arXiv:1506.00738v1l [math.OC] 2 Jun 2015

A new fundamental

solution for a class of

differential Riccati equatioris

Peter M. Dowel

Abstract—A class of differential Riccati equations (DRES) is
considered whereby the evolution of any solution can be ideified
with the propagation of a value function of a corresponding @-
timal control problem arising in .%,-gain analysis. By exploiting
the semigroup properties inherited from the attendant dynamic
programming principle, a max-plus primal space fundamentd
solution semigroup of max-plus linear max-plus integral op
erators is developed that encapsulates all such value furioh
propagations. Using this semigroup, a new one-parameter fu
damental solution semigroup of matrices is developed for th
aforementioned class of DREs. It is demonstrated that this ew
semigroup can be used to compute particular solutions of tree
DREs, and to characterize finite escape times (should they is¥)
in a relatively simple way compared with that provided by the
standard symplectic fundamental solution semigroup.

. INTRODUCTION

Differential Riccati equations (DRES) arise naturally i

linear optimal control and dissipative systems theoly [2],

[3], [4]. A typical finite dimensional DRE applicable in the
verification of the.%-gain property for linear systems is a

ordinary differential equation defined via matricése R™*",
B e R"™™ CeRP™ n,m,p €N, by

P,=AP,+PA+PBBP, +CC, 1)

in which P, € S**™ describes a particular symmetric matrix

valued solution evolved forward from an initial condition

)

P e Sgﬁ,

n

Huan Zhang

programming evolution operators for an associated optimal
control problem, see also [12], [13], [14], [15], [16].

In this paper, a newmax-plus primal space fundamental
solutionis provided for DREs of the forni{1)[2). This fun-
damental solution can be used to evaluate particular solsiti
of (@), analogously to the symplectic and max-plus dual spac
fundamental solutions. Its development is complementary t
that of the max-plus dual space fundamental solution docu-
mented in[[7],[[8], [10], and parallels the correspondincerg
primal space development for difference Riccati equatj@hs
It is shown that this new fundamental solution provides a
simpler test for establishing existence of solutions[of (Z)
when compared with the symplectic fundamental solution.

In terms of organization, the symplectic fundamental so-
lution for DRE [1) is recalled in Section] Il for comparative
jpurposes, to formalize existence of solutions, and to cocist
a specific particular solution t@1(1) of utility later. The rma
plus primal space fundamental solution, and corresponding
fundamental solution semigroup, is subsequently consduc
in Sectiond 1l and_1V, using the aforementioned particular
solution. An illustration of its application is provided in
Section[V, followed by some brief concluding remarks in
Section V). Proofs are largely delayed to the appendices.
ThroughoutN, Q, R denote respectively the natural, ratio-
hal, and real numbers, whilg>,, R, R"*" denote respec-
tively the nonnegative real numbersdimensional Euclidean
space, and the space ofx n matrices with real entrie®R*,
etc, denotes the analogous sets defined with respect to ex-

residing in the space of symmetric matrices exceeding Some 4. real® U {£oo}. Similarly, S, §mxn

M € S™*™, to any timet € [0,t*) in some maximal horizon

of existencet* = t*(P) € RL; = R U {+oc}. Related
DREs arise in lineav#- and 7%, -control and filtering, etc
see for example [2]/13],14].

A fundamental solution for DRE[]1) is a mathematic
object that characterizes every possible solution of trRED
as parameterized by its initial (or terminal) conditidd.(2
One such fundamental solution is tegmplectic fundamental
solution which is itself the solution of a (derived) Hamiltonian

system of linear ordinary differential equations, see fame-

ple [1], [5], [6]. Another fundamental solution is tmeax-plus

dual-space fundamental solutidid], [8], [9], [10], which is

constructed by exploiting semiconvex duality [11] and max-
plus linearity of the Lax-Oleinik semigroup [12] of dynamic

ap € R™ " is denoted byP’

20" SLy" denote
the spaces of symmetric, nonnegative symmetric, and pesiti
definite symmetric elements dR™*" respectively. Further

* extending this notatior§Z’;" denotes the subset &'*" of

matricesP satisfyingP — M e SL1j", etc. The transpose of
€ R™ ™ The corresponding
identity is denoted byl € S**". GivenU € R?"*2", the
)two—by—two block matrix representation

1 2
U—{U U

U21 U22
with U% € R"*", 4, j € {1,2}, is used where convenient.

:| c R2n><2n’ (3)

I[I. SYMPLECTIC FUNDAMENTAL SOLUTION
Existence of a unique solution to DRIE] (1), subject to
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theorem, see for example![8, Theorem 2.4]. Alternativdly, i
may be constructed directly as

P =YX 4)
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in which X;,Y; € R™*™ are defined with respect to theestablished via the semiconvex transform/[11]. The semicon

symplectic fundamental solutio, € R?"*2" for (D) by vex transform is a generalization of the Legendre-Fenchel
X 7 transform [19], [[20], [[21], in which convexity is weakenea t
[ Yt ] =% [ P } . te0,t"(Fy)), semiconvexity via a quadratic basis function R xR™ — R.
¢ 0 N ) (5) This basis function is defined for all, = € R" by
- —BB
Et = eXp(Ht) 5 H = |: / / :| ’ x ! T
co A go(x,z)i%(gc—z)’]\/[(x—z)zé[Z}M(JV[){Z},

in which the maximal horizon of existen¢e(F) € RY, of (9)

the unique particular solutio®; in () is characterized by _ _ )
in which M € S™*", andyu : S*™*" — §?n*2" s defined by

X1 existsV s € (0,1] r o
#(By) = supd ¢ € Rog | with X, given by [B) 5. (6) u(P) = [ +P - } € g2nxon, (10)
subject toP, € S"x" -M +M

see [5], [L7], [L8]. This maximal horizon of existence ishet for all P € S**".

strictly positive and finite, or infinite. Wher (Py) is strictly ~ Assumption 3.1: Matrix\/ € §"*" defining the basis[{9)

positive, the solution?, experiences a finite escape tat=  Satisfies the following properties:

t*(Py). Otherwise, no such such finite escape time exists, ahj M ~! € S**" exists;

P, may be evolved to any arbitrarily large time horizore  2) t*(M) = +o0, cf. (8).

R 0. For example, under the conditions of the strict bounded standard conditions under which Assumption] 3.1 holds

real lemma (e.g.[[3, Theorem 2.1] drl [4, Theorem 3.7.4J4re controllability and observability ofA, B) and (C, A)

Py =0 € 8™ implies thatt*(F) = +oo. respectively, or via the strict bounded real lemma, see for
By inspection, the symplectic fundamental solutidh, examplel[3]. The details are postponed to Lenima 3.4.

defined by[(#),[(5)[(6) satisfies the properties of a fundaelen The semiconvex transform and its inverse are well-defined
solution for DRE[(1). In particular, it can be evolved indape with respect to the basis of (@) by
dently of any specific DRE initial conditio®, and can be

. . : . ®
used to recover any such particular solution via an operatio Dy 1p = _/ o(z,) ® (—h(z)) da, (11)
involving that P. It is a standard tool for the representation n
and computation of solutions to DREs of the form (1). In D-lg- @ (2) ®alz) d (12)
SectionIl, it is used to construct a particular solutionaof p @= | P ’

DRE of the form[(1) that is employed in the construction the

. M — . —M
max-plus primal space fundamental solution of interest. ~ for all ¢ € dom (D) = % anda € dom (D) =",
see also[[16],[[7],[18],[122]. For quadratic functionks, (d

(@I2) define a pair of matrix operations on correspondingepac
1. MAX-PLUS FUNDAMENTAL SOLUTION of Hessians. In particular, with) : R® — R defined with

A. Max-plus algebra and semiconvex duality respect to somé € S*17' by ¢(z) = 32’ Pz for all 2 € R,
The max-plus algebra [L2].][7] is a commutative semifiel@PPlication of [(11l) yields a well-defined semiconvex duel. |

H _ 1 n H . QnXn
overR~, equipped with addition and multiplication operatorgfit:lcu'ar_’a(z) = 32/ T (P)zforall z € R", with T : §7*" —
defined respectively by & b = max(a,b) anda®@b=a+b. > defined by
I'F is an idempotent algebra,_ as tlafopera_\t_ion _is idempotent Y(P)=—M — M(P - M)"*M, P € dom (),
(i.,e.a ® a = a), and a semifield as additive inverses do not q ) = gnxn (13)
exist. The max-plus integral of a functigh: R* — R~ over a om (T) = 8%
subset” C R" of its domain is[,, f(y) dy = sup,cs f(y). Similarly, the inverse semiconvex transforfil(12) correstso
The max-plus delta functiod™ : R" x R" — R~ is defined to the inverse maf—*, with
for all x,y € R™ by

T YP)=M-MP+M)""M, Pedom(Y),

(V(w,y)i{ ISR (1) dom (Y1) =877, (14)

In developing a max-plus fundamental solution, it is usédul ] . e
introduce spaces of uniformly semiconvex and semiconcave \emark 3.2:The domains specified iDL (L3) arid[14) may be

nxXn nXxXn 1 1 H
functions, defined with respect & € S™<", by extended tdS1}; and SgﬁM respectively, via co_rrespond|.ng .
Moore-Penrose pseudo-inverses. However, this extension i

gK =L R SR f+3(, K not required here, and the details are omitted.
+ : convex ’
! (®) _
K ) R LR ¢ 2 (- K+) B. Optimal control problem
- ' concave ’

In order to construct a max-plus fundamental solution for
respectively. Semiconvex duality is a duality between ¢hethe propagation of solutions of DRE] (1)1 (2), it is useful to
spaces of semiconvex and semiconcave functions, thatdiefine a corresponding optimal control problem on a finite



time horizont € R>( via the value functiod?; : R* — R  Equivalently, using the notation dfl(3), DRE{24).123) iregsl

given by that Q}', Q72 € S™*™, Q% € R™*™ satisfy
Wi(z) = (S ¥)(x) (15) 6'=AQ + QAT QI'BBQ +C'C, (25)
312 11 12 21 12
for all z € R". Here,¥ : R® — R denotes the terminal payoff " =(A+ BB'Qy")' Q" Qi = (@), (26)
U(z) = 32’ Pyx for all z € R™, in which P, € S*}}' is as per 7 =(Q*)BB'Q,?, (27)

@), with M € S™*™ as per[(®). Thedynamic programming for all t e

* ; 11 _ 12 _ 122 _
evolution operatorS; appearing in[(15) is defined by [0,£*(M)), subject toQy” = —~Qg" = Qp° = M,

with M € S™*™ as per [[P). As[(26) and(P7) describe
(Sey)(x) = sup Jy(t,z,w), € dom(Sy), (respectively) a linear evolution equation and an integrat
we L ([0,t;R™) any finite escape of); must be due to the dynamids{25), see
N on _ | (StY)(z) e R™ for example [[23, Proposition 3.6(iv)]. That is, the maximal
dom (&) = {¢ RE= R ‘ YV zeR" NC horizon of existence for[{22) and_(25) must be equal, ie.
for all = € R™. PayoffJy(t,-,-) : R" x ([0, ] R"™) — R t*(Qo) = t*(M). Assumptior 311 further implies that
is defined by t*(Qo) = t* (M) = +o0. (28)

t . . -
) As DRE [25) is of the same form dd (1), the particular solution
= o1 21,2
Jy(t, x,w) = /O 5lys)” — 3lws| ds + (xy) (17) Q: 0f|DR'Efm(3’ 23) c?n li)e_c%a(rSa)cterized explicitly via the
n . . .  symplectic fundamental solutio :
for all x € R”, w € £([0,¢];R™), in which z;, € R, i " : )
w, € R™, andy, € R” denote the state, input, and outpuﬁ Theorem 3.3:Under Assumptiori_3]1, the particular solu

. . on @Q; of DRE (22), [28) and the symplectic fundamental
(respectively) of the linear system solutionX; of (§) for DRE [1) are equivalent. That is, there

is = Azs + Bws, xo=1x € R", (18) exists an invertible operat@ : S27*2" — §27*2" sych that
ys = O, Q=E2(), Zi=27'(Q) (29)
at time s € [0,¢]. It is straightforward to show that the valuesy, ) ¢ ¢ Rso.
function W, of (I5) is quadratic, see|[1].[7].[8].[9], with Proof: See AppendiXA. m
Wi(z) = (S,9)(z) = 1o/ Pa (19) Theorem[3B demonstrates that under the conditions of

. o -~ Assumption 311, any particular solution of the DRE (1}, (2)
for all = € R”, with P, € S*"**" satisfying DRE[(ll) subject can be represented equivalently by the symplectic fundgahen

to the initial condition [(R). solutionX; of (B), or via the Hessiaf); of the quadratic value
function of the auxiliary optimal control problerh {20}, {21
C. Auxiliary optimal control problem see [[2P). Consequently, the following sufficient conditfon

It constructing a max-plus fundamental solution for (1), f:SSUMptiori3.1L is useful. _ - .
is useful to introduce an auxiliary optimal control problem Lemma 3.4:Suppose .thefe e?qsts a stabilizing - solution
defined on the same finite time horizore R>( with value My €S> of the algebraic Riccati equatiofARE)
function S;(-, z) : R* — R, z € R", defined in terms of the 0=A"My+ MyA+ MyBB'My,+ C'C. (30)

d i i luti f b . . . L
ynamic programming evolution operaiy of (18) by Then, there always exists an invertiblé € S™*™ satisfying

for all z € R™. This value function is again quadratic, with such that Assumptiofi3.1 holds.
s (27 r 01 Proof: See AppendiXB. m
i(z,2) = 3 P Q1 PN (21) Remark 3.5:Lemmal3.#4 provides a constructive approach

) ) i ) _ to validating Assumption 31 directly. It also enables iedt
forall z, = € R", in whichQ; € $****" is the unique solution yajigation via the bounded and strict bounded real lemnes, s
of the DRE for example[[8]. In particular, stability ofl, controllability of
O, =AQ +QA+Q,BB'Q,+C'C (22) (A B), observability of (C, /_l), and the finite gain property
(A, B,C)|lse. <1 imply via the bounded real lemma that
initialized with Assumption[311 holds. Alternatively, stability of and the
Qo = p(M) € R (23) strict gain property|(A, B, )| < 1 imply via the strict
bounded real lemma that Assumption]3.1 holds.
as per[(®),[(T0), for alt € [0,¢*(Qo)). Here,t*(Qo) € R,
denotes the correspondingAmaximaI horizon of existehke (). Max-plus integral operator representations for {16)

i i 2nx2n P 2nxXm
while E)hxeznconstant_ matriced € R**, B € R™*™, and A horizon indexedmax-plus linear max-plus integral oper-
CeR appearing inl(22) are defined by ator defined on a spacé” is an operator of the form

- A 0 AL B A
A= [ 0 0}7 B = { 0 :|7 C:[C O]' (24) ]—"fewi/®Ft(-,w)®7rox,5(-,w)dw, 7 € dom (F),
P



dom (F) = {w P - R

(Fm)(x) ?Rf }’ (32) of the form [32) is well-defined by the kernél; of (38).
VzeR Recalling the definitiond(12)[{R0OY_(B4) 61, ', S;, 79,

whereF; : R" x & — R~ denotes the kernel of the Operator,g, (3. ) = (S, (-, y))(z) = (St Z% (-, y))(z)

x: : R" x 2 — R™ is an auxiliary operator (included here ’ ’

&
for generality), andr € dom (F;?) is the function-valued :/ Ii(z,w) ® [ 0 (24,8) @ (&, ) dg} dw

argument of 7;° representing a terminal payoff (or value 25 ([0,t;R™) R
function) or its semiconvex dual. The dynamic programming @ @ B
evolution operatosS; of (I8) defines a max-plus linear max- = / / Ii(z,w) ® 67 (24, &) dw | @ (&, y) dE
) , 3 n | J 2 ((0,8);R™)
plus integral operator of this form, with o
P = 25([0,1];R™), =/n(8t 57 (- &)(@) ® p(& y) dE
‘ 2 2 @
Fy(a, w) = L, w) ﬁ/o alysl” = glwsf ds. :/ P(y,€) ® (8187 (- €) () dg
]Rn
Xt(xa U)) =1y ) = (Dngt(Ia ))(y) (39)

wherel;(z, w) is the integrated running payoff associated witivhere the interchange of max-plus integrals involved corre
initial statex € R"™ and inputw € Z([0,t];R™) over the sponds to an interchange of suprema, the second last equal-
horizont € R, andz; € R" is the corresponding terminality follows by symmetry ofe, ie. o€ y) = o(y,€), and
state, both defined with respect fo)(18). That is, fowadl R™, T (x,4) = (S; 6~ (-, y))(x). Hence, substitutind (39) if (B8),

® _

(St 1/))(56) — / It(CC,’LU) ® U)(It) dw . (33) Gt(.I, ) = D¢St(x, ) = prwth(I, ) = Tt(I, )

Z2(0.8R™) That is, [36) holds. Furthermore, for any € dom (S,), a
Similarly, recalling the definition[{7) of the max-plus delt similar argument yields
function §—, the identity max-plus linear max-plus integral

operator on%” = R", defined viay;(z,y) =y € R", is (St w)egx) = (S T%9)(x) .
(% = I:mw@[ 6:v,y®z/1ydy}dw
ERTRINY P P P PR E L | LRI
R’Vl @ @
for all z € R", ie. Z%¢ = ¢ for any+ € dom (Z%), in which = / / Li(z,w) @6 (x4,y) dw| @ ¢(y)dy
the domaindom (Z®) is defined as pef(32). m [/ 2 ([04R™)

Theorem 3.6:Under Assumptiod 311, and given the dy- @ _ ®
P : Yo [ s @ e v dy = [ Gilew) @ vl dy

namic programming evolution operat&; of (18) with ¢ €

n Rn

R~ fixed, there exists a max-plus linear max-plus integral_ (GF ¥)(2)

Z & t :
operatorg;” of the form [32) such that

5 That is, [(35) holds. [

S =0%y = Gi(y) ® dy, ¥ € dom (G®), Remark 3.7:The kernelG; of the max-plus linear max-plus

tzp ey R tloy) @ vly) dy v (G) integral operatog;® defined in Theorern 3.6 can be bounded
dom (G?) = dom (S}), (35) above by the value function of a third optimal control prable

In particular, applying[(36),
Gi(z,y) = (St 67 () < (Sevho)(w)
for all t € R>q, 2,y € R", whereyy : R® — R is the zero

with kernelG, : R® x R™ — R~ defined for allz,y € R™ by
Gi(w,y) = (S:67(,y))(x) = (DpSe(x,))(y),  (36)

with respect to[([7),[(11) [(16)[(20). terminal payoff defined byjo(z) = 0 for all z € R". By
Proof: Fix arbitrary¢ € Rs, andz,y € R". Recalling inspection of [(I6)S; ¢ is the value function of a standard
the definition [2D),[(21) of5,, optimal control problem arising it¥>-gain analysis. It is finite
valued if there exists a stabilizing solution of ARE30).
Si(x,y) = (St () (@) = 52'Qt x + 2'Q%y + 3/ Q7, In developing a max-plus fundamental solution for DRE

(@), @) via Theorer 316, it is useful to establish a conmecti
between finiteness of the kern@} of (38) and controllability

72 e SUAT (37) of the underlying dynamic$ (18).

— . Assumption 3.8 A, B) of (18) is controllable.
Consequently, by definitiof (IL1) of the semiconvex tranmsfor Lemma 3.9:Suppose Assumptidi3.1 holds. Then, the ker-

— -M
Si(w,-) € dom (D) = .7, so that nel G; of the max-plus linear max-plus integral opera@t
Gi(z,-) = DySi(z,-) € =M = dom (D) (38) defined by[(3b) satisfies the following property:

%2}
is well-defined. Note in particular tha®;(z,y) € R~ by Assumptior 3B holds <= v Gféx’y) €R R"
definition [8) of .#=*. Ast € Rso and z,y € R" are tERso, 2,y €
arbitrary, a max-plus linear max-plus integral operagt Proof: See AppendiX C. [ ]

wherein Assumptiofi 311 anfl(27) imply that



E. Max-plus fundamental solution for DRE (1) By inspection of [(4), [(6), and[[(42)[(44), it is evident

Dynamic programming implies that the set of dynamiE"at _the symplectic z_;\nd_max-plus funo_lamental sqlutionh bot
programming evolution operatofss; };cx., defines the well- provide a characterization of all parpcular solutlolns .bét
known Lax-Oleinik dynamic programming semigroup [12]PRE (), [2). Furthermore, both provide characterizatiohs
Applying Theoreni3B6, it immediately follows théG }en., e corresponding finite escape timgF) < _Rim see [(6)
must also define a one-parameter semigroup of operators ¥l [45). However, by inspection, a crucial difference letw
35). In particular,{G®}1cr., naturally inherits (from the these If';ltter characterlz_atlons concerns thelr_ease af i,
Lax-Oleinik semigroup) the semigroup and identity projesrt @Ssuming their respective fundamental solutions are krfown

all time. In particular, the existence or otherwise of a @&nit
GPGY =64,, Gy =1%, (40) escape at time due to an initial condition?, € S”%} can
for ¢t,7 € R>o. This particular semigroup is referred to a?e verified using the max-plus characterizatior (45) byrtgst

i i 22 nxn

themax-plus primal space fundamental solution semigraup the_ !nequallty_Po + AT € S<0. once. H0\_/vev_er, the same
the optimal control probleni(15), se€e [9], [22]. The modifieYe”_f'C"ﬂ_'On using the Sﬁmpleg'c characterizafigh (6)uiees
primal used here refers to the fact that propagation occUfSting invertibility of&2;" + X,°F for all s € (0,1].
in the primal space of payoffs. (A correspondingax-plus
dual space fundamental solution semigraipo exists, where IV. FUNDAMENTAL SOLUTIONS SEMIGI;(ZLQJPS
propagation occurs in a dual space defined by the semiconveR0th the symplectic fundamental SOM@? GQR " and
transform [(I), see for examplé [71. [8]. [9], [22]. 110].) the ma?(-plus fundamental solufu@fnt € §enxen, speC|f|.ed_

In the specific case of the optimal control problem defindgspectively by [(5), [(42), provide a path for establishing

propagate the value functidii; to longer time horizons, with On the time interval0,¢] € R0, t € R0, and computing
that solution. As the ternflundamental solutionmplies, this

Wipr =G5 Wy, Wy =G24 (41) is possible for any initial dataP, satisfying [2). Indeed,
* ; both fundamental solutions can be evolved to longer time
for any t,7,t + 7 € [0,t*(F)). In view of (I9) and [(4L), . . g
a particular solution?, of DRE (1) satisfying the initial horlzonsp(jepepdentlpfanyspecm_c|n|t|al dgtaforthe DRE,
condition [2) can be similarly propagated forward in timaisT thereby giving r|se.to a correspondlsg||p|gct|candm§1x-plus
gives rise to a characterization & in terms of the Hessian fundamental solution semigroups of matrices defining the

of the kernelG; of the max-plus primal-space fundamentdftter max-plus fundamental solution SeAm'grozgg’Qf is ubstef
solutionG®. This characterization is referred to amax-plus €finé a matrix operatios acting onA, A € S by
primal space fundamental solution for DRE .(1) [A@A 1= A1 A12(A11 + AT (A2

Theorem 3.10:Under Assumptions 3.1 ahd 3.8, there exists [ A2 = AR 4 A22)FAL2
a bijectionII : §27*2" — §2nx2n gy ch that the kernel; of ) ’ (46)
(39) takes the explicit finite quadratic form [ = ([A@ A,

A®AP22 = A22 _ (A12)’(A11 +A22)+A12,

using the notation of {3), in whicl-)™ denotes the Moore-

: Penrose inverse.
for all z,y € R™, ¢t € Ry, whereQ; is as per[(ZP). ) . S -
Proof: See Appendi&D. Theorem 4.1:Under Assumptions 3.1 afid 3.8, the families

By inspection of Theorenis 3.3 ahd 3.10, the controllabilit f matrices{Z¢ }tcr.., and{A¢}eer., defined byl(b) and{42),

. oL TR , .
Assumption 38 implies that the symplectic fundamental s nd related via the bijectioli™" o £ of {@J), define a pair of

) ) X eSS
lution X; and the Hessiam\; of the max-plus primal spaceone parameter semigroups of matricesRitt satisfying

fundamental solution kerneF, are equivalent. In particular, Tirs = ¢ X, Aips = A ® A, (47)
there exists a bijectioll—! o = : R?"*2" — §2nX2n gych that

T

Gi(z,y) =3 [ y ]/At [ i ] ER, A =T1"5Q,), (42)

for all t, s € R~g, in which the respective associative binary
A =TT o E(), ¥ =E 1 oTI(Ay) (43) operations are standard matrix multiplication, and therixat
operation® of (46).

for all t € R-o. Consequently, it is natural to expect that Proof: Fix £, s € Rs,. The left-hand semigroup property

defines an alternative fundamental solution for DRE (1), (2}

) ) . (47) is immediate by definitior[{5) of the symplectic fun-
Theorem 3'11%55'0058 that AssumptioisB.1 3.8 holgra mental solutiort;. With Assumption§ 311 arld 3.8 asserted,

Given anyF, € S/, the corresponding unique solutidh Theorer 310 impli 2mx2n
; o - plies that;, A;,Ayps € S are well-
of DRE (), [2) exists and is given explicitly by defined by [@2), while[[d3) holds with bijectioli~! o = by
P =AM — A2 (Py 4+ AL (A2, (44) Theoremg 313 and 3.110. Furthermore, Theokem 3.6 fand (40)

imply that for anyy € dom (G, ) C dom (G9),
for all t € (0,t*(P)), whereA; € S*"*?" is as per[(4R), and i v (Get.) (@7

. . . . Pl ® ®
the maximal horizon of existence i$(F,) € RL, is GO GOy — Gi(m) @ [ Galmy) © () dy] d
t*(Py) = sup {t € Rso | Py + AP € S5 ). (45) oo R
Proof: See AppendiXE. - = /n [ Gi(-,n) ® Gs(n,y) dn] ®@Y(y) dy

R~



® : . . _
=G® = Grrs(-y) ® du. below. As is the case with standard matrix exponentiatiote n
s ¥ G (y) @ Y(y) dy that [47). [49) imply that

Applying an appropriate modification ofl[7, Lemma 4.5] to ®(t+s) _ . o @t ®s
equate the kernels of the left- and right-hand sides above, (A1) = A = M@ A = (A)T @ (A1)

Theoren{ 3,10 implies that for all t,s € Ryg.
.1 e Remark 4.2:[[7, Section 5] The semigroup property {47)
3 { } Apys ] = Gi1s(z,y) immediately facilitates the definition a@b-exponentiation for
y@ LY any positive integen € N by
=/ Gi(z,m) @ Gs(n,y) dn AP = A, @A, ® - ®A, = Ay, (50)
:/@l x'/A 2 o1 n ’A n i n times
2 m | T 21y “ly wherer € R.q. By inspection,((A,)®™)®" = (A,)®™" for
® all m,n € N. Using this observation[(b0) can be extended
= / B Azyy(n) dn (48) 1o positive rational and subsequently positive real exptsie
o _ _ N In particular, givenp € Q- and coprimem,n € N such
where ), , : R" — R is defined for eachr,y € R" by that np — m, (50) implies that(AT_)@)m = Apn(e/m) =
TOA Al2 (Ay/n)®m™)®™ = ((A;)®P)®", That is, the positive rational
v : t v A+)®? is uniquely defined b
Aey(n) =1 v 0 A2 (AL2) . ®-exponent(A,)®? is uniquely defined by
Tl @Ry AR A A2 [ L7 (Ar)®P = (Aryn)®™ (51)
_ 177/(/\11 +A22)77+77' A2 Tz for all p = m/n € Qso, m,n € N coprime. AsQ is dense
2 s t (AL2) y in R, and the map- — A,, 7 € Ry, iS continuous by[(42),
Tl TA o T it immediately foIonvs thatA; = limpeq.,, p—t Ap. AS Ap
+3 y 0 A22 y can be replaced with th@-expononentA;)®? of (&I), the
° ®-exponent(A;)®t of (49) is uniquely defined by
for all n € R™. As Ay s € R?"*2" js well-defined by [(4R), o - . o . om
note thatG,,(z,y) € R for any z,y € R" fixed, see also  (A1)*" = ptei?_lp%(Al) b= pEQE?p%t(Al/n) (52)

Lemmal[3.D. That issup,cg- Az,y(n) € R. Consequently, _ _ S _ _

applying [8, Lemma E.2], the following properties hold: for all ¢ € R+, identically to [7]. Note that in the right-hand

1) All 4+ }@2 c snxn. equality of [52), coprimen,n € N are uniquely defined for

: 2 A . o .
s ¥ 1 224 axn €achp € Qs¢ in the limiting sequence. Wheree R+ is

2) ter:(?stl\g_ogaz Penrose pseudo-invetsg’ + Af*)" € S<o irrational, it follows immediately thatn, n — oo.

3) there exists @* € R™ given by
V. SOLVING THE DRE (1), [2)

12 !
Nt = — (AP + AT [ (ﬁl‘g), } [ * ] Theoremd 3.11 anld 4.1 together describe a new max-plus
s y primal space fundamental solution semigroup of matrices
such that {A¢}1er., for propagating solution®, € S**" of DRE (1)

® 1T A 0 . forward in timet € R+ from initializationsP, € S%}’ as per
/ Az (M) dn = Agy(n*) = % { } [ 6 A22 ] [ ] (2). In particular, [(46),[{(47) describe propagation of thesvn
R , 4 T Y fundamental solution for this DRE, while_{44) specifies how
[ x ] { Ay } (ALl £ A22)F [ Ay } [ z ] this fundamental solution may be used to evaluate a paaticul
Y (A% ° ‘ (A% Y solution at any timet € R-¢. In addition, [45) provides a
Applying this last property if{48) and recalling thaty € R  general characterization of the corresponding maximaghor
are arbitrary yields[{46) via of existencet*(P,) € RZ,. By inspection, this characteri-
" o zation allows easy verification of whether a specific tite
Apys = [At (;2 } _ { A1t2 falls before a finite escap& (FPy) € R (if it exists), by
0 A§ (A7) testing if Py + A7? € S75" at that time. This is simpler than
m the corresponding verification using the characterizaf@n
The semigroups propertids {47) also naturally define resp@tovided by the symplectic fundamental solution (5), where
tive notions of exponentiation. In particular, invertibility of a matrix over a range of times must be tested

Et = (El)ta E1 = exp(H), (49) .
Ay = (A1)®t, A = I 'lo=o exp(H), A. Recipe
: . A recipe that uses the one-parameter max-plus primal space
= —1
n Whlc.h A, = 0 are as per{]S)ﬂ_Bl)l:(JM), and the ©XPOfndamental semigrouf\; }+cr. , to compute the solutio®;
nentiations-)*, (-)®* denote (respectively) the standard matrigs

N e : ) DRE () for any initialization
exponentiation, and an exponentiation defined with resfgect
the ® operation of [[(4B), se€ [7, Section 5] and RemarK 4.2 Py € ST @

(SIS

!

AR
(AIQ)/

s azye]




of the form [2), using a fixed time stepe R, is as follows: whereM, € ST;" is the corresponding stabilizing solution of

>0
ARE (30) as per Lemmia_3.4. In view df (31), select
I. Initialize and propagate the semigroup (46), (47) ST Z1.000 —0.200 y
M=1 _o200 —1.000 | €S<Mo-

O (Initialize basis)SelectM € S"*™ of (@) using Lemma
[B.4. Check that Assumptios 8.1 and]3.8 hold. Consequently, Assumption_3.1 holds. SteEpis completed

O (Initialize semigroupfFix time stepd € R~ and maximal via a standard rank calculation to verify that Assumpfic8 3.
time horizont = K¢ € R, for some fixedK € N. holds. Theorenls 3.B. 3110, dnd]4.1 subsequently imply hieat t
Using the matrix operatofs, II~! of (€1), (74), initialize one parameter semigroup of matricgs: }.cr., propagated
an element of the semigroup by by (48), [4T) is well-defined and may be computed as indicated

As = T1-! 0 5 o exp(H0) € S0 (53) in steps], O. With § = 0.05, K = 80, t = 4, (53) yields

. o ) —83.48 —3.021 | +92.26 —4.011
whereH € R?"*2" s the Hamiltonian matrix((5). 3021 —91.11| +11.07 +92.42
0 (Propagate semigrougyompute a Subsgt\ s} ren. . Of As = 10226 +11.07 | —102.6 —3.420
the semigroup, corresponding to a temporal grid defined —4.011 +92.42 ‘ 23420 —94.98
by 6 € R+, via the evolution _ ) ) .
Subsequently iterating vid_(b4) as per step yields the
Ak1)s = N ® Ags, k € Neg, (54) required set of matricefA s }ren_ . -

In order to demonstrate the computation of particular solu-
tions of DRE [[1) in step§] — O, select an initialization

1. Solve the DRE (d), Py=—-011€S8%}; (56)

O (Initialize a solution)SelectP, € ST’/ Setk = 1. as per stefi] and [_2)' lterating througlk: € N< as per
O (Test for finite escapef Py + Ai?;e "™ as per [d5) sf[epsD and [, testing fo_r finite escape and applyifg(55),
then evaluate the solutioR,; at time stepk as yields the computed solutioR,s, k € N<x of DRE (1), [56).
This solution, along with corresponding symplectic &5
Pus = Ajs — AJ2 (Py + A22) 71 (A3 (55) solutions, is illustrated in FigurEl 1. (Here, th@ATLAB™
. - , RK45 solver is used, with absolute and relative tolerances
as per [(44). Otherwise, record a finite escape time as 1o : .
L . . sét to10~'2.) All three solutions are in reasonable agreement.
occurring in the interva((k — 1)4, k] and exit. No finite escape is observed
O (lterate) Incrementk. If £ € N<g then go to stefd]. P '

Otherwise, exit.

as per[(4l7). (See also Remark]5.1 below.)

C. Example — finite escape

As indicated, the recipe consists of a total of 6 steps,In order to illustrate finite escape phenomenon, the set of
divided into two parts. Part concerns the initialization and matrices{As}ren_,, cOmputed above is reused to evaluate
propagation of a subset of the one parameter semigrouptleé particular solution of DREI1).(2) for the initial cotidn
matrices {A; }+cr., required for computingany particular [ 2.000 0.000 .
solution of DRE [(1), [R) up to a pre-specified time horizon Py = [ 0.000 6.500 } SISV (57)

t € R-o. Partll concerns the subsequent evaluation of su

a particular solution (and corresponding finite escapet if .
exists). Crucially, part need only be completed once, with thé
elements of the semigroup computed there used repeated|
partll in evaluating any particular solutions of interest, witho
modification. This is demonstrated by example.

Remark 5.1:For fast propagation of; to largek € N< g,
where K = 2V, N ¢ N, thelinear time-index accumulation
in (54) can be replaced with time-indeboubling[10], ie.

e problem data is otherwise unchanged. Using the initial-
zation [57) in sted] and iterating step&l and O yields the
%responding DRE solutionLA finite escape is demonstrated
0 occur within the horizont = 4 of computation, with
t*(Py) € (2.8,2.9] established using(45). Figulé 2 illustrates
Omax(Po + A#?), t = kd, k € Nc i, Whereoay : S — R
denotes the maximum eigenvalue map. Note specifically that
zero crossing occurs at the finite escape time, as[pér (45).
Note further thatt — opax(Po + A?2) defines a monotone

Arinys = Aan)s @ Aarys. K € {0} UNcy. non-decreasing function. This monotonicity follows fronat
used to establish the representatibnl (45) of the finite @scap
B. Example — no finite escape time t*(P), see the proof of Theorem 3111. It guarantees that

finite escape occurs prior to this zero crossing.

he computed solutio®; of DRE (1), [5T) fort = k4, k €
N<k, is illustrated in Figur&]3, along with the corresponding
: symplectic andRK45 solutions. These solutions are in good
A= [ —2.000 +1.600 } B [ +0.216 —0.008 ]2 agreement, as measured by the absolute errors illustrated i

In demonstrating the recipe described above, an examB
from [7] is considered. In particular, definé € R"*", B €
R»*™m C e RP*™ andn =m =p =2, by

—1.600 —0.400 —0.008 +0.216 |® Figure[4. As may be observed in the latter figure, these errors
increase immediately prior to the finite escape time as the

1
O = [ +1.500  +0.200 r, My = [ +0.651  —0.310 } . entries of P, € S™" diverge to-oo. For brevity, an error
+0.200 +41.600 —-0.310 +1.160 analysis is not included.
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Fig. 1. Max-plus andRK45 solutions of DRE[(L),[{56). Fig. 3. Max-plus ancRK45 solutions of DRE[(L),[{57).
0.1 7 -8 T T L
| | - e - Finite escape time I
- » - (RK45) - (max-plus) i
: -+- (RK45) - (symplectic) I
! =91 - - - (max-plus) - (symplectic) g
1 %
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g I -10+ )‘f/l I
g | FArE
g 1 X'Xxf ! |
’ I
g : g -11t ﬁ*f—{*g/ b
— » - |
E : 5] \ ¥ &Kixxiﬁ::xw’)'j ’ I
% ; ,zi:il V‘@/’X* /t* ///// . :
£ ‘ -12f § SOt ¢
| i\\ /* P 1
I 1 I
| ;
: i\ #
1 -13fF ;}f/ \ /‘\f ~ x\ *1 ,/ :7
—09} - © ~Finite escape time H ) o !
. ‘ ‘ ‘—x—t'—)O"max(PO'i“At ) ! :
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time time
Fig. 2.  Maximum eigenvalue map— omax(Po + A%2), t = k6. Fig. 4. log;o(]| - ||2) of errors between solutions of DRE] (UL 157).
VI. CONCLUSIONS whereA ¢ R2nx2n B ¢ R2nxm (0 c RPX27 gre as pem4)

A new fundamental solution for a class of differentiaNote by inspection that\ = A’ = A~!. By substitution, a
Riccati equations (DREs) is developed using tools from magtraightforward calculation yields that
plus and semiconvex analysis. It is shown that this fundaahen
solution is defined by a corresponding fundamental solution H=A [i’i} A,
semigroup, which describes the evolution of all particstzlu- 010
tions of the DRE, on all time horizons. A new ch:’;1racterizr¢ntioWhere 7 € R2*2n is as per [[5). Hence, the symplectic

of finite escape time is also provided, enabling a simpler teS ndamental solutio, for DRE (22) is, again by({5)
for existence of particular solutions in comparison witle th ’ '

standard symplectic fundamental solution. S, = exp(ﬁt) N [ exp(()?-lt) ? ] A
APPENDIX ool x2 oo
A. Proof of Theorerh 313 ;10 0O I| 0 O
i 2nx2 iofi =A 0 11 A= 2T 01222 0 | (58)
SinceQ; € R*"**" satisfies DRE{(22)[(23) for alle R>, t ‘ ¢
see[[2B), it may be represented by a corresponding symplecti 0 0y 0 I

fundamental solution of the fornfill(5), denoted heredyc

R |n order to apply((5). definéA{,A € Rinxdn by for all t € R>(, where the notation of [3) has been applied.

Hence, the particular solutiaf; of DRE (22), [23) is given in

R L I 0]0 O terms of the symplectic fundamental solutigh (5), with es=p
~ -A | -BB 0 0|1 0 to 3, by
| e o4 |7 A=l TT0 0|
0 0|0 I Q=Y. X! (59)



for all ¢ € [0,t*(Qo)) = R>o, seel(ZB), in which As My is the stabilizing solution of ARE(30), note th&} =
- My is the unique solution of this DRE for alle R~. That is,

Xt =3, ! t*(My) = +o0o. Choose any invertibld/ € S**" such that
Y, n(M) | (31) holds, and note that such a choice is always possible.
rosil 12 . Recalling [2b), letQ;! € S"*", t € [0,t*(M)) denote the
s n2 o0 I 0 . ; ¢ C :
unique solution of DRE[(25) initialized witl)}'! = M. As
0O I| 0 O 0 I : . 0 .
= | 70 Y A— DREs @) and{G3) are |der_1t|cal, Lem@.? a@] (31) imply
L0 oo 1| -M M that solutions;! and R, satisfy the monotonicity property
[ 2+ 2P B M PRy = Q' — My e SLE" (64)
0 I
= | sy s | € RY2" - (60) for all t € [0,¢*(M)). By inspection, this provides an upper
Y +tM bound for@}!. In order to determine a lower bound, choose

- ws = 0 for all s € [0,¢] suboptimal in the definition (20) of
and (M) is defined by[(1I0). For any fixetlc R>, note in S, (z,0). Recalling [I6), [(17),[(21),
particular that
g1 [ G TP (R ERy

t 0 T )
in which (S} + $12M)~ 1 is well- deflned ag*(M) = +o0
by Assumption 311 and_(28). That |§{t is well-defined.
Its sEbsFltutlon in[(5p), alon% letm frorg 452:0) yields@, = for all t € R>(. Note thatO, € S**" is finite for all ¢t €
VX[ = E(%), whereE : REen — RE21 is defined by R>o, and provides a lower bound fap;! € S"*". Hence,

=) = { Ei(z) E12(2) } (61) combining [64) and5)
= = 6 gnxn m San

12/Qi' e = Sy(2,0) > 22/0, x, (65)

in which O, € S"*" is well-defined by

t
Oy i/ exp(A's)C'Cexp(A s) ds + exp(A't) M exp(At)
0

211+212M€Rn><n }

invertible for all ¢t € [O,t*(M)). A simple contradiction argument
i i 11 nxXn ic fini
using the notation of{3), with subsequently implies th&l;* € S**" is finite for allt € R>,
so thatt* (M) = +oo. [ |

Ell(z) - (221 4 EQQM)(Ell 4 ElQM)71
=) =1 (D)2 M - 22 M, C. Proof of Lemm&319
=21 s 11 12 -1 . .
EE)=-MET+ETM)T, Suppose that Assumptidn 8.1 holds. Fixy € R”, ¢t €
E2(%) ==21(2) 22 M + M. R~o. Note thatG,(z,y) € R~ by Theoreni 3.

As M is invertible by Assumptioh 3l1, it may be verified, (NecessityJSuppose that7, (z, y) € R. Recalling the value

directly that= of (&) is invertible, withs-" : R2mx2n function interpretation of7(z,y), if the dynamics[(18) are
R2nx2n giver? by ' - not controllable fromy to y in time ¢, it immediately follows

by definition [36) that&;(z,y) = —co. Hence, the dynamics
=1(Q) = EHNQ) EH12(Q) (62) (I8) must be controllable from to y in time t. Necessity
- T EHRQE) ETH2WQ) | follows asxz,y € R™ andt € R+ are arbitrary.
. xam - ) (Sufficiency)Suppose that dynamick_{18) are controllable.
dom (271) = {Q € R Q? € R™X |nvert|ble}. Consequently, Lemma_A.1 implies tht?? € S}, where
22 is as per [(27). Consequentlf(z,) € M =

where dom (D,), so thatD,S;(z,-) € =™ is well defined. So,

EHNQ) = —(Q*)'Q* applying the semiconvex transforin {11) $o(z, -) yields

= 1\12 Q Q21 -1 M—Q22 M—l e

EE 1;21EQ§ VEI (E)—I)EI(Q) n Q)lz (D Se(z,))(y) = —/n P(&,y) ® (—=Si(x,€)) d§

=—1)22 11 (=—1\12 _l2ar—1 & ! 21 T
That is, [29) holds. n RS LY ] LY o

= — AR 0 +M Y d€

B. Proof of Lemm&a 34 /an ¢ —QPy —M | M — Q 3

Fix My € SU3" as the stabilizing solution of ARE_(BO) ’

Nl
indicated in the Iemma statement. L&{M,) € RY, denote = — @ (J)\/[ ] { I ]
the maximal horizon of existencEl (6) of the DRE + y

xr
Y 0
/ ’ ’ 1 z ) —Q%Q 22v—1 | — %2 Tz
= A'R, + RyA+ RiBB'R, + C'C, Ry=M,. (63) Tty | (M =QF) Y Y



1
2

[ v ]IAt { x ] 7 (66) D- Proof of Theoreri 310

Y Y Fix anyt € R-q, z € R™. Applying Lemma3.p, and in
where (M — Q%2)~! is guaranteed to exist by LemrhaA.1 particular [66),[(6]7), it follows immediately thét; € R?"*2",
so thatA; € R?"*2" py definition. Hence, applying the right-A; € S?"*2n of (22), (66) are related via
hand equality of[(36) of Theorem 3.6, _

quality ofl(36) Qi=T(A), A =TT'(Q),

I
T X
Gi(z,y) =3 { Y } Ay { Y } €R, (67) with matrix operatordl, II-! : §27%2n _y §2nx2n defined

using the notation of {3) b
thereby completing the proof. 9 013) by

|
Lemma A.1:Under Assumptioi 311, controllability of the II(A) =
dynamics [(IB) implies thaf)?? € ST’} for all t € R~o. A A2 4 A22)"L(A2Y A2(M 4+ A2
Proof: (LemmaAllWith M e S"*™ satisfying Assump- M(M + A22)=1(A12Y M — M(M + A?2)~! }
tion[3.1, recall that* (M) = +oo as perl(2B). Consequently,
the optimal dynamics associated with(z,y) of 20), (21) dom (II) = {A € §Enxan
are well-defined by the time-dependent ODE

A szim} , (73)

Q) =
= (A+BBQL ), wm=z,  (68) [Qlw QP(M —Q*) Q1) Q(M —Q?)'M }
for all s € [0,¢]. Let V; : Ao, — R™*™ denote the evolution MM —-Q**)"HQ"™) MM -Q*)'M-M

operator associated with (68), witky ; = {(r, s) € 0\0 < . S
r < s < t}. By definition, see for examplé [23, Proposition rdom (IT77) = {Q € ST Q™ e 8L } (74)
3.6, p.138], B . . . )
It may be verified directly thall o II~! is the identity.
Vi(o,0) =1,
o) 111
g (s,0) = (A+ BB'Qi_,) Vi(s,0), 69 £ proof of Theoreriza1

Q|

v,
_ 111
Vi(s,0) = —Vi(s,0) (A+ BB'Qi-,), Throughout, it is assumed that Assumptidns| 3.1 3.8
for all (s,0) € Ag,. Defineld, : Ay, — R™*™ via (69) by hold, with M € S™*" specified by the former, as per the
theorem statement. Note in particular théatM) = +o0, so

Un(r,m) = Vet =7t =1 (70) " that (S + 22 M)~ exists for allt € Rso, whereY; is
for all (r,7) € Ao+. By inspection of[(€0),[(70), the symplectic fundamental solution identified [ (5). Gons
Urm) =T quently,Q; € S»*?" is well-defined as the unique solution
5 ! o ) , of DRE (22), [23), for allt € R>¢ by Assumptior_3]1, see
5eUi(r, ) = [55 Vi (s, U)‘(S =(t—ripy) (=1) Theoren{3B and its proof. Note th& € S”}; = dom (T)
— (A+BB'QY V,(t — 1.t — 1) by hypothesis and (13). _ o
— (A+BB'QYY Uy(r,7), (71) The proof propeeds by dem_onstra_tlng a sequence of impli-
e ) cations concerning the following claims, posed with respec
U (r,T) = [ Vi(s, o ‘(Sﬂg):(t,ﬂt,r)] (1) to arbitrary fixedt € R~ and Py € ST}/
= -Vi(t—rt—r)(A+BB'Q") 1) t € (0, 1% (Po));
= —U(r,7) (A+ BB'QY 2) T(Py) + Q% e S™s™ for all s € (0,1];
That is,U; : Ag+ — R™*™ is the evolution operator for the 3) T(Ry) + QF* € SL5™;

dynamics associated wittd + BB'Q!!)’, s € [0,t]. Compar- 4) Py + A?* € ST§"; and
ing with (28), it immediately follows thaQ!* = —U;(s,0)M  5) (@4) and [45) hold.

for all s € [0,]. Hence, [(27) implies that In particular, it is shown that) < 2) < 3) < 4) = 5).
t 2) = 1): Suppose thafl () + Q2 € S’§" for all s €
22 _ 12 12
i M= /0 (Qs%)'BB'Q," ds (0, t]. Applying (I3) and Theorem 3.3,
t —1 22 —1
:/ MUy(s,0Y BB Uy(s,0)M ds = MC, M (72) M= (T(R) + Q%) M
0 = (M= PR)™" = (Z +E2M) 7182 (75)

whereC; = f(f Vi(t,t — s)BB' Vi(t,t — s)ds € SL3" is the
controllability gramian for the paifA+BB'Q}! , B) on|0, ],
by definition ofV;. However, recall that controllability is pre-
served under state feedback, see for example [1, p.48].e5le
(A, B) completely controllable implies tha!+BB'Q}! ., B)

is completely controllable, which in turn implies thét is Ko= M +22Mm)~ 1+ (2 + 520 1y)2
invgrt@ble fqrt € Ryp. That ifS,Ct e Sty for all _t € _R>0. A_s % [(M Ryl g ElQM)flzu} -1
M is invertible by Assumptioh 31, the assertion immediately 1 by s y
follows by (72). - X (85 + 557 M)

where it may be noted that the inverses on the right-hand side
are guaranteed to exist. By hypothesis, the left-hand sde i
invertible, so that a matri¥{, € R™"*" is well-defined for an
Mtbitrary s € (0,¢] by



However, the Woodbury Lemma implies that
K, = [(SM +52M) —s2(M - Ry)]
— (3124 2R L
That is,x!? + 212 Py € S**" is invertible. Recalling[{6), and
that s € (0,¢] is arbitrary, immediately implies thdt) holds.
1) = 2): Fix an arbitraryt € (0,*(F)). Analogously to
the proof of Theorer 313, l&p, € S>**2" denote the unique
solution of DRE [2R) subject to the initialization
Qo = u(Po) (76)

defined, via [(I0), for alls € [0,*(Qo)), Wheret*(Q,) <

R.q is the corresponding maximal horizon of existerice (6).

Analogously to the argument yielding (28), observe th
t*(Qo) = t*(Fo), so thatt € (0,t*(Qo)). An application of
the symplectic fundamental solutidn (4)] (4).1(58), yields

Qs =V, X! (77)

for all s € [0,], in which

X ~ I
— :Zs
Y, u(Fo)
relloo|s2 0 I 0
0 I 0 0 0 I
Sl B2 o022 0 +Py —M
L 0 0| 0 I -M +M
r il +xi2p —»i2pg
= 21 " 22 22 € RN,
24 n22p, _x2)
L -M +M

for all s € [0,]. In particular,
(B +ZPR) (B 4+ DR) SN
0 1
in which (21! + ¥12P)~! is well-defined for alls € [0,1],
ast € (0,t*(P)), seel(®). Consequently, recalliid (31.1(77),
QF =M - M(E} +£7R)'SPM (78)
is well-defined for alls € [0,¢]. Recalling [2B) and[{i6), as

Qo = p(Po) > (M) = Qo, monotonicity of DRE solutions

(see for example LemniaA.2) implies th@t — Q, € S,
so that in particular B

Q7 - QP esyy” (79)

for all s € [0,¢]. Fix an arbitrarys € (0, t]. Rearranging[(48)

and applying[(79), Theorem 3]10, and LemmalA.1,
(B2 -+ SR ISP = MM - Q) M

<M ' (M-QE)M ' esryn (80)

Theoren{ 3.8 and_(61) implies via the notation [of (3) that

Q= [E(S))% = M - M(S!' + S2M)'SEM. (81)

Recall that¥; € dom (2) (ie. the inverse involved is guaran-
teed to exist) by Assumptidn 3.1, asc (0,t*(M)) = Rsy.
Furthermore, ass € (0,t*(F)), definition [6) implies that

X

71:

S 9

—
—

v 4+ $12p,; is invertible. Hence, a matrid, € S™*" is
well-defined by

Ly = (M = Po) + (M — Po)(,! + 3.2 Po) ' 82(M — Py)
= (M~ Py) + (M — P)
x (B 4+ S2M) = S12(M — By)] ' B2 (M — Py).

where the second equality follows by adding and subtracting
¥12M within the inverse. Applying[{80), and the fact that
Py € ST3, note thatL, € S by definition. The Woodbury
Lemma subsequently implies that

L= [(M - P! = (S +22Mm) 12227

— M(Y(Py) + Q)M

%\t/here the second equality follows as perl(75). Consequently

asM e S"*" is invertible andL, € S75",
Y(P)+Q*?=ML;'MeS

nxn
<0 -

As s € (0,t] is arbitrary, claim2) immediately follows.

2) = 3): By hypothesisY (Py) + Q2 € S%3" for all s €
(0,¢]. Selectings = ¢ yields claim3) as required.

3) = 2): By hypothesisY (Py)+Q7* € S’3". Furthermore,
Y(P) € S¥, by (I3). Hence,Q?? € S"*", so that
(QL3)YBB'QL? must be integrable with respect to€ [0, ]
by definition [27). In patrticular,

t
2= [QRBEQE s
0

> [@rpEQia o2 -
0
for any fixeds € (0,#]. Hence,Q2? — Q?* € S", so that

T(Py) +QF = (T(R) +QF) + (Q37 — Q) e SL5™
Recalling thats € (0, ¢] is arbitrary yields clain®?) as required.
3) = 4): Recalling [IB8) and Theorem 3110, séel(4B)] (73),
T(Py) + Qi = (—M — M(Po — M)~ M)
+ (M — M(M+ A7)~ M)

=M[(M—-Py) ' —(M+AP) '] M. (82)
Recalling thatY (Fy) + Q72 € S”5" by hypothesis,
T(Po) + Q7% € SLy"
& (M—Py)™ = (M +AP) L esmyn
& (M +AP)— (M - Py) eSS4
& Py+ AP eSty" (83)

That is, claim4) holds.

4) = 3): Note that [BR) holds as per tH&) = 4) case
above. By hypothesig, + A7 € S;". Hence, the string of
equivalenced (83) implies tha) holds.

4) = 5): Recalling [35) and(42), the value functid¥, of
(@5), (19) satisfies

Wt (.I')

/GB
RTZ

1

2

|

®
o' Pox = Gi(r,y) @ ¥(y) dy
]Rn

!/
* } Ay [ gyc } ® 2y Pyydy

Y

1
2



AL
Py + A?Q

I[3]e

LTk
12
n y (At )/ [1]
"Xn so that

for all z € R". By hypothesis,P, + A? € SIj 2]
(Py + A??)~! exists. Hence, the above max-plus integration
explicitly evaluates as

%x/Pt T = %x/ [A%l — A%Q(Po + A?Q)il(A?” €.

N[

(3]

As z € R" is arbitrary, [4%) follows immediately. In addition, [

as4) & 1), it immediately follows that 5]

sup {t € R ‘Pg + AP e SEn
= sup {t S R>0’t € (O,t*(Po))} =t* (Po)
That is, [45) holds. N [ |
Lemma A.2:Given initializations Py, P, € S"*" satis-
fying Py — P, € SLy", the respective unique solutions (€]
P, P, € $*2" of DRE (1) defined for alls € [0,t*),
t* = min(t*(FRy), t*(Fy)) satisfy

(6]

(7]

El
nXxXn

P, — P, € S%y (84)

for all s € [0,t%). [10]
Proof: Fix s € [0,¢*). Recalling the notation of the proof
of Theoren{ 310, lef : Ay — R™*™ denote the evolution [11]

operator associated with the time-dependent ODE
Y, = (A+ 1BB'(P, + P,)) Y,, [12]

defined foro € [0, s]. In particular, note that [13]

[14]

[15]

for all o € [0, s]. Definer : [0, s] — S™*" by

o = T(s,0) (Py — Py) T(s,0) (85) E:
for all o € [0, s]. Differentiating with respect to,
Tty = 2T (5,0) (Py — Py) T(s,0)' [18]
+T(s,0) (P, — {50) T(s,0) 1]
+ T (s,0)(Py — PU)B—BU'T(S, o) (20]
=T(s,0) T, T(s,0) (86)

[21]
for all o € [0, s], where
(22]

Ty = (B, — Py)— (A+ BB (P, + P,)) (P, — )

— (P, —P,)(A+ 1BB'(P, + P,)) =0, 23]

in which the equality with zero follows by virtue of the fact
that P,, P, both satisfy the DRE[{1). Consequentli,](86)
implies thatw, = 0 for all ¢ € [0, s], so that integration
with respect too € [0, s] yields 7y, = 7. Recalling [85), it
follows immediately that

Ps_ﬁs:7"5:770:T(Sao)(PO_ﬁO)/T(SaO)/

nXxXn

Recalling thatP, — Py e <0
arbitrary, yields the required assertignl(84).

and noting that € [0,t*) is
|
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