Skip to main content

Advertisement

Log in

Exploiting nonlinear invariants and path constraints to achieve tighter reachable set enclosures using differential inequalities

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

This article presents a new method for computing sharp bounds on the solutions of nonlinear dynamic systems subject to uncertain initial conditions, parameters, and time-varying inputs. Such bounds are widely used in algorithms for uncertainty propagation, robust state estimation, system verification, global dynamic optimization, and more. Recently, it has been shown that bounds computed via differential inequalities can often be made much less conservative by exploiting state constraints that are known to hold for all trajectories of interest (e.g., path constraints that describe feasible trajectories in the context of dynamic optimization, or constraints that explicitly describe invariant sets containing all system trajectories). However, effective bounding algorithms of this type are currently only available for problems with linear constraints. Moreover, the theoretical results underlying these algorithms do not apply to constraints that depend on time-varying inputs and rely on assumptions that prove to be very restrictive for nonlinear constraints. This article contributes a new differential inequalities theorem that permits the use of a very general class of nonlinear state constraints. Moreover, a new algorithm is presented for efficiently exploiting nonlinear constraints to achieve tighter bounds. The proposed approach is shown to produce very sharp bounds for two challenging case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Althoff M, Dolan JM (2014) Online verification of automated road vehicles using reachability analysis. IEEE Trans Rob 30(4):903–918

    Article  Google Scholar 

  2. Althoff M, Stursberg O, Buss M (2008) Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: 47th IEEE conference on decision and control, pp 4042–4048

  3. Bernard O, Hadj-Sadok Z, Dochain D, Genovesi A, Steyer JP (2001) Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol Bioeng 75(4):424–438

    Article  Google Scholar 

  4. Bresolin D, Geretti L, Muradore R, Fiorini P, Villa T (2015) Formal verification of robotic surgery tasks by reachability analysis. Microprocess Microsyst 39(8):836–842

    Article  MATH  Google Scholar 

  5. Geering H (2007) Optimal control with engineering applications. Springer, Berlin

    MATH  Google Scholar 

  6. Ghorbal K, Platzer A (2014) Characterizing algebraic invariants by differential radical invariants. In: Ábrahám E, Havelund K (eds) Tools and algorithms for the construction and analysis of systems. Springer, Berlin, pp 279–294

    Chapter  Google Scholar 

  7. Hariprasad K, Bhartiya S (2014) Adaptive robust model predictive control of nonlinear systems using tubes based on interval inclusions. In: 53rd IEEE conference on decision and control, pp 2032–2037

  8. Harrison GW (1977) Dynamic models with uncertain parameters. In: Avula X (ed.) Proceedings of the first international conference on mathematical modeling, vol 1, pp 295–304

  9. Harwood SM, Barton PI (2016) Efficient polyhedral enclosures for the reachable set of nonlinear control systems. Math Control Signal 28(1):8

    Article  MathSciNet  MATH  Google Scholar 

  10. Harwood SM, Barton PI (2017) Affine relaxations for the solutions of constrained parametric ordinary differential equations. Optim Control Appl Methods 39:1–22

    MathSciNet  Google Scholar 

  11. Harwood SM, Scott JK, Barton PI (2016) Bounds on reachable sets using ordinary differential equations with linear programs embedded. IMA J Math Control Inf 33(2):519–541

    Article  MathSciNet  MATH  Google Scholar 

  12. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS (2005) SUNDIALS, suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Softw 31:363–396

    Article  MathSciNet  MATH  Google Scholar 

  13. Houska B, Chachuat B (2014) Branch-and-lift algorithm for deterministic global optimization in nonlinear optimal control. J Optim Theor Appl 162(1):208–248

    Article  MathSciNet  MATH  Google Scholar 

  14. Houska B, Villanueva M, Chachuat B (2013) A validated integration algorithm for nonlinear ODEs using Taylor models and ellipsoidal calculus. In: 52nd IEEE conference on decision and control, pp 484–489

  15. Houska B, Villanueva ME, Chachuat B (2015) Stable set-valued integration of nonlinear dynamic systems using affine set-parameterizations. SIAM J Numer Anal 53(5):2307–2328

    Article  MathSciNet  MATH  Google Scholar 

  16. Julius AA, Pappas GJ (2009) Trajectory based verification using local finite-time invariance. Springer, Berlin, pp 223–236

    MATH  Google Scholar 

  17. Kishida M, Braatz RD (2014) Skewed structured singular value-based approach for the construction of design spaces: theory and applications. IET Control Theory A 8(14):1321–1327

    Article  MathSciNet  Google Scholar 

  18. Kurzhanski A (2011) Hamiltonian techniques for the problem of set-membership state estimation. Int J Adapt Control Signal Process 25(3):249–263

    Article  MathSciNet  MATH  Google Scholar 

  19. Laumond JPP (1998) Robot motion planning and control. Springer, New York

    Book  Google Scholar 

  20. Limon D, Bravo JM, Alamo T, Camacho EF (2005) Robust MPC of constrained nonlinear systems based on interval arithmetic. IEE Proc Control Theor Appl 152(3):325–332

    Article  MATH  Google Scholar 

  21. Lin Y, Stadtherr MA (2007) Validated solutions of initial value problems for parametric ODEs. Appl Numer Math 57(10):1145–1162

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin Y, Stadtherr MA (2008) Fault detection in nonlinear continuous-time systems with uncertain parameters. AIChE J 54(9):2335–2345

    Article  Google Scholar 

  23. Maidens J, Arcak M (2015) Reachability analysis of nonlinear systems using matrix measures. IEEE Trans Autom Control 60(1):265–270

    Article  MathSciNet  MATH  Google Scholar 

  24. Makino K, Berz M (2003) Taylor models and other validated functional inclusion methods. Int J Pure Appl Math 4(4):379–456

    MathSciNet  MATH  Google Scholar 

  25. Mitchell IM, Bayen AM, Tomlin CJ (2005) A time-dependent Hamilton–Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans Autom Control 50(7):947–957

    Article  MathSciNet  MATH  Google Scholar 

  26. Moisan M, Bernard O, Gouze JL (2009) Near optimal interval observers bundle for uncertain bioreactors. Automatica 45(1):291–295

    Article  MathSciNet  MATH  Google Scholar 

  27. Nedialkov NS, Jackson KR, Corliss GF (1999) Validated solutions of initial value problems for ordinary differential equations. Appl Math Comput 105(1):21–68

    MathSciNet  MATH  Google Scholar 

  28. Neumaier A (1990) Interval methods for systems of equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Raimondo D, Marseglia G, Braatz R, Scott J (2016) Closed-loop input design for guaranteed fault diagnosis using set-valued observers. Automatica 74:107–117

    Article  MathSciNet  MATH  Google Scholar 

  30. Raissi T, Ramdani N, Candau Y (2004) Set membership state and parameter estimation for systems described by nonlinear differential equations. Automatica 40(10):1771–1777

    Article  MathSciNet  MATH  Google Scholar 

  31. Scott J, Barton P (2011) Interval bounds on the solutions of semi-explicit index-one DAEs. Part 2: computation. Numer Math 125(1):27–60

    Article  MathSciNet  MATH  Google Scholar 

  32. Scott J, Barton P (2015) Reachability analysis and deterministic global optimization of DAE models. In: Ilchman A, Reis T (eds) Surveys in differential algebraic equations III, vol 3. Springer, Berlin, pp 61–116

    Chapter  Google Scholar 

  33. Scott JK (2012) Reachability analysis and deterministic global optimization of differential-algebraic systems. Ph.D. thesis, Massachusetts Institute of Technology

  34. Scott JK, Barton PI (2010) Tight, efficient bounds on the solutions of chemical kinetics models. Comput Chem Eng 34:717–731

    Article  Google Scholar 

  35. Scott JK, Barton PI (2011) Interval bounds on the solutions of semi-explicit index-one DAEs. Part 1: analysis. Numer Math 125(1):1–25

    Article  MathSciNet  Google Scholar 

  36. Scott JK, Barton PI (2013) Bounds on the reachable sets of nonlinear control systems. Automatica 49(1):93–100

    Article  MathSciNet  MATH  Google Scholar 

  37. Scott JK, Raimondo DM, Marseglia GR, Braatz RD (2016) Constrained zonotopes: a new tool for set-based estimation and fault detection. Automatica 69:126–136

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen K, Scott JK (2017) Rapid and accurate reachability analysis for nonlinear dynamic systems by exploiting model redundancy. Comput Chem Eng 106:596–608

    Article  Google Scholar 

  39. Shen K, Scott JK (2018) Tight reachability bounds for nonlinear systems using nonlinear and uncertain solution invariants. In: 2018 annual american control conference (ACC), pp 6236–6241

  40. Sideris T (2013) Ordinary differential equations and dynamical systems. Atlantis studies in differential equations. Atlantis Press, Paris

    Book  MATH  Google Scholar 

  41. Singer A, Barton P (2006) Global optimization with nonlinear ordinary differential equations. J Glob Optim 34:159–190

    Article  MathSciNet  MATH  Google Scholar 

  42. Villanueva ME, Feng X, Paulen R, Chachuat B, Houska B (2019) Convex enclosures for constrained reachability tubes. IFAC-PapersOnLine 52(1):118–123. In: 12th IFAC symposium on dynamics and control of process systems, including biosystems DYCOPS 2019

  43. Villanueva ME, Houska B, Chachuat B (2015) Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs. J Glob Optim 62(3):575–613

    Article  MathSciNet  MATH  Google Scholar 

  44. Villanueva ME, Quirynen R, Diehl M, Chachuat B, Houska B (2017) Robust MPC via minmax differential inequalities. Automatica 77:311–321

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhao Y, Stadtherr MA (2011) Rigorous global optimization for dynamic systems subject to inequality path constraints. Ind Eng Chem Res 50(22):12678–12693

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph K. Scott.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Theorem 1

Proof of Theorem 1

The proof of Theorem 1 is based on a general result from [33] that provides sufficient conditions for two functions \(\mathbf {v},\mathbf {w}\in \mathscr {AC}(I,{\mathbb {R}}^{n_x})\) to bound an arbitrary function \(\varvec{\phi }\in \mathscr {AC}(I,{\mathbb {R}}^{n_x})\) (i.e., \(\varvec{\phi }\) need not be associated with a system of ODEs). This result is stated abstractly in terms of interval-valued mappings of the form \(\varPi _i^L,\varPi _i^U:D_{\varPi }\subset I \times {\mathbb {R}}^{n_x}\times {\mathbb {R}}^{n_x}\rightarrow \mathbb {IR}\). Eventually, these more general functions will be used to represent the operator \({\mathscr {R}}\) used in Theorem 1. The specific conditions we will require of these functions are given in Hypothesis 1.

Hypothesis 1

For every \(i\in \{1,\ldots ,n_x\}\), let \(\varPi _i^L,\varPi _i^U:D_{\varPi }\subset I \times {\mathbb {R}}^{n_x}\times {\mathbb {R}}^{n_x}\rightarrow \mathbb {IR}\) satisfy the following conditions:

  1. 1.

    If \((t,\mathbf {v},\mathbf {w})\in D_{\varPi }\) satisfies \(\mathbf {v}\le \varvec{\phi }(t)\le \mathbf {w}\) and \(\phi _i(t)=v_i\) for some \(i\in \{1,\dots ,n_x\}\), then \({\dot{\phi }}_i(t) \in \varPi ^L_i(t,\mathbf {v},\mathbf {w})\).

  2. 2.

    If \((t,\mathbf {v},\mathbf {w})\in D_{\varPi }\) satisfies \(\mathbf {v}\le \varvec{\phi }(t)\le \mathbf {w}\) and \(\phi _i(t)=w_i\) for some \(i\in \{1,\dots ,n_x\}\), then \({\dot{\phi }}_i(t) \in \varPi ^U_i(t,\mathbf {v},\mathbf {w})\).

  3. 3.

    \(D_{\varPi }\) is open with respect to the set \(A\equiv \{(t,\mathbf {v},\mathbf {w})\in I\times {\mathbb {R}}^{n_x}\times {\mathbb {R}}^{n_x}:\mathbf {v}\le \mathbf {w}\}\). Specifically, for any \(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}})\in D_{\varPi }\cap A\), there exists \(\eta >0\) such that \(B_{\eta }(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}))\cap A\) is a subset of \(D_{\varPi }\).

  4. 4.

    \(\varPi _i^L\) and \(\varPi _i^U\) are locally Lipschitz continuous with respect to \(\mathbf {v}\) and \(\mathbf {w}\), uniformly with respect to t. Specifically, for any \(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}})\in D_{\varPi }\), there exists \(\eta >0\) and \(\alpha \in L^1(I)\) such that

    $$\begin{aligned} d_H(\varPi _i^L(t,\mathbf {v},\mathbf {w}),\varPi _i^L(t,\tilde{\mathbf {v}},\tilde{\mathbf {w}}))&\le \alpha (t)\max \left( \Vert \mathbf {v}-\tilde{\mathbf {v}}\Vert ,\Vert \mathbf {w}-\tilde{\mathbf {w}}\Vert \right) , \end{aligned}$$
    (46)
    $$\begin{aligned} d_H(\varPi _i^U(t,\mathbf {v},\mathbf {w}),\varPi _i^U(t,\tilde{\mathbf {v}},\tilde{\mathbf {w}}))&\le \alpha (t)\max \left( \Vert \mathbf {v}-\tilde{\mathbf {v}}\Vert ,\Vert \mathbf {w}-\tilde{\mathbf {w}}\Vert \right) , \end{aligned}$$
    (47)

    for every \((t,\mathbf {v},\mathbf {w}),(t,\tilde{\mathbf {v}},\tilde{\mathbf {w}})\in B_{\eta }(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}))\cap D_{\varPi }\).

Theorem 3 is the central result we will use to prove Theorem 1. It is proved as Theorem 3.5.1 in [33] under slightly different hypotheses, as discussed below.

Theorem 3

Let \(\varvec{\phi },\mathbf {v},\mathbf {w} \in \mathscr {AC}(I,{\mathbb {R}}^{n_x})\) satisfy

  1. 1.

    \((t,\mathbf {v}(t),\mathbf {w}(t))\in D_{\varPi }, \forall t\in I\).

  2. 2.

    \(\mathbf {v}(t_0)\le \varvec{\phi }(t_0)\le \mathbf {w}(t_0)\).

  3. 3.

    For a.e. \(t\in I\) and each index i,

    1. (a)

      \({\dot{v}}_i(t)\le \sigma _i\) for all \(\sigma _i\in \varPi _i^L(t,\mathbf {v}(t),\mathbf {w}(t))\),

    2. (b)

      \({\dot{w}}_i(t)\ge \sigma _i\) for all \(\sigma _i\in \varPi _i^U(t,\mathbf {v}(t),\mathbf {w}(t))\).

If Hypothesis 1 holds, then \(\mathbf {v}(t)\le \varvec{\phi }(t)\le \mathbf {w}(t), \forall t\in I\).

In [33], Theorem 3 is proved with a modified version of Hypothesis 1, which is stated explicitly as Hypothesis 2. We prefer Hypothesis 1 because it is easier to verify when using Theorem 3 to prove Theorem 1. Moreover, the conditions of Hypothesis 1 are much easier to understand, whereas Hypothesis 2 is very abstract. In Lemma 1, we show that Hypothesis 1 implies Hypothesis 2, so that Theorem 3 follows immediately from Theorem 3.5.1 in [33].

Hypothesis 2

For every \(i\in \{1,\ldots ,n_x\}\), let \(\varPi _i^L,\varPi _i^U:D_{\varPi }\subset I \times {\mathbb {R}}^{n_x}\times {\mathbb {R}}^{n_x}\rightrightarrows {\mathbb {R}}\) (i.e., \(\varPi ^{L}_i(t,\mathbf {v},\mathbf {w})\) and \(\varPi ^{U}_i(t,\mathbf {v},\mathbf {w})\) are subsets of \({\mathbb {R}}\), not necessarily intervals). Assume that, given any \(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}})\in D_{\varPi }\) satisfying \(\hat{\mathbf {v}}\le \varvec{\phi }({\hat{t}})\le \hat{\mathbf {w}}\) and either \(\phi _i({\hat{t}})={\hat{v}}_i\) or \(\phi _i({\hat{t}})={\hat{w}}_i\) for at least one \(i\in \{1,\dots ,n_x\}\), there exists \(\eta >0\) and \(\alpha \in L^1(I)\) such that the following conditions hold for every \((t,\mathbf {v},\mathbf {w})\in B_{\eta }(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}))\cap D_{\varPi }\):

  1. 1.

    If \(\phi _i(t)<v_i\), then \(\exists \sigma _i \in \varPi ^L_i(t,\mathbf {v},\mathbf {w})\) such that

    $$\begin{aligned} |\sigma _i-{\dot{\phi }}_i(t)|\le \alpha (t)\max (\Vert \max (\mathbf {v}-\mathbf {\varvec{\phi }}(t),\mathbf {0})\Vert ,\Vert \max (\mathbf {\varvec{\phi }}(t)-\mathbf {w},\mathbf {0})\Vert ). \end{aligned}$$
    (48)
  2. 2.

    If \(\phi _i(t)>w_i\), then \(\exists \sigma _i \in \varPi ^U_i(t,\mathbf {v},\mathbf {w})\) such that (48) holds.

Lemma 1

If \(\varPi ^L_i\) and \(\varPi ^U_i\) satisfy Hypothesis 1, then they also satisfy Hypothesis 2.

Proof

Assume that Hypothesis 1 holds. To verify Hypothesis 2, choose any \(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}})\in D_{\varPi }\) such that \(\hat{\mathbf {v}}\le \varvec{\phi }({\hat{t}})\le \hat{\mathbf {w}}\) and either \(\phi _i({\hat{t}})={\hat{v}}_i\) or \(\phi _i({\hat{t}})={\hat{w}}_i\) for at least one \(i\in \{1,\dots ,n_x\}\). Define

$$\begin{aligned}&{\underline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w})\equiv \min (\mathbf {v},\varvec{\phi }(t)) \quad \text {and}\quad {\overline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w})\equiv \max (\mathbf {w},\varvec{\phi }(t)),\nonumber \\&\quad \forall (t,\mathbf {v},\mathbf {w})\in I\times {\mathbb {R}}^{n_x}\times {\mathbb {R}}^{n_x}. \end{aligned}$$
(49)

Note that \(({\underline{\varvec{\phi }}}({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}),{\overline{\varvec{\phi }}}({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}))=(\hat{\mathbf {v}},\hat{\mathbf {w}})\) and \({\underline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w})\le \varvec{\phi }(t) \le {\overline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w}),\)\(\forall (t,\mathbf {v},\mathbf {w})\in I\times {\mathbb {R}}^{n_x}\times {\mathbb {R}}^{n_x}\).

With \(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}})\) as above, let \(\eta _{C3}>0\) satisfy Condition 3 of Hypothesis 1, and let \(\eta _{C4}>0\) and \(\alpha \in L^1(I)\) satisfy Condition 4 of Hypothesis 1. Set \(\eta _C=\min (\eta _{C3},\eta _{C4})\). Since \(({\underline{\varvec{\phi }}}({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}),{\overline{\varvec{\phi }}}({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}))=(\hat{\mathbf {v}},\hat{\mathbf {w}})\) and the functions \({\underline{\varvec{\phi }}}\) and \({\overline{\varvec{\phi }}}\) are continuous, we may choose \(\eta \in (0,\eta _C]\) such that

$$\begin{aligned} (t,\mathbf {v},\mathbf {w})\in B_{\eta }(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}})) \quad \implies \quad (t,{\underline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w}),{\overline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w})) \in B_{\eta _C}(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}})). \end{aligned}$$
(50)

By Condition 3 of Hypothesis 1, it follows that

$$\begin{aligned} (t,\mathbf {v},\mathbf {w})\in B_{\eta }(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}})) \ \text {and} \ t\in I \quad \implies \quad (t,{\underline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w}),{\overline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w})) \in D_{\varPi }. \end{aligned}$$
(51)

We now show that Hypothesis 2 holds with this choice of \(\eta \) and \(\alpha \). To verify Condition 1 of Hypothesis 2, choose any \((t,\mathbf {v},\mathbf {w})\in B_{\eta }(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}))\cap D_{\varPi }\) such that \(\phi _i(t)<v_i\). We will apply the Lipschitz condition (46) with this choice of \(\mathbf {v}\) and \(\mathbf {w}\) and with \(\tilde{\mathbf {v}}={\underline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w})\) and \(\tilde{\mathbf {w}}={\overline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w})\). To see that this condition is applicable, first note that \((t,\mathbf {v},\mathbf {w})\in B_{\eta _{C4}}(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}))\) because \(\eta \le \eta _{C4}\). Moreover, in light of (50) and (51), we are guaranteed that \((t,\tilde{\mathbf {v}},\tilde{\mathbf {w}})\in B_{\eta _{C4}}(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}))\cap D_{\varPi }\). Thus, (46) gives

$$\begin{aligned}&d_H(\varPi _i^L(t,\mathbf {v},\mathbf {w}),\varPi _i^L(t,{\underline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w}),{\overline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w})))\nonumber \\&\quad \le \alpha (t)\max \left( \Vert \mathbf {v}-{\underline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w})\Vert ,\Vert \mathbf {w}-{\overline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w})\Vert \right) , \nonumber \\&\quad = \alpha (t)\max (\Vert \max (\mathbf {v}-\mathbf {\varvec{\phi }}(t),\mathbf {0})\Vert ,\Vert \max (\mathbf {\varvec{\phi }}(t)-\mathbf {w},\mathbf {0})\Vert ). \end{aligned}$$
(52)

Next, we apply Condition 1 of Hypothesis 1 to the point \((t,{\underline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w}),{\overline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w}))\in D_{\varPi }\). This is possible because \({\underline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w})\le \varvec{\phi }(t)\le {\overline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w})\) and \(\phi _i(t)=\min (\phi _i(t),v_i)={\underline{\phi }}_i(t,\mathbf {v},\mathbf {w})\). Thus, Condition 1 of Hypothesis 1 ensures that \({\dot{\phi }}_i(t)\in \varPi _i^L(t,{\underline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w}),{\overline{\varvec{\phi }}}(t,\mathbf {v},\mathbf {w}))\). Then, by the definition of the Hausdorff metric, (52) implies that \(\exists \sigma _i\in \varPi _i^L(t,\mathbf {v},\mathbf {w})\) satisfying (48). This proves Condition 1 of Hypothesis 2, and Condition 2 follows from an analogous argument. \(\square \)

To prove Theorem 1, we will apply Theorem 3 with the following definitions:

$$\begin{aligned} D_{\varPi }&\equiv \left\{ \begin{array}{rl} t &{}\in I \\ \mathbf {v} &{}\in {\mathbb {R}}^{n_x} \\ \mathbf {w} &{}\in {\mathbb {R}}^{n_x} \end{array}: \begin{array}{l} \mathbf {v}\le \mathbf {w} \\ (t,U,{\mathscr {B}}_i^{L/U}([\mathbf {v},\mathbf {w}])) \in D_{{\mathscr {R}}} \\ \forall i\in \{1,\dots ,n_x\} \end{array} \right\} \end{aligned}$$
(53)
$$\begin{aligned} \varPi _i^{L}(t,\mathbf {v},\mathbf {w})&\equiv {\mathscr {R}}_i[t,U,{\mathscr {B}}_i^L([\mathbf {v},\mathbf {w}])] \end{aligned}$$
(54)
$$\begin{aligned} \varPi _i^{U}(t,\mathbf {v},\mathbf {w})&\equiv {\mathscr {R}}_i[t,U,{\mathscr {B}}_i^U([\mathbf {v},\mathbf {w}])] \end{aligned}$$
(55)

Lemma 2

Let \((\mathbf {x}_0,\mathbf {u},\mathbf {x})\in X_0\times {\mathscr {U}}\times \mathscr {AC}(I,{\mathbb {R}}^{n_x})\) be any solution of (2). Under Assumption 1, definitions (53)–(55) satisfy Hypothesis 1 with \(\varvec{\phi }\equiv \mathbf {x}\).

Proof

To verify Condition 1 of Hypothesis 1, choose any \((t,\mathbf {v},\mathbf {w})\in D_{\varPi }\) such that \(\mathbf {v}\le \varvec{\phi }(t)\le \mathbf {w}\) and \(\phi _i(t)=v_i\) for some \(i\in \{1,\dots ,n_x\}\). These conditions imply that \(\mathbf {x}(t)=\varvec{\phi }(t)\in {\mathscr {B}}_i^L([\mathbf {v},\mathbf {w}])\). Moreover, by the definition of \(D_{\varPi }\), \((t,\mathbf {v},\mathbf {w})\in D_{\varPi }\) implies that \((t,U,{\mathscr {B}}_i^L([\mathbf {v},\mathbf {w}]))\in D_{{\mathscr {R}}}\). Since \((\mathbf {x}_0,\mathbf {u},\mathbf {x})\) is a solution of (2), Condition 1 of Assumption 1 implies that

$$\begin{aligned} \dot{\mathbf {x}}(t)\in {\mathscr {R}}\left[ t,U,{\mathscr {B}}_i^L([\mathbf {v},\mathbf {w}])\right] . \end{aligned}$$
(56)

By (54), it follows that \({\dot{\phi }}_i(t)={\dot{x}}_i(t)\in \varPi ^L_i(t,\mathbf {v},\mathbf {w})\). This proves Condition 1 of Hypothesis 1, and Condition 2 follows from an analogous argument.

To verify Condition 3 of Hypothesis 1, choose any \(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}})\in D_{\varPi }\cap A\). By (53), \(({\hat{t}},U,{\mathscr {B}}_i^{L/U}([\hat{\mathbf {v}},\hat{\mathbf {w}}]))\in D_{{\mathscr {R}}}\) for all \(i\in \{1,\ldots ,n_x\}\). By Condition 2 of Assumption 1, \(D_{{\mathscr {R}}}\) is open with respect to t and Z. Thus, there must exist \(\eta >0\) such that

$$\begin{aligned} (t,Z)\in B_{\eta }({\hat{t}})\times B_{\eta }({\mathscr {B}}_i^{L/U}([\hat{\mathbf {v}},\hat{\mathbf {w}}])) \quad \implies \quad (t,U,Z)\in D_{{\mathscr {R}}}. \end{aligned}$$
(57)

Moreover, by the definition of \({\mathscr {B}}_i^{L/U}\), it follows that

$$\begin{aligned} (t,Z)\in B_{\eta }({\hat{t}})\times B_{\eta }([\hat{\mathbf {v}},\hat{\mathbf {w}}])&\quad \implies \quad (t,{\mathscr {B}}_i^{L/U}(Z))\in B_{\eta }({\hat{t}})\times B_{\eta }({\mathscr {B}}_i^{L/U}([\hat{\mathbf {v}},\hat{\mathbf {w}}])), \nonumber \\&\quad \implies \quad (t,U,{\mathscr {B}}_i^{L/U}(Z))\in D_{{\mathscr {R}}}. \end{aligned}$$
(58)

We claim that Condition 3 of Hypothesis 1 holds with this \(\eta \). To see this, choose any point \((t,\mathbf {v},\mathbf {w})\) in \(B_{\eta }(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}))\cap A\). It suffices to show that \((t,\mathbf {v},\mathbf {w})\in D_{\varPi }\). Since \((t,\mathbf {v},\mathbf {w})\in A\), we have \(t\in I\) and \(\mathbf {v}\le \mathbf {w}\). Moreover, since \((t,\mathbf {v},\mathbf {w})\in B_{\eta }(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}))\), it follows from the definition of \(d_H\) that \(d_H([\mathbf {v},\mathbf {w}],[\hat{\mathbf {v}},\hat{\mathbf {w}}])\le \eta \). Finally, since \(|t-{\hat{t}}|\le \eta \) as well, (58) ensures that \((t,U,{\mathscr {B}}_i^{L/U}([\mathbf {v},\mathbf {w}]))\in D_{{\mathscr {R}}}\). Thus, by (53), \((t,\mathbf {v},\mathbf {w}) \in D_{\varPi }\), as desired.

To verify Condition 4 of Hypothesis 1, choose any \(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}})\in D_{\varPi }\). By (53), \(({\hat{t}},U,{\mathscr {B}}_i^{L/U}([\hat{\mathbf {v}},\hat{\mathbf {w}}]))\in D_{{\mathscr {R}}}\) for all \(i\in \{1,\ldots ,n_x\}\). Thus, by Condition 3 of Assumption 1, there exists \(\eta ,L>0\) such that

$$\begin{aligned} d_H({\mathscr {R}}(t,U,Z),{\mathscr {R}}(t,U,{\tilde{Z}}))&\le Ld_H(Z,{\tilde{Z}}), \end{aligned}$$
(59)

for every \(t\in B_{\eta }({\hat{t}})\) and \(Z,{\tilde{Z}}\in B_{\eta }({\mathscr {B}}_i^{L/U}([\hat{\mathbf {v}},\hat{\mathbf {w}}]))\). We claim that Condition 4 of Hypothesis 1 holds with this choice of \(\eta \) and \(\alpha =L\). To see this, choose any \((t,\mathbf {v},\mathbf {w}),(t,\tilde{\mathbf {v}},\tilde{\mathbf {w}})\in B_{\eta }(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}))\cap D_{\varPi }\). It suffices to show that

$$\begin{aligned} d_H(\varPi _i^L(t,\mathbf {v},\mathbf {w}),\varPi _i^L(t,\tilde{\mathbf {v}},\tilde{\mathbf {w}}))&\le L\max \left( \Vert \mathbf {v}-\tilde{\mathbf {v}}\Vert ,\Vert \mathbf {w}-\tilde{\mathbf {w}}\Vert \right) , \end{aligned}$$
(60)
$$\begin{aligned} d_H(\varPi _i^U(t,\mathbf {v},\mathbf {w}),\varPi _i^U(t,\tilde{\mathbf {v}},\tilde{\mathbf {w}}))&\le L\max \left( \Vert \mathbf {v}-\tilde{\mathbf {v}}\Vert ,\Vert \mathbf {w}-\tilde{\mathbf {w}}\Vert \right) . \end{aligned}$$
(61)

By (54) and the definition of the Hausdorff metric \(d_{H}\),

$$\begin{aligned} d_H(\varPi _i^L(t,\mathbf {v},\mathbf {w}),\varPi _i^L(t,\tilde{\mathbf {v}},\tilde{\mathbf {w}}))&\le d_H({\mathscr {R}}(t,U,{\mathscr {B}}_i^{L}([\mathbf {v},\mathbf {w}])),{\mathscr {R}}(t,U,{\mathscr {B}}_i^{L}([\tilde{\mathbf {v}},\tilde{\mathbf {w}}]))). \end{aligned}$$
(62)

But, as argued above, the fact that \((t,\mathbf {v},\mathbf {w})\) and \((t,\tilde{\mathbf {v}},\tilde{\mathbf {w}})\) are elements of \(B_{\eta }(({\hat{t}},\hat{\mathbf {v}},\hat{\mathbf {w}}))\) implies that \({\mathscr {B}}_i^{L}([\mathbf {v},\mathbf {w}])\) and \({\mathscr {B}}_i^{L}([\tilde{\mathbf {v}},\tilde{\mathbf {w}}])\) are elements of \(B_{\eta }({\mathscr {B}}_i^{L/U}([\hat{\mathbf {v}},\hat{\mathbf {w}}]))\). Then, using (59), we have

$$\begin{aligned} d_H(\varPi _i^L(t,\mathbf {v},\mathbf {w}),\varPi _i^L(t,\tilde{\mathbf {v}},\tilde{\mathbf {w}}))&\le Ld_H({\mathscr {B}}_i^{L}([\mathbf {v},\mathbf {w}]),{\mathscr {B}}_i^{L}([\tilde{\mathbf {v}},\tilde{\mathbf {w}}])), \end{aligned}$$
(63)
$$\begin{aligned}&\le L\max \left( \Vert \mathbf {v}-\tilde{\mathbf {v}}\Vert ,\Vert \mathbf {w}-\tilde{\mathbf {w}}\Vert \right) , \end{aligned}$$
(64)

as desired. The proof of (61) is analogous. \(\square \)

We now prove Theorem 1. Choose any \(\mathbf {x}^L,\mathbf {x}^U\in \mathscr {AC}(I,{\mathbb {R}}^{n_x})\) and suppose that Conditions 1–3 of Theorem 1 hold. Moreover, let \((\mathbf {x}_0,\mathbf {u},\mathbf {x})\in X_0\times {\mathscr {U}}\times \mathscr {AC}(I,{\mathbb {R}}^{n_x})\) be any solution of (2). We show that the hypotheses of Theorem 3 are satisfied with \(\mathbf {v}=\mathbf {x}^L\), \(\mathbf {w}=\mathbf {x}^U\), \(\varvec{\phi }=\mathbf {x}\), and definitions (53)–(55). As a consequence, \(\mathbf {x}(t)\in [\mathbf {x}^L(t),\mathbf {x}^U(t)]\), \(\forall t\in I\), as desired.

With the definition of \(D_{\varPi }\) in (53), Condition 1 of Theorem 3 follows directly from Condition 1 of Theorem 1. Condition 2 of Theorem 3 also follows directly from Condition 2 of Theorem 1 since \(\varvec{\phi }(t_0)=\mathbf {x}(t_0)=\mathbf {x}_0\in X_0\subset [\mathbf {x}^L(t_0),\mathbf {x}^U(t_0)]=[\mathbf {v}(t_0),\mathbf {w}(t_0)]\). Finally, Condition 3 of Theorem 3 follows from Condition 3 of Theorem 1. To see this, choose any \(\sigma _i\in \varPi _i^L(t,\mathbf {v}(t),\mathbf {w}(t))=\varPi _i^L(t,\mathbf {x}^L(t),\mathbf {x}^U(t))\). By (54),

$$\begin{aligned} \sigma _i\in {\mathscr {R}}_i[t,U,{\mathscr {B}}_i^{L}([\mathbf {x}^L(t),\mathbf {x}^U(t)])]. \end{aligned}$$
(65)

Therefore, by Condition 3(a) of Theorem 1, we must have \({\dot{v}}_i(t)\le \sigma _i\). This proves Condition 3(a) of Theorem 3. Condition 3(b) is proved analogously. Since all of the hypotheses of Theorem 3 are met, we conclude that

$$\begin{aligned} \mathbf {x}(t)=\varvec{\phi }(t)\in [\mathbf {v}(t),\mathbf {w}(t)]=[\mathbf {x}^L(t),\mathbf {x}^U(t)], \quad \forall t\in I. \end{aligned}$$
(66)

This completes the proof of Theorem 1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Scott, J.K. Exploiting nonlinear invariants and path constraints to achieve tighter reachable set enclosures using differential inequalities. Math. Control Signals Syst. 32, 101–127 (2020). https://doi.org/10.1007/s00498-020-00254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-020-00254-y

Keywords

Navigation