Skip to main content
Log in

Max–plus matrix method and cycle time assignability and feedback stabilizability for min–max–plus systems

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

A variety of problems arising in nonlinear systems with timing constraints such as manufacturing plants, digital circuits, scheduling managements, etc., can be modeled as min–max–plus systems described by the expressions in which the operations minimum, maximum and addition appear. This paper applies the max–plus matrix method to analyze the cycle time assignability and feedback stabilizability of min–max–plus systems with min–max–plus inputs and max–plus outputs, which are nonlinear extensions of the systems studied in recent years. The max–plus projection matrix representation of closed-loop systems is introduced to establish some structural and quantitative relationships between reachability, observability, cycle time assignability and feedback stabilizability. The necessary and sufficient conditions for the cycle time assignability with respect to a state feedback and an output feedback, respectively, and the sufficient condition for the feedback stabilizability with respect to an output feedback are derived. Furthermore, one output feedback stabilization policy is designed so that the closed-loop systems take the maximal Lyapunov exponent as an eigenvalue. The max–plus matrix method based on max–plus algebra and directed graph is constructive and intuitive, and several numerical examples are given to illustrate this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akian M, Gaubert S, Lakhoua A (2008) The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. SIAM J Control Optim 47:817–848

    Article  MathSciNet  MATH  Google Scholar 

  2. Astolfi A, Colaneri P (2005) Hankel/Toeplitz matrices and the static output feedback stabilization problem. Math Control Signals Syst 17:231–268

    Article  MathSciNet  MATH  Google Scholar 

  3. Baccelli F, Cohen G, Olsder GJ, Quadrat J-P (1992) Synchronization and linearity, Wiley, New York.

  4. Bertoluzza S, Falletta S, Manzini G (2008) Efficient design of residual-based stabilization techniques for the three fields domain decomposition method. Math Models Methods Appl Sci 18:973–999

    Article  MathSciNet  MATH  Google Scholar 

  5. Chakraborty S, Yun KY, Dill DL (1999) Timing analysis of asynchronous systems using time separation of events. IEEE Trans Comput Aided Des Integr Circuits Syst 18:1061–1076

    Article  Google Scholar 

  6. Chen W, Tao Y (2000) Observability and reachability for nonlinear discrete event dynamic systems and colored graphs. Chin Sci Bull 45:2457–2461

    MathSciNet  Google Scholar 

  7. Cochet-Terrasson J, Gaubert S, Gunawardena J (1999) A constructive fixed point theorem for min-max functions. Dyn Stab Syst 14:407–433

    Article  MathSciNet  Google Scholar 

  8. Cohen G, Moller P, Quadrat J-P, Viot M (1992) Linear system theory for discrete event systems. In: Ho Y C (ed) Discrete event dynamic systems: analyzing complexity and performance in the modern world. A selected Reprint Volume, IEEE Control Systems Society

  9. Cohen G, Moller P, Quadrat J-P, Viot M (1985) A linear system-theoretic view of discrete event processes and its use for performance evaluation in manufacturing. IEEE Trans Autom Control 30:210–220

    Article  MATH  Google Scholar 

  10. Cohen G, Moller P, Quadrat J-P, Viot M (1992) Algebraic tools for the performance evaluation of discrete event systems. In: Ho YC (ed) Discrete event dynamic systems: analyzing complexity and performance in the modern world. A selected reprint volume, IEEE Control Systems Society

  11. Commault C (1998) Feedback stabilization of some event graph models. IEEE Trans Autom Control 43:1419–1423

    Article  MathSciNet  MATH  Google Scholar 

  12. Cottenceau B, Hardouin L, Boimond JL, Ferrier JL (1999) Synthesis of greatest linear feedback for timed event graphs in dioid. IEEE Trans Autom Control 44:1258–1262

    Article  MathSciNet  MATH  Google Scholar 

  13. Cottenceau B, Lhommeau M, Hardouin L, Boimond J (2003) On timed event graph stabilization by output feedback in dioid. Kybernetika 39:165–176

    MathSciNet  MATH  Google Scholar 

  14. Cuninghame-Green RA (1979) Minimax algebra, Number 166 in Lecture Notes in Economics and Mathematical Systems, Springer, Berlin

  15. Cuninghame-Green RA (1991) Minimax algebra and applications. Fuzzy Sets Syst 41:251–267

    Article  MathSciNet  MATH  Google Scholar 

  16. De Schutter B, van den Boom T (2001) Model predictive control for max-plus linear discrete event systems. Automatica 37:1049–1056

    Article  MATH  Google Scholar 

  17. De Schutter B, van den Boom T (2000) Model predictive control for max-min-plus systems. Boel R, Stremersch G (eds) DES: analysis and control, vol 569. Kluwer Int. Series in Engineering and Computer Science, KAP, Boston, pp 201–208

  18. Farahani SS, van den Boom T, De Schutter B (2011) Model predictive control for stochastic max-min-plus-scaling systems-An approximation approach. In: Proceedings of the 50th IEEE conference on decision and control and European control conference. Orlando, Florida, Dec, pp 391–396

  19. Fleming WH, McEneaney WM (2000) A max-plus-based algorithm for a Hamilton-Jacobi-Bellman equation of nonlinear filtering. SIAM J Control Optim 38:683–710

    Article  MathSciNet  MATH  Google Scholar 

  20. Gaubert S (1992) Resource optimization and (min, +) spectral theory. IEEE Trans Autom Control 40:1931–1934

    Article  MathSciNet  Google Scholar 

  21. Gaubert S, Butkovic P, Cuninghame-Green R (1998) Minimal (max,+) realization of convex sequences. SIAM J Control Optim 36:137–147

    Article  MathSciNet  MATH  Google Scholar 

  22. Gaubert S, Gunawardena J (1998) The duality theorem for min–max functions. CR Acad Sci Ser I Math 326:43–48

    Article  MathSciNet  MATH  Google Scholar 

  23. Gunawardena J (1994) Min-max functions. Discrete Event Dyn Syst 4:377–406

    Article  MATH  Google Scholar 

  24. Gunawardena J (1994) Cycle times and fixed points of min-max functions. Lecture Notes in Control and Information Sciences, Springer, Berlin, vol 199, pp 266–272

  25. Hardouin L, Maia CA, Cottenceau B, Lhommeau M (2010) Observer design for (max, plus) linear systems. IEEE Trans Autom Control 55–2:538–543

    Article  MathSciNet  Google Scholar 

  26. Heidergott B, Olsder GJ, van der Woude J (2006) Max Plus at work: modeling and analysis of synchronized systems. Princeton University Press, New Jersey

    MATH  Google Scholar 

  27. Jean-Marie A, Olsder GJ (1996) Analysis of stochastic min–max systems: results and cinjectures. Math Model 23:175–189

    MathSciNet  MATH  Google Scholar 

  28. Karafyllis I (2006) Stabilization by means of time-varying hybrid feedback. Math Control Signals Syst 18:236–259

    Article  MathSciNet  MATH  Google Scholar 

  29. Maia CA, Andrade CR, Hardouin L (2011) On the control of max-plus linear system subject to state restriction. Automatica 47:988–992

    Article  MathSciNet  MATH  Google Scholar 

  30. McCaffrey D (2008) Policy iteration and the max-plus finite element method. SIAM J Control Optim 47:2912–2929

    Article  MathSciNet  MATH  Google Scholar 

  31. McEneaney WM (2004) Max-plus eigenvector methods for nonlinear \(H_\infty \) problems: error analysis. SIAM J Control Optim 43:379–412

    Article  MathSciNet  MATH  Google Scholar 

  32. Mikkola KM (2008) Weakly coprime factorization and state-feedback stabilization of discrete-time systems. Math Control Signals Syst 20:321–350

    Article  MathSciNet  MATH  Google Scholar 

  33. Mu S, Chu T, Wang L, Yu W (2004) Output feedback control of networked systems. Int J Autom Comput 1:26–34

    Article  Google Scholar 

  34. Necoara I, De Schutter B, van den Boom T, Hellendoorn H (2008) Model predictive control for uncertain max-min-plus-scaling systems. Int J Control 81:701–713

    Article  MATH  Google Scholar 

  35. Olsder GJ (1991) Eigenvalues of dynamic max-min systems. Discrete Event Dyn Syst 1:177–207

    Article  MATH  Google Scholar 

  36. Olsder GJ (1997) Timetables in the max-plus algebra. Euclides 72:158–163

    MATH  Google Scholar 

  37. Tao Y, Chen W (2003) Cycle time assignment of min–max systems. Int J Control 76:1790–1799

    Article  MathSciNet  MATH  Google Scholar 

  38. Tao Y, Liu G-P (2005) State feedback stabilization and majorizing achievement of min–max–plus systems. IEEE Trans Autom Control 50:2027–2033

    Article  MathSciNet  Google Scholar 

  39. Tao Y, Liu G-P, Chen W (2007) Globally optimal solutions of max–min systems. J Glob Optim 39:347–363

    Article  MathSciNet  MATH  Google Scholar 

  40. van der Woude J (2001) A characterization of the eigenvalue of a general (min, max, +)-system. Discrete Event Dyn Syst 3:203–210

    Article  Google Scholar 

  41. van der Woude J, Subiono (2003) Conditions for structural existence of an eigenvalue of bipartite (min, max, +)-system. Theor Comput Sci 293:13–24.

  42. Yang L, Guan X, Long C, Luo X (2008) Feedback stabilization over wireless network using adaptive coded modulation. Int J Autom Comput 5:381–388

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the reviewers for their comments and suggestions that helped to improve the quality of this paper. This work was supported by the National Natural Science Foundation of China under Grants 60774007, 61028010 and 60934006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuegang Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, Y., Liu, GP. & Mu, X. Max–plus matrix method and cycle time assignability and feedback stabilizability for min–max–plus systems. Math. Control Signals Syst. 25, 197–229 (2013). https://doi.org/10.1007/s00498-012-0098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-012-0098-7

Keywords

Navigation