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Almost global asymptotic stability of a

grid-connected synchronous generator

Vivek Natarajan and George Weiss

Abstract. We study the global asymptotic behavior of a grid-connected con-
stant field current synchronous generator (SG). The grid is regarded as an
“infinite bus”, i.e. a three-phase AC voltage source. The generator does not
include any controller other than the frequency droop loop. This means that
the mechanical torque applied to this generator is an affine function of its
angular velocity. The negative slope of this function is the frequency droop
constant. We derive sufficient conditions on the SG parameters under which
there exist exactly two periodic state trajectories for the SG, one stable and
another unstable, and for almost all initial states, the state trajectory of the
SG converges to the stable periodic trajectory (all the angles are measured
modulo 2π). Along both periodic state trajectories, the angular velocity of the
SG is equal to the grid frequency. Our sufficient conditions are easy to check
computationally. An important tool in our analysis is an integro-differential
equation called the exact swing equation, which resembles a forced pendulum
equation and is equivalent to our fourth order model of the grid-connected SG.
Apart from our objective of providing an analytical proof for a global asymp-
totic behavior observed in a classical dynamical system, a key motivation for
this work is the development of synchronverters which are inverters that mimic
the behavior of SGs. Understanding the global dynamics of SGs can guide the
choice of synchronverter parameters and operation. As an application we find
a set of stable nominal parameters for a 500kW synchronverter.

Key words. synchronous machine, infinite bus, almost global asymptotic
stability, forced pendulum equation, synchronverter, virtual inductor.

AMS classification. 34D23, 93D20, 94C99.

1. Introduction

Synchronous generators (SGs), once synchronized to the power grid, tend to remain
synchronized even without any control unless very strong disturbances destroy the
synchronism - this is a feature that enabled the development of the AC electricity
grid at the end of the XIX century. We investigate this feature by considering one
synchronous generator and analyzing its ability to synchronize when it is connected
to a much more powerful grid, so that this one generator has practically no influence
on the grid. Thus we model the grid as an “infinite bus”, i.e. a three-phase AC
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voltage source. Following standard practice, the prime mover (the engine that gives
the mechanical torque to the generator) is assumed to provide a torque of the form
Tm − Dp,droopω. Here Tm > 0 is a mechanical torque constant, Dp,droop > 0 is the
frequency droop constant (this is used to stabilize the utility grid) and ω is the
angular velocity of the rotor. The question we address is: under what conditions
will the state trajectory of a grid-connected SG, driven by a prime mover as above,
having a constant field current (rotor current) and starting from an arbitrary initial
state, converge to a state of synchronous rotation? (Synchronous rotation means a
constant difference between the grid angle and the SG rotor angle.)

The above question can be reformulated as a question of almost global asymptotic
stability of a SG model in a transformed coordinate system. The importance of the
stability of a grid-connected generator has been recognized for a long time and this
or closely related problems have been studied, for instance, in [4, 12, 13, 19, 25, 26,
31, 35]. A full model of the SG consists of the electrical equations governing the
fluxes in the stator, rotor and damper windings, along with the mechanical swing
equation governing the rotor dynamics. As far as we know, all the available stability
studies are based on some sort of simplification/reduction of the full model obtained
by: (i) reducing the full model to a lower order (usually second or third order) non-
linear system by approximating the stator and the damper flux dynamics by static
equations and sometimes assuming constant rotor current, or (ii) linearizing the full
or the reduced order model around some equilibrium point. Most of the studies that
use reduced order models focus on the local stability properties of the generator. A
notable exception in this regard is [14], which considers various reduced order SG
models and derives sufficient conditions for every state trajectory of the model to
converge to an equilibrium point. The paper [3] considers (among other things) a
synchronous machine connected to a three-phase AC voltage source having a con-
stant phase difference with respect to the machine angle. Such a dependent voltage
source is encountered in “brushless DC motors”. The rotor current is assumed to
be constant and there are no damper windings, and in this respect, their setup re-
sembles ours. They prove the global asymptotic stability of this system. This is an
interesting problem, but different from the stability of a SG connected to an infinite
bus. The paper [10] proves (among other things) the global asymptotic stability of
a full (8th order) SG model when it is connected to a linear resistive load (not a
grid), using the formalism of port-Hamiltonian systems.

In the present work, we study the global asymptotic stability properties of a grid-
connected generator without approximating the stator flux dynamics (analyzing
reduced order models that approximate the stator flux dynamics can lead to incorrect
conclusions about the full model, see Remark 3.2). But we do restrict our attention
to the case where the rotor current is constant and the damper windings are absent.
We derive sufficient conditions on the SG parameters under which there exist exactly
two periodic state trajectories, one stable and another unstable, and for almost
all initial states, the state trajectory of the SG converges to the stable periodic
trajectory (all the angles are measured modulo 2π), see Theorem 6.3. Along both
the periodic trajectories, the rotor angular velocity is equal to the grid frequency.
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To derive the sufficient conditions, a fourth order nonlinear time-invariant model
for the grid-connected SG is constructed in a transformed coordinate system using
the Park transformation in Section 3. In this coordinate system the two periodic
state trajectories of the SG are mapped into two distinct points which are the unique
stable and unstable equilibrium points of the fourth order model. If for almost every
initial state, the state trajectory of the SG model converges to the stable equilibrium
point, then we call the model almost globally asymptotically stable. In Section 4 we
derive an integro-differential equation called the exact swing equation (ESE), which
resembles a forced pendulum equation and is equivalent to the fourth order SG model
from Section 3. Every trajectory of the fourth order model converges to one of its
equilibrium points if and only if every trajectory of the ESE converges to one of two
possible limit points. We derive some new estimates for the asymptotic response of
a forced pendulum equation driven by a time-varying bounded forcing in Section 5.
Applying these estimates to the ESE, we define a nonlinear map N : (0,Γ] → [0,∞)
in Section 6 which (along with Γ) depends on the SG parameters. We prove that if
N (x) < x for all x ∈ (0,Γ], then the SG is almost globally asymptotically stable. For
any given set of SG parameters, it is easy to plot N to verify if the above sufficient
stability condition is satisfied.

The inherent stability of networks of synchronous generators coupled with various
types of loads and power sources (such as inverters) is currently an area of high
interest and intense research, see for instance [3, 6, 7, 10, 27]. This is partly due to the
proliferation of power sources that are not synchronous generators, which threatens
the stability of the power grid. One approach to addressing this threat has been the
introduction of synchronverters, see [1, 2, 5, 8, 32, 33, 34]. A synchronverter consists
of an inverter (i.e. a DC to three-phase AC switched power converter) together with
a passive filter (inductors and capacitors) that behave towards the power grid like a
SG. A synchronverter has a rotor with inertia, a field coil with inductance and three
stator coils with inductance and resistance, like a SG. But the field coils and the
rotor in a synchronverter are virtual, i.e. they are implemented in software, while
the stator coils are realized using the filter inductors. The dynamical equations
governing the SG and the synchronverter are the same. Thus the synchronverter
can be controlled like a SG, employing droop control loops and other controllers.
This makes the power grid with inverters implemented as synchronverters easier to
control using well established algorithms developed for SGs.

One motivation for our study comes from the development of synchronverters. In
[32] an initial synchronization algorithm was proposed that can be run (typically
for some seconds) before connecting the synchronverter to the grid. The purpose of
this algorithm is to ensure that the voltages generated by the inverter are practi-
cally equal to the grid voltages. During this initial synchronization stage, the filter
inductors are not used. Instead, the control algorithm creates virtual stator coils
between the synchronous internal voltage and the grid, which carry virtual currents,
and the initial synchronization is carried out using these virtual currents instead
of real currents. Thus, even very high virtual currents that may arise as a tran-
sient phenomenon, do not cause any damage. A natural question is: will this initial

3



synchronization stage always succeed? If we simplify this question by assuming a
constant field current and a constant grid frequency, then this question reduces to
the one addressed in this paper. We remark that it is possible to construct an ini-
tial synchronization algorithm, using the results in this work, that is guaranteed to
succeed (the details of such an algorithm are not included in this paper).

Our conclusions are relevant not only for the initial synchronization stage, but
also for finding a good choice of parameters for the synchronverter. Indeed, our
study shows that it is beneficial to have stator coils with large inductance in a
synchronverter. We shall indicate in Section 7 how to realize the effect of a large
inductor in the control algorithm of the synchronverter, without actually using a
large and expensive filter inductor in the hardware. As an application, we find a set
of stable nominal parameters for a 500kW synchronverter in Example 7.1.

The motivation for formulating the question of stability of a grid-connected SG
in a global setting (i.e. for arbitrary initial states) comes from intensive simulations
which indicate that for a range of parameters the SG could be almost globally
asymptotically stable. We wanted to develop a rigorous analytical proof for this
numerical observation about a classical dynamical system, which turned out to be
very challenging. Our sufficient conditions for almost global asymptotic stability
seem to be conservative: according to simulations, there are grid-connected SGs
that do not satisfy our conditions, but nevertheless appear to be almost globally
asymptotically stable. Also, it is easy to find such systems that have a locally stable
equilibrium point but are not almost globally asymptotically stable. It is more
difficult, but still possible, to find such systems whose equilibrium points are all
unstable. Examples of systems described above are in Section 7.

2. Model of a SG connected to an infinite bus

Detailed mathematical models for synchronous machines can be found in [11, 13,
18, 19, 30]. In this section we will briefly derive the equations for a grid connected
synchronous generator, as required in this work, using the notation and sign con-
ventions in [22, 34]. We consider a SG with round (non-salient pole) rotor and, for
the sake of simplicity, assume that the generator has one pair of field poles. The
generator is “perfectly built”, meaning that in each stator winding, the flux caused
by the rotor is a sinusoidal function of the rotor angle θ (with shifts of ±2π/3 be-
tween the phases of course). The rotor current if > 0 is assumed to be constant (or
equivalently, the rotor is a permanent magnet). The stator windings are connected
in star, with no neutral connection, and there are no damper windings.

Figure 1 shows the structure of the SG being considered. The stator windings
have self-inductance L > 0, mutual inductance −M < 0 and resistance Rs > 0.
(The typical value for M is L/2.) We define Ls = L +M . A current in a stator
winding is considered positive if it flows outwards (see Figure 1). The vectors e =
[ea eb ec]

⊤, v = [va vb vc]
⊤ and i = [ia ib ic]

⊤ are the electromotive force (also
called the synchronous internal voltage), stator terminal voltage and stator current,
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respectively. The voltage at the (unconnected) center of the star is denoted by vs.
Let vn = [vs vs vs]

⊤. Then, using ia+ ib+ ic = 0 (there is no neutral line), we have

Lsi̇+Rsi = e− v + vn . (2.1)

Note that if the synchronous generator is connected to the infinite bus via an
impedance that consists of a resistor and an inductor in series, then these can be
regarded as being parts of Rs and Ls, respectively.

Figure 1. Structure of an idealized three-phase round-rotor SG, modified
from [13, Fig. 3.4]. The rotor angle is θ and the field current is if .

Denote the rotor angle by θ and the angular velocity by ω. The power invariant
version of the Park transformation is the unitary matrix

U(θ) =

√

2

3





cos θ cos(θ − 2π
3
) cos(θ + 2π

3
)

− sin θ − sin(θ − 2π
3
) − sin(θ + 2π

3
)

1/
√
2 1/

√
2 1/

√
2



 .

With the notation edq = U(θ)e, vdq = U(θ)v, vndq = U(θ)vn and idq = U(θ)i, (2.1)
can be written as

LsU(θ)i̇ +Rsidq = edq − vdq + vndq . (2.2)

Let edq = [ed eq e0]
⊤, vdq = [vd vq v0]

⊤ and idq = [id iq i0]
⊤. It is easy to check

that if xdq = [xd xq x0]
⊤ = U(θ)x, then regardless of the physical meaning of x

d

dt





xd
xq
x0



 = U(θ)ẋ+ ω





xq
−xd
0



 .

This, the easily verifiable expression vndq = [0 0
√
3vs]

⊤ and (2.2) yield
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Lsi̇d = − Rsid + ωLsiq + ed − vd , Lsi̇q = − ωLsid − Rsiq + eq − vq . (2.3)

Note that i0 = 0 since ia + ib + ic = 0 and hence e0 = v0 −
√
3vs. Since the rotor

current if is constant, it can be shown that

e = Mf ifω





sin θ
sin(θ − 2π

3
)

sin(θ + 2π
3
)



 , (2.4)

where Mf > 0 is the peak mutual inductance between the rotor winding and any
one stator winding (see [34, equation (4)]). This, by a short computation, gives

ed = 0 , eq = −mωif , (2.5)

where m =
√

3
2
Mf . The rotational dynamics of the generator is governed by the

equation
Jω̇ = Tm − Te −Dpω, (2.6)

where J > 0 is the moment of inertia of all the parts rotating with the rotor,
Tm > 0 is a mechanical torque constant (see the explanations further below), Te
is the electromagnetic torque developed by the generator (which normally opposes
the movement) and Dp > 0 is a damping factor. Te can be found from energy
considerations, see for instance [34, equation (7)]:

Te = −mif iq .

The constant Dp is a sum of Dp, fric > 0 which accounts for the viscous friction acting
on the rotor and Dp,droop > 0 which is created by a feedback, called the frequency
droop, from ω to the mechanical torque of the prime mover (as explained in the cited
references). The frequency droop increases the active power in response to a drop of
the grid frequency. Normally, Dp,droop is much larger than Dp, fric. The actual active
mechanical torque Ta coming from the prime mover is Tm−Dp,droopω. Substituting
the expression for Te into (2.6), we obtain

Jω̇ = mif iq −Dpω + Tm . (2.7)

The stator terminals are connected to the grid. Denote the grid voltage magnitude
and angle by V and θg, respectively. By this we mean that the components of v are

va =

√

2

3
V sin θg , vb =

√

2

3
V sin(θg −

2π

3
) , vc =

√

2

3
V sin(θg +

2π

3
) .

Define the angle difference δ, called the power angle, as δ = θ − θg . Applying the
Park transformation to v, we get

vd = − V sin δ , vq = − V cos δ .

Substituting this and (2.5) into (2.3) gives

Lsi̇d = − Rsid + ωLsiq + V sin δ , Lsi̇q = − ωLsid − Rsiq −mωif + V cos δ .

Denoting ωg = θ̇g (the grid frequency), it is clear from the definition of δ that

δ̇ = ω − ωg . (2.8)
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The last three equations together with (2.7) can be written in matrix form:









Lsi̇d
Lsi̇q
Jω̇

δ̇









=









−Rs ωLs 0 0
−ωLs −Rs −mif 0
0 mif −Dp 0
0 0 1 0

















id
iq
ω
δ









+









V sin δ
V cos δ
Tm
−ωg









. (2.9)

The above fourth order nonlinear dynamical system, with state variables id, iq, ω
and δ is our model for a grid connected synchronous generator. In a synchronous
generator we may control if indirectly via the rotor voltage (this adds if as one
more state variable to the system) and we may control also Dp and Tm (though not
instantly). In a synchronverter we may control if , Dp, Tm and even J instantly, but
in this study they are considered to be positive constants.

3. Equilibrium points of the SG model

The right side of the SG model (2.9) is a locally Lipschitz function on its state
space R

4. For any (id0, iq0, ω0, δ0) ∈ R
4, it follows from standard wellposedness

results (see for instance [17, Ch. 3]) that there exists a unique solution (id, iq, ω, δ)
for (2.9) defined on a maximal time interval [0, Tmax), with Tmax > 0, such that
(id(0), iq(0), ω(0), δ(0)) = (id0, iq0, ω0, δ0). We will show, via contradiction, that
Tmax = ∞. To this end, suppose that Tmax is finite. For each t ∈ [0, Tmax) define
W (t) = (Lsi

2
d(t) + Lsi

2
q(t) + Jω2(t))/2. Then

Ẇ (t) = −Rs(i
2
d(t) + i2q(t))−Dpω

2(t) + V id(t) sin δ(t) + V iq(t) cos δ(t) + Tmω(t)

for all t ∈ [0, Tmax). Define C = V 2/(2Rs) + T 2
m/(4Dp). Clearly

Ẇ (t) ≤ − Rs

(

|id(t)| −
V

2Rs

)2

−Rs

(

|iq(t)| −
V

2Rs

)2

−Dp

(

|ω(t)| − Tm
2Dp

)2

+ C

which shows that if either |id(t)|, |iq(t)| or |ω(t)| is sufficiently large, then Ẇ (t) < 0.
In other words, ifW (t) is sufficiently large, then Ẇ (t) < 0. Therefore W (and hence
also id, iq and ω) are bounded on [0, Tmax). Since Tmax is finite, it follows from (2.8)
that δ must also be bounded on [0, Tmax). Hence (id, iq, ω, δ) are bounded functions
on [0, Tmax), which contradicts [16, Corollary II.3]. Therefore Tmax = ∞. So for all
initial conditions there exists a unique global (in time) solution for (2.9).

Denote p = Rs/Ls. Let the angle φ ∈ (0, π/2) be determined by the equations

sinφ =
ωg

√

p2 + ω2
g

, cosφ =
p

√

p2 + ω2
g

. (3.1)

Any equilibrium point (ied, i
e
q, ω

e, δe) of (2.9) must satisfy

ωe = ωg , ieq =
Dpωg − Tm

mif
, ied =

ωg(Dpωg − Tm)

mifp
+
V sin δe

Rs

, (3.2)
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cos(δe + φ) =
(Dpωg − Tm)

mif

Ls
√

p2 + ω2
g

V
+

mifωgp

V
√

p2 + ω2
g

. (3.3)

Denote the right side of (3.3) by Λ. Depending on |Λ|, (3.3) has either zero, one or
two solutions, modulo 2π. For typical sets of SG parameters |Λ| < 1 and (3.3) has
two solutions δe,1 = λ − φ and δe,2 = −λ − φ. Here λ ∈ (0, π) is such that cosλ =
Λ. Corresponding to these two solutions, two equilibrium points (ie,1d , ieq, ωg, δ

e,1)

and (ie,2d , ieq, ωg, δ
e,2) for (2.9) can be determined using (3.2). If (ied, i

e
q, ωg, δ

e) is an
equilibrium point for (2.9), then so is (ied, i

e
q, ωg, δ

e+2kπ) for any integer k. Therefore,
when |Λ| < 1 there are in fact two sequences of equilibrium points for (2.9) in R

4. In
general depending on |Λ|, like the pendulum equation with constant forcing, (2.9)
has either zero, one or two sequences of equilibrium points and in any such sequence
the last component δ differs by an integer multiple of 2π.

An equilibrium point of (2.9) is called locally exponentially stable (in short: stable)
if the linearization of the system around this point is exponentially stable.

The linearization of (2.9) around an equilibrium point (ied, i
e
q, ωg, δ

e) is








ẋ1
ẋ2
ẋ3
ẋ4









=









−p ωg ieq (V cos δe)/Ls
−ωg −p −ied −mif/Ls −(V sin δe)/Ls
0 mif/J −Dp/J 0
0 0 1 0

















x1
x2
x3
x4









, (3.4)

where x1 = id − ied, x2 = iq − ieq, x3 = ω − ωg and x4 = δ − δe. The characteristic
polynomial of the matrix in (3.4) is s4 + a3s

3 + a2s
2 + a1s+ a0, where

a0 =
mifV

√

p2 + ω2
g

JLs
sin(δe + φ) . (3.5)

The equilibrium point (ied, i
e
q, ωg, δ

e) is stable if all the roots of the above charac-
teristic polynomial are in the open left half complex plane. For this to occur it is
necessary (but not sufficient) that a0, a1, a2, a3 > 0. Note that if (ied, i

e
q, ωg, δ

e) is a
stable (or unstable) equilibrium point, then so is (ied, i

e
q, ωg, δ

e + 2kπ) for any k ∈ Z.
When |Λ| < 1, the sign of a0 when δ

e = δe,1 is opposite the sign of a0 when δ
e = δe,2,

so that (2.9) has at least one sequence of unstable equilibrium points. It is also
possible that (2.9) has two sequences of unstable equilibrium points and no sta-
ble equilibrium point (see end of Section 7 for an example). Apart from equilibrium
points, simulations show that when |Λ| < 1, (2.9) can have attracting periodic orbits
(see Section 7). Hence the global phase portrait of (2.9) can be quite complicated.

Remark 3.1. Recall the currents i = [ia ib ic]
⊤ and idq = [id iq 0]⊤ and the Park

transformation U(θ) from Section 2. Since i = U(θ)⊤idq and θ = δ + θg, it follows
that each equilibrium point of (2.9) corresponds to a periodic state trajectory of
the grid-connected SG, if we use the state variables (ia, ib, ω, θ) (with ic = −ia− ib).
This periodic trajectory is stable (unstable) if the equilibrium point of (2.9) is stable
(unstable). From the earlier discussion we get that when |Λ| < 1, if we measure all
the angles modulo 2π, then the grid-connected SG with state variables (ia, ib, ω, θ)
has two unique periodic state trajectories and at least one of them is unstable.
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Remark 3.2. Often in the literature on the control of power systems, the stator
currents id and iq are viewed as fast variables and (using singular perturbation
theory) algebraic expressions are derived for them. If we follow this approach then,
by substituting an algebraic expression for iq in the differential equation (2.7), we get
a second order nonlinear differential equation in δ as a reduced order approximation
for the SG model (2.9). When |Λ| < 1, unlike the SG model, this nonlinear equation
always has one sequence of stable equilibrium points and one sequence of unstable
equilibrium points. So the SG model and its second order approximation can exhibit
fundamentally different local and global dynamics for some SG parameters. This
suggests that any controller designed using a reduced order model that approximates
id and iq must be validated for its performance on the full model.

Definition 3.3. The SG model (2.9) is almost globally asymptotically stable if all its
state trajectories, except those starting from a set of measure zero and converging
to an unstable equilibrium point, converge to a stable equilibrium point.

Note that this definition allows multiple stable and unstable equilibrium points,
but it does not allow limit cycles or unbounded state trajectories.

Extensive simulations suggest that for a range of SG parameters (2.9) is almost
globally asymptotically stable (aGAS). Our objective is to develop a practical test
for verifying if for a given set of SG parameters (2.9) is aGAS. In this regard, our
main result is Theorem 6.3 (also see Remark 6.5). Clearly if (2.9) is aGAS, then
irrespective of initial conditions the SG rotor eventually synchronizes with the grid.

Definition 3.4. An equilibrium point (ied, i
e
q, ωg, δ

e) of (2.9) is hyperbolic if all the
eigenvalues of the matrix on the right side of (3.4) have non-zero real part.

For typical SG parameters, all the equilibrium points of (2.9) are hyperbolic.

Lemma 3.5. If all the equilibrium points of (2.9) are hyperbolic and every trajectory
of (2.9) converges to some equilibrium point, then (2.9) is aGAS.

Proof. By assumption (2.9) has equilibrium points and so |Λ| ≤ 1 (|Λ| is defined
below (3.3)). If |Λ| = 1, then for each equilibrium point (ied, i

e
q, ωg, δ

e) of (2.9) we
have a0 = 0 (a0 is introduced below (3.4)) meaning that the equilibrium point is not
hyperbolic, contradicting the assumption in the lemma. Thus we can conclude that
|Λ| < 1. From our earlier discussion, we get that (2.9) has a sequence of unstable
equilibrium points. Let ze = (ied, i

e
q, ωg, δ

e) be an unstable equilibrium point. It
then follows from the stable manifold theorem [29, Theorem 1.7.2] that the set of
initial conditions for which the trajectory of (2.9) converges to ze is the image of a C1

injective map from R
k → R

4, with k < 4. Using Sard’s theorem [28, Theorem 4.1] we
conclude that this set, called the stable manifold of ze, has Lebesgue measure zero.
Let M be the union of the stable manifolds of all the unstable equilibrium points
of (2.9). Since the set of unstable equilibrium points is countable, M has measure
zero. Since every trajectory of (2.9) converges to an equilibrium point, it follows
that (2.9) must have a sequence of stable equilibrium points and all trajectories of
(2.9) except those starting from M converge to these stable equilibrium points.
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If (id, iq, ω, δ) is the solution of (2.9) for the initial state (id(0), iq(0), ω(0), δ(0)),
then (id, iq, ω, δ+2π) is the solution for the initial state (id(0), iq(0), ω(0), δ(0)+2π).
Thus, in the terminology of [20, Definition 2.4.1], (2.9) is a pendulum-like system.

4. An exact swing equation for the SG

In this section, starting from (2.9) we will derive an integro-differential equation
governing the power angle δ, that resembles the nonlinear pendulum equation with
forcing. It is a version of the classical swing equation (see [19, 35]) obtained by using
the precise expressions for the mechanical torque and the electrical torque.

Recall p = Rs/Ls. The first two equations in (2.9) can then be written as
[

i̇d
i̇q

]

=

[

−p ω
−ω −p

] [

id
iq

]

−
[

0
mifω

Ls

]

+
V

Ls

[

sin δ
cos δ

]

. (4.1)

We regard ω and δ as continuous exogenous signals in (4.1). Therefore (4.1) is a
linear time-varying system with state matrix

A(t) =

[

−p ω(t)
−ω(t) −p

]

.

Clearly A(t1)A(t2) = A(t2)A(t1) for all t1, t2 ≥ 0. So an explicit expression for the
state transition matrix Φ(t, τ) generated by A can be computed to be

Φ(t, τ) = e
∫ t

τ
A(σ)dσ = e





−p(t− τ)
∫ t

τ
ω(σ)dσ

−
∫ t

τ
ω(σ)dσ −p(t− τ)





= e−p(t−τ)





cos
(

∫ t

τ
ω(σ)dσ

)

sin
(

∫ t

τ
ω(σ)dσ

)

− sin
(

∫ t

τ
ω(σ)dσ

)

cos
(

∫ t

τ
ω(σ)dσ

)



 ∀ t, τ ≥ 0 .

For any initial state [id(0) iq(0)]
⊤ and some functions δ and ω, the unique solution

of (4.1) is given by the expression

[

id(t)
iq(t)

]

= Φ(t, 0)

[

id(0)
iq(0)

]

+

∫ t

0

Φ(t, τ)

([

0

−mifω(τ)

Ls

]

+
V

Ls

[

sin (δ(τ))
cos (δ(τ))

])

dτ (4.2)

for each t ≥ 0. The first term under the integral in (4.2), sans the constant
−mif
Ls

,
can be written as

∫ t

0

Φ(t, τ)

[

0
ω(τ)

]

dτ =

∫ t

0

e−p(t−τ)





sin
(

∫ t

τ
ω(σ)dσ

)

ω(τ)

cos
(

∫ t

τ
ω(σ)dσ

)

ω(τ)



 dτ

= e−pt





epτ cos
(

∫ t

τ
ω(σ)dσ

)

−epτ sin
(

∫ t

τ
ω(σ)dσ

)





τ=t

τ=0

+p

∫ t

0

e−p(t−τ)





− cos
(

∫ t

τ
ω(σ)dσ

)

sin
(

∫ t

τ
ω(σ)dσ

)



 dτ . (4.3)
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Using the expression δ(τ) = δ(0) +
∫ τ

0
ω(σ)dσ − ωgτ for all τ ≥ 0, the second term

under the integral in (4.2), sans the constant V
Ls
, can be written as

∫ t

0

Φ(t, τ)

[

sin (δ(τ))
cos (δ(τ))

]

dτ =

∫ t

0

e−p(t−τ)





sin
(

∫ t

τ
ω(σ)dσ + δ(τ)

)

cos
(

∫ t

τ
ω(σ)dσ + δ(τ)

)



 dτ

=

∫ t

0

e−p(t−τ)





sin
(

∫ t

0
ω(σ)dσ + δ(0)− ωgτ

)

cos
(

∫ t

0
ω(σ)dσ + δ(0)− ωgτ

)



 dτ

=
pe−pt

(

p2 + ω2
g

)





epτ sin
(

∫ t

0
ω(σ)dσ + δ(0)− ωgτ

)

epτ cos
(

∫ t

0
ω(σ)dσ + δ(0)− ωgτ

)





τ=t

τ=0

+
ωge

−pt

(

p2 + ω2
g

)





epτ cos
(

∫ t

0
ω(σ)dσ + δ(0)− ωgτ

)

−epτ sin
(

∫ t

0
ω(σ)dσ + δ(0)− ωgτ

)





τ=t

τ=0

.

Using the angle φ introduced in (3.1), the above equation can be written as

∫ t

0

Φ(t, τ)

[

sin (δ(τ))
cos (δ(τ))

]

dτ =
e−pt

√

p2 + ω2
g





epτ sin
(

∫ t

0
ω(σ)dσ + δ(0)− ωgτ + φ

)

epτ cos
(

∫ t

0
ω(σ)dσ + δ(0)− ωgτ + φ

)





τ=t

τ=0

.

Putting together (4.2), (4.3) and the last equation, and using the notation

iv =
V

Ls
√

p2 + ω2
g

, (4.4)

we obtain that for all t ≥ 0

iq(t) = iv cos

(
∫ t

0

ω(σ)dσ + δ(0)− ωgt+ φ

)

−mifp
Ls

∫ t

0

e−p(t−τ) sin

(
∫ t

τ

ω(σ)dσ

)

dτ + e−ptf(t) ,

where

f(t) = − sin

(
∫ t

0

ω(σ)dσ

)

id(0) + cos

(
∫ t

0

ω(σ)dσ

)

iq(0)

− mif
Ls

sin

(
∫ t

0

ω(σ)dσ

)

− iv cos

(
∫ t

0

ω(σ)dσ + δ(0) + φ

)

. (4.5)

Clearly f is a continuous function of time that depends on ω, but nevertheless can
be bounded with a constant independent of ω. Substituting for iq(t) in the equations
for ω and δ in (2.9) we obtain the following integro-differential equation for δ(t):

Jδ̈(t) +Dpδ̇(t)−mif iv cos (δ(t) + φ) = Tm −Dpωg

−
m2i2fp

Ls

∫ t

0

e−p(t−τ) sin

(
∫ t

τ

ω(σ)dσ

)

dτ +mife
−ptf(t) .
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If we introduce the new variable η by

η(t) =
3π

2
+ δ(t) + φ (4.6)

so that η̇(t) = ω(t)− ωg, then the above equation becomes

Jη̈(t) +Dpη̇(t) +mif iv sin η(t) = Tm −Dpωg +mife
−ptf(t)

−
m2i2fp

Ls

∫ t

0

e−p(t−τ) sin [η(t)− η(τ) + ωg(t− τ)] dτ . (4.7)

We will refer to (4.7) as the exact swing equation (ESE). For all initial conditions
(η(0), η̇(0)) and every function f given by (4.5) for some id(0) and iq(0), there exists
a unique global solution (η, η̇) for ESE. Indeed (η, η̇) = (3π/2 + δ + φ, δ̇), where
δ is such that (id, iq, ω, δ) is the unique solution of (2.9) for the initial condition
(id(0), iq(0), η̇(0)+ωg, η(0)−φ−3π/2). Clearly there is a 1-1 correspondence between
the solutions of (2.9) and the solutions of (4.7) when f is given by (4.5).

The integral in (4.7) may be regarded as the output of a first order low-pass filter
(with corner frequency p) driven by a bounded input, so that it is bounded. If we
regard the right side of (4.7) as a bounded exogenous function, then (4.7) is a forced
pendulum equation. In the next section, we derive certain bounds to quantify the
asymptotic response of forced pendulum equations. These bounds are applied to
(4.7) in Section 6 to establish the main result of this paper.

5. Asymptotic response of a forced pendulum

Consider the forced pendulum equation

ψ̈(t) + αψ̇(t) + sinψ(t) = β + γ(t) ∀ t ≥ 0 , (5.1)

where α > 0 and β ∈ R are constants and γ ∈ L∞([0,∞);R) is a continuous function
of the time t satisfying ‖γ‖L∞ < d for some d ∈ R. We assume that |β| + d < 1.
Define the angles ψ1, ψ2 ∈ (−π/2, π/2) so that

sinψ1 = β + d, sinψ2 = β − d. (5.2)

For any initial state (ψ(0), ψ̇(0)), there is a unique solution ψ to (5.1) on a maximal
time interval [0, tmax), according to standard results on ordinary differential equa-
tions (ODEs), see for instance [17, Ch. 3]. Since |β + γ(t)− sinψ| < |β|+ d+ 1 for
all t ≥ 0 and α > 0, we get from (5.1) (by looking at the linear ODE ż + αz = u,
with z = ψ̇) that

sup
t∈[0, tmax)

|ψ̇(t)| < |ψ̇(0)|+ |β|+ d+ 1

α
. (5.3)

Hence |ψ̇(t)| cannot blow up to infinity in a finite time, and hence the same holds
for |ψ(t)|. From [16, Corollary II.3] it follows that tmax = ∞. Since γ is a continuous
function of time, we get from (5.1) that the function ψ is of class C2.

The aim of this section is to show that if α is sufficiently large, then the solutions
ψ of (5.1) are eventually confined to a narrow interval, see Theorem 5.14.
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We will often regard the solution (ψ, ψ̇) of (5.1) as a curve in the phase plane.
Recall that in the phase plane the angle ψ is on the x-axis and the angular velocity
ψ̇ is on the y-axis. The curve corresponding to (ψ, ψ̇) satisfies the ODE

dψ̇(t)

dψ(t)
= − α +

β + γ(t)− sinψ(t)

ψ̇(t)
whenever ψ̇(t) 6= 0 . (5.4)

Suppose that the curve (ψ, ψ̇) passes through a point (ψ0, ψ̇0) in the phase plane.
We use the notation ψ̇|ψ=ψ0

to denote ψ̇0 provided there is no ambiguity. We refer
to Figures 2 and 3 for typical state trajectory curves in the phase plane.

The following two lemmas establish a monotonicity in the behavior of the solutions
to (5.1) with respect to the infinity norm of the forcing term.

Lemma 5.1. Consider the pendulum equation

ψ̈p(t) + αψ̇p(t) + sinψp(t) = β + d ∀ t ≥ 0 . (5.5)

Let ψ and ψp be the solutions of (5.1) and (5.5), respectively, for the initial conditions
ψ(0) = ψp(0) = ψ0 and ψ̇(0) = ψ̇p(0) = ψ̇0 and recall that ‖γ‖L∞ < d. Suppose that
ψ̇(t) ≥ 0 for all t ∈ [0, τ ] and ψ(τ) 6= ψ(0) for some τ > 0. Then the curve (ψp, ψ̇p)
lies above the curve (ψ, ψ̇) in the phase plane on the angle interval (ψ(0), ψ(τ)), i.e.
for each ϕ ∈ (ψ(0), ψ(τ)) we have ψ̇p|ψp=ϕ > ψ̇|ψ=ϕ.

Proof. The curve (ψp, ψ̇p) satisfies the following ODE in the variable ψp(t):

dψ̇p(t)

dψp(t)
= − α +

β + d− sinψp(t)

ψ̇p(t)
whenever ψ̇p(t) 6= 0 . (5.6)

First we claim that there exists σ ∈ (0, τ) such that ψp(σ) < ψ(τ) and

ψ̇p(t) > 0 ∀ t ∈ (0, σ].

If ψ̇0 > 0 then this is obvious. If ψ̇0 = 0 then, since ψ̇(t) ≥ 0 for all t ∈ [0, τ ], ψ̈(0) ≥
0. Using this and ‖γ‖L∞ < d, (5.1) and (5.5) give that ψ̈p(0) > 0, which together
with ψ̇p(0) ≥ 0 implies the existence of σ ∈ (0, τ) with the desired properties.

Our second claim is that for each ϕ1 ∈ (ψ0, ψp(σ)), there exists a ϕ ∈ (ψ0, ϕ1)
such that

ψ̇p|ψp=ϕ > ψ̇|ψ=ϕ . (5.7)

Indeed, if this claim were false, then

ψ̇p|ψp=ϕ ≤ ψ̇|ψ=ϕ ∀ ϕ ∈ (ψ0, ϕ1) (5.8)

which using (5.4) and (5.6) gives that dψ̇p(t)
dψp(t)

∣

∣

ψp(t)=ϕ
> dψ̇(t)

dψ(t)

∣

∣

ψ(t)=ϕ
for all ϕ ∈ (ψ0, ϕ1).

This contradicts (5.8) since ψ̇p|ψp=ψ0
= ψ̇|ψ=ψ0

= ψ̇0.

So far we have shown that we can find points ϕ ∈ (ψ0, ψ(τ)) arbitrarily close to
ψ0 such that (5.7) holds. To complete the proof of this lemma, it is sufficient to
establish the following claim: if (5.7) holds for some ϕ ∈ (ψ0, ψ(τ)), then (5.7) holds
for all ϕ̃ ∈ (ϕ, ψ(τ)) (with ϕ̃ in place of ϕ).
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To prove the above claim, suppose that it is not true for some ϕ. Then define

ϕbad = inf
{

ϕ̃ ∈ (ϕ, ψ(τ)) | ψ̇p|ψp=ϕ̃ = ψ̇|ψ=ϕ̃
}

. (5.9)

Let tbad ∈ (0, τ) be such that ψ(tbad) = ϕbad, so that ψ̇p(tbad) = ψ̇(tbad). We will first
show by contradiction that ψ̇(tbad) > 0. To this end, suppose that ψ̇(tbad) = 0. This
implies that ψ̇(tbad) is a local minimum for ψ̇ and so ψ̈(tbad) = 0. From (5.1) we get
that − sinϕbad+β+γ(tbad) = 0, hence − sinϕbad+β+d > 0. From (5.5) we get that
ψ̈p(tbad) > 0, so that for t < tbad very close to tbad and satisfying ψ(t) ∈ (ϕ, ψ(τ)),
ψ̇p(t) < ψ̇p(tbad) = 0. But (5.9) gives that ψ̇(t) < ψ̇p(t) and so ψ̇(t) < 0, which
contradicts the assumption ψ̇ ≥ 0 in the lemma. Thus ψ̇p(tbad) = ψ̇(tbad) > 0. Now
(5.4) and (5.6) give that for some µ > 0

dψ̇p(t)

dψp(t)

∣

∣

∣

∣

ψp(t)=ϕ̃

>
dψ̇(t)

dψ(t)

∣

∣

∣

∣

ψ(t)=ϕ̃

∀ ϕ̃ ∈ (ϕbad − µ, ϕbad) (5.10)

and ϕbad−µ > ϕ. This is because the above inequality holds when ϕ̃ = ϕbad. By as-
sumption ψ̇p|ψp=ϕbad−µ > ψ̇|ψ=ϕbad−µ which, along with (5.10), gives the contradiction

ψ̇p|ψ=ϕbad
> ψ̇|ψ=ϕbad

. This proves the claim above (5.9).

Lemma 5.2. Consider the pendulum equation

ψ̈n(t) + αψ̇n(t) + sinψn(t) = β − d ∀ t ≥ 0 . (5.11)

Let ψ and ψn be the solutions of (5.1) and (5.11), respectively, for the initial con-
ditions ψ(0) = ψn(0) = ψ0 and ψ̇(0) = ψ̇n(0) = ψ̇0. Suppose that ψ̇(t) ≤ 0 for
all t ∈ [0, τ ] and ψ(τ) 6= ψ(0) for some τ > 0. Then the curve (ψn, ψ̇n) lies below
the curve (ψ, ψ̇) in the phase plane on the angle interval (ψ(τ), ψ(0)), i.e. for each
ϕ ∈ (ψ(τ), ψ(0)) we have ψ̇n|ψn=ϕ < ψ̇|ψ=ϕ.

Proof. Apply the change of variables ψ 7→ −ψ and ψn 7→ −ψp to (5.1) and (5.11),
respectively. Now apply Lemma 5.1 to the resulting equations (instead of (5.1) and
(5.5)) after redefining β and γ to be −β and −γ, respectively.

The following result on the nonexistence of non-constant periodic solutions to the
pendulum equation with a constant forcing term has been established in [15].

Theorem 5.3. Consider the pendulum equation

ψ̈h(t) + αψ̇h(t) + sinψh(t) = sinλ ∀ t ≥ 0 , (5.12)

where α > 0 and λ ∈ (0, π/2). If α > 2 sin(λ/2) and ψh is a solution of (5.12) such
that ψ̇h is non-negative and periodic, then ψh is constant.

The locally asymptotically stable equilibrium points of (5.12) are located at ψh =
λ + 2kπ (k ∈ Z) and ψ̇h = 0 while the unstable equilibria are at ψh = π − λ+ 2kπ
and ψ̇h = 0, regardless of the size of the damping factor α > 0. Figure 2 shows the
typical shape of the curves (ψh, ψ̇h) in the phase plane for a sufficiently large (but
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not too large) α > 0, so that we are in the case considered in Theorem 5.3. In this
case every state trajectory converges to an equilibrium point. If α gets even larger,
then of course we are still in the case considered in Theorem 5.3, but the curves do
not spiral around the stable equilibria. This distinction may be visually remarkable,
but is not important for our analysis, so we do not discuss it further.

Figure 2. Phase plane curves for the damped pendulum from (5.12) for
moderately large damping factor α > 2 sin(λ/2) (not to scale).

When α > 0 is small, then the curves (ψh, ψ̇h) look fundamentally different: some
state trajectories still converge to one of the same equilibrium points. Other state
trajectories approach a curve that is a stable limit cycle if we measure the angle ψh
modulo 2π, see Figure 3 and the note after the proof of Proposition 5.4. The critical
value of α that separates between these two types of behavior (which depends on λ)
is estimated in Theorem 5.3 due to W. Hayes in 1953 [15]. We are not aware of any
better estimate available now (other than by simulation experiments). Our interest
is in the forced pendulum (5.1), and for us (5.12) is only a tool for comparison.
Much material about systems related to (5.12) can be found in [20, Ch. 3].

Figure 3. Phase plane curves for the damped pendulum from (5.12) for
small α (α = 0.2, sinλ = 0.7). The limit cycle is shown as a red curve.

For the pendulum system (5.1), we define the energy function E as

E(t) =
1

2
ψ̇(t)2 + (1− cosψ(t)) ∀ t ≥ 0 . (5.13)

The time derivative of E along the trajectories of (5.1) is given by
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Ė(t) = − αψ̇(t)2 + (β + γ(t))ψ̇(t) . (5.14)

Therefore for any t2 > t1 ≥ 0

E(t2)− E(t1) =

∫ t2

t1

[−αψ̇(s) + β + γ(s)]ψ̇(s)ds.

If ψ̇(t) 6= 0 for all t ∈ [t1, t2], then using the change of variables s 7→ ψ(s) we get

E(t2)− E(t1) =

∫ ψ(t2)

ψ(t1)

[

−αψ̇(ψ−1(ϕ)) + β + γ(ψ−1(ϕ))
]

dϕ. (5.15)

Using Theorem 5.3, the next proposition shows that if α is sufficiently large, then
each solution (ψ, ψ̇) of (5.1) must either converge to a limit point or its velocity
must change sign at least once after any given time t ≥ 0.

Proposition 5.4. Recall the angles ψ1 and ψ2 from (5.2). Assume that

α > 2 sin
|ψ1|
2
, α > 2 sin

|ψ2|
2
. (5.16)

Then there exists no solution ψ of (5.1) such that ψ is unbounded and ψ̇(t) is either
non-negative or non-positive for all t ≥ 0.

Proof. In the first part of this proof we assume that ψ is a solution of (5.1) such
that ψ̇(t) ≥ 0 for all t ≥ 0. Our first claim is that if ψ is unbounded, then

β + d > 0 , hence ψ1 > 0 .

Indeed, if not, then the right-hand side of (5.14) is ≤ −µψ̇(t) for some µ > 0, forcing
E to become eventually negative, which is impossible.

Our second claim is that for any τ > 0,

if sinψ(τ) > β + ‖γ‖L∞ , then ψ̈(τ) < 0 and ψ̇(τ) > 0. (5.17)

If sinψ(τ) > β + ‖γ‖L∞ then clearly sinψ(τ) > β + γ(τ), hence from (5.1) we get
ψ̈(τ) < 0. It follows that ψ̇(τ) > 0 since otherwise (if it is zero) then for t > τ close
to τ we would have ψ̇(t) < 0, contradicting our assumption that ψ̇ ≥ 0.

In the sequel, we assume that ψ is unbounded (which will lead to a contradiction).
Let t0 > 0 be such that ψ(t0) = 2mπ + ψ1, m ∈ Z. Our third claim is that

inf
{

ψ̇(t)
∣

∣ ψ(t) ∈ [2kπ + ψ1, (2k + 1)π − ψ1], k ∈ Z, k ≥ m
}

≥ ε > 0 . (5.18)

Define ψγ ∈ (−π/2, π/2) so that sinψγ = β + ‖γ‖L∞ . Let t1, t2 > 0 be such that
ψ(t1) = (2m+1)π−ψ1 and ψ(t2) = (2m+1)π−ψγ, so that t0 < t1 < t2. Then since
ψ̈(t) < 0 for all t ∈ [t0, t1] it follows that for all t ∈ [t0, t1] we have ψ̇(t) > ψ̇(t1) > 0.
To prove (5.18), we have to find a lower bound on ψ̇(t1) that is independent of m. If
we regard (ψ, ψ̇) as a curve in the phase plane, then from (5.4) and (5.17) we see that
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for all t ∈ [t0, t2),
dψ̇(t)
dψ(t)

< −α . From here, by integration, ψ̇(t1) > ψ̇(t2)+α(ψ1−ψγ).
Using again (5.17) we see that we can take ε = α(ψ1 − ψγ) > 0 in (5.18).

Let ψp be the solution of (5.5) with ψp(0) = ψ(t0) and ψ̇p(0) = ψ̇(t0). Then ψ̇p is
bounded (by the argument in (5.3)) and ψp is defined on [0,∞). Our fourth claim is
that ψ̇p|ψp=ϕ > ψ̇|ψ=ϕ for all ϕ > ψ(t0). Indeed, from Lemma 5.1 it follows that the

curve (ψp, ψ̇p) lies above the curve (ψ, ψ̇) on the angle interval (ψ(t0),∞). Hence ψ̇p
is a strictly positive function and (5.18) holds if we replace ψ and ψ̇ with ψp and ψ̇p.

The fifth claim is that there is a solution ψfp of (5.5) such that ψ̇fp is a periodic
and strictly positive function of time. For this, first we find the function f which
represents one period of ψfp in the phase plane. Consider the sequence of strictly
positive continuous functions (fk)

∞
k=m defined on the angle interval I = [ψ1, ψ1+2π]

as follows: fk(ϕ) = ψ̇p|ψp=ϕ+2kπ for each ϕ ∈ I, where ψp is as defined in the previous
paragraph. Clearly for each k ≥ m, the curve defined by the graph of fk in the phase
plane is a segment of the curve (ψp, ψ̇p) and so it follows from (5.6) that

dfk(ϕ)

dϕ
= − α+

β + d− sinϕ

fk(ϕ)
∀ ϕ ∈ [ψ1, ψ1 + 2π]. (5.19)

Since no two curves corresponding to two distinct solutions of (5.5) can intersect in
the phase plane, for k1 6= k2 the curves defined by fk1 and fk2 must either be the same
or do not intersect at all. This, along with the fact that fk(ψ1 + 2π) = fk+1(ψ1) for
each k ≥ m, implies that fk+1−fk is either a non-negative function for all k or it is a
non-positive function for all k. Therefore the sequence (fk)

∞
k=m converges to f which

is a non-negative continuous function defined on I satisfying f(ψ1) = f(ψ1 + 2π)
(here we have used the fact that the functions fk are uniformly bounded). By using
the version of (5.18) with ψp in place of ψ, for each ϕ ∈ [ψ1, π − ψ1] we get that
fk(ϕ) ≥ ε for all k ≥ m and so f(ϕ) ≥ ε. This means that for all ϕ ∈ [ψ1, π−ψ1] and
all k ≥ m, the right side of (5.19) is bounded in absolute value by (β+ d+1)/ε+α.
Using this, we can take the limit as k → ∞ on both sides of (5.19) to conclude that
f satisfies (5.19) on the interval ϕ ∈ [ψ1, π − ψ1].

To complete the proof of the above claim, let ψfp be the solution of (5.5) for the

initial state ψfp (0) = ψ1, ψ̇
f
p (0) = f(ψ1). Since the curve (ψ

f
p , ψ̇

f
p ) satisfies (5.6) and f

satisfies (5.19) (which is the same ODE as (5.6)), it follows that f(ϕ) = ψ̇fp |ψf
p=ϕ

for

all ϕ ∈ [ψ1, π−ψ1]. In particular ψ̇fp (t) ≥ ε as long as ψfp (t) ≤ π−ψ1. We now show

that ψ̇fp (t) > 0 as long as ψfp (t) ∈ (π−ψ1, ψ1+2π). Indeed, if ψ̇fp (t) < (β+d−sinϕ)/α
(which is a positive number) and ψfp (t) ∈ (π − ψ1, ψ1 + 2π), then (5.5) gives that

ψ̈fp (t) > 0, so that ψ̇fp is increasing and hence it cannot become ≤ 0. Therefore
limt→∞ ψfp (t) ≥ ψ1 +2π. By the same argument as used earlier for ϕ ∈ [ψ1, π−ψ1],

f(ϕ) = ψ̇fp |ψf
p=ϕ

for all ϕ ∈ [ψ1, ψ1+2π]. Therefore ψ̇fp |ψf
p=ψ1

= ψ̇fp |ψf
p=ψ1+2π, so that

ψ̇fp is a periodic and strictly positive function.

The fifth claim (that we proved) together with the first inequality in (5.16) con-
tradict Theorem 5.3, because ψfp is a solution of (5.12) when λ = ψ1 (here we have

used the first claim). Thus if ψ̇(t) ≥ 0 for all t ≥ 0, then ψ must be bounded.
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Next assume that ψ is unbounded and ψ̇(t) ≤ 0 for all t ≥ 0. Then −ψ is
unbounded and −ψ̇(t) ≥ 0 and −ψ is a solution of (5.1) when β + γ(t) on the right
side is replaced with −β − γ(t). The above proof, using −β in place of β, and the
second inequality in (5.16) will again give rise to a contradiction implying that if
ψ̇(t) ≤ 0 for all t ≥ 0, then ψ must be bounded.

Note that the above proof also contains (around the fifth claim) the main ingre-
dients of the proof of the following fact: If β + d > 0, then any unbounded solution
ψp of (5.5) converges to a solution ψfp such that ψ̇fp is positive and periodic (both as
a function of time and as a function of ψfp ) (shown as the red curve in Figure 3). A

similar statement holds for β + d < 0, in which case ψ̇fp is negative and periodic.

Definition 5.5. A point (ϕ, 0) in the phase plane is called a positive acceleration
point if β + d − sinϕ > 0, i.e. ψ̈p(0) > 0 according to (5.5) when ψp(0) = ϕ and
ψ̇p(0) = 0. A point (ϕ, 0) in the phase plane is called a negative acceleration point
if β − d− sinϕ < 0, which has a similar interpretation as ψ̈n(0) < 0 using (5.11).

Using the notation (5.2), the set of positive acceleration points is
{

(ϕ, 0)
∣

∣ ϕ ∈ ((2k − 1)π − ψ1, 2kπ + ψ1), k ∈ Z
}

and the set of negative acceleration points is
{

(ϕ, 0)
∣

∣ ϕ ∈ (2kπ + ψ2, (2k + 1)π − ψ2), k ∈ Z
}

.

Lemma 5.6. Suppose that α > 2 sin(|ψ1|/2) and ψp is the solution of (5.5) when

(ψp(0), ψ̇p(0)) = (ϕ0, 0) , (2m− 1)π − ψ1 < ϕ0 < 2mπ + ψ1 , m ∈ Z

(so that (ϕ0, 0) is a positive acceleration point). Denote

τ = sup {T > 0
∣

∣ ψ̇p(t) > 0 for all t ∈ (0, T )} .

If τ <∞ then (ψp(τ), ψ̇p(τ)) = (ϕ1, 0), where ϕ1 ∈ (2mπ+ψ1, (2m+1)π−|ψ1|).
If τ = ∞ then limt→∞(ψp(t), ψ̇p(t)) = (ϕ1, 0), where ϕ1 = 2mπ + ψ1.

Note that in both cases listed above, (ϕ1, 0) is a negative acceleration point.

Proof. Choose λ ∈ (|ψ1|, π/2) such that α > 2 sin(λ/2). Suppose that limt→τ ψp(t) >
(2m + 1)π − λ (which will lead to a contradiction). Let ψh be a solution of (5.12)
with ψh(0) = ϕ0 and ψ̇h(0) ≥ 0. Since sinλ > sinψ1 it can be shown (like in the
proof of Lemma 5.1) that the curve (ψh, ψ̇h) is above the curve (ψp, ψ̇p) in the phase
plane on the angle interval (ϕ0, (2m+1)π−λ). Therefore ψ̇h|ψh=(2m+1)π−λ > 0. This
implies that there exists τ1 > 0 such that ψh(τ1) = 2(m+ 1)π + λ and

ψ̇h|ψh=ϕ > 0 ∀ ϕ ∈ ((2m+ 1)π − λ, 2(m+ 1)π + λ) .

This is because if ψ̇h|ψh=ϕ < (sinλ− sinϕ)/α (which is > 0), then (5.12) gives that
ψ̈h|ψh=ϕ > 0. It now follows from the above discussion that

ψ̇h|ψh=ϕ > 0 ∀ ϕ ∈ (ϕ0, ϕ0 + 2π]. (5.20)
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Let ψ1
h be the solution of (5.12) with (ψ1

h(0), ψ̇
1
h(0)) = (ϕ0, ψ̇h|ψh=ϕ0+2π). Then

repeating the above argument we obtain that (5.20) holds with ψ1
h in place of ψh. By

concatenating ψh with ψ
1
h, we obtain that the solution ψh of (5.12) actually advances

by at least two full circles from its initial angle ϕ0, and we have

ψ̇h|ψh=ϕ > 0 ∀ ϕ ∈ (ϕ0, ϕ0 + 4π].

Continuing by induction, we obtain that ψh is unbounded and ψ̇h > 0 all the time.
This contradicts Proposition 5.4 in which we replace ψ1 with ψ̃1 > λ such that
α > 2 sin(ψ̃1/2) still holds. Indeed, then ψh is a solution of (5.1) when β = 0 and
γ(t) = sinλ for all t ≥ 0. Hence the assumption at the start of our proof is false,
which means that

lim
t→τ

ψp(t) ≤ (2m+ 1)π − λ.

Consider the case when τ < ∞, so that ψ̇p(τ) = 0. We claim that ϕ1 = ψp(τ) ≥
2mπ + ψ1. Indeed, ψ̇p(t) cannot reach 0 for a time t when ϕ0 < ψp(t) < 2mπ + ψ1,
because (5.5) would imply that ψ̈p(t) > 0. Thus, ϕ1 ∈ [2mπ + ψ1, (2m+ 1)π − λ].
Next we claim that ϕ1 > 2mπ + ψ1. Indeed, if ϕ1 = 2mπ + ψ1, then (ϕ1, 0) is an
equilibrium point of the system (5.5) and x = (ψp, ψ̇p)− (ϕ1, 0) satisfies an ODE of
the form ẋ = f(x), where f ∈ C1 and f(0) = 0. It is well known that for such an
ODE, any trajectory starting from x(0) 6= 0 cannot reach the point (0, 0) in a finite
time. Thus, we have ϕ1 > 2mπ + ψ1. Combining this with the fact that λ > |ψ1|,
we get that ϕ1 ∈ (2mπ + ψ1, (2m+ 1)π − |ψ1|), as stated in the lemma.

Now consider the case when τ = ∞. Since ψp is increasing and bounded, clearly
ψ̇p ∈ L1[0,∞). Since ψ̇p is bounded (by the argument at (5.3)), it follows from (5.5)
that ψ̈p is also bounded, so that ψ̇p is uniformly continuous. Now applying Barbălat’s
lemma (see [17, Lemma 8.2] or see [9, 21] for nice presentations with a more general
perspective), we get that limt→∞ ψ̇p(t) = 0. We have ϕ1 = limt→∞ ψp(t) ∈ [2mπ +
ψ1, (2m + 1)π − |ψ1|), for similar reasons as in the case τ < ∞. By differentiating
(5.5), we see that

...
ψp is also bounded. Since the expressions

∫ t

0
ψ̈p(σ)dσ = ψ̇p(t)

are uniformly bounded (with respect to t), we can apply again Barbălat’s lemma,
this time to ψ̈p, to show that limt→∞ ψ̈p(t) = 0. Looking at (5.5), it follows that
limt→∞ sinψp(t) = sinψ1, so that sinϕ1 = sinψ1. Looking at the range of possible
values of ϕ1, we conclude that it has indeed the value stated in the lemma.

With the notation of the last lemma, we call (ϕ1, 0) the first negative acceleration
point for ψp. We remark that τ = ∞ for sufficiently large α, regardless of ϕ0.

The following lemma concerning solutions of (5.11) is similar to Lemma 5.6.

Lemma 5.7. Suppose that α > 2 sin(|ψ2|/2) and ψn is the solution of (5.11) when

(ψn(0), ψ̇n(0)) = (ϕ1, 0) , 2mπ + ψ2 < ϕ1 < (2m+ 1)π − ψ2 , m ∈ Z

(so that (ϕ1, 0) is a negative acceleration point). Denote

τ = sup {T > 0
∣

∣ ψ̇n(t) < 0 for all t ∈ (0, T )} .
If τ <∞ then (ψn(τ), ψ̇n(τ)) = (ϕ2, 0), where ϕ2 ∈ ((2m−1)π+ |ψ2|, 2mπ+ψ2).

If τ = ∞ then limt→∞(ψn(t), ψ̇n(t)) = (ϕ2, 0), where ϕ2 = 2mπ + ψ2.
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Note that in both cases listed above, (ϕ2, 0) is a positive acceleration point.

Proof. Define ψ̃p = −ψn and β̃ = −β, then ψ̃p satisfies (5.5) with β̃ in place of β.
Define ψ̃1 = −ψ2, then the first expression in (5.2) holds with ψ̃1 and β̃ in place of
ψ1 and β, and of course α > 2 sin(|ψ̃1|/2). Define ϕ̃0 = −ϕ1 and m̃ = −m, then
these satisfy the assumption on initial conditions in Lemma 5.6. Thus, we can apply
Lemma 5.6 with the tilde variables in place of the original ones, and we get exactly
the conclusions of the lemma that we are now proving, with ϕ2 = −ϕ̃1.

With the notation of the last lemma, we call (ϕ2, 0) the first positive acceleration
point for ψn. We remark that τ = ∞ for sufficiently large α, regardless of ϕ1.

Next we define a family of continuous curves in the phase plane referred to as
spiral curves. These curves have the structure of an inward spiral.

Definition 5.8. Suppose that α satisfies (5.16). Let ϕ0 = (2m− 1)π−ψ2 for some
integerm. Construct a sequence (ϕk)∞k=0 as follows: for each odd k, (ϕk, 0) is the first
negative acceleration point for the solution ψkp of (5.5) with initial conditions ψkp (0) =

ϕk−1, ψ̇kp(0) = 0. For each even k > 0, (ϕk, 0) is the first positive acceleration point

for the solution ψkn of (5.11) with initial conditions ψkn(0) = ϕk−1, ψ̇kn(0) = 0. For
k ∈ N, denote the segment of the curve (ψkp , ψ̇

k
p) (or (ψ

k
n, ψ̇

k
n)) between (ϕk−1, 0) and

(ϕk, 0) by Γk. A spiral curve Γ starting from (ϕ0, 0) is a continuous curve in the
phase plane obtained by concatenating all Γk (k ∈ N).

Lemmas 5.6 and 5.7 ensure that the points ϕk introduced in Definition 5.8 in fact
exist for all k ∈ N. The spiral curve can be interpreted as the phase plane trajectory
of the solution of (5.1) with ψ(0) = ϕ0, ψ̇(0) = 0 and

γ(t) = d sign(ψ̇(t)) , (5.21)

where the trajectory is continued even if it happens that a segment Γk takes an
infinite amount of time. The above expression for γ(t) is like a static friction torque
acting on a pendulum, but with the wrong sign. We remark (but will not use) that
for any sufficiently large damping coefficient α the sequence (ϕk)∞k=1 is such that

ϕ1 = ϕ3 = ϕ5 = . . . = 2mπ + ψ1 and ϕ2 = ϕ4 = ϕ6 = . . . = 2mπ + ψ2 . (5.22)

For smaller α only a part of the equalities in (5.22) hold, possibly none. Figure 4
shows possible shapes of Γ1, Γ2 and some limit curves Γa, Γb that will be introduced
later, in the case when none of the equalities in (5.22) holds.

Lemma 5.9. Suppose that α satisfies (5.16). Fix an integer m and consider the
spiral curve Γ starting from (ϕ0, 0) with ϕ0 = (2m−1)π−ψ2. There exists a simple
closed curve Γc in the phase plane to which Γ converges, i.e. for any ε > 0 there
exists an Nε ∈ N such that for every n ∈ N with n ≥ Nε,

d(x, Γc) < ε ∀ x ∈ Γn . (5.23)

Here d is the Euclidean distance in R
2.

Proof. Let (ϕk)∞k=0 be the sequence introduced in Definition 5.8. It follows directly
from Lemmas 5.6 and 5.7 that ϕ2 > ϕ0. Using the fact that two curves corresponding
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to two distinct solutions of (5.5) cannot intersect, we conclude that ϕ3 ≤ ϕ1. (We
remark that equality can only occur if ϕ3 = ϕ1 = 2mπ+ψ1, since distinct solutions
may meet at a common limit point, which is an equilibrium point of (5.5). In this
case we have (5.22) except possibly the last equality.) Using the fact that no two
curves corresponding to two distinct solutions of (5.11) can intersect, we conclude
that ϕ4 ≥ ϕ2. (We remark that if ϕ3 < ϕ1, then ϕ4 = ϕ2 can only occur if
ϕ4 = ϕ2 = 2mπ + ψ2, since distinct solutions may meet at a common limit point,
which is an equilibrium point of (5.11). In this case we have (5.22) except for the
first and possibly the last equality from the first string.) Continuing like this, we get
that the sequence (ϕ2k+1)∞k=0 is nonincreasing and bounded from below by 2mπ+ψ1,
while the sequence (ϕ2k)∞k=0 is nondecreasing and bounded from above by 2mπ+ψ2.
Let

ϕlow = lim
k→∞

ϕ2k , ϕhigh = lim
k→∞

ϕ2k+1 . (5.24)

Clearly these are positive and negative acceleration points, respectively.

For the remainder of this proof, for any ϕ ∈ R we denote by ψp(·, ϕ) the solution
ψp of (5.5) satisfying ψp(0) = ϕ and ψ̇p(0) = 0. Let (ϕ̃high, 0) be the first negative
acceleration point for ψp(·, ϕlow). By Lemma 5.6 we have ϕ̃high ≥ 2mπ + ψ1. Since
for any k ∈ N we have ϕlow ≥ ϕ2k and no two curves corresponding to two distinct
solutions of (5.5) can intersect in the phase plane, we have ϕ̃high ≤ ϕ2k+1. Taking
limits, we obtain that ϕ̃high ≤ ϕhigh. Thus, using also Lemma 5.6,

2mπ + ψ1 ≤ ϕ̃high ≤ ϕhigh < (2m+ 1)π − |ψ1| . (5.25)

Denote the segment of the curve (ψp(·, ϕlow), ψ̇p(·, ϕlow)) between (ϕlow, 0) and
(ϕ̃high, 0) by Γa. We claim that for any ε > 0 there exists Nε ∈ N such that

if 2n ≥ Nε , then d(x, Γa) < ε ∀ x ∈ Γ2n+1 . (5.26)

Note that this implies (by an easy argument that we omit) that ϕ̃high = ϕhigh.

To prove (5.26), we have to consider two cases:

Case 1: ϕ̃high > 2mπ + ψ1 (this is the easier case). According to Lemma 5.6,
there exists a smallest τ > 0 such that (ψp(τ, ϕlow), ψ̇p(τ, ϕlow)) = (ϕ̃high, 0). It is
easy to see that there exists T > τ such that

2mπ + ψ1 < ψp(t, ϕlow) < ϕ̃high and ψ̇p(t, ϕlow) < 0 ∀ t ∈ (τ, T ].

According to the standard result on the continuous dependence of solutions of dif-
ferential equations (satisfying a Lipschitz condition) on their initial conditions, for
any ε > 0 there exists an Nε ∈ N such that for all n ∈ N with 2n ≥ Nε,

|ψp(t, ϕlow)− ψp(t, ϕ
2n)|+ |ψ̇p(t, ϕlow)− ψ̇p(t, ϕ

2n)| < ε ∀ t ∈ [0, T ]. (5.27)

For each such n, let τ2n be the smallest positive number such that (ψp(τ2n, ϕ
2n), 0)

is the first negative acceleration point of ψp(·, ϕ2n). Then it is easy to verify, using
(5.27), that ε < |ψ̇p(T, ϕlow)| implies ψ̇p(T, ϕ

2n) < 0, so that

if ε < |ψ̇p(T, ϕlow)| and 2n ≥ Nε , then τ2n < T .
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From here, by an easy argument using (5.27) we obtain that for ε and n as above,
d(x, Γa) < ε for all x ∈ Γ2n+1. Clearly this implies (5.26).

Case 2: ϕ̃high = 2mπ + ψ1, so that (ϕ̃high, 0) is a locally asymptotically stable
(in particular, Lyapunov stable) equilibrium point of (5.5). From the Lyapunov
stability, for every ε > 0 there exists δε ∈ (0, ε) such that the following holds: if, for
some ϕ ∈ R and T > 0, |ψp(T, ϕ)− ϕ̃high|+ |ψ̇p(T, ϕ)| < δε , (5.28)

then |ψp(t, ϕ) − ϕ̃high| + |ψ̇p(t, ϕ)| < ε for all t ≥ T . For some ε > 0, let T > 0
be such that (5.28) holds, with ϕlow in place of ϕ and δε/2 in place of δε. Using
again the standard result on the continuous dependence of solutions of ODEs on
their initial conditions, there exists an Nε ∈ N such that for all n ∈ N with 2n ≥ Nε,
(5.27) holds with δε/2 in place of ε. Using the Lyapunov stability, this implies that
|ψp(t, ϕ2n)− ϕ̃high| + |ψ̇p(t, ϕ2n)| < ε for all t ≥ T . This implies that d(x, Γa) < ε
for all x in the phase plane curve of ψp(·, ϕ2n) (for positive time), and in particular
for all x ∈ Γ2n+1 Thus, we have proved (5.26) also in the second case.

For the remainder of this proof, for any ϕ ∈ R we denote by ψn(·, ϕ) the solution
ψn of (5.11) satisfying ψn(0) = ϕ and ψ̇n(0) = 0. Denote the segment of the curve
(ψn(·, ϕhigh), ψ̇n(·, ϕhigh)) between (ϕhigh, 0) and its first positive acceleration point
(ϕ̃low, 0) by Γb. We claim that for any ε > 0 there exists Nε ∈ N such that

if 2n ≥ Nε , then d(x, Γb) < ε ∀ x ∈ Γ2n . (5.29)

This implies that ϕ̃low = ϕlow. The proof of these facts is similar to the proof of
(5.26), by replacing everywhere ψp with −ψn, (5.5) with (5.11), m with −m, ϕ2n

with −ϕ2n+1, ϕlow with −ϕhigh and viceversa, ϕ̃high with −ϕ̃low and Γa with −Γb.

It follows from ϕ̃high = ϕhigh and ϕ̃low = ϕlow that the union of the curves Γa and
Γb defined above is a simple closed curve in the phase plane (see Figure 4), which
we denote by Γc. It follows from (5.26) and (5.29) that (5.23) holds.

Remark 5.10. Putting together (5.25), the obvious ϕ2 ≤ ϕlow and the lower esti-
mate for ϕ2 from Lemma 5.7, we have (with the notation of the last proof)

(2m− 1)π + |ψ2| < ϕlow ≤ 2mπ + ψ2 < 2mπ + ψ1 ≤ ϕhigh < (2m+ 1)π − |ψ1| .

Recall the curves Γa and Γb introduced in the last proof. We now show that, under
some conditions, the regions in the phase plane enclosed by Γa and the horizontal
axis (and by Γb and the horizontal axis) are convex, as illustrated in Figure 4. Using
this, in Lemma 5.12 we derive upper bounds for the heights of Γa and Γb. These
bounds are then used to derive an estimate for ϕhigh − ϕlow.

Lemma 5.11. Let α satisfy (5.16) and m ∈ Z. Recall ϕlow, ϕhigh, Γa, Γb introduced
in the last proof. Denote the closed subsets of the phase plane enclosed by the curve
Γa and the horizontal axis by ∆a, and by the curve Γb and the horizontal axis by ∆b.
If ϕhigh 6= 2mπ + ψ1, then ∆a is convex. If ϕlow 6= 2mπ + ψ2, then ∆b is convex.

Proof. In this proof, we denote by ψp the solution of (5.5) corresponding to the initial
condition (ψp(0), ψ̇p(0)) = (ϕlow, 0) and let τ be the time that it takes (ψp, ψ̇p) to
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reach (ϕhigh, 0) (while moving along Γa). We assume that ϕhigh 6= 2mπ+ψ1. Hence
by Lemma 5.6, τ <∞ and ψ̇p(t) > 0 for all t ∈ (0, τ). We consider the function ψp
only on the interval [0, τ ]. For ϕ ∈ [ϕlow, ϕhigh] we denote f(ϕ) = ψ̇p(t)|ψp(t)=ϕ, so
that Γa is the graph of f . The slope of f is, according to (5.6),

f ′(ϕ) =
dψ̇p(t)

dψp(t)

∣

∣

∣

∣

ψp(t)=ϕ

= − α +
β + d− sinϕ

f(ϕ)
∀ ϕ ∈ (ϕlow, ϕhigh) . (5.30)

Figure 4. Possible shape of the curves Γ1, Γ2, Γa and Γb in the phase plane,
and of the sets ∆a and ∆b, when (5.16) holds and m = 0. We have shown
the case when none of the equalities in (5.22) holds and ψ2 > 0.

We claim that f ′′(ϕ) ≤ 0 for all ϕ ∈ (ϕlow, ϕhigh). It can be shown by a somewhat
tedious computation that for every ϕ ∈ (ϕlow, ϕhigh),

f ′′(ϕ) = − f(ϕ) cosϕ+ (β + d− sinϕ)f ′(ϕ)

f(ϕ)2
, (5.31)

f ′′′(ϕ) = − 3f ′(ϕ) + α

f(ϕ)
· f ′′(ϕ) +

sinϕ

f(ϕ)
. (5.32)

Suppose that our claim is false. Then f ′′(ϕ0) > 0 for some ϕ0 ∈ (ϕlow, ϕhigh).
Using (5.31) and the facts that f(ϕlow) = 0, ϕlow < 2mπ + ψ2 (see Lemma 5.7) and
ψ2 < ψ1, is easy to verify that for a sufficiently small ε > 0, f ′′(ϕ) < 0 for each
ϕ ∈ (ϕlow, ϕlow + ε). Hence there exists ηlow ∈ (ϕlow, ϕ0) such that

f ′′(ηlow) = 0 , f ′′′(ηlow) ≥ 0 .

This, using (5.32), implies that sin ηlow ≥ 0. Since ϕlow ≥ (2m − 1)π + |ψ2| (see
Lemma 5.7), we conclude that ηlow ∈ [2mπ, ϕ0) and hence ϕ0 > 2mπ.

According to (5.25) we have ϕhigh ∈ (2mπ+ψ1, (2m+1)π−|ψ1|). It follows from
(5.31) (using f(ϕhigh) = 0) that for a sufficiently small ε > 0 we have f ′′(ϕ) < 0 for
all ϕ ∈ (ϕhigh − ε, ϕhigh). Therefore there exists ηhigh ∈ (ϕ0, ϕhigh) such that

f ′′(ηhigh) = 0 , f ′′′(ηhigh) ≤ 0 .

Using (5.32), this gives us that sin ηhigh ≤ 0. Since, according to our earlier steps,
ηhigh ∈ (2mπ, (2m+1)π), this is a contradiction, proving our claim. By a well known
fact in analysis, our claim implies that ∆a is a convex set.

When ϕlow 6= 2mπ + ψ2, the convexity of ∆b can be established similarly.
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Lemma 5.12. Let m, α, Γa, Γb, ϕlow and ϕhigh be as in Lemma 5.11. Define

va = max
(ψp,ψ̇p)∈Γa

ψ̇p , vb = max
(ψn,ψ̇n)∈Γb

|ψ̇n|

Recall d, ψ1 and ψ2 from (5.2). Then the following relations hold:

ϕhigh 6= 2mπ + ψ1 =⇒ va <
4d

α
, (5.33)

ϕlow 6= 2mπ + ψ2 =⇒ vb <
4d

α
, (5.34)

ϕhigh 6= 2mπ + ψ1 , ϕlow 6= 2mπ + ψ2 =⇒ va + vb <
4d

α
. (5.35)

Furthermore
ϕhigh − ϕlow < ψ1 − ψ2 +

4d

α2
, (5.36)

ϕhigh < ψ1 + 2mπ +
4d

α2
, ϕlow > 2mπ + ψ2 −

4d

α2
. (5.37)

Proof. First assume that ϕhigh 6= 2mπ + ψ1. Then Γc, the closed curve that is the
union of Γa and Γb (introduced in Lemma 5.9), can be regarded as a segment of
the curve corresponding to the solution (ψ, ψ̇) of (5.1) when (ψ(0), ψ̇(0)) = (ϕlow, 0)
and γ is given by (5.21). This solution takes a finite time τ to reach (ϕhigh, 0) and
then a possibly infinite amount of time to return to (ϕlow, 0). We denote by τc the
(possibly infinite) time that it takes for (ψ, ψ̇) to go around the closed curve Γc.

Recall the function f : [ϕlow, ϕhigh]→[0,∞) introduced before (5.30), so that Γa
is the graph of f . Similarly, we introduce g : [ϕlow, ϕhigh]→(−∞, 0] so that Γb is the
graph of g. Since E(0) = limt→τc E(t), it follows from (5.15) that

∫ ϕhigh

ϕlow

α[f(ϕ)− g(ϕ)]dϕ = 2d(ϕhigh − ϕlow) . (5.38)

Let ψ+ ∈ (ϕlow, ϕhigh) be the angle at which f reaches its maximum va. From
Lemma 5.11 we know that ∆a is convex. Hence, the triangle in the phase plane with
vertices (ϕlow, 0), (ϕhigh, 0) and (ψ+, va) lies inside ∆a. Therefore

∫ ϕhigh

ϕlow

f(ϕ)dϕ ≥ va
2
(ϕhigh − ϕlow) . (5.39)

This and (5.38) imply that 2d(ϕhigh − ϕlow) >
αva
2
(ϕhigh − ϕlow), whence (5.33).

Now replace the assumption ϕhigh 6= 2mπ+ψ1 with ϕlow 6= 2mπ+ψ2. By repeating
the above arguments after (5.38), but using the function g and the convex set ∆b,
we get that ∫ ϕhigh

ϕlow

−g(ϕ)dϕ ≥ vb
2
(ϕhigh − ϕlow) (5.40)

which, together with (5.38), implies (5.34). Finally if ϕhigh 6= 2mπ + ψ1 and ϕlow 6=
2mπ+ψ2, then both (5.39) and (5.40) hold, which together with (5.38) imply (5.35).

Next we will derive (5.36). First assume that ϕhigh 6= 2mπ + ψ1. Let ψp and
τ be as at the beginning of the proof of Lemma 5.11 (so that ψp : [0, τ ]→[0, va],
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ψp(0) = ϕlow and ψp(τ) = ϕhigh). Let τ1 ∈ [0, τ ] be such that ψp(τ1) = 2mπ + ψ1.
Using the energy from (5.13) (and (5.15) with d in place of γ) we get

ψ̇p(τ1)
2

2
= E(τ1)− E(τ) + cosψ1 − cosϕhigh

=

∫ ϕhigh

2mπ+ψ1

αψ̇p|ψp=ϕdϕ+

∫ ϕhigh

2mπ+ψ1

(sinϕ− β − d)dϕ

≥ α

2
(ϕhigh − ψ1 − 2mπ)ψ̇p(τ1) +

∫ ϕhigh

2mπ+ψ1

(sinϕ− β − d)dϕ. (5.41)

To derive the last inequality, we have used the convexity of the set ∆a. Since the
integral term in (5.41) is positive it follows that if ϕhigh 6= 2mπ + ψ1 then

ϕhigh − ψ1 − 2mπ <
ψ̇p(τ1)

α
≤ va

α
. (5.42)

Next assume that ϕlow 6= 2mπ+ψ2. Doing a similar argument as we did to derive
(5.42), but now working on the curve Γb instead of Γa, and using the convexity of
∆b, we get that

2mπ + ψ2 − ϕlow <
vb
α
. (5.43)

Finally, (5.36) follows by adding (5.42) and (5.43), using (5.33)-(5.35). The inequal-
ities (5.37) follow immediately from (5.42) and (5.43), using (5.33)-(5.34).

Lemma 5.13. We use the assumptions and the notation of Definition 5.8. For each
even k ∈ N, let ∆k be the closure of the set encircled by the curves Γk−1, Γk and the
line Lk joining the points (ϕk−2, 0) and (ϕk, 0). Then for any solution ψ of (5.1), if
(ψ(0), ψ̇(0)) ∈ ∆k, then (ψ(t), ψ̇(t)) ∈ ∆k for all t ≥ 0.

Proof. Fix k and let ψ be a solution of (5.1) with (ψ(0), ψ̇(0)) ∈ ∆k. It follows from
Lemma 5.1 that the curve (ψ, ψ̇) cannot go out of ∆k by crossing the curve Γk−1 and
from Lemma 5.2 that it cannot go out of ∆k by crossing Γk. It is easy to check that
the curve (ψ, ψ̇) cannot escape through Lk, because if it is on Lk, then the velocity
ψ̇ along the curve starts to increase, forcing the curve to stay within ∆k.

Theorem 5.14. Using the notation from (5.2), suppose that α satisfies (5.16). Then
for every solution ψ of (5.1), there exists a T > 0 such that for any t1, t2 > T ,

|ψ(t1)− ψ(t2)| < ψ1 − ψ2 +
4d

α2
. (5.44)

Moreover, for some integer m and each t > T , one of the following expressions hold:

2mπ + ψ2 −
4d

α2
< ψ(t) < 2mπ + ψ1 +

4d

α2
, (5.45)

(2m+ 1)π − ψ1 < ψ(t) < (2m+ 1)π − ψ2 . (5.46)

Proof. We call a solution ψ of (5.1) oscillating if for each T > 0 there exists t1, t2 > T
such that ψ̇(t1) > 0 and ψ̇(t2) < 0.

First consider the case when the solution ψ is not oscillating (hence it is eventually
non-increasing or non-decreasing). It then follows from Proposition 5.4 that ψ must
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remain bounded and hence it converges to a finite limit, limt→∞ ψ(t) = ψ∞, which
trivially implies (5.44). It follows from (5.1) and (5.3) that ψ̈ is a continuous bounded
function of time. So we can apply Barbălat’s lemma (see [9, 17, 21]) to ψ̇ to conclude
that limt→∞ ψ̇(t) = 0. Using this and taking upper and lower limits in (5.1), we get

lim sup
t→∞

ψ̈(t) = β + lim sup
t→∞

γ(t)− sinψ∞ ≥ 0 ,

lim inf
t→∞

ψ̈(t) = β + lim inf
t→∞

γ(t)− sinψ∞ ≤ 0 ,

whence β − d < β + lim inft→∞ γ(t) ≤ sinψ∞ ≤ β + lim supt→∞ γ(t) < β + d . In
short, sinψ1 < sinψ∞ < sinψ2 . This implies that either (5.45) or (5.46) hold.

Next suppose that ψ is oscillating. We claim that ψ will eventually be captured
in one of two types of bounded intervals. Specifically, one of the following holds:

(i) For some m ∈ Z and all t large enough, ψ(t) ∈ ((2m− 1)π−ψ2, (2m+1)π−ψ1)
and moreover, (ψ(t), ψ̇(t)) ∈ ∆2.

(ii) For some m ∈ Z and all t large enough, ψ(t) ∈ [(2m− 1)π−ψ1, (2m− 1)π−ψ2].

To prove the above claim, suppose that (ii) does not hold. Then for any T > 0
there must exist times τ2 > τ1 > T such that ψ̇(τ1) = 0, ψ̇(t) 6= 0 for t ∈ (τ1, τ2]
and ψ(τ2) 6∈ [(2m− 1)π−ψ1, (2m− 1)π−ψ2], ∀m ∈ Z. Without loss of generality,
we may assume that ψ̇(τ2) > 0, since for ψ̇(τ2) < 0 the argument is similar. Then
ψ̇(t) > 0 for all t ∈ (τ1, τ2], whence ψ̈(τ1) ≥ 0 and ψ(τ2) > ψ(τ1).

Since ψ̇(τ1) = 0 and ψ̈(τ1) ≥ 0, from (5.1) we get sinψ1 > sin(ψ(τ1)), so that
ψ(τ1) ∈ ((2m−1)π−ψ1, 2mπ+ψ1) for somem ∈ Z. Therefore ψ(τ2) > (2m−1)π−ψ2

and (ψ(τ1), 0) is a positive acceleration point. Let τ3 = min{t > τ1
∣

∣ ψ̇(t) = 0}.
Then ψ̈(τ3) ≤ 0, which using (5.1) implies that sin(ψ(τ3)) > sinψ2. Since ψ(τ3) >
ψ(τ2), this implies that ψ(τ3) > 2mπ + ψ2. Let ψp be the solution of (5.5) when
(ψp(0), ψ̇p(0)) = (ψ(τ1), 0). From Lemma 5.1 we have ψ̇p|ψp=ψ(t) > ψ̇(t) for each
t ∈ (τ1, τ3). This and the fact that the first negative acceleration point (ϕ, 0) for
(ψp, ψ̇p) is such that ϕ < (2m + 1)π − |ψ1| (see Lemma 5.6) imply that ψ(τ3) ∈
(2mπ + ψ2, (2m+ 1)π − |ψ1|). We now have to consider two cases:

Case (a) If ψ(τ3) ∈ (2mπ + ψ2, 2mπ + ψ1] then, since the line joining the points
(2mπ + ψ2, 0) and (2mπ + ψ1, 0) in the phase plane is contained in ∆2, we get that
(ψ(τ3), 0) ∈ ∆2. According to Lemma 5.13, (ψ(t), ψ̇(t)) remains in ∆2 for all t ≥ τ3,
and moreover (ψ(t), ψ̇(t)) cannot reach the corner (ϕ0, 0) ∈ ∆2, so that (i) holds.

Case (b) If ψ(τ3) ∈ (2mπ + ψ1, (2m + 1)π − |ψ1|), then from (5.1) we get that
ψ̈(τ3) < 0. In this case, we have to do one more iteration: Denote τ4 = min{t >
τ3 | ψ̇(t) = 0}, then ψ̇(t) < 0 for all t ∈ (τ3, τ4). By a reasoning similar to the one
used before case (a), using Lemmas 5.2 and 5.7, we get that ψ(τ4) ∈ ((2m− 1)π +
|ψ2|, 2mπ+ψ1), so that (ψ(τ4), 0) ∈ ∆2. By the same argument as employed in case
(a), this implies that (i) holds. Thus, we have proved our claim.

First we consider the case when (ii) holds. Then actually ψ(t) ∈ ((2m − 1)π −
ψ1, (2m − 1)π − ψ2) for some m ∈ Z and all t large enough. Indeed, for t large
enough, ψ(t) can no longer reach the endpoints of the interval in (ii), because at the
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endpoints we would have ψ̇(t) = 0 and from (5.1) we see that the acceleration ψ̈(t)
would force ψ(t) to leave the interval. Now (5.44) and (5.46) follow trivially.

Now we consider the case when (i) holds. We show by induction that given any
even k ∈ N, there exists a τk > 0 such that (ψ(t), ψ̇(t)) ∈ ∆k for all t ≥ τk. This,
along with Lemma 5.9 and 5.12 will imply that (5.44) and (5.45) hold.

Assume that for some even k ∈ N and some τk > 0, (ψ(t), ψ̇(t)) ∈ ∆k for all
t ≥ τk. Let T > τk be such that ψ̇(T ) < 0. Define τk+2 = min{t > T | ψ̇(t) = 0}.
Then ψ̈(τk+2) ≥ 0 and since (ψ(τk+2), ψ̇(τk+2)) ∈ ∆k, it is easy to see that ψ(τk+2) ∈
[ϕk, 2mπ + ψ1] (the upper bound follows from (5.1)). So (ψ(τk+2), ψ̇(τk+2)) ∈ ∆k+2

and (from Lemma 5.13) (ψ(t), ψ̇(t)) ∈ ∆k+2 for all t ≥ τk+2.

Remark 5.15. The bounds for |ψ(t1)−ψ(t2)| and ψ(t) in (5.44), (5.45) and (5.46)
depend only on α, β and d and they are independent of the initial state (ψ(0), ψ̇(0))
of (5.1). Therefore, even if d satisfies the less restrictive inequality lim sup |γ(t)| < d
(instead of ‖γ‖L∞ < d), Theorem 5.14 continues to hold.

Remark 5.16. In the pendulum equation (5.1), γ can be viewed as a bounded
disturbance. Often, bounds like (5.45) that characterize the asymptotic response
of dynamical systems driven by bounded disturbances are derived using Lyapunov
functions. Using Proposition 5.4 and Lemmas 5.6 and 5.7 it can be shown that
all the solutions of (5.1) (with the angles measured modulo 2π) are eventually in a
bounded region Ω of the phase plane. Then a Lyapunov function V for (5.1) which
is positive-definite on Ω and for which V̇ , evaluated along the solutions of (5.1) with
γ = 0, is negative-definite on Ω can be constructed (see [17, Example 4.4] for a
Lyapunov function that can be used when β = 0). Using V a bound like (5.45) can
be derived for a given α, β and d. The main problem with this approach is that it
is hard to express the bounds thus derived as simple functions of α, β and d. This
makes it difficult, not only to state the main result of this paper concisely using
them, but also to verify the sufficient conditions in the main result.

6. Stability of the SG connected to the bus

In this section we derive sufficient conditions for the SG parameters under which
the system (2.9) is almost globally asymptotically stable. We obtain these conditions
by applying the asymptotic bounds derived in Section 5 for the forced pendulum
equation to the exact swing equation (ESE) in (4.7). To this end, we first write the
ESE in the standard form for forced pendulum equations shown in (5.1). Recall iv
from (4.4) and p = Rs/Ls. Define Vr, ρ and P∞ (all > 0) as follows:

Vr =
mif
Lsiv

, ρ =

√

J

mif iv
, P∞ =

pωg
ω2
g + p2

. (6.1)

It will be useful to note that

pρ lim
s→∞

∫ s

0

e−pρ(s−τ) sin(ρωg(s− τ))dτ = pρ

∫ ∞

0

e−pρσ sin(ρωgσ)dσ = P∞ .
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We also introduce the constants

α =
Dp

√

mif ivJ
, β =

Tm −Dpωg
mif iv

− VrP∞ . (6.2)

Consider the new time variable s = t/ρ and new angle variable ψ(s) = η(ρs). In
terms of these variables, ESE has the following representation, equivalent to (4.7):

ψ′′(s) + αψ′(s) + sinψ(s) = β + γ(s) , (6.3)

γ(s) =
e−pρsf(ρs)

iv
+ VrP∞ − VrP (s) , (6.4)

P (s) = pρ

∫ s

0

e−pρ(s−τ) sin [ψ(s)− ψ(τ) + ρωg(s− τ)] dτ , (6.5)

where f is the bounded function defined in (4.5) using the function ω and the initial
conditions id(0), iq(0) and δ(0). In turn, ω depends on ψ as ω(t) = (1/ρ)ψ′(t/ρ)+ωg
(according to (2.8) and (4.6)). The global existence of a unique solution to the
system of integro-differential equations (6.3)-(6.5) together with (4.5), for any initial
conditions ψ(0), ψ′(0), id(0) and iq(0), follows from the global existence of unique
solutions to (4.7) (see also the discussion below (4.7)).

Consider a solution (id, iq, ω, δ) of (2.9) and the corresponding solution ψ(s) =
(3π/2)+δ(ρs)+φ of (6.3), with f as in (4.5), γ as in (6.4) and P as in (6.5). Clearly
f is bounded and |P (s)| < 1, and both f and P are continuous functions. Therefore
γ is a bounded continuous function and ψ is the corresponding solution of (6.3)
regarded as a forced pendulum equation. So the bounds in Theorem 5.14, developed
for solutions of forced pendulum equations, can be used to obtain asymptotic bounds
for ψ in terms of any d > 0 that satisfies lim sup |γ(s)| < d (see Remark 5.15)
and |β| + d < 1. Using these asymptotic bounds, Theorem 6.3 shows that under
some conditions on the SG parameters lim sup |γ(s)| = 0. This implies that (ψ, ψ′)
converges to a limit point, using which we can conclude that (id, iq, ω, δ) converges
to an equilibrium point of (2.9). Since the stability conditions in Theorem 6.3 are
independent of the initial state of (2.9) we get that, whenever these conditions hold,
every solution of (2.9) converges to an equilibrium point.

We briefly explain the idea behind the stability conditions in Theorem 6.3. Let

Γ = (1 + P∞)Vr . (6.6)

It is easy to see from (6.4) and (6.5) that lim sup |γ(s)| ≤ Γ. From (6.5) we get that

P (s) = pρ

∫ s

0

e−pρ(s−τ) sin

(
∫ s

τ

ωρ(σ)dσ

)

dτ

=⇒ P (s) = pρ

∫ s

0

e−pρτ sin

(
∫ τ

0

ωρ(s− σ)dσ

)

dτ , (6.7)

where ωρ(s) = ρω(ρs), so that ωρ(σ) = ψ′(σ) + ρωg. We define a function N :
(0,Γ] → [0,∞) as follows. Fix d ∈ (0,Γ]. Suppose that lim sup |γ(s)| < d. Using
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the asymptotic bounds in Section 5 and Lemma 6.1 below, we derive upper and
lower bounds for ψ′(s) that are valid for large s. Using these bounds, the expression
ωρ(s) = ψ′(s)+ρωg and (6.7), we derive an upper bound P d

u and a lower bound P d
l for

P (s), which is again valid for large s (this step uses Lemma 6.2). Finally we define
N (d) = Vrmax{P d

u−P∞, P∞−P d
l }. It is clear from (6.4) that lim sup |γ(s)| ≤ N (d).

Our stability condition is N (d) < d for all d ∈ (0,Γ], from which we can conclude
that lim sup |γ(s)| = 0 (see Theorem 6.3 for details).

Lemma 6.1. Suppose β ∈ R, d > 0 and α > 0. If |β| + d < 1 and (5.16) holds,
where ψ1, ψ2 are as in (5.2), then define φ1, φ2 ∈ [−π/2, π/2] by

φ1 = min

{

π

2
, ψ1 +

4d

α2

}

, φ2 = max

{

−π
2
, ψ2 −

4d

α2

}

and let Sn = − sin φ1 and Sp = − sin φ2. In all other cases let Sn = −1 and Sp = 1.
Define

ωn =
Sn + β − d

α
, ωp =

Sp + β + d

α
. (6.8)

Assume that γ : [0,∞)→R is continuous, lim sup |γ(s)| < d and ψ is a correspond-
ing solution of (6.3). Then for some T > 0 we have

ωn < ψ′(s) < ωp ∀ s ≥ T . (6.9)

Proof. We claim that there exists T0 > 0 such that

Sn + β − d < − sinψ(s) + β + γ(s) < Sp + β + d ∀ s ≥ T0 . (6.10)

Let τ > 0 be such that |γ(s)| < d for all s > τ . When |β| + d ≥ 1 or when (5.16)
is false, then it is easy to see that (6.10) holds with T0 = τ . When |β|+ d < 1 and
(5.16) holds, then it follows by applying Theorem 5.14 and Remark 5.15 to (6.3) that
there exists T1 > 0 such that for all s ≥ T1 either (5.45) or (5.46) holds (with s in
place of t). This implies that (6.10) holds with T0 = max{τ, T1}. By regarding (6.3)
as a stable first order linear dynamical system with state ψ′ and external forcing
− sinψ(s) + β + γ(s), it can be easily verified using (6.10) that (6.9) holds.

The next lemma derives an upper bound and a lower bound for P (s), given an
upper and lower bound for ωρ.

Lemma 6.2. Suppose that there exist constants ωmax > 0 and ωmin > 0 such that

ωmin ≤ ωmax ≤ 2ωmin and ωmin ≤ ωρ(σ) ≤ ωmax (6.11)

for all σ ≥ 0. Let Tmax = 2π/ωmax and Tmin = 2π/ωmin. Define the function g on
the interval [0, Tmax] and the function h on the interval [0, Tmin] as follows:

g(τ) =























sin(ωmaxτ) if 0 ≤ τ < π
2ωmax

1 if π
2ωmax

≤ τ < π
2ωmin

sin(ωminτ) if π
2ωmin

≤ τ < 3π
ωmin+ωmax

sin(ωmaxτ) if 3π
ωmin+ωmax

≤ τ ≤ 2π
ωmax

, (6.12)
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h(τ) =























sin(ωminτ) if 0 ≤ τ < π
ωmin+ωmax

sin(ωmaxτ) if π
ωmin+ωmax

≤ τ < 3π
2ωmax

−1 if 3π
2ωmax

≤ τ < 3π
2ωmin

sin(ωminτ) if 3π
2ωmin

≤ τ ≤ 2π
ωmin

. (6.13)

Define T = Tmax if
∫ Tmin

0
e−pρτh(τ)dτ < 0 and T = Tmin otherwise. Then for any

s ≥ 0, P (s) from (6.7) satisfies the following bounds:

P (s) ≤ pρ

1− e−pρTmax

∫ Tmax

0

e−pρτg(τ)dτ + e−pρ(s−Tmin) , (6.14)

P (s) ≥ pρ

1− e−pρT

∫ Tmin

0

e−pρτh(τ)dτ − e−pρ(s−Tmin) . (6.15)

Proof. Using the assumption 0 < ωmin ≤ ωmax ≤ 2ωmin, it is easy to verify that

π

2ωmax
≤ π

2ωmin
≤ 3π

ωmin + ωmax
≤ 2π

ωmax
,

π

ωmin + ωmax
<

3π

2ωmax
≤ 3π

2ωmin
<

2π

ωmin
.

This means that g and h in (6.12) and (6.13) are defined precisely on the intervals
[0, Tmax] and [0, Tmin]. Given s ≥ 0, fix 0 = τ0 < τ1 < . . . τn ≤ s such that
∫ τk

0

ωρ(s− σ)dσ = 2kπ ∀ k ∈ {1, 2, . . . n} and

∫ s

τn

ωρ(s− σ)dσ < 2π.

From (6.11) we get that for each 0 ≤ k ≤ n and all τk ≤ τ ≤ s,

ωmin(τ − τk) ≤
∫ τ

τk

ωρ(s− σ)dσ ≤ ωmax(τ − τk) . (6.16)

 

 

τ = τ
k

sin ω
min

(τ − τ
k
)

sin ω
max

(τ − τ
k
)

τ = τ
k
+T

max
τ = τ

k
+T

min

Figure 5. The function sin(ωmax(τ − τk)) on the interval [τk, τk + Tmax] is
plotted in yellow, while sin(ωmin(τ − τk)) on the interval [τk, τk + Tmin] is
plotted in green. Here Tmax = 2π/ωmax and Tmin = 2π/ωmin. The dashed
line in red is the function gk used in the proof of Lemma 6.2 to obtain an
upper bound for P (s). The dash-dot line in blue is the function hk used in
the same proof to obtain a lower bound for P (s).
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For each k < n, by letting τ = τk+1 in (6.16) it follows from the second inequality
that τk+1− τk ≥ Tmax and from the first inequality that τk+1− τk ≤ Tmin. Therefore

kTmax ≤ τk ≤ kTmin ∀ k ∈ {1, 2, . . . n} . (6.17)

From (6.7) we have

P (s) = pρ

n
∑

k=1

∫ τk

τk−1

e−pρτ sin

(

∫ τ

τk−1

ωρ(s− σ)dσ

)

dτ ,

+ pρ

∫ s

τn

e−pρτ sin

(
∫ τ

τn

ωρ(s− σ)dσ

)

dτ . (6.18)

For each k ∈ {0, 1, . . . n}, define the function gk on the interval [τk, τk + Tmax] by
gk(τ) = g(τ − τk) (see Figure 5). Using ωmin ≤ ωmax ≤ 2ωmin and (6.16) it can be
verified that for each k ∈ {0, 1, . . . n} and all τk ≤ τ ≤ min{τk + Tmax, s},

sin

(
∫ τ

τk

ωρ(s− σ)dσ

)

dτ ≤ gk(τ) (6.19)

and when min{τk + Tmax, s} < τ ≤ min{τk+1, s} (if k = n, then let τk+1 = s)

sin

(
∫ τ

τk

ωρ(s− σ)dσ

)

dτ ≤ 0 . (6.20)

Using (6.19) and (6.20), we obtain from (6.18) that

P (s) ≤ pρ
n
∑

k=1

∫ τk−1+Tmax

τk−1

e−pρτgk−1(τ)dτ + pρ

∫ min{s,τn+Tmax}

τn

e−pρτgn(τ)dτ

= pρ
n
∑

k=1

e−pρτk−1

∫ Tmax

0

e−pρτg(τ)dτ + pρe−pρτn
∫ min{s−τn,Tmax}

0

e−pρτg(τ)dτ .

By letting τ = s and k = n in (6.16), we get that s − Tmin < τn. This, and the
inequality |g(τ)| ≤ 1 for all τ ∈ [0, Tmax], means that the second term on the right
side of the above expression can be bounded in absolute value by e−pρ(s−Tmin). From
the above expression, using the easily verifiable fact

∫ Tmax

0
e−pρτg(τ)dτ > 0 and the

inequalities in (6.17), the upper bound in (6.14) follows.

For each k ∈ {0, 1, . . . n}, define the function hk on the interval [τk, τk + Tmin] by
hk(τ) = h(τ − τk) (see Figure 5). Using ωmin ≤ ωmax ≤ 2ωmin and (6.16) it can be
verified that for each k ∈ {0, 1, . . . n} and all τk ≤ τ ≤ min{τk+1, s} (if k = n, then
let τk+1 = s),

sin

(
∫ τ

τk

ωρ(s− σ)dσ

)

dτ ≥ hk(τ) (6.21)

and when min{τk+1, s} < τ ≤ min{τk + Tmin, s}, hk(τ) ≤ 0. Using this and (6.21),
we obtain from (6.18) that

P (s) ≥ pρ

n
∑

k=1

∫ τk−1+Tmin

τk−1

e−pρτhk−1(τ)dτ + pρ

∫ s

τn

e−pρτhn(τ)

= pρ
n
∑

k=1

e−pρτk−1

∫ Tmin

0

e−pρτh(τ)dτ + pρe−pρτn
∫ s−τn

0

e−pρτh(τ)dτ .
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Using s−Tmin < τn (shown earlier) and the inequality |h(τ)| ≤ 1 for all τ ∈ [0, Tmin],
it is easy to see that the second term on the right side of the above expression can
be bounded in absolute value by e−pρ(s−Tmin). From the above expression, using the
inequalities in (6.17), the lower bound in (6.15) follows.

The next theorem is the main result of this paper. It presents checkable conditions
for the almost global asymptotic stability of the SG model (2.9). Recall the notations
Vr and P∞ from (6.1), Γ from (6.6) and p = Rs/Ls. As discussed earlier, the
conditions are specified in terms of a nonlinear map N : (0,Γ] → [0,∞). We show
that if the graph of this map is below the graph of F (x) = x, then the SG model in
(2.9) is almost globally asymptotically stable.

Theorem 6.3. Consider the SG model (2.9). For each d ∈ (0,Γ] let ωdmax = ωp+ρωg
and ωdmin = ωn+ ρωg, where ωp and ωn are obtained from (6.8) using α and β given
in (6.2) and ρ is given by (6.1). Then ωdmin < ωdmax for all d. If ωdmax ≤ 2ωdmin, then
recall the functions g and h from (6.12) and (6.13), where we take ωmax = ωdmax and
ωmin = ωdmin so that Tmax = 2π/ωdmax and Tmin = 2π/ωdmin, and define the numbers

P d
u =

pρ

1− e−pρTmax

∫ Tmax

0

e−pρτg(τ)dτ , P d
l =

pρ

1− e−pρT

∫ Tmin

0

e−pρτh(τ)dτ ,

where T = Tmax if
∫ Tmin

0
e−pρτh(τ)dτ < 0 and T = Tmin otherwise. If ωdmax > 2ωdmin,

then let P d
u = 1 and P d

l = 0. Define the map N : (0,Γ] → R by

N (d) = Vrmax{P d
u − P∞, P∞ − P d

l } . (6.22)

If N (d) < d and ωdmax ≤ 2ωdmin for each d ∈ (0,Γ], then every trajectory of the SG
model (2.9) converges to an equilibrium point. In addition, if all the equilibrium
points of (2.9) are hyperbolic, then (2.9) is almost globally asymptotically stable.

Proof. Throughout this proof we assume that N (d) < d and ωdmax ≤ 2ωdmin for each
d ∈ (0,Γ] and that α and β are as in the theorem. First we claim that for any
solution (id, iq, ω, δ) of (2.9), if the corresponding solution ψ of (6.3) is such that
γ in (6.4) satisfies lim sup |γ(s)| = 0, then (id, iq, ω, δ) converges to an equilibrium
point. Indeed, for each small d, N (d) < d implies that |P d

u − P d
l | and hence (using

the definitions of g and h and the fact that ωdmin < ωdmax ≤ (1 + |β| + d)/α + ρωg)
ωdmax−ωdmin are both small, proportional to d. This, and the observation using (6.8)
that if (5.16) does not hold for a d, then ωdmax−ωdmin > 2/α, implies that (5.16) holds
for all sufficiently small d. Therefore, given a ψ as above satisfying lim sup |γ(s)| = 0,
we can apply Theorem 5.14 and Remark 5.15 to (6.3) and conclude that for every d
sufficiently small there exists a Td > 0 such that

|ψ(s1)− ψ(s2)| < ψ1 − ψ2 + 4d/α2 ∀ s1, s2 > Td . (6.23)

Here ψ1 and ψ2 are as in (5.2). Since d > 0 can be arbitrarily small, (6.23) implies
that lims→∞ ψ(s) = ψl for some finite ψl. It follows from (6.3) that, since |ψ′(s)| ≤
|ψ′(0)| + (|β| + Γ + 1)/α + ‖f‖L∞/(ivα) for all s ≥ 0 (by the argument in (5.3)),
ψ′′ is a continuous bounded function of time. We can therefore apply Barbălat’s
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lemma to ψ′ to conclude that lims→∞ ψ′(s) = 0. Since η(ρs) = ψ(s) for all s ≥ 0
by definition, it follows using (4.6) that limt→∞ δ(t) = δl = ψl − φ − 3π/2 and
limt→∞ δ̇(t) = 0. This, along with (2.8), gives that limt→∞ ω(t) = ωg. Note that
both id and iq are bounded functions on [0,∞). This follows from the discussion
at the beginning of Section 3 (if either |id(t)|, |iq(t)| or |ω(t)| is sufficiently large,
then Ẇ (t) < 0 which ensures that id, iq and ω are bounded). Hence (4.1) can be
rewritten as a second-order exponentially stable linear system driven by an input
which is a sum of a constant vector and a vanishing vector as follows:

[

i̇d
i̇q

]

=

[

−p ωg
−ωg −p

] [

id
iq

]

+
1

Ls

[

V sin δl
V cos δl −mifωg

]

+
1

Ls

[

Ls(ω − ωg)iq + V (sin δ − sin δl)
−Ls(ω − ωg)id + V (cos δ − cos δl)−mif (ω − ωg)

]

.

The second term on the right side of the above equation is a constant, while the third
term decays to zero asymptotically (because limt→∞ ω(t) = ωg and limt→∞ δ(t) = δl).
This means that id and iq converge to some constants id,l and iq,l, i.e.

lim
t→∞

(id(t), iq(t), ω(t), δ(t)) = (id,l, iq,l, ωg, δl) .

It is now easy to verify using (2.9) that (̈id, ïq, ω̈, δ̈) are bounded continuous func-
tions. Therefore, by applying Barbălat’s lemma to (i̇d, i̇q, ω̇, δ̇), we can conclude that
limt→∞(i̇d(t), i̇q(t), ω̇(t), δ̇(t)) = 0 and so (id,l, iq,l, ωg, δl) is an equilibrium point for
(2.9). This completes the proof of our claim.

Next we show that for each solution (id, iq, ω, δ) of (2.9), the corresponding solu-
tion ψ of (6.3) is such that γ in (6.4) satisfies lim sup |γ(s)| = 0. This and the claim
established above imply that every trajectory of (2.9) converges to an equilibrium
point which in turn implies, using Lemma 3.5, that (2.9) is almost globally asymp-
totically stable whenever all its equilibrium points are hyperbolic. Below, we will
use the fact that the nonlinear function N is right-continuous if ωdmax ≤ 2ωdmin for
all d ∈ (0,Γ]. This follows from two (easily verifiable) facts: (1) P d

u and P d
l , which

are determined by ωdmax and ωdmin using the functions g and h, depend continuously
on ωdmax and ωdmin and (2) ωp and ωn (defined in (6.8)), and consequently ωdmax and
ωdmin, are right-continuous functions of d.

Consider a solution (id, iq, ω, δ) of (2.9) and the corresponding solution ψ of (6.3).
We will show that d0 = lim sup |γ(s)| = 0. Suppose that d0 6= 0. It follows from
(6.4) and (6.5) that d0 ≤ Γ. In fact, d0 < Γ since lim sup |P (s)| < 1. The latter
inequality is a consequence of two simple facts: (i) the integrand in (6.7) is 0 when
τ = 0 and (ii) ψ′ is a bounded function on [0,∞) (as stated below (6.23)) and
therefore so is ωρ = ψ′ + ρωg. Fix ε > 0 such that d0 + ε < Γ. Let d = d0 + ε and
define ωmax = ωdmax and ωmin = ωdmin. Lemma 6.1 gives that there exists T1 > 0 such
that for all s ≥ T1, ωmin < ωρ(s) < ωmax. From (6.7) we get that for all s ≥ T1,

P (s) = pρ

∫ s̃

0

e−pρτ sin

(
∫ τ

0

ω̃ρ(s̃− σ)dσ

)

dτ

+ pρ

∫ s

s̃

e−pρτ sin

(
∫ τ

0

ωρ(s− σ)dσ

)

dτ , (6.24)
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where s̃ = s − T1 and ω̃ρ(s̃ − σ) = ωρ(s − σ) for all 0 ≤ σ ≤ s̃. The second term
on the right side of (6.24) decays exponentially to zero as s → ∞. Denote the first
term on the right side of (6.24) by P̃ (s̃). It is easy to see that ωmin < ω̃ρ(τ) < ωmax

for all 0 ≤ τ ≤ s̃. Using this and the assumption ωmax ≤ 2ωmin, we can apply the
bounds (6.14) and (6.15) derived in Lemma 6.2 for P (s) to P̃ (s̃) to conclude that

P d
l − e−pρ(s̃−Tmin) ≤ P̃ (s̃) ≤ P d

u + e−pρ(s̃−Tmin) ,

where Tmin = 2π/ωmin. This, together with (6.24), implies that P d
l ≤ lim inf P (s) ≤

lim supP (s) ≤ P d
u . It now follows from (6.4) that d0 ≤ Vrmax{P d

u−P∞, P∞−P d
l } =

N (d0+ε). Thus we have shown that d0 ≤ N (d0+ε) for all ε > 0 satisfying d0+ε < Γ
which, due to the right-continuity of N , implies that d0 ≤ N (d0). If d0 6= 0, this
contradicts our assumption that N (d) < d for all d ∈ (0,Γ]. Hence d0 = 0.

In general, the conditions in the above theorem are hard to verify analytically, but
it is straightforward to verify them numerically. This will be demonstrated using an
example in the next section.

Remark 6.4. In Section 3 we showed that (2.9) has two sequences of equilibrium
points if and only if the right side of (3.3), denoted as Λ, satisfies |Λ| < 1. It is
easy to check that β = −Λ (β is defined in (6.2)). The condition N (d) < d for all
d ∈ (0,Γ] in Theorem 6.3 implies that |β| < 1. Indeed, if |β| ≥ 1, then irrespective
of d, ωp − ωn > 2/α and so ωdmax − ωdmin > 2/α. This means that even when we let
d → 0, P d

u − P d
l will remain bounded away from 0 which, along with (6.22), implies

that N (d) > d for small d.

Remark 6.5. In [23, Theorem 5.1] we presented a simple set of conditions, which
can be easily verified analytically, under which (2.9) is aGAS. These conditions were
derived using the standard form (6.3)–(6.5) of the ESE. They were stated in [23]
under the assumptions that 0 < β < 1, ‖γ‖L∞ < d < β for some d > 0 and β+d < 1,
because in that work the asymptotic bounds for the forced pendulum equation
were derived under these assumptions. In Section 5, we have derived the same
asymptotic bounds under the less restrictive assumptions |β| < 1, lim sup |γ(s)| < d
and |β|+d < 1 for some d > 0. Hence the conclusions of [23, Theorem 5.1] continue
to hold under these less restrictive assumptions as well. For the simple conditions
of that theorem to hold Vr must be small (much less than 1), but for nominal SG
parameters typically Vr > 1. Nevertheless, that theorem enabled us to identify a
large range of (not necessarily practical) SG parameters for which (2.9) is aGAS.
For instance, given a set of SG parameters, if we increase V by a factor of n and
decrease J by the same factor, then for all n sufficiently large the simple stability
conditions will hold.

For the sufficient stability conditions in Theorem 6.3 to hold, it is necessary that
|β| < 1 (see Remark 6.4) and it is desirable that the damping coefficient α be large.
Indeed, for any given d > 0 it follows from (6.8) that |ωp| and |ωn| are inversely
proportional to α and it follows from the definitions of g, h, N in (6.12), (6.13)
and (6.22), respectively, that N (d) is proportional to max{|ωp|, |ωn|}. Hence for
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any given β and Γ with |β| < 1, if α is sufficiently large, then N (d) < d and
ωdmax ≤ 2ωdmin for all d ∈ (0,Γ], i.e. the conditions of Theorem 6.3 will hold. On an
intuitive level, the need for large α and |β| < 1 for global asymptotic stability can
be anticipated from the ESE (6.3). It is easy to see from (6.2) that

α =
Dp

√

Ls
4

√

p2 + ω2
g

√

mifV J
, β =

TaLs
√

p2 + ω2
g

mifV
− mifpωg

V
√

p2 + ω2
g

,

where, as usual, p = Rs/Ls and Ta = Tm − Dpωg is the actual mechanical torque.
The next two remarks contain suggestions for choosing the parameters of the SG
model to increase α, so that the sufficient conditions of Theorem 6.3 are satisfied.
These suggestions may be useful for designing a synchronverter.

Remark 6.6. Let Pn denote the nominal power of the SG. Then Ta = Pn/ωg and
so it is independent of Dp. Clearly, by increasing Dp or decreasing J , α can be
increased without changing β. We can also increase α by increasing Ls, but this will
result in an increase in β as well. The constraint |β| < 1 gives an upper limit for Ls.
Similarly, increasing p also increases α (to a smaller extent since typically p < ωg).
Again the restriction |β| < 1 imposes an upper bound on the possible values for p.

Our numerical experiments with the stability conditions of Theorem 6.3 suggest
that a smaller value for |β| is preferable. Let β1 and β2 be the first and second terms,
respectively, in the above expression for β. For typical SG parameters p << ωg.
Hence increasing p (in a certain range) will scale up β2 more than it does β1. On
the other hand, when we increase Ls, β1 increases while β2 remains constant. Since
β = β1 − β2, it is possible to increase p and Ls simultaneously such that β remains
small. Increasing p and Ls increases α, which is desirable.

Remark 6.7. Modifying any SG parameter other than Dp to increase α, while
keeping β small, will change at least one of Vr, p and ρ. Also, when Ls is increased
we must increase mif , for instance according to (7.1). Thus when we increase α,
we cause an unintentional change in the value of the function N corresponding to
the variations that we induce in the values of Vr, p, ρ and mif . Our numerical
studies indicate that the desired changes in N caused by increasing α are often far
more significant than these unintentional changes. Thus increasing α according to
Remark 6.6 typically helps to satisfy the stability conditions of Theorem 6.3. This
is demonstrated using an example in the next section.

7. Application and examples

In this section, on the basis of the results of Section 6, we propose a modification
to the design of synchronverters to enhance their global stability properties (by ar-
tificially enlarging the filter inductors). Using this modification, we choose the main
parameters of a 500kW synchronverter so that they satisfy the stability conditions
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of Theorem 6.3, for a suitably chosen constant field current. Thus for this set of
parameters (2.9) is almost globally asymptotically stable.

To select a set of nominal parameters for a synchronverter (without using our
modification), we follow the empirical guidelines used in the design of SGs and
commercial inverters. As usual, let ωg be the grid frequency and let V be the line
voltage so that the rms voltage on each phase is Vrms = V/

√
3. Let Pn denote

the nominal active power supplied by a SG. Then the nominal active mechanical
torque generated by its prime mover is Ta = Pn/ωg. Following empirical guidelines,
the moment of inertia J of the SG rotor is chosen so that (Jω2

g/2)/Pn lies between
2 and 12 seconds. The frequency droop constant Dp is selected such that if the
SG rotor frequency drops below the nominal grid frequency by dp% of ωg, then
the active power should increase by the amount Pn. Thus, Dp = 100Pn/(dpω

2
g)

(typically dp ≈ 3). By definition Tm = Ta + Dpωg. To compute Ls and Rs we
assume that in steady state the stator current i and the grid voltage v are in phase.
Then Pn = 3VrmsIrms, where Irms is the nominal rms value of the current on each
phase. In commercial inverters the inductance Ls of the filter inductor is chosen so
that the voltage drop across Ls, given by LsωgIrms, is 3−5% of Vrms. The resistance
Rs of the filter inductor is normally such that the rms voltage drop across Rs is

below 0.5% of Vrms. The expression mif =
√

3
2
Mf if is determined by (2.4) (with

ω = ωg) and the condition

erms ≈
√

V 2
rms + ω2

gL
2
sI

2
rms , (7.1)

where erms is the rms of the electromotive force e in each phase at steady state.

We have briefly introduced synchronverters in Section 1, but so far we have not
described their structure. Without going into too much detail, the synchronverter is
based on an inverter having three legs built from electronic switches which operate
at a high switching frequency, see [32, 34] for details. It has a DC side which is
normally connected to a DC energy source (or a storage device), three AC output
terminals corresponding to the three phases of the power grid and a neutral line
(which serves as reference for all the voltages). We denote the vector of voltages on
the AC terminals, averaged over one switching period, by g = [ga gb gc]

⊤. These
AC terminals are connected to passive low-pass filters, each of which may be an
inductor, or two inductors and a capacitor (the so-called LCL filter) or they may
have a more complicated structure. The purpose of these filters is to transfer the
power from the inverter to the grid while eliminating the voltage and current ripples
at the switching frequency and its higher harmonics. If there is an LCL filter, then
for the purpose of modeling, we neglect the capacitor and approximate the filter
with a single inductor whose inductance Ls is the sum of the two inductances in
the circuit. (The same goes for the series resistances of these inductors.) This is
justified because, up to the grid frequency, the impedance of the capacitor is much
larger (in absolute value) than the impedances of the inductors.

For a synchronverter designed as in [34], the voltages ga, gb and gc represent
the synchronous internal voltages in the stator windings of the virtual synchronous
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generator, while an LCL filter represents the inductance Ls and the series resistance
Rs of the stator windings (by ignoring the capacitor). As discussed in Section 1,
the rotor dynamics is implemented in software. According to the design in [32, 34],
g = e, where e is computed by the synchronverter algorithm using the measured
stator currents and the equations (2.4) and (2.7). This e is then provided to the
stator coil, as depicted in Figure 6 with n = 1. We now think that choosing g = e
is not the best approach, because the inductance Ls is far too small. Indeed, for
reasons of size and cost, the inductance of the filter inductor of a typical commercial
inverter is usually much smaller than the stator inductance of a SG of the same
power rating (about 50 times smaller), see for instance [19, Example 3.1]. This fact
alone justifies increasing Ls artificially, in order to make the synchronverter more
similar to a SG. There is an additional reason for increasing Ls artificially, and this
is to improve the stability of the system, as explained below.

Figure 6. An inverter operated as a synchronverter, with filter inductor Ls
and its series resistance Rs, connected to the utility grid. Only phase a
is shown. The synchronverter algorithm provides the synchronous internal
voltage ea according to (2.4). The inductor and resistor multiplied with
(n− 1) are virtual. For n = 1 we get a usual synchronverter as in [34]. The
actual (short time average) voltage generated by the inverter is ga.

The parameters of synchronverters selected according to the empirical guidelines
described earlier typically do not satisfy the stability conditions of Theorem 6.3.
But as discussed in Section 6 (above Remark 6.6), if we increase the damping factor
α to a sufficiently large value, then the stability conditions will hold. We see from
Remark 6.6 that α can be increased primarily by increasing Dp, decreasing J or
increasing Ls. In a synchronverter (in normal operation), the parameters Dp and
J are chosen based on grid requirements (standard droop behavior and inertia) as
discussed earlier and we cannot change them to increase α. Thus, the only way to
increase α is via increasing Ls. Replacing the existing inductor with a much larger
one (designed for the same nominal current, of course) would be very expensive and
the larger inductor would be very bulky. We propose a method to virtually increase
the inductance Ls of the inductor (and also its series resistance Rs) by a factor n (for
instance, n = 30), by only changing the synchronverter control algorithm. The idea
is to create a virtual inductor of value (n−1)Ls and with series resistance (n−1)Rs
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in series with the real inductor, as shown in Figure 6 (which shows only one phase
out of three, phase a). We see from the figure (and a trivial computation) that

ga =
(n− 1)va + ea

n
. (7.2)

Here ea is the synchronous internal voltage given by (2.4) while ga is the average
voltage (over one switching period) at the output of the switches in the inverter.
Thus, by enforcing g computed as in (7.2) we create the effect of providing the
synchronous internal voltage e = [ea eb ec]

⊤ to stator coils with inductance nLs and
resistance nRs. By this method we increase the effective inductance and resistance
of the stator coils by a factor of n and α by a factor of

√
n. For n = 1 we recover

the structure of the synchronverter in [34].

In the sequel, we present a choice for the main parameters of a 500kW synchron-
verter which (after the modification in Figure 6) satisfy the conditions of Theorem
6.3. Thus for this set of parameters the grid-connected SG model (2.9) is almost
globally asymptotically stable (aGAS). We also consider other values for the SG pa-
rameters to illustrate the different types of global dynamic behavior that the system
(2.9) can exhibit.

Example 7.1. Consider a synchronverter designed for the grid frequency ωg =
100π rad/sec and line voltage V = 6000

√
3 Volts. The synchronverter supplies

a nominal active power Pn = 500 kW and operates with a 3% frequency droop
coefficient, i.e. dp = 3. Following the empirical guidelines discussed earlier, we
choose Dp = 168.87N·m/(rad/sec), Tm = 54.64 kN·m, J = 20.26Kg·m2/rad, Ls =
27.5mH, Rs = 1.08Ω and mif = 33.11Volt·sec. For this set of parameters the
sufficient stability conditions in Theorem 6.3 do not hold. Although the stability
conditions can be satisfied by increasing Dp or decreasing J , this is not desirable
from an operational standpoint. So following the discussion earlier in this section we
increase the effective inductance and resistance by a factor of 30, i.e. n = 30 in Figure
6. Then (the effective) Ls = 825.06mH, Rs = 32.4Ω and mif = 51.67Volt·sec.
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Figure 7. Plot of N for the SG param-
eters in Example 7.1.
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Consider the SG model (2.9) and the corresponding pendulum system (6.3) with
the above parameter values and n = 30. This yields p = 39.27 rad/sec, iv = 39.78A,
α = 0.83 sec/rad, β = 0.58, ρ = 0.1 s/

√
rad, Vr = 1.57 and P∞ = 0.12. For the

chosen parameter values, all the equilibrium points of (2.9) are hyperbolic. Figure
7 is the plot of the function N defined in (6.22) on the interval (0, (1 + P∞)Vr].
Figure 8 is the plot of ωdmax, ω

d
min and 2ωdmin (as defined in Theorem 6.3) on the

same interval. It is clear from these figures that the conditions in Theorem 6.3 are
satisfied. Hence the SG model (2.9) with the virtual inductor is aGAS. �

Numerical simulations suggest that the SG model (2.9) is aGAS for the parameter
values in the above example even when we take n = 1 (no virtual inductance). But
we cannot prove this since the conditions of Theorem 6.3 do not hold. In fact it may
be hard to prove this analytically because if we make small changes in the value of
Rs (while keeping all other parameter values same), then the SG model loses the
aGAS property. Indeed, if we increase Rs so that the voltage drop across the resistor
is 1% (instead of 0.5%) of Vrms, then the SG model is not aGAS. In this case, the
SG model has a sequence of stable and unstable equilibrium points. It also has a
sequence of periodic solutions (two periodic solutions in this sequence differ only in
their value of δ and the difference is a multiple of 2π). Along each periodic solution,
ω < ωg and ω, id and iq oscillate with a time period of about 0.16 seconds while δ
decreases monotonically (δ is periodic modulo 2π).

Suppose that we choose Dp = 15Nm/(rad/sec) and let all the other SG parame-
ters be as in Example 7.1 with n = 1. Then the SG model (2.9) has two sequences
of equilibrium points, both of them unstable (this cannot happen in the case of a
pendulum equation with constant forcing). The SG model also has a sequence of
periodic solutions.
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