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Abstract In this paper a class of abstract dynamical systems is considered which

encompasses a wide range of nonlinear finite- and infinite-dimensional systems. We

show that the existence of a non-coercive Lyapunov function without any further

requirements on the flow of the forward complete system ensures an integral version

of uniform global asymptotic stability. We prove that also the converse statement

holds without any further requirements on regularity of the system.

Furthermore, we give a characterization of uniform global asymptotic stability in

terms of the integral stability properties and analyze which stability properties can be

ensured by the existence of a non-coercive Lyapunov function, provided either the

flow has a kind of uniform continuity near the equilibrium or the system is robustly

forward complete.

Keywords nonlinear control systems · infinite-dimensional systems · Lyapunov

methods · global asymptotic stability

1 Introduction

The theory of Lyapunov functions is one of the cornerstones in the dynamical and

control systems theory. Numerous applications of Lyapunov theory include charac-

terization of stability properties of fixed points and more complex attractors [28,5,14,

11], conditions for forward completeness of trajectories [1], criteria for the existence
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of a bounded absorbing ball [2, Theorem 2.1.2] etc. Some of these uses extend from

finite-dimensional applications to the infinite-dimensional case, while others rely on

distinct finite-dimensional arguments.

On the other hand numerous converse results have been obtained which prove

the existence of certain types of Lyapunov functions characterizing different stability

notions. Indeed, before starting to look for a Lyapunov function it is highly desirable

to know in advance that such a Lyapunov function for a given class of systems ex-

ists. The first results guaranteeing existence of Lyapunov functions for asymptotically

stable systems appeared in the works of Kurzweil [13] and Massera [16]. These have

been generalized in different directions, see [11,19] for references.

The standard definition of a Lyapunov function V , found in many textbooks on

finite-dimensional dynamical systems, is that it should be a continuous (or more reg-

ular) positive definite and proper function, i.e. a function for which there exist K∞
1

functions ψ1,ψ2,α such that

ψ1(‖x‖)≤V (x)≤ ψ2(‖x‖) ∀x ∈ X , (1)

and such that

V̇ (x)<−α(‖x‖) ∀x ∈ X , (2)

where V̇ (x) is some sort of generalized derivative of V along the trajectories of the

system.

If V is as above with the exception that instead of (1), V satisfies the weaker

property

0 <V (x)≤ ψ2(‖x‖) , x 6= 0, (3)

then V is called a non-coercive Lyapunov function.

Noncoercive Lyapunov functions are frequently used in the linear infinite-dimensional

systems theory. There are at least two reasons for this. On the one hand, using the

generalized Datko lemma [4,15] one can show that the existence of noncoercive Lya-

punov functions already proves exponential stability of a linear system (and thus it is

not necessary to look for coercive Lyapunov functions). On the other hand, noncoer-

cive Lyapunov functions are in a certain sense even more natural than coercive ones.

For example, a classic type of Lyapunov functions for linear exponentially stable sys-

tems over Hilbert spaces are quadratic Lyapunov functions constructed by solving the

operator Lyapunov equation [3, Theorem 5.1.3]. However, solutions of this equation

are not coercive in general, and hence the corresponding Lyapunov functions are not

coercive as well.

In spite of these advantages, the usage of non-coercive Lyapunov functions was

limited to linear infinite-dimensional systems and to nonlinear time-delay systems,

for which the efficient method of Lyapunov-Krasovskii functionals is widely used [6,

21] (Lyapunov-Krasovskii functionals have, however, a different type of noncoerciv-

ity, see [18] for a comparison and discussion). Recently the situation has changed:

in [19] the authors have shown that for a broad class of forward complete nonlinear

infinite-dimensional systems existence of a non-coercive Lyapunov function ensures

1 An increasing, unbounded, continuous, positive definite function from R+ to itself that maps 0 to 0.
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uniform global asymptotic stability (UGAS) of a system, provided the flow of the sys-

tem has a certain uniform continuity at the origin and finite-time reachability sets of

the system are bounded. On the other hand, it was demonstrated in [19] that without

these additional assumptions uniform global asymptotic stability cannot be guaran-

teed, even for systems of ordinary differential equations (ODEs). In particular, the

existence of a non-coercive Lyapunov function alone does not ensure forward com-

pleteness of the system (in contrast to coercive Lyapunov functions). Hence, although

non-coercive Lyapunov functions provide more flexibility for the stability analysis of

dynamical systems, further conditions have to be verified separately. Another result

of [19] is a construction of a Lipschitz continuous non-coercive Lyapunov function

by means of an integration of the solution along trajectories.

In this paper, we continue the investigations initiated in [19]. In our first main

result (Theorem 3), we show that forward complete systems possessing non-coercive

Lyapunov functions (even if they do not satisfy any further assumptions) enjoy an

“integral version” of uniform global asymptotic stability (iUGAS), which is a weaker

notion than UGAS. Our second result (Theorem 4) is a converse non-coercive Lya-

punov theorem for the iUGAS property. Since iUGAS is weaker than UGAS, a co-

ercive Lyapunov function does not exist for such systems in general. However, we

show (without requiring any further regularity of the flow!) that we can construct a

non-coercive Lyapunov function for this system. The construction is motivated by

[19] and based upon classic converse theorems and Yoshizawa’s method [28, The-

orem 19.3], [7, Theorem 4.2.1]. A key tool for achieving our main results are the

characterizations of the iUGAS property in terms of weaker stability notions, de-

veloped in Theorem 1, which is a third notable result in this work. In Figure 1 we

provide a graphical overview of the results obtained in this paper, in particular, the

relationship between the introduced stability notions.

Relations between integral and “classic” stability notions have been studied in a

number of papers. In particular, in [27] uniform global asymptotic stability of finite-

dimensional differential inclusions has been characterized via “integral” uniform at-

tractivity. A natural extension of the iUGAS notion to the case of systems with inputs

leads to the nonlinear counterparts of L2-stability (which was originally introduced

in the context of linear systems in the seminal work [29], see also [23]). In [24,12]

it was shown that these extensions are equivalent to input-to-state stability for the

systems of ordinary differential equations with Lipschitz continuous nonlinearities.

1.1 Notation

The following notation will be used throughout. By R+ we denote the set of nonneg-

ative real numbers. For an arbitrary set S and n ∈ N the n-fold Cartesian product is

Sn := S× . . .× S. The open ball in a normed linear space X endowed with the norm

‖ ·‖X with radius r and center in y ∈ X is denoted by Br(y) := {x ∈ X | ‖x−y‖X < r}
(the space X in which the ball is taken, will always be clear from the context). For

short, we denote Br := Br(0). The (norm)-closure of a set S ⊂ X will be denoted by

S.
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For the formulation of stability properties the following classes of comparison

functions are useful, see [5,10]. The set K is the set of functions γ : R+ → R+ that

are continuous, strictly increasing and with γ(0) = 0; K∞ is the set of unbounded

γ ∈ K ; K L is the set of continuous β : R2
+ → R+, such that β (·, t) ∈ K , for all

t ≥ 0 and β (r, ·) is decreasing to 0 for all r > 0.

2 Problem statement

We consider abstract axiomatically defined time-invariant and forward complete sys-

tems on the state space X which are subject to a shift-invariant set of disturbances D .

Definition 1 Consider the triple Σ = (X ,D ,φ), consisting of:

(i) A normed linear space (X ,‖·‖X ), called the state space, endowed with the norm

‖ · ‖X .

(ii) A set of disturbance values D, which is a nonempty subset of a certain normed

linear space.

(iii) A space of disturbances D ⊂ {d : R+ → D} satisfying the following two ax-

ioms.

The axiom of shift invariance states that for all d ∈ D and all τ ≥ 0 the time

shift d(·+ τ) is in D .

The axiom of concatenation is defined by the requirement that for all d1,d2 ∈D

and for all t > 0 the concatenation of d1 and d2 at time t

d(τ) :=

{

d1(τ), if τ ∈ [0, t],

d2(τ − t), otherwise,
(4)

belongs to D .

(iv) A map φ : R+×X ×D → X , called the transition map.

The triple Σ is called a (forward complete) system, if the following properties hold:

(Σ1) forward completeness: for every (x,d) ∈ X ×D and for all t ≥ 0 the value

φ(t,x,d) ∈ X is well-defined.

(Σ2) The identity property: for every (x,d) ∈ X ×D it holds that φ(0,x,d) = x.

(Σ3) Causality: for every (t,x,d) ∈ R+×X ×D , for every d̃ ∈ D , such that d(s) =
d̃(s), s ∈ [0, t] it holds that φ(t,x,d) = φ(t,x, d̃).

(Σ4) Continuity: for each (x,d) ∈ X ×D the map t 7→ φ(t,x,d) is continuous.

(Σ5) The cocycle property: for all t,h≥ 0, for all x∈X , d ∈D we have φ(h,φ(t,x,d),d(t+
·)) = φ(t + h,x,d).

Here φ(t,x,d) denotes the state of the system at the moment t ∈ R+ corresponding

to the initial condition x ∈ X and the disturbance d ∈ D .

We require a stronger version of forward completeness.

Definition 2 The system Σ = (X ,D ,φ) is called robustly forward complete (RFC) if

for any C > 0 and any τ > 0 it holds that

sup
{

‖φ(t,x,d)‖X | ‖x‖X ≤C, t ∈ [0,τ], d ∈ D
}

< ∞.
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In other words, a system Σ is RFC iff its finite-time reachability sets (emanating from

the bounded sets) are bounded.

The condition of robust forward completeness is satisfied by large classes of

infinite-dimensional systems.

Definition 3 We call 0 ∈ X an equilibrium point of the system Σ = (X ,D ,φ), if

φ(t,0,d) = 0 for all t ≥ 0, d ∈ D .

Note that according to the above definition disturbances cannot move the system

out of the equilibrium position.

Definition 4 We call 0 ∈ X a robust equilibrium point (REP) of the system Σ =
(X ,D ,φ), if it is an equilibrium point such that for every ε > 0 and for any h > 0

there exists δ = δ (ε,h)> 0, satisfying

t ∈ [0,h], ‖x‖X ≤ δ , d ∈ D ⇒ ‖φ(t,x,d)‖X ≤ ε. (5)

In this paper we investigate the following stability properties of equilibria of ab-

stract systems.

Definition 5 Consider a system Σ = (X ,D ,φ) with a fixed point 0. The equilibrium

position 0 is called

(i) uniformly locally stable (ULS), if for every ε > 0 there is a δ > 0 so that

‖x‖X ≤ δ , d ∈ D , t ≥ 0 ⇒ ‖φ(t,x,d)‖X ≤ ε. (6)

(ii) uniformly globally asymptotically stable (UGAS) if there exists a β ∈ K L

such that

x ∈ X , d ∈ D , t ≥ 0 ⇒ ‖φ(t,x,d)‖X ≤ β (‖x‖X , t). (7)

(iii) uniformly (locally) asymptotically stable (UAS) if there exist a β ∈ K L and

an r > 0 such that

‖x‖X ≤ r, d ∈ D , t ≥ 0 ⇒ ‖φ(t,x,d)‖X ≤ β (‖x‖X , t).

(iv) uniformly globally weakly attractive (UGWA), if for every ε > 0 and for every

r > 0 there exists a τ = τ(ε,r) such that for all ‖x‖X ≤ r, d ∈ D

∃t = t(x,d,ε)≤ τ : ‖φ(t,x,d)‖X ≤ ε.

(v) uniformly globally attractive (UGATT), if for any r,ε > 0 there exists τ = τ(r,ε)
so that

‖x‖X ≤ r, d ∈ D , t ≥ τ(r,ε) ⇒ ‖φ(t,x,d)‖X ≤ ε.

It is clear, that UGAS of 0 implies UGATT of 0, which in turn implies UGWA of 0.

As we will see, in the study of non-coercive Lyapunov functions one arrives very

naturally at “integral” versions of the notions stated above:
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Definition 6 We call 0 ∈ X an integrally robust equilibrium point (iREP) of the sys-

tem Σ = (X ,D ,φ), if it is an equilibrium point and there is α ∈K such that for every

ε > 0 and for any h > 0 there exists δ = δ (ε,h)> 0, satisfying

‖x‖X ≤ δ , d ∈ D ⇒

∫ h

0
α(‖φ(s,x,d)‖X )ds ≤ ε. (8)

Definition 7 For a given α ∈ K , system Σ = (X ,D ,φ) is called α-integrally ro-

bustly forward complete (α-iRFC), if for any C > 0 and any τ > 0 it holds that

sup
x∈BC, d∈D

∫ τ

0
α
(

‖φ(t,x,d)‖X

)

dt < ∞.

Remark 1 Note that every forward-complete system is automatically α-iRFC for any

bounded α ∈ K , since
∫ τ

0 α
(

‖φ(t,x,d)‖X

)

dt < τ sups α(s). On the other hand, if Σ
is RFC, then Σ is also α-iRFC for any α ∈ K .

Definition 8 Consider a forward complete system Σ = (X ,D ,φ) with a fixed point

at 0. The equilibrium position 0 is called

(i) integrally uniformly locally stable (iULS) provided there are α ∈ K , ψ ∈ K∞

and r > 0 so that

‖x‖X ≤ r, d ∈ D ⇒

∫ ∞

0
α(‖φ(s,x,d)‖X )ds ≤ ψ(‖x‖X). (9)

(ii) integrally uniformly globally stable (iUGS) provided there are α ∈K , ψ ∈K∞

so that (9) is valid for r := ∞.

(iii) integrally uniformly globally attractive (iUGATT) provided there is α ∈ K so

that

∀ r > 0 : lim
t→∞

sup
x∈Br , d∈D

∫ ∞

t
α(‖φ(s,x,d)‖X )ds = 0. (10)

(iv) integrally uniformly globally asymptotically stable (iUGAS) provided there are

α ∈ K and β ∈ K L so that for all x ∈ X , d ∈ D , t ≥ 0 we have

∫ ∞

t
α(‖φ(s,x,d)‖X )ds ≤ β (‖x‖X , t). (11)

Properties (9) and (10) resemble a kind of uniform attractivity. This similarity

becomes even more apparent if we rewrite the definition of UGATT in an equivalent

form:

Lemma 1 Let Σ = (X ,D ,φ) be a forward complete system with fixed point 0. Then

0 is UGATT iff there is α ∈ K so that

lim
t→∞

sup
x∈Br, d∈D

α
(

∥

∥φ(·+ t,x,d)
∥

∥

C(X)

)

= 0 ∀r > 0, (12)

where ‖φ(·+ t,x,d)‖C(X) is the sup-norm of the “tail” of the trajectory φ after the

time t.
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Proof If 0 is UGATT, then for any α ∈ K∞ and any r,ε > 0 there exists τ = τ(r,ε)
so that

‖x‖X ≤ r, d ∈ D , t ≥ τ(r,ε) ⇒ ‖φ(t,x,d)‖X ≤ α−1(ε).

Equivalently, the left hand side implies α
(

‖φ(t,x,d)‖X

)

≤ ε and taking the limit

ε →+0 we arrive at (12). The proof of the converse implication is analogous.

Remark 2 Note that merely choosing a positive definite α in (12) (i.e. α ∈C(R+,R+):
α(0) = 0 and α(r) > 0 for r > 0) we do not arrive at any kind of attractivity, since

the trajectory may grow to infinity, and α(‖φ(t,x,d)‖X ) may converge to zero at the

same time. E.g. consider ẋ(t) = x(t), x(t) ∈ R, α(r) := r
r2+1

.

Analogously, it is possible to restate the UGS property. In Theorem 2 we will

show that UGAS implies iUGAS.

Finally, it is easy to see that

Lemma 2 Let Σ = (X ,D ,φ) be a system. If 0 is a REP, then 0 is an iREP with

arbitrary α ∈ K∞.

Proof Fix α ∈ K∞. Since 0 is a REP of Σ = (X ,D ,φ), for every ε > 0, h > 0 there

is δ = δ (ε,h)> 0 such that

‖x‖X ≤ δ , d ∈ D ⇒ sup
t∈[0,h]

‖φ(s,x,d)‖X ≤ α−1
(ε

h

)

.

Hence it holds that

‖x‖X ≤ δ , d ∈ D ⇒

∫ h

0
α
(

‖φ(s,x,d)‖X

)

ds ≤ ε,

which shows 0 is an iREP with the above α .

We now introduce Lyapunov functions which will help in characterizing the UGAS

and iUGAS concepts. To this end we first recall the notion of Dini derivative. For

h : R → R the right-hand lower Dini derivative D+ and the right-hand upper Dini

derivative D+ at a point t ∈R are defined by, see [26],

D+h(t) := lim
τ→+0

1

τ

(

h(t + τ)− h(t)
)

,

D+h(t) := lim
τ→+0

1

τ

(

h(t + τ)− h(t)
)

.

(13)

Consider a system Σ =(X ,D ,φ) and let V : X →R be a map. Given x∈X ,d ∈D ,

we consider the (right-hand lower) Dini derivative of the function t 7→ V (φ(t,x,d))
at t = 0 denoted by:

V̇d(x) := lim
t→+0

1

t

(

V
(

φ(t,x,d)
)

−V (x)
)

. (14)

We call this the Dini derivative of V along the trajectories of Σ . We stress that at this

point no continuity assumption has been placed on V .

Having introduced the main stability properties, we introduce now a predominant

tool for their study, which is a Lyapunov function.
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Definition 9 Consider a system Σ = (X ,D ,φ) and a function V : X →R+, satisfying

for each y ∈ X , each s > 0 and each d ∈ D the inequalities

lim
h→+0

V
(

φ(s− h,y,d)
)

≥V
(

φ(s,y,d)
)

≥ lim
h→+0

V
(

φ(s+ h,y,d)
)

.

Assume also that the right inequality in (15) is satisfied for s := 0 as well. The map

V is called:

(i) a non-coercive Lyapunov function for the system Σ = (X ,D ,φ), if V (0) = 0

and if there exist ψ2 ∈ K∞ and α ∈ K such that

0 <V (x)≤ ψ2(‖x‖X) ∀x ∈ X\{0}. (15)

holds and the Dini derivative of V along the trajectories of Σ satisfies

V̇d(x)≤−α(‖x‖X) (16)

for all x ∈ X and all d ∈ D .

(ii) a (coercive) Lyapunov function if in addition there is ψ1 ∈ K∞ satisfying

ψ1(‖x‖X)≤V (x) for all x ∈ X .

The inequalities (15) say that if a Lyapunov function is not continuous along a trajec-

tory at some point, then its value jumps down at this point.

The following result is known:

Proposition 1 Let Σ = (X ,D ,φ) be a system. Then:

(i) If there exists a coercive continuous Lyapunov function for Σ , then 0 is UGAS.

(ii) If there exists a non-coercive continuous Lyapunov function for Σ , and if Σ is

RFC and 0 is a robust equilibrium, then 0 is UGAS.

Proposition 1 (i) is a classic result, and item (ii) has been shown in [19], where the

concept of a non-coercive Lyapunov function for nonlinear systems has been intro-

duced and analyzed. There is an apparent distinction in the results (i) and (ii), in

that in item (ii) the existence of a non-coercive Lyapunov function implies UGAS,

provided that REP and RFC hold. In case that either REP or RFC do not hold, non-

coercive Lyapunov functions do not imply UGAS, as demonstrated by examples in

[19].

This difference in the formulations of items (i) and (ii) of Proposition 1 motivates

the first question:

What are the stability properties, which can be inferred from the existence of a

non-coercive Lyapunov function, without requiring any further assumptions on Σ?

On the other hand, it is well-known, that UGAS implies existence of a coercive Lya-

punov function, at least under certain regularity assumptions on the flow of Σ . This

leads to the second problem which we analyze in this paper:

What property, which is weaker than UGAS, implies existence of a non-coercive

Lyapunov function (and at the same time does not imply the existence of a coercive

Lyapunov function)?
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In Section 5 we resolve both these questions by showing that existence of a non-

coercive Lyapunov function is equivalent to the iUGAS property. Moreover, in Sec-

tion 3 we show several useful criteria for iUGAS and iUGATT, we give “atomic

decompositions” of the UGAS property in Section 4. Furthermore, in Section 5 we

analyze which stability properties can be ensured by the existence of a non-coercive

Lyapunov function, if it is only assumed that either 0 is a REP or that the RFC prop-

erty of Σ holds.

In Figure 1 a reader can find a graphical overview of the results obtained in this

paper, in particular, the relationship between the introduced stability notions.

3 Criteria for iUGATT and iUGAS

In this section we study “integral” stability properties starting with criteria for integral

UGATT and then for iUGAS.

3.1 Criteria for integral UGATT

First we would like to give a criterion for iUGATT in terms of UGWA. To this end

we need one more concept:

Definition 10 Let Σ be a forward complete system. We say that the fixed point 0 is

ultimately (locally) integrally stable (ultimately iULS) if there is α ∈ K so that for

any ε > 0 there exist T = T (ε)> 0 and δ = δ (ε)> 0 so that

‖x‖X ≤ δ , d ∈ D ⇒

∫ ∞

T (ε)
α
(

‖φ(t,x,d)‖X

)

ds ≤ ε. (17)

Now we are in a position to characterize iUGATT.

Proposition 2 Consider a forward complete system Σ = (X ,D ,φ) with fixed point

0. Then 0 is iUGATT with some α ∈K if and only if 0 is UGWA and ultimately iULS

with the same α .

Proof ⇒. Assume 0 is iUGATT for a given α ∈ K . Ultimate iULS of 0 (with the

same weight function α) easily follows from iUGATT. Let us show that 0 is UGWA.

Pick any R > 0 and any ε > 0. Since 0 is integrally UGATT, there is a time

τ̃ = τ̃(R,ε) so that

sup
x∈Br , d∈D

∫ ∞

τ̃(R,ε)
α(‖φ(s,x,d)‖X )ds ≤

1

2
α(ε).

Assume that for some x∈ Br, some d ∈D and all s ∈ [τ̃(R,ε), τ̃(R,ε)+1] it holds

that ‖φ(s,x,d)‖X ≥ ε . Then

1

2
α(ε)≥

∫ ∞

τ̃(R,ε)
α(‖φ(s,x,d)‖X )ds ≥ α(ε),
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a contradiction. This shows that 0 is uniformly globally weakly attractive with τ(R,ε) :=
τ̃(R,ε)+ 1.

⇐. Since 0 is ultimately iULS, there exists α ∈ K so that for all ε > 0 there are

δ (ε)> 0 and T (ε)> 0 so that (17) holds.

Pick any ε > 0 and r > 0. Since 0 is uniformly globally weakly attractive, there is

a time τ̃ = τ̃(r,ε) so that for any x ∈ Br and any d ∈ D there is a time t̄ ∈ [0, τ̃(r,ε))
so that ‖φ(t̄,x,d)‖X ≤ δ (ε).

In view of the ultimate iULS property we have that

t ≥ T (ε) ⇒
∫ ∞

t
α
(

‖φ(s,φ(t̄ ,x,d),d(t̄ + ·))‖X

)

ds ≤ ε.

Due to the cocycle property it holds that

∫ ∞

t
α
(

‖φ(s,φ(t̄ ,x,d),d(t̄ + ·))‖X

)

ds

=

∫ ∞

t
α
(

‖φ(s+ t̄,x,d)‖X

)

ds =

∫ ∞

t+t̄
α
(

‖φ(s,x,d)‖X

)

ds.

Considering t ≥ t̄ +T (ε), it is now easy to see that 0 is iUGATT (with the same α).

Analogously to Proposition 2 one can characterize the UGATT property. We de-

fine

Definition 11 Consider a forward complete system Σ = (X ,D ,φ) with fixed point

0. The fixed point 0 is called ultimately uniformly stable if for any ε > 0 there exist

T = T (ε)> 0 and δ = δ (ε)> 0 so that

t ≥ T, ‖x‖ ≤ δ , d ∈ D ⇒ ‖φ(t,x,d)‖ ≤ ε. (18)

Proposition 3 Consider a forward complete system Σ = (X ,D ,φ) with fixed point

0. Then 0 is UGATT if and only if 0 is ultimately uniformly stable and UGWA.

Proof ”⇒”. Clear.

”⇐”. Fix ε > 0. Since 0 is ultimately uniformly stable, there are positive δ (ε)
and T (ε) so that (18) holds. Now pick any r > 0. By uniform global weak attractivity

of 0 there is a time τ̃ = τ̃(r,ε) so that for any x ∈ Br(0) and any d ∈ D there is a time

t̄ ∈ [0, τ̃(r,ε)) so that ‖φ(t̄,x,d)‖ ≤ δ (ε).

Due to the cocycle property

φ(t + t̄,x,d) = φ(t,φ(t̄ ,x,d),d(t̄ + ·)),

and in view of ultimate uniform stability we have that

t ≥ t̄ +T (ε), x ∈ Br(0), d ∈ D ⇒ ‖φ(t,x,d)‖ ≤ ε,

Specializing this to t ≥ τ̃(r,ε)+T (ε), we see that 0 is UGATT.
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3.2 Characterization of iUGAS

In [19, Proposition 3.7] the following result has been obtained (the statement in [19]

was somewhat different, but the proof is exactly the same):

Proposition 4 Consider a forward complete system Σ = (X ,D ,φ) with fixed point

0. If 0 is iUGS, then 0 is UGWA.

We also note:

Lemma 3 Consider a forward complete system Σ = (X ,D ,φ) with fixed point 0.

Then 0 is iULS if and only if 0 is an iREP and ultimately iULS.

Proof ⇒. This is clear.

⇐. Since 0 is ultimately iULS, there is α1 ∈ K so that for any ε > 0 there are

r = r(ε)> 0 and a time τ = τ(ε)> 0 satisfying

‖x‖X ≤ r(ε), d ∈ D ⇒

∫ ∞

τ
α1

(

‖φ(s,x,d)‖X

)

ds ≤
ε

2
.

Now since 0 is an iREP, there is α2 ∈ K so that for these ε,τ there is a 0 < δ̃ =
δ̃ (ε)≤ r(ε) so that

‖x‖X ≤ δ̃ , d ∈ D ⇒

∫ τ

0
α2

(

‖φ(s,x,d)‖X

)

ds ≤
ε

2
.

Define α(s) := min{α1(s),α2(s)}, s ≥ 0. Clearly, α ∈ K and it holds that

‖x‖X ≤ δ̃ , d ∈ D ⇒

∫ +∞

0
α
(

‖φ(s,x,d)‖X

)

ds ≤ ε.

Without loss of generality we can assume that δ̃ is non-decreasing as a function

of ε . Furthermore, by construction it holds that δ̃ can be continuously extended by

δ̃ (0) = 0. Then it can be lowerbounded by a certain δ ∈ K .

Now iULS of 0 follows by choosing ψ(s) := δ−1(s), s ∈ [0, lims→∞ δ (s)).

The main result in this section is the characterization of the notion of iUGAS:

Theorem 1 Consider a forward complete system Σ = (X ,D ,φ). Then the following

statements are equivalent:

(i) 0 is iUGAS.

(ii) 0 is iUGS.

(iii) 0 is iULS (with a certain α ∈ K ) and 0 is UGWA.

(iv) 0 is an iREP and 0 is iUGATT.

(v) 0 is iULS and 0 is iUGATT.

(vi) 0 is iUGS and 0 is iUGATT.

Moreover, in item (iv) the function α can be chosen to be equal to α from item (iii).
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Proof (i) ⇒ (ii). Evident.

(ii) ⇒ (iii). Follows by Proposition 4.

(iii) ⇒ (iv). As 0 is iULS it follows that it is an iREP. Furthermore, since 0 is

UGWA and ultimately iULS with α ∈ K , then, by means of Proposition 2, 0 is

iUGATT with the same α .

(iv) ⇒ (v). This follows directly from Lemma 3 and Proposition 2.

(v) ⇒ (vi). Note that if 0 is iULS or iUGATT for a certain α ∈ K , then the same

is true for any α̃ ∈ K with α̃ ≤ α (here ≤ is the pointwise ordering). Thus without

loss of generality 0 is both iULS and iUGATT for same α ∈ K \K∞.

As 0 is iUGATT we know that for each R > 0 and ε > 0 there is τ := τ(R,ε) so

that

sup
x∈BR, d∈D

∫ ∞

τ
α(‖φ(s,x,d)‖X )ds ≤ ε.

Denoting α(∞) := lims→∞ α(s) < ∞ we see that

sup
x∈BR, d∈D

∫ τ

0
α(‖φ(s,x,d)‖X )ds ≤ τα(∞),

and hence, for all R > 0,

σ̃(R) := sup
x∈BR, d∈D

∫ ∞

0
α(‖φ(s,x,d)‖X )ds < ∞.

Clearly, σ̃ is a non-decreasing function of R, and so there exist σ ∈ K∞ and c > 0 so

that σ̃(r) ≤ σ(r)+ c for all r ∈ R+. Consequently, for any x ∈ X and any d ∈ D we

obtain
∫ ∞

0
α(‖φ(s,x,d)‖X )ds ≤ σ(‖x‖X)+ c. (19)

As 0 is iULS, there exist ψ ∈ K∞ and r > 0 so that

‖x‖X ≤ r, d ∈ D ⇒

∫ ∞

0
α(‖φ(s,x,d)‖X )ds ≤ ψ(‖x‖X). (20)

Using (19), (20) and standard manipulations of K∞-functions (see e.g. [25, proof of

Lemma I.2, p. 1287]), it may be seen that there is a σ ∈ K∞ so that

x ∈ X , d ∈ D ⇒
∫ ∞

0
α(‖φ(s,x,d)‖X )ds ≤ σ(‖x‖X).

This shows that 0 is iUGS with α ∈ K \K∞.

(vi) ⇒ (i). As in the previous step, without loss of generality we may assume that

the function α is the same in the definitions of iUGS and iUGATT. We now consider

a fixed, suitable α .

Since 0 is a iUGS fixed point, there exists ψ ∈ K∞ so that for all t ≥ 0, δ ≥ 0,

‖x‖X ≤ δ , d ∈ D we have

∫ ∞

0
α(‖φ(t,x,d)‖X )dt ≤ ψ(δ ). (21)
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For a fixed δ ≥ 0, define εn := 1
2n ψ(δ ), n ∈ N. Let τ0 := 0. As 0 is iUGATT there

exist times τn := τ(εn,δ ), n ≥ 1, which we assume without loss of generality to be

strictly increasing, such that

t ≥ τn, ‖x‖X ≤ δ , d ∈ D ⇒

∫ ∞

t
α(‖φ(s,x,d)‖X )ds ≤ εn.

Define ω(δ ,0) := 2ψ(δ ) and ω(δ ,τn) := εn−1, for n ∈N, n 6= 0. Extend the function

ω(δ , ·) to R+ so that ω(δ , ·) ∈ L . Note that for any n ∈ N and for all t ∈ (τn,τn+1)
it holds that

∫ ∞

t
α(‖φ(s,x,d)‖X )ds ≤ εn < ω(δ , t). (22)

Doing this for all δ ∈ R+ we obtain a function ω : R2
+ → R+.

Now define β̃(r, t) := sup0≤s≤r ω(s, t) ≥ ω(r, t). Obviously, β̃ is non-decreasing

in the first argument and decreasing in the second. Moreover, for each fixed t ≥ 0,

β̃ (r, t) ≤ sup0≤s≤r ω(s,0) = 2ψ(r), which implies that β̃ is continuous in the first

argument at r = 0 for any fixed t ≥ 0. Now Proposition 9 implies that (r, t) 7→ β̃ (r, t)+
|r|e−t may be upper bounded by β ∈K L and the estimate (11) is satisfied with such

a β .

Remark 3 Note that in all the integral notions we have assumed that the correspond-

ing function α belongs to the class K . If we require in the definitions that α must

belong to the class K∞, we obtain stronger versions of the corresponding concepts.

The difference is that every forward-complete system is automatically α-integrally

RFC with α ∈ K \K∞ (see Remark 1), but it need not be α-integrally RFC for all

α ∈ K∞.

For the stronger concepts the proof of (iv) ⇒ (i) in Theorem 1 does not work

as described. In order to close the gap in the proof the stronger version of this im-

plication, we need to strengthen the assumptions in items (iii), (iv) by assuming in

addition that the system is α-iRFC with a certain α ∈ K∞. Then after some minor

modifications we recover the characterization of iUGAS with α ∈ K∞.

We leave the details to the reader.

4 “Integral” characterization of the UGAS property

Until now we have worked nearly completely on the level of the “integral” notions,

which is almost parallel to the world of classic notions of stability. Now we are going

to relate “integral” and “classic” worlds.

The next proposition shows that classic stability properties can be recovered from

the “integral” version combined with the REP property.

Proposition 5 Consider a forward complete system Σ = (X ,D ,φ). Then the follow-

ing holds:

(i) If 0 is a REP and iULS, then 0 is ULS.

(ii) If 0 is a REP and iUGATT, then 0 is UGATT and UAS.



14 Andrii Mironchenko, Fabian Wirth

Remark 4 We note that in [17, Theorem 3.1] it is shown that if Σ is RFC and 0 is

iUGATT or iUGS or iUGAS, then Σ satisfies a property that is termed practically

UGAS in [17] and which amounts to saying that not the fixed point 0 but a certain

neighborhood of it has a stability property.

Proof (of Proposition 5).

(i). Seeking a contradiction, assume that Σ is not uniformly stable in x∗ = 0. Then

there exist an ε > 0 and sequences {xk}k∈N in X , {dk}k∈N in D , and tk ≥ 0 such that

xk → 0 as k → ∞ and

‖φ(tk,xk,dk)‖X = ε ∀k ≥ 1.

Since 0 is iULS, there are α ∈ K and ψ ∈ K∞ so that for the above ε there is a

δ1 = δ1(ε)> 0 satisfying

‖x‖X ≤ δ1, d ∈ D ⇒

∫ ∞

0
α
(

‖φ(s,x,d‖X

)

ds ≤ ψ(‖x‖X). (23)

Without loss of generality we assume that ‖xk‖X ≤ δ1 for all k ∈N (otherwise we can

pick a subsequence of {xk} with this property).

Since 0 is a REP, for the above ε there is a δ = δ (ε,1) so that

‖x‖X ≤ δ , t ∈ [0,1], d ∈ D ⇒ ‖φ(t,x,d)‖X ≤
ε

2
. (24)

Define for this δ the following quantities:

t̃k := sup{t ∈ [0, tk] : ‖φ(t,xk,dk)‖X ≤ δ},

provided the supremum is taken over a nonempty set, and t̃k := 0 otherwise. Denote

also ηk := tk − t̃k, k ∈ N. There are two possibilities.

First assume that {ηk}k∈N does not converge to 0 as k → ∞. Then there is a η∗ > 0

and a subsequence of {ηkm
} so that ηkm

≥ η∗ for all m ≥ 1.

Using (23) for x := xkm
, d := dkm

and t := tkm
, we see that

η∗α(δ )≤ ηkm
α(δ )≤ ψ(‖xkm

‖X).

Since ψ(‖xkm
‖X)→ 0 as m → ∞, we obtain a contradiction.

Now assume that ηk → 0 as k → ∞. Then there is a k1 > 0 so that ηk1
< 1. In view

of a cocycle property, we have that

φ(tk,xk,dk) = φ(ηk,φ(t̃k,xk,dk),dk(·+ t̃k)).

Since ‖φ(t̃k,xk,dk)‖X ≤ δ , by (24) we obtain ‖φ(tk,xk,dk)‖X ≤ ε
2
, which contradicts

to the assumption that ‖φ(tk,xk,dk)‖X = ε . This shows uniform stability of 0.

(ii). It is easy to see that iUGATT implies ultimate iULS. According to Lemma 2,

0 is an iREP. Using Lemma 3 and Proposition 5 (i) we have that 0 is ULS.

Furthermore, by Proposition 2 the equilibrium point 0 is UGWA, and Proposi-

tion 3 shows that 0 is UGATT. Finally, since 0 is UGATT and ULS, then 0 is UAS as

well.
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Next we show criteria for UGAS in terms of integral stability notions. To this end

we need two technical results. The first one is Sontag’s well-known K L -lemma

[24, Proposition 7]:

Lemma 4 For all β ∈ K L there exist α1,α2 ∈ K∞ with

β (r, t)≤ α2(α1(r)e
−t) ∀r ≥ 0, ∀t ≥ 0. (25)

The second one is a characterization of UGAS in terms of the UGATT property from

[9, Theorem 2.2]:

Proposition 6 Consider Σ = (X ,D ,φ). Then 0 is UGAS if and only if Σ is robustly

forward complete and 0 is a UGATT robust equilibrium point for Σ .

The main result of this section is:

Theorem 2 Consider a forward complete system Σ = (X ,D ,φ). Then the following

statements are equivalent:

(i) 0 is UGAS.

(ii) Σ is RFC and 0 is a REP ∧ iUGAS.

(iii) Σ is RFC and 0 is a REP ∧ iUGATT.

(iv) Σ is RFC and 0 is a REP ∧ UGWA ∧ ultimately iULS.

(v) Σ is RFC and 0 is a REP ∧ UGWA ∧ ultimately ULS.

Proof (i) ⇒ (ii). Since 0 is UGAS, there is a β ∈ K L so that (7) holds. In view of

Lemma 4 there are α1,α2 ∈ K∞ so that (25) holds. Set α := α−1
2 . Then we have for

any r > 0 and any t > 0 it holds that:

sup
x∈Br , d∈D

∫ ∞

t
α(‖φ(s,x,d)‖X )ds ≤ sup

x∈Br

∫ ∞

t
α(β (‖x‖X ,s))ds

≤

∫ ∞

t
α1(r)e

−sds = α1(r)e
−t

and 0 is iUGAS with ψ := α1 ∈ K∞ and α ∈ K∞.

(ii) ⇒ (iii). Clear.

(iii) ⇔ (iv). Follows from Proposition 2

(iii) ⇒ (v). Follows from Proposition 5, item (ii).

(v) ⇒ (i). Follows from Propositions 3 and 6.

Remark 5 (“Atomic decompositions”) Items (iv) and (v) of Theorem 2 give a de-

composition of UGAS into elementary stability notions. In some sense the notions

of UGWA, REP, RFC and ultimate ULS and their integral counterparts iREP, ulti-

mate iULS and (possibly) iRFC are the “atoms” by combinations of which the other

stability notions can be constructed.

Comparing items (iv) and (v) of Theorem 2 to the analogous “atomic” decompo-

sitions of iUGAS shown in Theorem 1, we see that the notion of UGWA plays a re-

markable role in such characterizations, supported by the integral variants of REP and

ultimate ULS. Uniform global weak attractivity is the common point of the worlds of

classic and integral notions, which are otherwise largely parallel.

Remark 6 It is worth mentioning that for the special case of linear systems over Ba-

nach spaces without disturbances the notions of UGAS, iUGAS and UGWA coincide,

as can be seen from [17, Proposition 5.1].
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5 Non-coercive Lyapunov theorems

In this section we relate the existence of noncoercive Lyapunov functions to the in-

tegral stability concepts we have introduced. It is shown that for forward complete

systems the existence of noncoercive Lyapunov functions implies iUGAS. In the next

step we treat a converse result.

5.1 Direct Lyapunov theorems

For the proof of direct Lyapunov theorems we need the generalized Newton-Leibniz

formula (see [22, Theorem 7.3, p. 204-205] and the comments directly after that

result):

Proposition 7 Suppose that F : R→R is a function2 such that for all x ∈R we have

lim
h→+0

F(x− h)≤ F(x)≤ lim
h→+0

F(x+ h). (26)

Let g be a Perron-integrable3 function of a real variable satisfying D+F(x) ≥ g(x)
for all x ∈ I. Then for all a,b > 0: a < b it holds that

F(b)−F(a)≥ (P)

∫ b

a
g(x)dx. (27)

Using Theorem 1 and Proposition 7, we can show that the existence of a non-

coercive Lyapunov function implies iUGAS without any further requirements on the

flow of the system. If we additionally assume either the REP or the RFC property, we

obtain additional stability properties.

Theorem 3 Consider a forward complete system Σ = (X ,D ,φ). Assume that V is

a non-coercive Lyapunov function for Σ with corresponding functions α ∈ K and

ψ2 ∈ K∞. Then:

(i) The following statements hold:

(i-a) 0 is iUGS with this α and with ψ := ψ2.

(i-b) 0 is iUGATT with this α .

(i-c) 0 is iUGAS.

(ii) If additionally 0 is a REP, then 0 is UGATT and UAS.

(iii) If additionally 0 is a REP and Σ is RFC, then 0 is UGAS.

Proof (i-a). Since V is a non-coercive Lyapunov function (with a corresponding α ∈
K ), we have the decay estimate (16). Pick any x ∈ X and any d ∈ D and define

ξ : R+ →R via ξ (t) :=−V (φ(t,x,d)).
Along the trajectory φ of Σ we have the inequality

V̇d(t+·)(φ(t,x,d)) ≤−α(‖φ(t,x,d)‖X), ∀t ≥ 0. (28)

2 In the formulation of [22, Theorem 7.3, p. 204-205] the terminology that F is a finite function is used,

which means that F(x) ∈ R for any x ∈ R (see [22, p. 6]).
3 For a definition of Perron integrability see e.g. [22, p. 201]. The (P) in front of the integral in (27)

indicates that this is a Perron integral.
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Due to the cocycle property we have

V̇d(t+·)(φ(t,x,d))

= lim
h→+0

1

h

(

V (h,φ(t,x,d),d(t + ·))−V(φ(t,x,d))
)

= lim
h→+0

1

h

(

V (φ(t + h,x,d))−V(φ(t,x,d))
)

= lim
h→+0

1

h

(

− ξ (t + h)+ ξ (t)
)

= D+(−ξ (t)) =−D+ξ (t).

With this new notation, equation (28) can be rewritten as

D+ξ (t)≥ α(‖φ(t,x,d)‖X), ∀t ≥ 0. (29)

In view of (15) and since lim
h→+0

−ξ (t+h)=− lim
h→+0

ξ (t+h), we see that the inequality

lim
h→+0

ξ (t − h)≤ ξ (t)≤ lim
h→+0

ξ (t + h) (30)

is satisfied for all t > 0, and the right inequality is satisfied for t = 0 as well.

Now we can apply Proposition 7 to the above inequality. Since t 7→ φ(t,x,d) is

continuous due to the continuity axiom Σ4, the function g : t 7→ α(‖φ(t,x,d)‖X ) is

continuous as well, and thus it is Riemann integrable on any compact interval in R+.

As g is a positive function, the Riemann and the Perron integral coincide (see [22, p.

203]). Thus in our case the Perron integral in the formula (27) is merely a Riemann

integral.

Applying Proposition 7, we obtain:

ξ (t)− ξ (0)≥

∫ t

0
α(‖φ(s,x,d)‖X )ds, ∀t ≥ 0. (31)

Since ξ (0) = −V (φ(0,x,d)) = −V(x) due to the identity axiom of Σ , the above

inequality immediately implies that

V (φ(t,x,d))−V (x)≤−

∫ t

0
α(‖φ(s,x,d)‖X )ds,

which in turn shows that for all t ≥ 0 we have
∫ t

0
α(‖φ(s,x,d)‖X )ds ≤V (x)≤ ψ2(‖x‖X). (32)

Taking the limit t → ∞, we see that 0 is iUGS.

(i-b). By Proposition 4 and item (i) we see that 0 is UGWA. Checking the proof

of the Theorem 1 (implication (iii) ⇒ (iv)) we see that 0 is iUGATT with the same

α .

(i-c). Follows from items (i), (ii) and Theorem 1.

(ii). By the item (i-b) of this theorem, 0 is iUGATT. Now Corollary 5 implies that

0 is UGATT and UAS.

(iii). By the item (i-b) of this theorem, 0 is iUGATT. The rest follows from Theo-

rem 2.
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Remark 7 Condition (15) means that for each x∈X and d ∈D the map t 7→V (φ(t,x,d))
is either continuous at t∗ or the function jumps down at t∗, for arbitrary t∗ ∈ R+.

Remark 8 The crucial difference of Theorem 3 from classic Lyapunov theorems is

that we do not assume the coercivity of a Lyapunov function. This makes it impos-

sible to use any kind of a comparison principle to derive the desired UGAS stability

property.

On the other hand, in contrast to the non-coercive direct Lyapunov theorem shown

in [19] we assume for item (i) of Theorem 3 neither robustness of the trivial equilib-

rium, nor the RFC property of the system Σ (however, we still assume in advance

the forward completeness of system Σ ). Even under such mild assumptions (and with

very mild regularity assumptions on V ) we are able to infer the iUGAS property. We

note that it is also possible to show a practical UGAS property if in addition to the

existence of V we assume RFC. Item (ii) of Theorem 3 is a variation of [17, Corollary

3.10] and is given here for completeness. Item (iii) of Theorem 3 is slightly stronger

than [19, Theorem 4.5], where a more direct proof of this result was given.

5.2 Converse non-coercive Lyapunov theorem

We proceed to the converse Lyapunov theorem.

Theorem 4 Consider a forward complete system Σ = (X ,D ,φ) and let 0 be an

equilibrium of Σ . Assume that Σ is iUGS with α ∈ K and ψ ∈ K∞. Then for any

ρ ∈ K \K∞ so that ρ(r)≤ α(r) for all r ∈R+ it holds that

V (x) := sup
d∈D

∫ ∞

0
ρ(‖φ(s,x,d)‖X )ds (33)

is a (possibly non-coercive) Lyapunov function for Σ , satisfying (15) with ψ2 as above

and so that (15) holds.

Before we proceed to the proof of Theorem 4, we would like to stress, that in

contrast to most of the converse Lyapunov theorems for infinite-dimensional nonlin-

ear systems (as [17], [9, Section 3.4]), we do not impose any additional regularity

assumptions on the flow of the system, in particular, we assume neither continuous

dependence on data, nor robustness of the equilibrium point, nor the RFC property.

Theorems 3 and 4 together show that noncoercive Lyapunov functions are a natural

tool for analysis of integral stability properties.

In the proof we follow ideas from [9, Section 3.4], [17, Theorem 5.6].

Proof (of Theorem 4).

Pick any ρ ∈K \K∞ so that ρ(r)≤α(r) for all r ∈R+. (i). Since 0 is iUGS with

α,ψ , it follows that

0 ≤V (x)≤ sup
d∈D

∫ ∞

0
α(‖φ(s,x,d)‖X )ds ≤ ψ2(‖x‖X).

Since 0 is an equilibrium of Σ , φ(s,0,d) ≡ 0 for all s ≥ 0 and all d ∈ D , which

immediately implies that V (0) = 0. If x 6= 0, then by continuity of solutions, we have
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for every d ∈ D a T > 0 such that φ(t,x,d) 6= 0 for all t ∈ [0,T ]. This implies that

V (x)> 0 and in summary (15) is satisfied.

(ii). To compute the Dini derivative of V , fix x ∈ X and v ∈ D . In view of the

cocycle property we have for any h > 0:

V
(

φ(h,x,v)
)

= sup
d∈D

∫ ∞

0
ρ(‖φ(t,φ(h,x,v),d)‖X )dt

= sup
d∈D

∫ ∞

0
ρ(‖φ(t + h,x, d̃)‖X)dt

= sup
d∈D

∫ ∞

h
ρ(‖φ(t,x, d̃)‖X )dt,

where the disturbance function d̃ is defined as

d̃(t) :=

{

v(t), if t ∈ [0,h]

d(t − h) otherwise.

Note that d̃ ∈ D due to the axiom of concatenation. Since d̃(t) = v(t) for t ∈ [0,h], it

holds that
∫ h

0
ρ(‖φ(t,x,v)‖X )dt +V

(

φ(h,x,v)
)

= sup
d∈D

(

∫ h

0
ρ(‖φ(t,x,v)‖X)dt +

∫ ∞

h
ρ(‖φ(t,x, d̃)‖X)dt

)

= sup
d∈D

(

∫ h

0
ρ(‖φ(t,x, d̃)‖X)dt +

∫ ∞

h
ρ(‖φ(t,x, d̃)‖X)dt

)

= sup
d∈D

∫ ∞

0
ρ(‖φ(t,x, d̃)‖X)dt.

Since the supremum cannot decrease, if we allow a larger class of disturbances, it

may be seen that for all h > 0 we have

∫ h

0
ρ(‖φ(t,x,v)‖X)dt +V

(

φ(h,x,v)
)

≤ sup
d∈D

∫ ∞

0
ρ(‖φ(t,x,d)‖X)dt =V (x). (34)

The obtained inequality may be interpreted as an instance of Bellman’s principle.

To compute the Dini derivative of V along trajectories we note that rearranging the

inequality (34) we obtain for all h > 0 that

1

h

(

V
(

φ(h,x,v)
)

−V(x)
)

≤−
1

h

∫ h

0
ρ(‖φ(t,x,v)‖X)dt. (35)

As the map t 7→ ρ(‖φ(t,x,v)‖X) is continuous by the axiom of continuity, it follows

that

lim
h→+0

1

h

∫ h

0
ρ(‖φ(t,x,v)‖X)dt = ρ(‖x‖X),
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and due to (35) we obtain V̇v(x)≤−ρ(‖x‖X) and so (16) holds for the given ρ ∈ K .

(iii). It remains to show that (15) holds. The right hand side in this inequality

holds (even in s = 0) by a direct application of (34) to the case x = φ(s,y,d) and

arbitrary s ≥ 0,y ∈ X ,d ∈ D , because the integral on the left hand side of (34) is

always nonnegative.

To show the left hand side, fix d ∈ D , s > 0, y ∈ X and h ∈ (0,s). Substitute

x := φ(s− h,y,d) and v := d(s− h+ ·) into Bellman’s inequality (34) to obtain

∫ h

0
ρ
(

‖φ(t,φ(s− h,y,d),d(s− h+ ·))‖X

)

dt +V
(

φ(h,φ(s− h,y,d),d(s− h+ ·))
)

≤V (φ(s− h,y,d)).

Using again the cocycle property and rearranging the terms of the above inequality,

we conclude for all h ∈ (0,s) that

V (φ(s− h,y,d))≥V
(

φ(s,y,d)
)

+

∫ h

0
ρ(‖φ(t + s− h,y,d)‖X)dt.

Arguing as above, we obtain that:

lim
h→+0

V
(

φ(s− h,y,d)
)

≥V
(

φ(s,y,d)
)

. (36)

This shows (15) and the proof is complete.

6 Conclusions

In order to understand the implications of the existence of non-coercive Lyapunov

functions we have introduced several integral notions of stability, which do not mea-

sure the pointwise distance to the equilibrium but rather a weighted average along

trajectories. It has been shown that in a quite general setting noncoercive Lyapunov

functions characterize these integral notions. Also the relation to standard stability

notions are discussed, see also Figure 1. It will be of interest to investigate how the

results obtained here carry over to questions of input-to-state stability (ISS). Some

results in this direction have been recently developed in [20,8].

We point out that in [17] the relation between uniform weak attractivity and

closely related concepts of weak attractivity and recurrence are discussed for sys-

tems without inputs.

A Appendix

In this appendix, we show a result providing conditions for the existence of a K L -bound for a function of

two arguments that has been used in our proofs. Although the result may not be surprising for the expert,

we have not found an explicit reference and so prefer to present the construction here.

We start with an auxiliary statement:

Proposition 8 For any z ∈C(R+,R) and for any ε > 0 there is a sequence {Rk}k∈Z ⊂ (0,+∞) satisfying

the following properties:
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UGAS iUGATT ∧ 0-REP ∧ RFC UGATT ∧ 0-REP ∧ RFC

Theorem 2

∃ a noncoercive LF

iUGAS iUGATT ∧ iREPUGWA ∧ iULS iUGS

iULS iUGATTUGWA ∧ Ult-iULSiREP ∧ Ult-iULS

iUGATT ∧ 0-REP iUGATT ∧ ULS

UGATT ∧ 0-REPUGATT ∧ ULS

UGATT

UGWA

Theorem 1

Lemma 2

Proposition 5

Proposition 5Theorem 3 Theorem 4

REP

UGWA ∧ UltULS

UltULS

Proposition 2 Proposition 3

iREP Ult-iULS

Lemma 3

Fig. 1 Relations between stability notions

(i) Rk → 0 as k →−∞.

(ii) Rk →+∞ as k →+∞.

(iii) Rk < Rk+1 for all k ∈ Z.

(iv) maxs∈[Rk ,Rk+1 ]
z(s)−mins∈[Rk ,Rk+1 ]

z(s)< ε , for all k ∈ Z.

We stress that by conditions (i), (ii), (iii), zero is the only finite accumulation point of {Rk}k∈Z.

Proof It is easy to see that a sequence satisfying the properties (i)–(iii) always exists (and can be cho-

sen independently on z). Pick any such sequence and denote it {Sk}k∈Z. Since z ∈ C(R+,R), by Can-

tor’s theorem z is uniformly continuous on [Sk ,Sk+1] for any k ∈ Z. Thus, there exists a partition of

[Sk ,Sk+1] into finitely many subintervals with boundary points Sk = Sk1 < Sk2 . . . < Skm(k) = Sk+1 so that

maxs∈[Ski ,Ski+1 ]
z(s)−mins∈[Ski ,Ski+1 ]

z(s)< ε , for each i = 1, . . . ,m(k)−1.

Now define the desired sequence {Rk}k∈Z by inserting considering the ordered sequence {Sk j}k∈Z, j=1,...,mk.

Clearly, {Rk}k∈Z satisfies (i)-(iv).

The following estimation result is useful in our derivations.

Proposition 9 Let ψ : R+ ×R+ → R+ be any function which is nondecreasing and continuous at 0 in

the first argument, nonincreasing in the second argument and so that limt→∞ ψ(r,t) = 0 for any r ≥ 0. Let

also ψ(0,t) = 0 for any t ≥ 0. Then there exists a β ∈ K L such that

ψ(r,t)≤ β(r,t) ∀r,t ≥ R+.

Proof Pick a sequence R := {Rk}k∈Z ⊂ (0,+∞) satisfying the properties (i)-(iii) of Proposition 8 and

another sequence τ := {τm}m∈N ⊂ [0,+∞) satisfying the properties (ii)-(iii) of Proposition 8 and so that

τ0 = 0. The Cartesian product R× τ defines a mesh over R+ ×R+. Let ω ∈ K L be arbitrary so that

ω(r,t)> 0 for all (r,t) ∈ (0,∞)×R+ .

For each k ∈ Z and m ∈ N, m 6= 0 define

β(Rk,τm) := ψ(Rk+1,τm−1)+ω(Rk+1,τm−1).
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For m = 0 define

β(Rk,0) = β(Rk,τ0) := 2ψ(Rk+1,0)+ω(Rk+1,0).

For each k ∈ Z and m ∈ N define β(r,t) for all (r,t) in the triangles with corner points ((Rk+1,τm),
(Rk,τm+1), (Rk,τm)) or ((Rk+1,τm), (Rk+1,τm+1), (Rk,τm+1)) by linear interpolation of the values in the

corner points (which have already been defined). This defines the values of β in (0,+∞)× [0,+∞) =
⋃

k∈Z
⋃

m∈N[Rk,Rk+1]× [τk ,τk+1].
Defining β(0,t) := 0,t ≥ 0, we see that β is defined over R+×R+, is continuous, strictly increasing

in the first argument and decreasing in the second argument. Since limt→∞ ψ(r,t) = 0 for any r ≥ 0, it

holds also that limt→∞ β(r,t) = 0 for any r ≥ 0. Overall, β ∈ K L .

It remains to show that β estimates ψ from above. To see this, pick any k ∈ Z and m ∈ N. For every

(r,s) ∈ [Rk,Rk+1]× [τm,τm+1] we have:

β(r,s)−ψ(r,s) ≥ β(Rk,τm+1)−ψ(Rk+1,τm)

= ψ(Rk+1,τm)+ω(Rk+1,τm)−ψ(Rk+1,τm)

= ω(Rk+1,τm).

Hence, β(r,s)≥ ψ(r,s) for all r,s ≥ 0.
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