Skip to main content

Advertisement

Log in

Characterization of feedback Nash equilibria for multi-channel systems via a set of non-fragile stabilizing state-feedback solutions and dissipativity inequalities

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We consider the problem of state-feedback stabilization for a multi-channel system in a game-theoretic framework, where the class of admissible strategies for the players is induced from a solution set of the individual objective functions that are associated with certain dissipativity properties of the system. In such a framework, we characterize the feedback Nash equilibria via a set of non-fragile stabilizing state-feedback solutions corresponding to a family of perturbed multi-channel systems. Moreover, we show that the existence of a weak-optimal solution to a set of constrained dissipativity problems is a sufficient condition for the existence of a feedback Nash equilibrium, whereas the set of non-fragile stabilizing state-feedbacks solutions is described in terms of a set of dilated linear matrix inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Recently, a similar dilated LMIs condition has been investigated by Fujisaki and Befekadu [13] in the context of reliable decentralized stabilization for multi-channel systems (see [10, 29] and references therein for a review of dilated LMI technique).

  2. Note that the existence of a solution for state trajectories is well defined and it is always upper semicontinuous in \(x_0\) (e.g., see [9] and [21]).

  3. Note that the upper bound \(\hat{\rho }\) continuously depends (in the weak sense) on \(x_0\) and \(K_j\), \(j=1, 2, \ldots , N\).

  4. In this paper, the game is essentially defined in the framework of an incomplete information, since the \(j\)th player’s objective function involves different uncertainty information, i.e., \(u_{\rho _j}\), about the system. However, we remark that the \(j\)th player decides his own strategy by solving the optimization problem with the opponents’ strategies \((K_{1}^*,\ldots ,K_{j-1}^*, K_{j+1}^*,\ldots ,K_{N}^*)\) fixed.

  5. In general, simultaneously solving a set of optimization problems, i.e., solving (28) together with (27), is not easy since it is a non-convex optimization problem which involves finding a solution satisfying at the intersection of a set of constrained quadratic functionals [42] (c.f. Remark 3, Sect. 2 above).

  6. Here we remark that a strong version of fixed-point theorem is required to establish the existence of feedback Nash equilibria for the game \(\Gamma \), which is defined on compact topological spaces with continuous objective functions (e.g., see [14]). To this end, if we introduce the following continuous map  \(\Phi _{[x_0, u_{\hat{\rho }}]} :\mathcal K _N \times \mathcal K _N \rightarrow \mathbb R \) defined by

    $$\begin{aligned} \Phi _{[x_0, u_{\hat{\rho }}]} (K, \bar{K}) = \sum _{j=1}^N \left(J_j(x_0, u_{\hat{\rho }_j}, K) - J_j(x_0, u_{\hat{\rho }_j}, K_{\lnot j}) \right), \end{aligned}$$

    where \(K = ( K_1, K_2, \ldots , K_N ) \in \mathcal K _N \), \(\bar{K} = (\bar{K}_1, \bar{K}_2, \ldots , \bar{K}_N ) \in \mathcal K _N\), \(K_{\lnot j} = (K_1, \ldots , \bar{K}_j \ldots , K_N) \in \mathcal K _N\), \(j=1, 2, \ldots , N\) and \(u_{\hat{\rho }} \triangleq (u_{\hat{\rho }_1}, u_{\hat{\rho }_2}, \ldots , u_{\hat{\rho }_N}) \in \prod _{j=1}^N [-\hat{\rho }_j, \hat{\rho }_j]\). Note that for such a map whose fixed-point is an equilibrium is called a Nash map for the game \(\Gamma \), i.e., if the \(N\)-tuple \( (K_1^*, K_2^*, \ldots , K_N^*) \) is a feedback Nash equilibrium, then \(J_j(x_0, u_{\hat{\rho }_j}, K_{\lnot j}^*) \le J_j(x_0, u_{\hat{\rho }_j}, K^*)\) with \(K_j \in \mathcal K _j\) for all \(j \in \{1, 2, \ldots , N\}\). This further shows that the map \(\Phi \) satisfies \(\Phi _{[x_0, u_{\hat{\rho }}]} (K^*, K) \ge 0\) for any arbitrary \(K=(K_1, K_2, \ldots , K_N)\in \mathcal K _N\). Therefore, the feedback Nash equilibrium \(K^*\) is an equilibrium point, i.e., a fixed point, for the map \(\Phi _{[x_0, u_{\hat{\rho }}]}(.,.)\).

  7. Note that the stability behavior is considered here over an infinite-time horizon.

References

  1. Abou-Kandil H, Freiling HG, Jank G (1993) Necessary conditions for constant solutions of coupled Riccati equations in Nash games. Syst Control Lett 21(4):295–306

    Article  MathSciNet  MATH  Google Scholar 

  2. Barb FD, Ben-Tal A, Nemirovski A (2003) Robust dissipativity of interval uncertain systems. SIAM J Control Optim 41(6):1661–1695

    Article  MathSciNet  MATH  Google Scholar 

  3. Başar T, Bernhard P (1995) \({\cal H}_{\infty }\)-optimal control and related minimax design problems. Birkhäuser, Boston

    MATH  Google Scholar 

  4. Başar T, Olsder G (1998) Dynamic noncooperative game theory. In: SIAM Class Appl Math, Vol 23, 2nd edn. SIAM, Philadelphia.

  5. Başar T (2003) Paradigms for robustness in controller and filter designs. In: Neck R (ed) Modeling and control of economic systems 2001, chap 1. Elsevier, Amsterdam, pp 1–12

  6. Befekadu GK, Gupta V, Antsaklis PJ (2011) Robust/reliable stabilization of multi-channel systems via dilated LMIs and dissipativity-based certifications. In: Proceedings of the 19th IEEE Mediterranean conference on control and automation, 2011, Corfu, Greece, pp 25–30

  7. Chen X, Zhou K (2001) Multiobjective \({\cal H}_{2}/{\cal H}_{\infty }\) control design. SIAM J Control Optim 40(2):628–660

  8. Cruz JB Jr (1975) Survey of Nash and Stackelberg equilibrium strategies in dynamic games. Ann Econ Soc Meas 4(2):339–344

    Google Scholar 

  9. Davy JL (1972) Properties of the solution set of a generalized differential equation. Bull Austral Math Soc 6(3):379–398

    Article  MathSciNet  MATH  Google Scholar 

  10. de Oliveira MC, Geromel JC, Bernussou J (2002) Extended \({\cal H}_{2}\) and \({\cal H}_{\infty }\) norm characterizations and controller parametrizations for discrete-time systems. Int J Control 75(9):666–679

    Google Scholar 

  11. Doyle J, Glover K, Khargonekar P, Francis B (1989) State-space solutions to standard \({\cal H}_{2}\) and \({\cal H}_{\infty }\) control problems. IEEE Trans Autom Control 34(8):831–847

    Google Scholar 

  12. Engwerda J (2005) LQ dynamic optimization and differential games. Wiley, West Sussex

    Google Scholar 

  13. Fujisaki Y, Befekadu GK (2009) Reliable decentralized stabilization of multi-channel systems: a design method via dilated LMIs and unknown disturbance observers. Int J Control 82(11):2040–2050

    Article  MathSciNet  MATH  Google Scholar 

  14. Glicksberg IL (1952) A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc Am Math Soc 3:170–174

    MathSciNet  MATH  Google Scholar 

  15. Grötschel M, Lovàsz L, Schrijver A (1981) The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2):169–197

    Article  MathSciNet  MATH  Google Scholar 

  16. Hinrichsen D, Pritchard AJ (1986) Stability radius for structured perturbations and the algebraic Riccati equation. Syst Control Lett 8(2):105–113

    Article  MathSciNet  MATH  Google Scholar 

  17. Ho YC (1970) Survey paper: differential games, dynamic optimization and generalized control theory. J Optim Theory Appl 6(3):179–209

    Article  MATH  Google Scholar 

  18. Jacobson DH (1977) On values and strategies for infinite-time linear quadratic games. IEEE Trans Autom Control 22(3):490–491

    Article  MATH  Google Scholar 

  19. Karp L, Lee IH (2003) Time-consistent policies. J Econ Theory 112(2):353–364

    Article  MathSciNet  MATH  Google Scholar 

  20. Khalil H (1980) Multimodel design of a nash strategy. J Optim Theory Appl 31(4):553–555

    Article  MathSciNet  MATH  Google Scholar 

  21. Leitmann G (1979) Guaranteed asymptotic stability for a class of uncertain linear dynamical systems. J Optim Theory Appl 27(1):96–106

    Article  MathSciNet  Google Scholar 

  22. Limebeer DJN, Anderson BDO, Hendel H (1994) A Nash game approach to mixed \({\cal H}_{2}/{\cal H}_{\infty }\) control. IEEE Trans Autom Control 39(1):69–82

    Google Scholar 

  23. Luenberger DG (1969) Optimization by vector space methods. Wiley, New York

    MATH  Google Scholar 

  24. Lukes DL (1971) Equilibrium feedback control in linear games with quadratic costs. SIAM J Control Optim 9(2):234–252

    Article  MathSciNet  MATH  Google Scholar 

  25. Mageirou EF (1976) Values and strategies for infinite-time, linear-quadratic games. IEEE Trans Autom Control 21(4):547–550

    Article  MathSciNet  MATH  Google Scholar 

  26. Mageirou EF, Ho YC (1977) Decentralized stabilization via game theoretic methods. Automatica 13(4):393–399

    Article  MATH  Google Scholar 

  27. Mehlmann A (1988) Applied differential games. Plenum Press, New York

    MATH  Google Scholar 

  28. Papavassilopoulos GP, Medanic JV, Cruz JB Jr (1979) On the existence of Nash strategies and solutions to coupled Riccati equations in linear-quadratic Nash games. J Optim Theory Appl 28(1):49–76

    Article  MathSciNet  MATH  Google Scholar 

  29. Pipeleers G, Demeulenaere B, Swevers J, Vandenberghe L (2009) Extended LMI characterizations for stability and performance of linear systems. Syst Control Lett 58(7):510–518

    Article  MathSciNet  MATH  Google Scholar 

  30. Saksena V, Cruz JB Jr, Perkins WR, Başar T (1983) Information induced multimodel solutions in multiple decision maker problems. IEEE Trans Autom Control 28(6):716–728

    Article  Google Scholar 

  31. Starr AW, Ho YC (1969) Nonzero-sum differential games. J Optim Theory Appl 3(3):184–206

    Article  MathSciNet  MATH  Google Scholar 

  32. Stern RJ (1974) Open-loop Nash equilibrium of \(N\)-person nonzero sum linear-quadratic differential games with magnitude restraints. J Math Anal Appl 46(2):352–357

    Article  MathSciNet  MATH  Google Scholar 

  33. Tanaka K, Yokoyama K (1991) On \(\epsilon \)-equilibrium point in a noncooperative \(N\)-person game. J Math Anal App 160(2):413–423

    Article  MathSciNet  MATH  Google Scholar 

  34. Uchida K, Fujita M (1989) On the central controller: characterizations via differential games and LEQG control problems. Syst Control Lett 13(1):9–13

    Article  MathSciNet  MATH  Google Scholar 

  35. van den Broek WA, Engwerda JC, Schumacher JM (1999) Asymptotic analysis of linear feedback Nash equilibria in nonzero-sum linear quadratic differential games. J Optim Theory Appl 101(3):693–723

    Article  MathSciNet  Google Scholar 

  36. van den Broek WA, Schumacher JM, Engwerda JC (2003) Robust equilibria in indefinite linear-quadratic differential games. J Optim Theory Appl 119(3):565–595

    Article  MathSciNet  MATH  Google Scholar 

  37. Varaiya P (1970) \(N\)-person non-zero sum differential games with linear dynamics. SIAM J Control Optim 8(4):441–449

    Article  MathSciNet  MATH  Google Scholar 

  38. Willems JC (1971) Dissipative dynamical systems, part I: general theory. Arch Ration Mech Anal 45(5):321–351

    Article  MathSciNet  Google Scholar 

  39. Willems JC (1971) Dissipative dynamical systems, part II: linear systems with quadratic supply rates. Arch Ration Mech Anal 45(5):352–393

    Article  MathSciNet  Google Scholar 

  40. Willems JC (1971) Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans Autom Control 16(6):621–634

    Article  MathSciNet  Google Scholar 

  41. Weiland S, Willems JC (1991) Dissipative dynamical systems in a behavioral context. Math Models Methods Appl Sci 1(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  42. Yakubovich VA (1992) Nonconvex optimization problem: the infinite-horizon linear-quadratic control problem with quadratic constraints. Syst Control Lett 19(1):13–22

    Article  MathSciNet  MATH  Google Scholar 

  43. Yakubovich VA (1998) Quadratic criterion for absolute stability. Doklady Math 58(1):169–172

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation under Grant No. CNS-1035655; G. K. Befekadu acknowledges support from the Moreau Fellowship of the University of Notre Dame.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Getachew K. Befekadu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Befekadu, G.K., Gupta, V. & Antsaklis, P.J. Characterization of feedback Nash equilibria for multi-channel systems via a set of non-fragile stabilizing state-feedback solutions and dissipativity inequalities. Math. Control Signals Syst. 25, 311–326 (2013). https://doi.org/10.1007/s00498-012-0105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-012-0105-z

Keywords

Navigation