈ [s, t],
– for all r ∈ [s, t] it holds φ(t, r, φ(r, s, x, u), u) = φ(t, s, x, u).

Here φ(t, s, x, u) denotes the state of a system at the moment t ∈ R+, if its
state at the moment s ∈ R+ was x ∈ X and the input u ∈ Uc was applied.

This definition is adopted from [23], but we specialize it to the systems,
which satisfy classical semigroup property. Another axiomatic definitions of
control systems are also used in the literature (see [34], [39]).

We assume throughout the paper, that for control systems a BIC property
(Boundedness-Implies-Continuation property) holds (see [22, p. 4], [23]): for
all (t0, x0, u) ∈ R+ × X × Uc there exist maximal time of existence of the
solution tm ∈ (t0,∞], such that [t0, tm)×{(t0, x0, u)} ⊂ Aφ and for all t ≥ tm
(t, t0, x0, u) /∈ Aφ. Moreover, if tm < ∞, then for every M > 0 there exists
t ∈ [t0, tm): ‖φ(t, t0, x, u)‖X > M .

In other words, BIC property states that a solution may stop to exist in
finite time only because of blow-up phenomena, when the norm of a solution
goes to infinity in finite time. As examples in this paper we use the parabolic
systems, for which the BIC property holds, because of smoothing action of
parabolic systems, see [14].

In this paper we consider time-invariant systems. Time-invariance means,
that the future evolution of a system depends only on the initial state of the
system and on the applied input, but not on the initial time. For time-invariant
systems we can without restriction assume that initial time t0 := 0. We denote
for short φ(t, φ0, u) := φ(t, 0, φ0, u).

Definition 2 For the formulation of stability properties the following classes
of functions are useful:

K := {γ : R+ → R+ | γ is continuous and strictly increasing, γ(0) = 0}
K∞ := {γ ∈ K | γ is unbounded}
L :=

{

γ : R+ → R+ | γ is continuous and decreasing with lim
t→∞

γ(t) = 0
}

KL :=
{

β : R2
+ → R+ | β(·, t) ∈ K, ∀t ≥ 0, β(r, ·) ∈ L, ∀r > 0

}

Definition 3 Σ is globally asymptotically stable at zero uniformly with respect
to x (0-UGASx), if ∃β ∈ KL, such that ∀φ0 ∈ X, ∀t ≥ 0 it holds

‖φ(t, φ0, 0)‖X ≤ β(‖φ0‖X , t). (1)

If β can be chosen as β(r, t) = Me−atr ∀r, t ∈ R+, for some a,M > 0,
then Σ is called exponentially 0-UGASx.
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The notion 0-UGASx is also called uniform asymptotic stability in the
whole (see [13, p. 174]).

We need also another notion:

Definition 4 Σ is globally asymptotically stable at zero (0-GAS), if it holds

1. ∀ε > 0 ∃δ > 0 : ‖x‖X < δ, t ≥ 0 ⇒ ‖φ(t, x, 0)‖X < ε,
2. ∀x ∈ X ‖φ(t, x, 0)‖X → 0, t→ ∞.

In other words,Σ is 0-GAS if it is locally stable and globally attractive (see,
e.g. [37]). Note, that the 0-UGASx property is not equivalent to the 0-GAS in
general ([13, 36], see also Section 3.1).

Definition 5 Element of state space φ0 ∈ X is called an equilibrium point of
control system Σ if φ(t, φ0, 0) = φ0, for all t ≥ 0.

To study stability properties of control systems with respect to external
inputs, we introduce the following notion

Definition 6 Σ is called locally input-to-state stable (LISS), if ∃ρx, ρu > 0
and ∃β ∈ KL and γ ∈ K, such that the inequality

‖φ(t, φ0, u)‖X ≤ β(‖φ0‖X , t) + γ(‖u‖Uc
) (2)

holds ∀φ0 : ‖φ0‖X ≤ ρx, ∀t ≥ 0 and ∀u ∈ Uc: ‖u‖Uc
≤ ρu.

If β can be chosen as β(r, t) = Me−atr ∀r, t ∈ R+, for some a,M > 0,
then Σ is called exponentially LISS (eLISS).

The control system is called input-to-state stable (ISS), if in the above
definition ρx and ρu can be chosen equal to ∞.

If Σ is ISS and β can be chosen as β(r, t) =Me−atr ∀r, t ∈ R+, for some
a,M > 0, then Σ is called exponentially ISS (eISS).

One of the most common choices for Uc is the space Uc := PC(R+, U) with
the norm ‖ · ‖Uc

:= sup
0≤s≤∞

‖u(s)‖U . In this case one can use the alternative

definition of the ISS property, which is often used in the literature (see, e.g.
[23], [15]):

Proposition 1 Let Uc := PC(R+, U). Then Σ is LISS iff ∃ρx, ρu > 0 and
∃β ∈ KL and γ ∈ K, such that the inequality

‖φ(t, φ0, u)‖X ≤ β(‖φ0‖X , t) + γ( sup
0≤s≤t

‖u(s)‖U) (3)

holds ∀φ0 : ‖φ0‖X ≤ ρx, ∀t ≥ 0 and ∀u ∈ Uc: ‖u‖Uc
≤ ρu.

Proof Sufficiency is clear, since sup
0≤s≤t

‖u(s)‖U ≤ sup
0≤s≤∞

‖u(s)‖U = ‖u‖Uc
.

Now let Σ be LISS. Due to causality property of Σ the state φ(τ, φ0, u),
τ ∈ [0, t] of the system Σ does not depend on the values of u(s), s > t. For
arbitrary t ≥ 0, φ0 ∈ X and u ∈ Uc consider another input ũ ∈ Uc, defined by

ũ(τ) :=

{

u(τ), τ ∈ [0, t],
u(t), τ > t.
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The inequality (2) holds for all admissible inputs, and hence it holds also for
ũ. Substituting ũ into (2) and using that ‖ũ‖Uc

= sup
0≤s≤t

‖u(s)‖U , we obtain

(3). �

The similar property (with ess sup
0≤s≤t

‖u(s)‖U instead of sup
0≤s≤t

‖u(s)‖U ) holds

for continuous input functions (Uc := C(R+, U)), for the class of strongly
measurable and essentially bounded inputs Uc := L∞(R+, U) (which is the
standard choice in the case of finite-dimensional systems) and many other
classes of input functions.

3 Linear systems

Let X be a Banach space and T = {T (t), t ≥ 0} be a C0-semigroup on X
with an infinitesimal generator A = lim

t→+0

1
t (T (t)x− x).

Consider a linear control system with inputs of the form

ṡ = As+ f(u(t)),
s(0) = s0,

(4)

where f : U → X is continuous and so that for some γ ∈ K it holds

‖f(u)‖X ≤ γ(‖u‖U), ∀u ∈ U. (5)

We consider weak solutions of the problem (4), which are solutions of in-
tegral equation, obtained from (4) by variation of constants formula

s(t) = T (t)s0 +

∫ t

0

T (t− r)f(u(r))dr, (6)

where s0 ∈ X .
The space of admissible inputs Uc can be chosen as an arbitrary subspace

of a space of strongly measurable functions f : [0,∞) → U , such that for
all u ∈ Uc the integral in (6) exists in the sense of Bochner. If we define
φ(t, s0, u) := s(t) by the formula (6), we obtain that (X,Uc, φ) is a control
system according to Definition 1.

For examples in this section we will use Uc := C([0,∞), U). In this case
functions under the sign of integration in (6) are strongly measurable (since
they are continuous, see [16, p. 84]) and for all t ≥ 0

∫ t

0

‖T (t− r)f(u(r))‖Xdr < ∞.

Thus according to the criterion of Bochner integrability (see [16, Theorem
3.7.4.]), integral in (6) is well-defined in the sense of Bochner.

The following fact is well-known
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Proposition 2 For finite-dimensional systems (X = Rn) the following prop-
erties of the system (4) are equivalent: e0-GAS, eISS, 0-GAS, ISS.

We are going to obtain a counterpart of this proposition for infinite-dimensional
systems. We need the following lemma:

Lemma 1 The following statements are equivalent:

1. (4) is 0-UGASx.
2. T is uniformly stable (that is, ‖T (t)‖ → 0, t→ ∞).
3. T is uniformly exponentially stable (‖T (t)‖ ≤ Me−ωt for some M,ω > 0

and all t ≥ 0).
4. (4) is exponentially 0-UGASx.

Proof 1 ⇔ 2. At first note that for an input-to-state stable system (4) KL-
function β can be always chosen as β(r, t) = ζ(t)r for some ζ ∈ L. Indeed,
consider x ∈ X : ‖x‖X = 1, substitute it into (1) and choose ζ(·) = β(1, ·) ∈
L. From linearity of T we have, that ∀x ∈ X , x 6= 0 ‖T (t)x‖X = ‖x‖X ·
‖T (t) x

‖x‖X
‖X ≤ ζ(t)‖x‖X .

Let (4) be 0-UGASx. Then ∃ζ ∈ L, such that

‖T (t)x‖X ≤ β(‖x‖X , t) = ζ(t)‖x‖X ∀x ∈ X, ∀t ≥ 0

holds. This means, that ‖T (·)‖ ≤ ζ(·), and, consequently, T is uniformly stable.
If T is uniformly stable, then it follows, that ∃ζ ∈ L: ‖T (·)‖ ≤ ζ(·). Then

∀x ∈ X ‖T (t)x‖X ≤ ζ(t)‖x‖X .
Equivalence 2 ⇔ 3 is well-known (see [9, Proposition 1.2, p. 296]).
3⇔ 4. Follows from the fact that for someM,ω > 0 it holds that ‖T (t)x‖ ≤

Me−ωt‖x‖X ∀x ∈ X ⇔ ‖T (t)‖ ≤Me−ωt for some M,ω > 0. �

The following proposition provides us with an infinite-dimensional coun-
terpart of Proposition 2

Proposition 3 For systems of the form (4) it holds:

(4) is e0-UGASx⇔ (4) is 0-UGASx⇔ (4) is eISS ⇔ (4) is ISS.

Proof System (4) is e0-UGASx ⇔ (4) 0-UGASx by Lemma 1.
Clearly, from eISS of (4) it follows ISS of (4), and this implies that (4) is

0-UGASx by taking u ≡ 0. It remains to prove, that 0-UGASx of (4) implies
eISS of (4).

Let system (4) be 0-UGASx, then by Lemma 1, T is an exponentially
stable C0-semigroup, that is, ∃M,w > 0, such that ‖T (t)‖ ≤ Me−wt for all
t ≥ 0. From (6) we have

‖s(t)‖X ≤Me−wt‖s0‖X +
M

w
γ(‖u‖Uc

),

and the eISS is proved. �
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For finite-dimensional linear systems 0-GAS is equivalent to 0-UGASx and
ISS to eISS, consequently, the Proposition 2 is a special case of Proposition 3.

However, for infinite-dimensional linear systems 0-GAS and 0-UGASx are
not equivalent. Moreover, 0-GAS in general does not imply bounded-input
bounded-state (BIBS) property (∀x ∈ X , ∀u ∈ Uc: ‖u‖Uc

≤ M for some
M > 0 ⇒ ‖φ(t, x, u)‖X ≤ R for some R > 0). We show this by the following
example (another example, which demonstrates this property, can be found in
[25, p.247]).

3.1 Counterexample

Let C(R) be the space of continuous functions on R, and let X = C0(R) be the
Banach space of continuous functions (with sup-norm), that vanish at infinity:

C0(R) = {f ∈ C(R) : ∀ε > 0 ∃ compact set Kε ⊂ R : |f(s)| < ε ∀s ∈ R\Kε}.

For a given q ∈ C(R) consider the multiplication semigroup Tq (for the
properties of these semigroups see, e.g., [9]), defined by

Tq(t)f = etqf ∀f ∈ C0(R),

and for all t ≥ 0 we define etq : x ∈ R 7→ etq(x).
Let us take U = X = C0(R) and choose q as q(s) = − 1

1+|s| . Consider the

control system, given by

ẋ = Aqx+ u, (7)

where Aq is the infinitesimal generator of Tq.
Let us show, that the system (7) is 0-GAS. Fix arbitrary f ∈ C0(R). We

obtain

‖Tq(t)f‖C0(R) = sup
s∈R

|(Tq(t)f)(s)| = sup
s∈R

e−t 1
1+|s| |f(s)| ≤ sup

s∈R

|f(s)| = ‖f‖C0(R).

This shows that the first axiom of 0-GAS property is satisfied.
To show the global attractivity of the system note that ∀ε > 0 there

exists a compact set Kε ⊂ R, such that |f(s)| < ε ∀s ∈ R\Kε. For such ε
it holds, that |(Tq(t)f)(s)| < ε ∀s ∈ R\Kε, ∀t ≥ 0. Moreover, there exists t(ε):
|(Tq(t)f)(s)| < ε for all s ∈ Kε and t ≥ t(ε). Overall, we obtain, that for each
f ∈ C0(R) and all ε > 0 there exist t(ε) > 0 such that ‖Tq(t)f‖C0(R) < ε ∀t ≥
t(ε). This proves, that system (7) is 0-GAS.

Take constant w.r.t. time external input u ∈ C0(R): u(s) = a 1√
1+|s|

, for

some a > 0 and all s ∈ R. The solution of (7) is given by:

x(t)(s) = e−t 1
1+|s|x0 +

∫ t

0

e−(t−r) 1
1+|s|

a
√

1 + |s|
dr

= e−t 1
1+|s|x0 − a

√

1 + |s|(e−t 1
1+|s| − 1).
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We make a simple estimate, substituting s = t− 1 for t > 1:

sup
s∈R

a
∣

∣

∣

√

1 + |s|(e−t 1
1+|s| − 1)

∣

∣

∣
≥ a

√
t(1− e−1) → ∞, t→ ∞.

For all x0 ∈ C0(R) holds ‖e−t 1
1+|s|x0‖X → 0, t → ∞. Thus, ‖x(t)‖X → ∞,

t → ∞, and the system (7) possesses unbounded trajectories for arbitrary
small inputs.

3.2 Example: linear parabolic equations with Neumann boundary conditions

In this subsection we investigate input-to-state stability of a system of parabolic
equations with Neumann conditions on the boundary.

Let G be a bounded domain in Rp with smooth boundary ∂G, and let ∆
be Laplacian in G. Let also F ∈ C(G× Rm,Rn), F (x, 0) ≡ 0.

Consider a parabolic system










∂s(x,t)
∂t −∆s = Rs+ F (x, u(x, t)), x ∈ G, t > 0,

s (x, 0) = φ0 (x) , x ∈ G,
∂s
∂n

∣

∣

∂G×R+
= 0.

(8)

Here ∂
∂n is the normal derivative, s(x, t) ∈ Rn, R ∈ Rn×n and u ∈ C(G ×

R+,R
m) is an external input.

Let L : C(G) → C(G), L = −∆ with

D(L) =

{

f ∈ C2(G) ∩ C1(G) : Lf ∈ C(G),
∂f

∂n

∣

∣

∣

∣

∂G

= 0

}

.

Define the diagonal operator matrix A = diag(−L, . . . ,−L) with −L as
diagonal elements and D(A) = (D(L))n. The closure A of A is an infinitesimal
generator of an analytic semigroup on X = (C(G))n.

Define the space of input values by U := C(G,Rm) and the space of input
functions by Uc := C(R+, U).

The problem (8) may be considered as an abstract differential equation:

ṡ = (A+R)s+ f(u(t)),

s(0) = φ0,

where u ∈ Uc, u(t)(x) = u(x, t) and f : U → X is defined by f(v)(x) :=
F (x, v(x)).

One can check, that the map t 7→ f(u(t)) is continuous, and that

‖f(u)‖X = sup
x∈G

|f(u)(x)| = sup
x∈G

|F (x, u(x))| ≤ γ(‖u‖U),

where γ(‖u‖U) := supx∈G,y:|y|≤‖u‖U
|F (x, y)|.

Consequently we have reformulated the problem (8) in the form (4). Note
that A + R also generates an analytic semigroup, as a sum of infinitesimal
generator of analytic semigroup A and bounded operator R.

Our claim is:
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Proposition 4 System (8) is eISS ⇔ R is Hurwitz.

Proof Denote by S(t) the analytic semigroup, generated by A+R.
We are going to find a simpler representation for S(t). Consider (8) with

u ≡ 0. Substituting s(x, t) = eRtv(x, t) in (8), we obtain a simpler problem for
v:











∂v(x,t)
∂t = Av, x ∈ G, t > 0,

v (x, 0) = φ0 (x) , x ∈ G,
∂v
∂n

∣

∣

∂G×R+
= 0.

(9)

In terms of semigroups, it means: S(t) = eRtT (t), where T (t) is a semi-
group generated by A. It is well-known (see, e.g. [14]), that the growth bound
of analytic semigroup T (t) is given by supℜ(Spec(A)) = supλ∈Spec(A) ℜ(λ),
where ℜ(z) is the real part of a complex number z.

We are going to find an upper bound of spectrum of A in D(A). Note that
Spec(A) = Spec(−L). Thus, it is enough to estimate the spectrum of −L that
consists of all λ ∈ C, such that the following equation has a nontrivial solution

{

Ls+ λs = 0, x ∈ G
∂s
∂n

∣

∣

∂G
= 0.

(10)

Let λ > 0 be an eigenvalue of L and uλ 6≡ 0 be the corresponding eigen-
function. If uλ attains its nonnegative maximum over G in some x ∈ G, then
according to the strong maximum principle (see [10], p. 333) uλ ≡ const and
consequently uλ ≡ 0 ⇒ uλ cannot be an eigenfunction. If uλ attains the non-
negative maximum over G in some x ∈ ∂G, then by Hopf’s lemma (see [10], p.

330), ∂uλ(x)
∂n > 0. Consequently, uλ ≤ 0 in G. But −uλ is also an eigenfunction,

thus applying the same argument we obtain that uλ ≡ 0 in G, thus λ > 0 is
not an eigenvalue.

Obviously λ = 0 is an eigenvalue, therefore growth bound of T (t) is 0 and
growth bound of S(t) is ω0 = sup{ℜ(λ) : ∃x 6= 0 : Rx = λx}. Thus, R to
be Hurwitz is a sufficient condition for the system (8) to be exponentially
0-UGASx and, consequently, eISS.

It is also a necessary condition, because for constant φ0 and u ≡ 0 the
solutions of (8) are for arbitrary x ∈ G the solutions of ṡ = Rs, and to
guarantee the stability of the equilibrium R has to be Hurwitz. �

In (8) the diffusion coefficients are equal to one. In case, when the diffusion
coefficients of different subsystems are not equal to each other the statement of
Proposition 4 is in general not true because of Turing instability phenomenon
(see [38], [27]).

4 Lyapunov functions for nonlinear systems

To verify both local and global input-to-state stability of nonlinear systems,
Lyapunov functions can be exploited. In this section we provide basic tools
and illustrate them by an example.
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Definition 7 A continuous function V : D → R+, D ⊂ X, 0 ∈ int(D) =
D\∂D is called a local ISS-Lyapunov function (LISS-LF) for Σ, if ∃ρx, ρu > 0
and functions ψ1, ψ2 ∈ K∞, χ ∈ K and positive definite function α, such that:

ψ1(‖x‖X) ≤ V (x) ≤ ψ2(‖x‖X), ∀x ∈ D (11)

and ∀x ∈ X : ‖x‖X ≤ ρx, ∀u ∈ Uc : ‖u‖Uc
≤ ρu it holds:

‖x‖X ≥ χ(‖u‖Uc
) ⇒ V̇u(x) ≤ −α(‖x‖X), (12)

where the Lie derivative of V corresponding to the input u is given by

V̇u(x) = lim
t→+0

1

t
(V (φ(t, x, u)) − V (x)). (13)

Function χ is called ISS-Lyapunov gain for (X,Uc, φ).
If in the previous definition D = X, ρx = ∞ and ρu = ∞, then the function

V is called ISS-Lyapunov function.

Note, that in general a computation of the Lie derivative V̇u(x) requires knowl-
edge of the input on some neighborhood of the time instant t = 0.

If the input, with respect to which the Lie derivative V̇u(x) is computed,
is clear from the context, then we write simply V̇ (x).

Theorem 1 Let Σ = (X,Uc, φ) be a time-invariant control system, and x ≡ 0
be its equilibrium point.

Also let for all u ∈ Uc and for all s ≥ 0 a function ũ, defined by ũ(τ) =
u(τ + s) for all τ ≥ 0, belong to Uc and ‖ũ‖Uc

≤ ‖u‖Uc
.

If Σ possesses a (L)ISS-Lyapunov function, then it is (L)ISS.

For a counterpart of this theorem for infinite-dimensional dynamical sys-
tems without inputs see, e.g., [14].

Proof Let the control systemΣ = (X,Uc, φ) possess a LISS-Lyapunov function
and ψ1, ψ2, χ, α, ρx, ρu be as in the Definition 7. Take an arbitrary control
u ∈ Uc with ‖u‖Uc

≤ ρu such that

I = {x ∈ D : ‖x‖X ≤ ρx, V (x) ≤ ψ2 ◦ χ(‖u‖Uc
) ≤ ρx} ⊂ int(D).

Such u exists, because 0 ∈ int(D).
Firstly we prove, that I is invariant w.r.t. Σ, that is: ∀x ∈ I ⇒ x(t) =

φ(t, x, u) ∈ I, t ≥ 0.
If u ≡ 0, then I = {0}, and I is invariant, because x = 0 is the equilibrium

point of Σ. Consider u 6≡ 0.
If I is not invariant w.r.t. Σ, then, due to continuity of φ w.r.t. t (continuity

axiom of Σ), ∃t∗ > 0, such that V (x(t∗)) = ψ2 ◦ χ(‖u‖Uc
), and therefore

‖x(t∗)‖X ≥ χ(‖u‖Uc
).

The input to the system Σ after time t∗ is ũ, defined by ũ(τ) = u(τ + t∗),
τ ≥ 0. According to the assumptions of the theorem ‖ũ‖Uc

≤ ‖u‖Uc
. Then
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from (12) it follows, that V̇ũ(x(t∗)) = −α(‖x(t∗)‖X) < 0. Thus, the trajectory
cannot escape the set I.

Now take arbitrary x0: ‖x0‖X ≤ ρx. As long as x0 6∈ I, we have the
following differential inequality (x(t) is the trajectory, corresponding to the
initial condition x0):

V̇ (x(t)) ≤ −α(‖x(t)‖X) ≤ −α ◦ ψ−1
2 (V (x(t))).

From the comparison principle (see [24], Lemma 4.4 for y(t) = V (x(t))) it
follows, that ∃ β̃ ∈ KL : V (x(t)) ≤ β̃(V (x0), t), and consequently:

‖x(t)‖X ≤ β(‖x0‖X , t), ∀t : x(t) /∈ I, (14)

where β(r, t) = ψ−1
1 ◦ β̃(ψ−1

2 (r), t), ∀r, t ≥ 0.
From the properties of KL functions it follows, that ∃t1:

t1 := inf
t≥0

{x(t) = φ(t, x0, u) ∈ I}.

From the invariance of the set I we conclude, that

‖x(t)‖X ≤ γ(‖u‖Uc
), t > t1, (15)

where γ = ψ−1
1 ◦ ψ2 ◦ χ ∈ K.

Our estimates hold for arbitrary control u: ‖u‖Uc
≤ ρu, thus, combining

(14) and (15), we obtain the claim of the theorem.
To prove, that from existence of ISS-Lyapunov function it follows ISS of

Σ, one has to argue as above but with ρx = ρu = ∞. �

Remark 1 The assumption in the Theorem 1 concerning the properties of Uc

holds for many usual function classes, such as PC(R+, U), Lp(R+, U), p ≥ 1,
L∞(R+, U), Sobolev spaces etc.

We are going to prove, that our definition of an ISS-Lyapunov function,
applied for an ODE system, is resolved to the standard definition of an ISS-
Lyapunov function [36].

Firstly we reformulate the definition of LISS-LF for the case, when Uc =
PC(R+, U).

Proposition 5 A continuous function V : D → R+, D ⊂ X, 0 ∈ int(D) =
D\∂D is a LISS-Lyapunov function for Σ = (X,PC(R+, U), φ) if and only if
there exist ρx, ρu > 0 and functions ψ1, ψ2 ∈ K∞, χ̃ ∈ K and positive definite
function α, such that:

ψ1(‖x‖X) ≤ V (x) ≤ ψ2(‖x‖X), ∀x ∈ D

and ∀x ∈ X : ‖x‖X ≤ ρx, ∀ξ ∈ U : ‖ξ‖U ≤ ρu it holds

‖x‖X ≥ χ̃(‖ξ‖U ) ⇒ V̇u(x) ≤ −α(‖x‖X), (16)

for all u ∈ Uc: ‖u‖Uc
≤ ρu with u(0) = ξ.
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Proof We begin with sufficiency. Let u ∈ Uc = PC(R+, U), ‖u‖Uc
≤ ρu. Take

arbitrary x ∈ X and assume that ‖x‖X ≥ χ(‖u‖Uc
). Then ‖x‖X ≥ χ(‖u(0)‖U )

and according to (16) for this u it holds V̇u(x) ≤ −α(‖x‖X). The implication
(12) is proved and thus V is a LISS-Lyapunov function according to Definition
7.

Let us prove necessity. Take arbitrary u ∈ Uc, and for arbitrary s > 0
consider the input us ∈ Uc defined by

us(τ) :=

{

u(τ), τ ∈ [0, s],
u(s), τ > s.

Due to causality of Σ, φ(t, x, u) = φ(t, x, us) for all t ∈ [0, s], and according
to the definition of Lie derivative we obtain V̇u(x) = V̇us

(x). Let u ∈ Uc and
‖u‖Uc

≤ ρu. Then also ‖us‖Uc
≤ ρu and since V is a LISS-Lyapunov function

it follows that

‖x‖X ≥ χ(‖us‖Uc
) ⇒ V̇us

(x) ≤ −α(‖x‖X).

Then it holds also

‖x‖X ≥ χ(‖us‖Uc
) ⇒ V̇u(x) ≤ −α(‖x‖X). (17)

Since Uc = PC(R+, U), it follows that for arbitrary u ∈ Uc and arbitrary
ε > 0 there exists τ > 0 such that ‖uτ‖Uc

≤ (1 + ε)‖u(0)‖U . Then from (17)
it follows that

‖x‖X ≥ χ̃(‖u(0)‖U) ⇒ V̇u(x) ≤ −α(‖x‖X),

where χ̃(r) = χ((1 + ε)r), for all r ≥ 0.
Since u ∈ Uc, ‖u‖Uc

≤ ρu has been chosen arbitrarily, the necessity is
proved. �

Now consider an ODE system

ẋ(t) = f(x(t), u(t)), x(t) ∈ R
n, u(t) ∈ R

m. (18)

System (18) defines a time-invariant control system Σ = (X,Uc, φ), where
X = Rn, Uc = L∞(R+,R

m) and φ(t, x0, u) is a solution of (18) subject to a
given input u ∈ L∞(R+,R

m) and initial condition x(0) = x0.
Let V : D → R+, D ⊂ Rn, 0 ∈ int(D) = D\∂D be locally Lipschitz contin-

uous function (and thus it is differentiable almost everywhere by Rademacher’s
theorem). For such systems V̇u(x) can be computed for almost all x and the
implication (16) resolves to

‖x‖X ≥ χ(‖ξ‖U ) ⇒ ∇V · f(x, ξ) ≤ −α(‖x‖X).

Using this implication instead of (16), we obtain the standard definition of
LISS-Lyapunov function for finite-dimensional systems. Thus, Definition 7 is
consistent with the existing definitions of LISS-Lyapunov functions for ODE
systems.
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Note that the system (18) is time-invariant, for the space L∞(R+,R
m) the

assumption of the Theorem 1 holds, and we obtain basic result from finite-
dimensional theory that existence of an (L)ISS-Lyapunov function implies its
(L)ISS.

In the following subsection we will need certain type of a density argument,
which we state here without a proof.

Let Σ := (X,Uc, φ) be a control system. Let X̂ , Ûc be some dense normed
linear subspaces of X and Uc respectively, and let Σ̂ := (X̂, Ûc, φ) be the
system, generated by the same as in Σ transition map φ, but restricted to the
state space X̂ and space of admissible inputs Ûc.

Assume that φ depends continuously on inputs and on initial states, that
is ∀x ∈ X, ∀u ∈ Uc, ∀T > 0 and ∀ε > 0 there exist δ > 0, such that ∀x′ ∈ X :
‖x− x′‖X < δ and ∀u′ ∈ Uc : ‖u− u′‖Uc

< δ it holds

‖φ(t, x, u)− φ(t, x′, u′)‖X < ε, ∀t ∈ [0, T ].

Now we have the following result

Lemma 2 Let Σ̂ be ISS. Then Σ is also ISS with the same β and γ in the
estimate (2).

In the next subsection we demonstrate an application of the theory devel-
oped in this section on an example from parabolic PDEs.

4.1 Example

Consider the following system

{

∂s
∂t = ∂2s

∂x2 − f(s) + um(x, t), x ∈ (0, π), t > 0,
s(0, t) = s(π, t) = 0.

(19)

We assume, that f is locally Lipschitz continuous, monotonically increasing
up to infinity, f(−r) = −f(r) for all r ∈ R (in particular, f(0) = 0), and
m ∈ (0, 1].

To reformulate (19) as an abstract differential equation we define operator

A by As := d2s
dx2 with D(A) = H1

0 (0, π) ∩H2(0, π).

The norm on H1
0 (0, π) we choose as ‖s‖H1

0(0,π)
:=
(

∫ π

0

(

∂s
∂x

)2
dx
)

1
2

.

Operator A generates an analytic semigroup on L2(0, π). System (19) takes
the form

∂s

∂t
= As− F (s) + um, t > 0, (20)

where F is defined by F (s(t))(x) := f(s(x, t)), x ∈ (0, π).
Equation (20) defines a control system with the state space X = H1

0 (0, π)
and input function space Uc = C(R+, L2(0, π)).
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Consider the following ISS-Lyapunov function candidate:

V (s) :=

∫ π

0

(

1

2

(

∂s

∂x

)2

+

∫ s(x)

0

f(y)dy

)

dx. (21)

We are going to prove, that V is an ISS-Lyapunov function.
Under the above assumptions about function f it holds that

∫ r

0 f(y)dy ≥ 0
for every r ∈ R.

We have to verify the estimates (11) for a function V . The estimate from
below is easy:

V (s) ≥
∫ π

0

1

2

(

∂s

∂x

)2

dx =
1

2
‖s‖2H1

0(0,π)
. (22)

Let us find an estimate from above. We have

V (s) =

∫ π

0

1

2

(

∂s

∂x

)2

dx+

∫ π

0

∫ s(x)

0

f(y)dy dx.

According to the embedding theorem for Sobolev spaces (see [10, Theorem

6, p. 270]), every s ∈ H1
0 (0, π) belongs actually to C

1
2 (0, π) (Hölder space

with Hölder exponent 1
2 ). Moreover, there exists a constant C, which does not

depend on s ∈ H1
0 (0, π), such that

‖s‖
C

1
2 (0,π)

≤ C‖s‖H1
0 (0,π)

, ∀s ∈ H1
0 (0, π). (23)

Define ψ : R+ → R+ by ψ(r) := 1
2r

2 + sups: ‖s‖
H1

0
(0,π)

≤r

∫ π

0

∫ s(x)

0 f(y)dydx.

Inequality (23) and the fact that ‖s‖C(0,π) ≤ ‖s‖
C

1
2 (0,π)

for all s ∈ C
1
2 (0, π)

imply

ψ(r) =
1

2
r2 + sup

s: C‖s‖
H1

0
(0,π)

≤Cr

∫ π

0

∫ s(x)

0

f(y)dydx (24)

≤ 1

2
r2 + sup

s: ‖s‖C(0,π)≤Cr

∫ π

0

∫ s(x)

0

f(y)dydx ≤ ψ2(r), (25)

where ψ2(r) := 1
2r

2 + π
∫ Cr

0
f(y)dy. Since f , restricted to positive values of

the argument, belongs to K∞, ψ2 is also K∞-function.
Finally, for all s ∈ H1

0 (0, π) we have:

1

2
‖s‖2H1

0(0,π)
≤ V (s) ≤ ψ2(‖s‖H1

0(0,π)
), (26)

and the property (11) is verified.
Let us compute the Lie derivative of V

V̇ (s) =

∫ π

0

∂s

∂x

∂2s

∂x∂t
+ f(s(x))

∂s

∂t
dx

=

[

∂s

∂x

∂s

∂t

]x=π

x=0

+

∫ π

0

(

− ∂2s

∂x2
∂s

∂t
+ f(s(x))

∂s

∂t

)

dx.
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From boundary conditions it follows ∂s
∂t (0, t) =

∂s
∂t (π, t) = 0. Thus, substi-

tuting expression for ∂s
∂t , we obtain

V̇ (s) = −
∫ π

0

(

∂2s

∂x2
− f(s(x))

)2

dx+

∫ π

0

(

∂2s

∂x2
− f(s(x))

)

(−um)dx.

Define

I(s) :=

∫ π

0

(

∂2s

∂x2
− f(s(x))

)2

dx.

Using the Cauchy-Schwarz inequality for the second term, we have:

V̇ (s) ≤ −I(s) +
√

I(s) ‖um‖L2(0,π). (27)

Now let us consider I(s)

I(s) =

∫ π

0

(

∂2s

∂x2

)2

dx− 2

∫ π

0

∂2s

∂x2
f(s(x))dx +

∫ π

0

f2(s(x))dx

=

∫ π

0

(

∂2s

∂x2

)2

dx+ 2

∫ π

0

(

∂s

∂x

)2
∂f

∂s
(s(x))dx +

∫ π

0

f2(s(x))dx

≥
∫ π

0

(

∂2s

∂x2

)2

dx.

For s ∈ H1
0 (0, π) ∩H2(0, π) it holds (see [14], p. 85), that

∫ π

0

(

∂2s

∂x2

)2

dx ≥
∫ π

0

(

∂s

∂x

)2

dx.

Overall, we have:
I(s) ≥ ‖s‖2H1

0(0,π)
. (28)

Let us consider ‖um‖L2(0,π). Using the Hölder inequality, we obtain:

‖um‖L2(0,π) =

(∫ π

0

u2m · 1 dx
)

1
2

≤
(∫ π

0

u2 dx

)
m
2
(∫ π

0

1
1

1−m dx

)
1−m

2

= π
1−m

2 ‖u‖mL2(0,π)
. (29)

Now we choose the gain as

χ(r) = aπ
1−m

2 rm, a > 1.

If χ(‖u‖L2(0,π)) ≤ ‖s‖H1
0 (0,π)

, we obtain from (27), using (29) and (28):

V̇ (s) ≤ −I(s) + 1

a

√

I(s)‖s‖H1
0(0,π)

≤ (
1

a
− 1)I(s) ≤ (

1

a
− 1)‖s‖2H1

0(0,π)
. (30)

The above computations are valid for states s ∈ X̂: X̂ := {s ∈ C∞([0, π]) :
s(0) = s(π) = 0} and inputs u ∈ Ûc, Ûc := C(R+, C

∞([0, π])).
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The system (X̂, Ûc, φ), where φ(·, s, u) is a solution of (19)for s ∈ X̂ and
u ∈ Ûc, possesses the ISS-Lyapunov function and consequently is ISS according
to Proposition 5.

It is known, that X̂ is dense inH1
0 (0, π) and Ûc is dense in C(R+, L2([0, π])).

According to the Lemma 2 the system (19) is also ISS (with X = H1
0 (0, π),

Uc = C(R+, L2(0, π))).

Remark 2 In the example we have taken U = L2(0, π) and X = H1
0 (0, π).

But in case of interconnection with other parabolic systems (when we identify
input u with the state of the other system), that have state space H1

0 (0, π)
(as our system), we have to choose U = X = H1

0 (0, π). In this case we can
continue the estimates (29), using Friedrichs’ inequality

∫ π

0

s2(x)dx ≤
∫ π

0

(

∂s

∂x

)2

dx

to obtain
‖um‖L2(0,π) ≤ π

1−m
2 ‖u‖mH1

0(0,π)
(31)

and choosing the same gains, prove the input-to state stability of (20) w.r.t.
spaces X = H1

0 (0, π), Uc = C(R+, H
1
0 (0, π)).

Remark 3 The input-to-state stability for semilinear parabolic PDEs has been
studied also in the recent paper [25]. However, the definition of ISS and of ISS-
Lyapunov function in that paper are different from used in our paper. In partic-
ular, consider the property of (11) of ISS-Lyapunov function. The correspond-
ing property (2) from [25] is not equivalent to (11) for X := C2([0, L],Rn)
equipped with the L2-norm (which is chosen as the state space in [25]), since
the expression in (2) from [25] cannot be bounded by a function of L2-norm
of an element of X in general.

5 Linearization

In this section we prove two theorems, stating that a nonlinear system is LISS
provided its linearization is ISS. One of them needs less restrictive assumptions,
but it doesn’t provide us with a LISS-Lyapunov function for the nonlinear
system. In the other theorem it is assumed, that the state space is a Hilbert
space. This assumption yields a form of LISS-Lyapunov function.

Consider the system

ẋ(t) = Ax(t) + f(x(t), u(t)), x(t) ∈ X,u(t) ∈ U, (32)

where X is a Banach space, A is the generator of a C0-semigroup, f : X×U →
X is defined on some open set Q, (0, 0) is in interior of Q and f(0, 0) = 0, thus
x ≡ 0 is an equilibrium point of (32).

In this section we assume, that f can be decomposed as

f(x, u) = Bx+ Cu + g(x, u),
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where B ∈ L(X), C ∈ L(U,X) and for each constant w > 0 there exist ρ > 0,
such that ∀x : ‖x‖X ≤ ρ, ∀u : ‖u‖U ≤ ρ it holds

‖g(x, u)‖X ≤ w(‖x‖X + ‖u‖U). (33)

Consider also the linear approximation of a system (32), given by

ẋ = Rx+ Cu, (34)

where R = A + B is an infinitesimal generator of a C0-semigroup (which we
denote by T ), as the sum of a generator A and bounded operator B.

Our first result of this section is

Theorem 2 If (34) is ISS, then (32) is LISS.

Proof System (34) is ISS, then according to Proposition 3 and Lemma 1 the
semigroup T is exponentially stable, that is for someK,h > 0 it holds ‖T (t)‖ ≤
Ke−ht.

For a trajectory x(·) it holds

x(t) = T (t)x0 +

∫ t

0

T (t− s) (Cu(s) + g(x(s), u(s))) ds.

We have:

‖x(t)‖X ≤ Ke−ht‖x0‖X +K

∫ t

0

e−h(t−s)(‖C‖‖u(s)‖U + ‖g(x(s), u(s))‖X)ds.

Take small enough w > 0. Then there exists some r > 0, such that (33) holds
for all x, u: ‖x‖X ≤ r and ‖u‖U ≤ r. Take initial condition x0 and input u
such that ‖u‖Uc

< r and ‖x0‖X < r. Then, due to continuity of the trajectory,
there exist some t∗ > 0 such that ‖x(t)‖X < r, t ∈ [0, t∗].

For all t ∈ [0, t∗] and every ε < h using ”fading-memory” estimates (see,
e.g. [22]) we obtain

‖x(t)‖X ≤ Ke−ht‖x0‖X

+K

∫ t

0

e−ε(t−s)e−(h−ε)(t−s)(‖C‖‖u(s)‖U + w(‖x(s)‖X + ‖u(s)‖U))ds

≤ Ke−ht‖x0‖X +
K

ε
sup

0≤s≤t
e−(h−ε)(t−s)((‖C‖+ w)‖u(s)‖U + w‖x(s)‖X).

Define ψ and v by ψ(t) := e(h−ε)tx(t) and v(t) := e(h−ε)tu(t) respectively.
Multiplying the previous inequality by e(h−ε)t, we obtain:

‖ψ(t)‖X ≤ Ke−εt‖x0‖X +
K

ε
(‖C‖+ w) sup

0≤s≤t
‖v(s)‖U +

K

ε
w sup

0≤s≤t
‖ψ(s)‖X .

Assume that w is so that 1 − K
ε w > 0. Taking supremum from the both

sides, we obtain:

sup
0≤s≤t

‖ψ(s)‖X ≤ 1

1− K
ε w

(

K‖x0‖X +
K

ε
(‖C‖+ w) sup

0≤s≤t
‖v(s)‖U

)

.
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In particular,

‖ψ(t)‖X ≤ 1

1− K
ε w

(

K‖x0‖X +
K

ε
(‖C‖+ w) sup

0≤s≤t
‖v(s)‖U

)

.

Returning to the variables x, u, we have:

‖x(t)‖X ≤ K

1− K
ε w

(

e−(h−ε)t‖x0‖X +
(‖C‖+ w)

ε
sup

0≤s≤t
e−(h−ε)(t−s)‖u(s)‖U

)

.

Taking ‖u‖Uc
and ‖x0‖X small enough we guarantee that ‖x(t)‖X < r for all

t ∈ [0, t∗]. Because of BIC property it is clear, that t∗ can be chosen arbitrarily
large. Thus, the last estimate proves LISS of the system (32). �

Remark 4 In the proof of the previous theorem the last inequality is a ”fading
memory” estimate of a norm of a state. This shows, that the system is not
only ISS, but also ISDS, see [12].

5.1 Constructions of LISS-Lyapunov functions

In this subsection we are going to use linearization in order to construct LISS-
Lyapunov functions for nonlinear systems.

In addition to assumptions in the beginning of the Section 5 suppose that
X is a Hilbert space with a scalar product 〈·, ·〉, and A generates an analytic
semigroup on X .

Recall that a self-adjoint operator P ∈ L(X) is positive if 〈Px, x〉 > 0 for
all x ∈ X , x 6= 0. A positive operator P is called coercive, if ∃ǫ > 0, such that

〈Px, x〉 ≥ ǫ‖x‖2X ∀x ∈ D(P ).

Since operator A is an infinitesimal generator of an analytic semigroup and
B is bounded, R = A+B also generates an analytic semigroup.

Let system (34) be ISS. Then, according to Proposition 3, (34) is expo-
nentially 0-UGASx. By Lemma 1 this implies that R generates exponentially
stable semigroup. By [1, Theorem 5.1.3, p. 217] this is equivalent to the exis-
tence of a positive bounded operator P ∈ L(X), for which it holds that

〈Rx, Px〉+ 〈Px,Rx〉 = −‖x‖2X , ∀x ∈ D(R). (35)

If an operator P is coercive, then a LISS-Lyapunov function for a system
(32) can be constructed. More precisely, it holds

Theorem 3 If the system (34) is ISS, and there exists a coercive operator P ,
satisfying (35), then a LISS-Lyapunov function of (32) can be constructed in
the form

V (x) = 〈Px, x〉 . (36)
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Proof Since P is bounded and coercive, for some ǫ > 0 it holds

ǫ‖x‖2X ≤ 〈Px, x〉 ≤ ‖P‖‖x‖2X, ∀x ∈ X,

and estimate (11) is verified.
Let us compute the Lie derivative of V w.r.t. the system (32). Firstly

consider the case, when x ∈ D(R) = D(A). We have

V̇ (x) = 〈P ẋ, x〉+ 〈Px, ẋ〉
= 〈P (Rx+ Cu+ g(x, u)), x〉+ 〈Px,Rx+ Cu + g(x, u)〉
= 〈P (Rx), x〉+ 〈Px,Rx〉+ 〈P (Cu+ g(x, u)), x〉+ 〈Px,Cu + g(x, u)〉 .

We continue estimates using the property

〈P (Rx), x〉 = 〈Rx, Px〉 ,

which holds for positive operators, equality (35) and for the last two terms
Cauchy-Schwarz inequality in the space X

V̇ (x) ≤ −‖x‖2X + ‖P (Cu+ g(x, u))‖X‖x‖X + ‖Px‖X‖Cu+ g(x, u)‖X
≤ −‖x‖2X + ‖P‖‖(Cu+ g(x, u))‖X‖x‖X + ‖P‖‖x‖X‖Cu+ g(x, u)‖X
≤ −‖x‖2X + 2‖P‖‖x‖X(‖C‖‖u‖U + ‖g(x, u)‖X).

For each w > 0 ∃ρ, such that ∀x : ‖x‖X ≤ ρ, ∀u : ‖u‖U ≤ ρ it holds (33).
Using (33) we continue above estimates

V̇ (x) ≤ −‖x‖2X + 2w‖P‖‖x‖2X + 2‖P‖(‖C‖+ w)‖x‖X‖u‖U .

Take χ(r) :=
√
r. Then for ‖u‖U ≤ χ−1(‖x‖X) = ‖x‖2X we have:

V̇ (x) ≤ −‖x‖2X + 2w‖P‖‖x‖2X + 2‖P‖(‖C‖+ w)‖x‖3X . (37)

Choosing w and ρ small enough the right hand side can be estimated from
above by some negative quadratic function of ‖x‖X .

These derivations hold for x ∈ D(R) ⊂ X . If x /∈ D(R), then for all
admissible u the solution x(t) ∈ D(R) and t → V (x(t)) is a continuously
differentiable function for all t > 0 (these properties follow from the properties
of solutions x(t), see Theorem 3.3.3 in [14]).

Therefore, by the mean-value theorem, ∀t > 0 ∃t∗ ∈ (0, t)

1

t
(V (x(t)) − V (x)) = V̇ (x(t∗)).

Taking the limit when t→ +0 we obtain that (37) holds for all x ∈ X .

This proves that V is a LISS-Lyapunov function with ‖x‖X ≤ ρ, ‖u‖U ≤ ρ
and consequently (32) is LISS. �
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6 Interconnections of input-to-state stable systems

In this section we study input-to-state stability of an interconnection of n ISS
systems and provide a generalization of Lyapunov small-gain theorem from [5]
for the case of infinite-dimensional systems.

Consider the interconnected systems of the following form
{

ẋi = Aixi + fi(x1, . . . , xn, u), xi(t) ∈ Xi, u(t) ∈ U
i = 1, . . . , n,

(38)

where the state space of i-th subsystem Xi is a Banach space and Ai is a
generator of C0-semigroup on Xi, i = 1, . . . , n. The space Uc we take as Uc =
PC(R+, U) for some Banach space of input values U .

The state space of the system (38) we denote by X = X1× . . .×Xn, which
is Banach with the norm ‖ · ‖X := ‖ · ‖X1 + . . .+ ‖ · ‖Xn

.
The input space for the i-th subsystem is X̃i := X1 × . . .×Xi−1 ×Xi+1 ×

. . .×Xn × U . The norm in X̃i is given by

‖ · ‖X̃i
:= ‖ · ‖X1 + . . .+ ‖ · ‖Xi−1 + ‖ · ‖Xi+1 + . . .+ ‖ · ‖Xn

+ ‖ · ‖U .

The elements of X̃i we denote by x̃i = (x1, . . . , xi−1, xi+1, . . . , xn, u) ∈ X̃i.
The transition map of the i-th subsystem we denote by φi : R+ × Xi ×

PC(R+, X̃i) → Xi. Define

x=(xT1 , . . ., x
T
n )

T , f(x, u)=(f1(x, u)
T , . . ., fn(x, u)

T )T , A=











A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . An











,

where xi ∈ Xi, i = 1, . . . , n. Domain of definition of A is given by D(A) =
D(A1)× . . .×D(An). Clearly A is a generator of C0-semigroup on X .

We rewrite the system (38) in the vector form:

ẋ = Ax+ f(x, u). (39)

Since the inputs are piecewise continuous functions, then according to Propo-
sition 5 a function Vi : Xi → R+ is an ISS-Lyapunov function for the i-th
subsystem, if there exist functions ψi1, ψi2 ∈ K∞, χ ∈ K and positive definite
function αi, such that

ψi1(‖xi‖Xi
) ≤ Vi(xi) ≤ ψi2(‖xi‖Xi

), ∀xi ∈ Xi

and ∀xi ∈ Xi, ∀x̃i ∈ X̃i, for all v ∈ PC(R+, X̃i) with v(0) = x̃i it holds the
implication

‖xi‖Xi
≥ χ(‖x̃i‖X̃i

) ⇒ V̇i(xi) ≤ −αi(Vi(xi)), (40)

where

V̇i(xi) = lim
t→+0

1

t
(Vi(φi(t, xi, v)))− Vi(xi)).
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We are going to rewrite the implication (40) in a more suitable form. We have

ψ−1
i1 (Vi(xi)) ≥ ‖xi‖Xi

≥ χ(‖x̃i‖X̃i
) = χ





n
∑

j=1,j 6=i

‖xj‖Xj
+ ‖u‖U





≥ 1

n+ 1
max{ n

max
j=1,j 6=i

{χ(‖xj‖Xj
)}, χ(‖u‖U)}

Therefore if ‖xi‖Xi
≥ χ(‖x̃i‖X̃i

) holds, then also

Vi(xi) ≥ max{ n
max
j=1

χij(Vj(xj)), χi(‖u‖U )}

holds with

χij(r) := ψi1

(

1

n+ 1
χ(ψ−1

i2 (r))

)

, χi(r) := ψi1

(

1

n+ 1
χ(r)

)

, i 6= j, r ≥ 0.

And thus if (40) holds, then it holds also the implication

Vi(xi) ≥ max{ n
max
j=1

χij(Vj(xj)), χi(‖u‖U)} ⇒ V̇i(xi) ≤ −αi(Vi(xi)). (41)

The statement, that if (41) holds, then so is (40) can be checked in the
same way.

Remark 5 Note that we have used in our derivations the above norm on the
space X̃i. For finite-dimensional X̃i such derivations can be made for arbitrary
norm in X̃i due to equivalence of the norms in a finite-dimensional space.
However, for infinite-dimensional systems it is not always true.

In the following we will use the implication form as in (41) and assume,
that for all i = 1, . . . , n for Lyapunov function Vi of the i-th system the gains
χij , j = 1, . . . , n and χi are given.

Gains χij characterize the interconnection structure of subsystems. Let us
introduce the gain operator Γ : Rn

+ → Rn
+ defined by

Γ (s) :=

(

n
max
j=1

χ1j(sj), . . . ,
n

max
j=1

χnj(sj)

)

, s ∈ R
n
+. (42)

For arbitrary x, y ∈ Rn define the relations ”≥” and ”<” on Rn by

x ≥ y ⇔ xi ≥ yi, ∀i = 1, . . . , n,

x < y ⇔ xi < yi, ∀i = 1, . . . , n.

We recall the notion of Ω-path (see [8,32]), useful for investigation of sta-
bility of interconnected systems and for construction of a Lyapunov function
of the whole interconnection.

Definition 8 A function σ = (σ1, . . . , σn)
T : Rn

+ → Rn
+, where σi ∈ K∞,

i = 1, . . . , n is called an Ω-path, if it possesses the following properties:



ISS of infinite-dimensional systems 23

1. σ−1
i is locally Lipschitz continuous on (0,∞);

2. for every compact set P ⊂ (0,∞) there are finite constants 0 < K1 < K2

such that for all points of differentiability of σ−1
i we have

0 < K1 ≤ (σ−1
i )′(r) ≤ K2, ∀r ∈ P ;

3.

Γ (σ(r)) < σ(r), ∀r > 0. (43)

Remark 6 Note, that for our purposes (43) can be weakened to

Γ (σ(r)) ≤ σ(r), ∀r > 0. (44)

If operator Γ satisfies the small-gain condition, namely for all ∀ s ∈ Rn
+\ {0}

it holds

Γ (s) 6≥ s ⇔ ∃i : (Γ (s))i < si, (45)

then an Ω-path can be constructed as follows (see [23], Proposition 2.7 and
Remark 2.8):

σ(t) = Q(at), ∀t ≥ 0, for some a ∈ int(Rn
+), (46)

where Q : Rn
+ → Rn

+ is defined by

Q(x) =MAX{x, Γ (x), Γ 2(x), . . . , Γn−1(x)},

with Γn(x) = Γ ◦ Γn−1(x), for all n ≥ 2. The function MAX for all ui ∈ R
n,

i = 1, . . . ,m is defined by

z =MAX{u1, . . . , um} ∈ R
n, zi = max{u1i, . . . , umi}.

Note that Ω-path (46) is only Lipschitz continuous, but with the help
of standard mollification arguments (see, [11], Appendix B.2 or [31], Lemma
1.1.6) it can be made smooth.

Now we can state a theorem, that provides sufficient conditions for a net-
work, consisting of n ISS subsystems to be ISS.

Theorem 4 Let for each subsystem of (38) Vi be the ISS-Lyapunov function
with corresponding gains χij . If the corresponding operator Γ defined by (42)
satisfies the small-gain condition (45), then the whole system (39) is ISS and
possesses ISS-Lyapunov function defined by

V (x) := max
i

{σ−1
i (Vi(xi))}, (47)

where σ = (σ1, . . . , σn)
T is an Ω-path. The Lyapunov gain of the whole system

is
χ(r) := max

i
σ−1
i (χi(r)).

For the proof we use the following standard fact from analysis
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Lemma 3 Let fi : R → R are defined and bounded in some neighborhood D
of t = 0. Then it holds

lim
t→0

max
1≤i≤m

{fi(t)} = max
1≤i≤m

{lim
t→0

fi(t)} (48)

The idea of the proof is taken from [5].

Proof In order to prove that V is a Lyapunov function it is suitable to divide
its domain of definition into subsets on which V takes a simpler form. Thus,
for all i ∈ {1, . . . , n} define the set

Mi =
{

x ∈ X : σ−1
i (Vi(xi)) > σ−1

j (Vj(xj)), ∀j = 1, . . . , n, j 6= i
}

.

From the continuity of Vi and σ
−1
i , i = 1, . . . , n it follows that allMi are open.

Also note that X = ∪n
i=1M i and for all i 6= j holds Mi ∩Mj = ∅. Define

γ(r) :=
n

max
j=1

σ−1
j ◦ γj(r).

Take some i ∈ {1, . . . , n} and pick any x ∈Mi. Assume that V (x) ≥ γ(‖ξ‖U )
holds. Then we obtain

σ−1
i (Vi(xi)) = V (x) ≥ γ(‖ξ‖U) =

n
max
j=1

σ−1
j ◦ γj(‖ξ‖U ) ≥ σ−1

i (γi(‖ξ‖U )).

But σ−1
i ∈ K∞, hence it holds

Vi(xi) ≥ γi(‖ξ‖U ). (49)

On the other hand, from the condition (44) we obtain that

Vi(xi) = σi(V (x)) ≥ n
max
j=1

χij (σj (V (x))) =
n

max
j=1

χij

(

σj
(

σ−1
i (Vi (xi))

))

>
n

max
j=1

χij

(

σj
(

σ−1
j (Vj (xj))

))

=
n

max
j=1

χij (Vj (xj)) .

Combining it with (49) we obtain

Vi(xi) ≥ max

{

n
max
j=1

χij (Vj (xj)) , γi(‖ξ‖U )
}

. (50)

Hence condition (41) implies that for all x the following estimate holds

d

dt
V (x) =

d

dt
(σ−1

i (Vi(xi))) =
(

σ−1
i

)′
(Vi(xi))

d

dt
Vi(xi(t))

≤ −
(

σ−1
i

)′
(Vi(xi))αi(Vi(xi)) = −

(

σ−1
i

)′
(σi(V (x)))αi(σi(V (x))).

We set

α(r) :=
n

min
i=1

{

(

σ−1
i

)′
(σi(r))αi(σi(r))

}

.
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Function α is positive definite, because σ−1
i ∈ K∞ and all αi are positive

definite functions. Overall, for all x ∈ ∪n
i=1Mi holds

d

dt
V (x) ≤ −

n
min
i=1

(

σ−1
i

)′
(σi(V (x)))αi(σi(V (x))) = −α(V (x)).

Now let x /∈ ∪n
i=1Mi. From X = ∪n

i=1M i it follows that x ∈ ∩i∈I(x)∂Mi

for some index set I(x) ⊂ {1, . . . , n}, |I(x)| ≥ 2.

∩i∈I(x)∂Mi = {x ∈ X : ∀i ∈ I(x), ∀j /∈ I(x) σ−1
i (Vi(xi)) > σ−1

j (Vj(xj)),

∀i, j ∈ I(x) σ−1
i (Vi(xi)) = σ−1

j (Vj(xj))}.

Due to continuity of φ we have, that for all u ∈ PC(R+, U), u(0) = ξ there
exists t∗ > 0, such that for all t ∈ [0, t∗) it follows φ(t, x, u) ∈

(

∩i∈I(x)∂Mi

)

∪
(

∪i∈I(x)Mi

)

.

Then, by definition of the derivative we obtain

V̇ (x) = lim
t→+0

1

t
(V (φ(t, x, u))) − V (x)) (51)

= lim
t→+0

1

t

(

max
i∈I(x)

{σ−1
i (Vi(φi(t, x, u)))} − max

i∈I(x)
{σ−1

i (Vi(xi))}
)

(52)

From the definition of I(x) it follows that

σ−1
i (Vi(xi)) = σ−1

j (Vj(xj)) ∀i, j ∈ I(x),

and therefore the index i, on which the maximum in maxi∈I(x){σ−1
i (Vi(xi))}

is reached, may be always set equal to the index on which the maximum
maxi∈I(x){σ−1

i (Vi(φi(t, x, u)))} is reached.
We continue estimates (51)

V̇ (x) = lim
t→+0

max
i∈I(x)

{1
t

(

σ−1
i (Vi(φi(t, x, u)))− σ−1

i (Vi(xi))
)

}

Using Lemma 3 we obtain

V̇ (x) = max
i∈I(x)

{ lim
t→+0

1

t

(

σ−1
i (Vi(φi(t, x, u))) − σ−1

i (Vi(xi))
)

}.

Overall, we have that for all x ∈ X holds

d

dt
V (x) = max

i
{
(

σ−1
i

)′
(Vi(xi))

d

dt
Vi(xi(t))} ≤ −α(V (x)),

and the theorem is proved for all x ∈ X . �
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Remark 7 In the recent paper [23] it was proved a general vector small-gain
theorem, that states roughly speaking that if an abstract control system pos-
sesses a vector ISS Lyapunov function, then it is ISS. The authors have also
shown how from this theorem the small-gain theorems for interconnected sys-
tems of ODEs and retarded equations can be derived. It is possible, that the
small-gain theorem, similar to the proved in this section, can be derived from
the general theorem from [23]. However, it seems, that the constructions in
[23] can be provided only for maximum formulation of ISS-Lyapunov func-
tions (as in (41)). If the subsystems possess ISS-Lyapunov functions in terms
of summations, i.e. instead of (41) one has

Vi(xi) ≥
n
∑

j=1

χij(Vj(xj)) + χi(‖u‖U ) ⇒ V̇i(xi) ≤ −αi(Vi(xi)), (53)

then it is not clear, how the proofs from [23] can be adapted for this case. In
contrast to it, the counterpart of the Theorem 4 in the summation case can
be proved with the method, similar to the used in the proof of the Theorem 4,
see [8]. However, the small-gain condition will have slightly another form.

6.1 Interconnections of linear systems

The construction of ISS-Lyapunov function for the interconnections of finite-
dimensional input-to-state stable linear systems (see [8]) can be generalized to
the case of interconnections of linear systems over Banach spaces.

Let Xi, i = 1, . . . , n be Banach spaces. Consider n systems of the form

ẋi = Aixi(t), i = 1, . . . , n, (54)

where xi(t) ∈ Xi, Ai : Xi → Xi is a generator of an analytic semigroup
over Xi defined on D(Ai) ⊂ Xi.

Assume that all systems (54) are 0-UGASx and consider the following
interconnection

ẋi = Aixi(t) +

n
∑

j=1

Bijxj(t) + Ciu(t), i = 1, . . . , n, (55)

where Bij ∈ L(Xj, Xi), i, j ∈ {1, . . . , n} are bounded operators, u ∈ Uc =
PC(R+, U) for some Banach space of input values U . We assume, that Bii = 0,
i = 1, . . . , n. Otherwise we can always substitute Ãi = Ai +Bii.

Let us denote X = X1 × . . . × Xn and introduce the matrix operators
A = diag(A1, . . . , An) : X → X , B = (Bij)i,j=1,...,n : X → X and C =
(C1, . . . , Cn) : U → X . Then the system (55) can be rewritten in the following
form

ẋ(t) = (A+B)x(t) + Cu(t). (56)
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Now we apply Lyapunov technique developed in this section to the system
(55). From Theorem 3 and Lemma 1 we have, that i-th subsystem of (55) is
ISS iff the analytic semigroup generated by Ai is exponentially stable. This is
equivalent (see [1, Theorem 5.1.3]) to existence of a positive operator Pi, for
which it holds that

〈Aixi, Pixi〉+ 〈Pixi, Aixi〉 ≤ −‖xi‖2Xi
, ∀xi ∈ D(Ai). (57)

Consider a function Vi defined by

Vi(xi) = 〈Pixi, xi〉 , xi ∈ Xi. (58)

We assume in what follows that Pi is a coercive operator. This implies that

a2i ‖xi‖2Xi
≤ Vi(xi) ≤ ‖Pi‖‖xi‖2Xi

, (59)

for some ai > 0.

Differentiating Vi w.r.t. the i-th subsystem of (55), we obtain for all xi ∈
D(Ai)

V̇i(xi) = 〈Piẋi, xi〉+ 〈Pixi, ẋi〉 ≤

(〈PiAixi, xi〉+ 〈Pixi, Aixi〉) + 2‖xi‖Xi
‖Pi‖





∑

i6=j

‖Bij‖‖xj‖Xj
+ ‖Ci‖‖u‖U



 .

Operator Pi is self-adjoint, hence it holds 〈PiAixi, xi〉 = 〈Aixi, Pixi〉 and by
equality (57) we obtain

V̇i(xi) ≤ −‖xi‖2Xi
+ 2‖xi‖Xi

‖Pi‖





∑

i6=j

‖Bij‖‖xj‖Xj
+ ‖Ci‖‖u‖U



 .

Now take ε ∈ (0, 1) and let

‖xi‖Xi
≥ 2‖Pi‖

1− ε





∑

i6=j

‖Bij‖‖xj‖Xj
+ ‖Ci‖‖u‖U



 . (60)

Then we obtain for all xi ∈ D(Ai)

V̇i(xi) ≤ −ε‖xi‖2Xi
.

To verify this inequality for all xi ∈ Xi we use the same argument, as in the
end of the proof of the Theorem 3 (here we use analyticity of a semigroup).

This proves, that Vi is an ISS-Lyapunov function for i-th subsystem. The
condition (60) can be easily transformed to the form (41), which is needed in
order to apply the small-gain theorem.
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As a particular example consider the following system of interconnected
linear reaction-diffusion equations















∂s1
∂t = c1

∂2s1
∂x2 + a12s2, x ∈ (0, d), t > 0,

s1(0, t) = s1(d, t) = 0;
∂s2
∂t = c2

∂2s2
∂x2 + a21s1, x ∈ (0, d), t > 0,

s2(0, t) = s2(d, t) = 0.

(61)

Here c1 and c2 are positive constants.
We choose the state space as X1 = X2 = L2(0, d). The operators Ai =

ci
d2

dx2 with D(Ai) = H1
0 (0, d)∩H2(0, d), i = 1, 2 are generators of the analytic

semigroups for the corresponding subsystems.

Both subsystems are ISS, moreover, Spec(Ai) = {−ci
(

πn
d

)2 | n = 1, 2, . . .},
i = 1, 2.

Take Pi =
1
2ci

(

d
π

)2
I, where I is the identity operator on Xi. We have

〈Ais, Pis〉+ 〈Pis, Ais〉 =
1

ci

(

d

π

)2

〈Ais, s〉

=

(

d

π

)2 ∫ d

0

∂2s

∂x2
sdx = −

(

d

π

)2 ∫ d

0

(

∂s

∂x

)2

dx

≤ −‖s‖2L2(0,d)
.

In the last estimate we have used the Friedrichs’ inequality (see p. 67 in [26]).
The Lyapunov functions for subsystems are defined by

Vi(si) = 〈Pisi, si〉 =
1

2ci

(

d

π

)2

‖si‖2L2(0,d)
, for si ∈ Xi.

We have the following estimates for derivatives

V̇1(s1) ≤ −‖s1‖2L2(0,d)
+

1

c1

(

d

π

)2

|a12|‖s1‖L2(0,d)‖s2‖L2(0,d),

V̇2(s2) ≤ −‖s2‖2L2(0,d)
+

1

c2

(

d

π

)2

|a21|‖s1‖L2(0,d)‖s2‖L2(0,d).

We choose the gains in the following way

γ12(r) =
c2
c31

(

d

π

)4 ∣
∣

∣

∣

a12
1− ε

∣

∣

∣

∣

2

· r, γ21(r) =
c1
c32

(

d

π

)4 ∣
∣

∣

∣

a21
1− ε

∣

∣

∣

∣

2

· r.

We have

V1(s1) ≥ γ12 ◦ V2(s2) ⇔
√

c1
c2
γ12(1)‖s2‖L2(0,d) ≤ ‖s1‖L2(0,d)

⇔ 1

c1

(

d

π

)2

|a12|‖s2‖L2(0,d) ≤ (1− ε)‖s1‖L2(0,d).
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Analogously,

V2(s2) ≥ γ21 ◦ V1(s1) ⇔
1

c2

(

d

π

)2

|a21|‖s1‖L2(0,d) ≤ (1 − ε)‖s2‖L2(0,d).

We have the following implications:

V1(s1) ≥ γ12 ◦ V2(s2) ⇒ V̇1(s1) ≤ −ε‖s1‖2L2(0,d)
,

V2(s2) ≥ γ21 ◦ V1(s1) ⇒ V̇2(s2) ≤ −ε‖s2‖2L2(0,d)
.

The small-gain condition for the case of two interconnected systems can
be equivalently written as γ12 ◦ γ21 < Id (see [6], p. 108).

γ12 ◦ γ21 < Id ⇔ 1

c21c
2
2

(

d

π

)8 |a12a21|2
(1− ε)4

< 1,

for arbitrary ε > 0. Thus, if

|a12a21| < c1c2

(π

d

)4

(62)

is satisfied, then the whole system (61) is 0-UGASx.

6.2 Nonlinear example

Let us show the applicability of our small-gain theorem to nonlinear systems.















∂s1
∂t = c1

∂2s1
∂x2 + s22, x ∈ (0, d), t > 0,

s1(0, t) = s1(d, t) = 0;
∂s2
∂t = c2

∂2s2
∂x2 − bs2 +

√

|s1|, x ∈ (0, d), t > 0,
s2(0, t) = s2(d, t) = 0.

(63)

We assume, that c1, c2, b are positive constants.
Thus, we choose the state space and space of input values for the first

subsystem as X1 = L2(0, d), U1 = L4(0, d) and for the second subsystem as
X2 = L4(0, d), U2 = L2(0, d). The state of the whole system (63) is denoted
by X = X1 ×X2.

Define operators Bi = ci
d2

dx2 . These operators (together with Dirichlet
boundary conditions) generate an analytic semigroup on L2(0, d) and L4(0, d)
respectively (see, e.g. [28, Chapter 7]).

For both subsystems take the set of input functions as Uc,i := C([0,∞), Ui).
We consider the mild solutions of the subsystems, i.e. the solutions si, given
by the formula (6).

Note that s2 ∈ C([0,∞), L4(0, d)) ⇔ s22 ∈ C([0,∞), L2(0, d)) and s1 ∈
C([0,∞), L2(0, d)) ⇔

√
s1 ∈ C([0,∞), L4(0, d)).

Under made assumptions the solution of the first subsystem (when s2 is
treated as input) belongs to C([0,∞), H1

0 (0, d)∩H2(0, d)) ⊂ C([0,∞), L2(0, d))
and the solution of the second one belongs to
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C([0,∞),W 4,1
0 (0, d)∩W 4,2(0, d)) ⊂ C([0,∞), L4(0, d)). This implies, that the

solution of the whole system is from the space C([0, T ], X) for all T such that
the solution of the whole system exists on [0, T ]. The existence and uniqueness
of the solution for all times will be proved for the values of parameters which
establish ISS of the whole system, since this excludes the possibility of the
blow-up phenomena.

Both subsystems of (63) are ISS. We choose Vi, i = 1, 2 defined by

V1(s1) =

∫ d

0

s21(x)dx = ‖s1‖2L2(0,d)
, V2(s2) =

∫ d

0

s42(x)dx = ‖s2‖4L4(0,d)

as ISS-Lyapunov functions for i-th subsystem.
Consider the Lie derivative of V1:

d

dt
V1(s1) = 2

∫ d

0

s1(x, t)

(

c1
∂2s1
∂x2

(x, t) + s22(x, t)

)

dx

≤ −2c1

∥

∥

∥

∥

ds1
dx

∥

∥

∥

∥

2

L2(0,d)

+ 2‖s1‖L2(0,d)‖s2‖2L4(0,d)
.

In the last estimation we have used the Cauchy-Schwarz inequality. By the
Friedrichs’ inequality, we obtain the estimation

d

dt
V1(s1) ≤ −2c1

(π

d

)2

‖s1‖2L2(0,d)
+ 2‖s1‖L2(0,d)‖s2‖2L4(0,d)

= −2c1

(π

d

)2

V1(s1) + 2
√

V1(s1)
√

V2(s2).

Take

χ12(r) =
1

c21
(

π
d

)4
(1− ε1)2

r, ∀r > 0,

where ε1 ∈ (0, 1) is an arbitrary constant. We obtain

V1(s1) ≥ χ12(V2(s2)) ⇒ d

dt
V1(s1) ≤ −2ε1c1

(π

d

)2

V1(s1).

Consider the Lie derivative of V2:

d

dt
V2(s2) = 4

∫ d

0

s32(x, t)

(

c2
∂2s2
∂x2

(x, t)− bs2(x, t) +
√

|s1(x, t)|
)

dx

≤ −12c2

∫ d

0

s22

(

∂s2
∂x

)2

dx− 4bV2(s2) + 4

∫ d

0

s32(x, t)
√

|s1(x, t)|dx

Applying for the last term the Hölder inequality we obtain

d

dt
V2(s2) ≤ −4bV2(s2) + 4(V2(s2))

3/4(V1(s1))
1/4.

Let

χ21(r) =
1

b4(1− ε2)4
r, ∀r > 0,
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where ε2 ∈ (0, 1) is an arbitrary constant. It holds the implication

V2(s2) ≥ χ21(V1(s1)) ⇒ d

dt
V2(s2) ≤ −4bε2V2(s2).

The small-gain condition leads us to the following condition on parameters of
the system

χ12 ◦χ21 < Id ⇔ c21

(π

d

)4

(1− ε1)
2b4(1− ε2)

4 > 1 ⇔ c1

(π

d

)2

b2 > 1.

This condition guarantees that the system (63) is 0-UGASx.
Note that the above stability condition doesn’t involve the parameter c2,

and it provides good estimate for the stability region of the system if c2 is
small. Otherwise more precise analysis must be made.

7 Conclusion

In this paper we have performed several steps towards generalization of the
ISS theory to infinite-dimensional systems. The developed framework which
encompasses the ODE systems, systems with time-delays as well as many
classes of evolution PDEs and is consistent with the original definitions of ISS
for ODEs and time-delay systems.

In Section 4 we have proved, that existence of an ISS-Lyapunov function
implies the ISS property of a general control system and we have shown, how
our definition of the ISS-Lyapunov function reduces to the standard one in the
case of finite-dimensional systems. For the systems, governed by differential
equations in Banach spaces we established in Section 6 a small-gain theorem,
which provides us with a design of an ISS-Lyapunov function for an inter-
connection of ISS subsystems, provided the ISS-Lyapunov functions for the
subsystems are known and a small-gain condition holds.

For constructions of local ISS-Lyapunov functions the linearization method
has been proposed in Section 5, which is a good alternative to Lyapunov
methods provided the system is linearizable.

Many interesting problems remain open. For example, the most part of
results in this work as well as in several other papers on ISS theory of infinite-
dimensional systems [25], [30], [23], have been proved for either piecewise-
continuous or continuous inputs. This can be quite restrictive for many appli-
cations, in particular, for PDEs and requires further research.

Another important problem is to prove (or disprove) the characterizations
of ISS for infinite-dimensional systems analogous to the ones developed by
Sontag and Wang in [36] and [37] for finite-dimensional systems (with X = Rn

and Uc = L∞(R+,R
m)). The converse Lyapunov theorem is another desired

fundamental theoretical result, which is beyond the scope of this paper.
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