Skip to main content

Advertisement

Log in

An approach to fuzzy default reasoning for function approximation

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper discusses fuzzy reasoning for approximately realizing nonlinear functions by a small number of fuzzy if-then rules with different specificity levels. Our fuzzy rule base is a mixture of general and specific rules, which overlap with each other in the input space. General rules work as default rules in our fuzzy rule base. First, we briefly describe existing approaches to the handling of default rules in the framework of possibility theory. Next, we show that standard interpolation-based fuzzy reasoning leads to counterintuitive results when general rules include specific rules with different consequents. Then, we demonstrate that intuitively acceptable results are obtained from a non-standard inclusion-based fuzzy reasoning method. Our approach is based on the preference for more specific rules, which is a commonly used idea in the field of default reasoning. When a general rule includes a specific rule and they are both compatible with an input vector, the weight of the general rule is discounted in fuzzy reasoning. We also discuss the case where general rules do not perfectly but partially include specific rules. Then we propose a genetics-based machine learning (GBML) algorithm for extracting a small number of fuzzy if-then rules with different specificity levels from numerical data using our inclusion-based fuzzy reasoning method. Finally, we describe how our approach can be applied to the approximate realization of fuzzy number-valued nonlinear functions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal R., Mannila H., Srikant R., Toivonen H., Verkamo AI. (1996). Fast discovery of association rules. In: Fayyad UM., Piatetsky-Shapiro G., Smyth P., Uthurusamy R (eds). Advances in knowledge discovery and data mining. AAAI, Metro Park, pp. 307–328

    Google Scholar 

  2. Alefeld G., Herzberger J. (1983). Introduction to interval computations. Academic, New York

    MATH  Google Scholar 

  3. Bacchus F., Grove AJ., Halpern JY., Koller D. (1996). From statistical knowledge bases to degrees of belief. Artif Intell 87(1–2):75–143

    Article  MathSciNet  Google Scholar 

  4. Bien Z., Yu W. (1995). Extracting core information from inconsistent fuzzy control rules. Fuzzy Sets Syst 71(1):95–111

    Article  MathSciNet  Google Scholar 

  5. Brewka G., Eiter T. (2000). Prioritizing default logic. In: Hölldobler S (eds). Intellectics and computational logic. Kluwer, Dordrecht, pp. 27–45

    Google Scholar 

  6. Castillo L., Gonzalez A., Perez R. (2001). Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm. Fuzzy Sets Syst 120(2):309–321

    Article  MATH  MathSciNet  Google Scholar 

  7. Castro JL., Castro-Schez JJ., Zurita JM. (2001). Use of a fuzzy machine learning technique in the knowledge acquisition process. Fuzzy Sets Syst 123(3):307–320

    Article  MATH  MathSciNet  Google Scholar 

  8. Cordon O., Herrera F. (2003). Author’s reply. IEEE Trans Fuzzy Syst 11(6):866–869

    Article  Google Scholar 

  9. Cordon O., Herrera F., Peregrin A. (1997). Applicability of the fuzzy operators in the design of fuzzy logic controllers. Fuzzy Sets Syst 86(1):15–41

    Article  MATH  Google Scholar 

  10. Delgrande JP., Schaub T. (2000). Expressing preferences in default logic. Artif Intell 123(1–2):41–87

    Article  MATH  MathSciNet  Google Scholar 

  11. Dubois D., Lang J., Prade H. (1994). Possibilistic logic. In: Gabbay DM., Hogger CJ., Robinson JA (eds). Handbook of logic in artificial intelligence and logic programming vol 3, Nonmonotonic reasoning and uncertain reasoning. Oxford University Press, Oxford, pp. 439–513

    Google Scholar 

  12. Dubois D., Lang J., Prade H. (1994). Automated reasoning using possibilistic logic: semantics, brief revision, and variable certainty weights. IEEE Trans Knowl Data Eng 6(1):64–71

    Article  Google Scholar 

  13. Dubois D., Prade H. (1987). The principle of minimum specificity as a basis for evidential reasoning. In: Bouchon B., Yager RR (eds). Uncertainty in knowledge based systems (Lecture Notes in Computer Science 286). Springer, Berlin Heidelberg New York, pp. 75–84

    Google Scholar 

  14. Dubois D., Prade H. (1988). Default reasoning and possibility theory. Artif Intell 35(2):243–257

    Article  MATH  MathSciNet  Google Scholar 

  15. Dubois D., Prade H. (1996). What are fuzzy rules and how to use them. Fuzzy Sets Syst 84(2):169–185

    Article  MATH  MathSciNet  Google Scholar 

  16. Dung PM., Son TC. (2001). An argument-based approach to reasoning with specificity. Artif Intell 133(1–2):35–85

    Article  MATH  MathSciNet  Google Scholar 

  17. Emami MR., Turksen IB., Goldenberg AA. (1999). A unified parameterized formulation of reasoning in fuzzy modeling and control. Fuzzy Sets Syst 108(1):59–81

    Article  MATH  MathSciNet  Google Scholar 

  18. Goldszmidt M., Pearl J. (1996). Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artif Intell 84(1–2):57–112

    Article  MathSciNet  Google Scholar 

  19. Hoffmann F., Pfister G. (1996). Learning of a fuzzy control rule base using messy genetic algorithm. In: Herrera F., Verdegay JL (eds). Genetic algorithm and soft computing. Physica-Verlag, Heidelberg, pp. 279–305

    Google Scholar 

  20. Hoffmann F., Pfister G. (1997). Evolutionary design of a fuzzy knowledge base for a mobile robot. Int J Approx Reason 17(4):447–469

    Article  MATH  Google Scholar 

  21. Hong T-P., Kuo C-S., Chi S-C. (2001). Trade-off between computation time and number of rules for fuzzy mining from quantitative data. Int J Uncertain Fuzziness Knowledge-Based Syst 9(5):587–604

    MATH  Google Scholar 

  22. Ichihashi H. (1991). Iterative fuzzy modeling and a hierarchical network. In: Proceedings of 4th International Fuzzy System Association World Congress – Engineering. Brussels, Belgium, pp. 49–52

    Google Scholar 

  23. Ishibuchi H. (1999). Fuzzy reasoning method for handling fuzzy rules with different specificity levels. In: Proceedings of 18th international conference of the North American Fuzzy Information Processing Society, New York, USA, pp 110–114

  24. Ishibuchi H. (1999). Fuzzy reasoning method in fuzzy rule-based systems with general and specific rules for function approximation. In: Proceedings of 8th IEEE international conference on fuzzy systems, Seoul, Korea, pp 198–203

  25. Ishibuchi H., Nakashima T., Murata T. (2001). Three-objective genetics-based machine learning for linguistic rule extraction. Inform Sci 136(1–4):109–133

    Article  MATH  Google Scholar 

  26. Ishibuchi H., Nakashima T., Nii M. (2004). Classification and modeling with linguistic information granules: advanced approaches to linguistic data mining, Springer, Berlin

  27. Kaufmann A., Gupta MM. (1985). Introduction to Fuzzy Arithmetic. Van Nostrand Reinhold, New York

    MATH  Google Scholar 

  28. Knorr EM., Ng RT. (1999). Finding intentional knowledge of distance-based outliers. In: Proceedings of 25th international conference on very large data bases, Edinburgh, Scotland, pp 211–222

  29. Knorr EM., Ng RT., Tucakov V. (2000). Distance-based outliers: algorithms and applications. Int J Very Large Data Bases 8(3): 237–253

    Article  Google Scholar 

  30. Leondes CT (eds). (1999). Fuzzy theory systems: techniques and applications. Academic, San Diego, pp. 1–4

  31. Mees W. (1999). Detection of defects in a fuzzy knowledge base. In: Proceedings of 8th IEEE international conference on fuzzy systems, Seoul, Korea, pp 204–209

  32. Moore RE. (1979). Methods and applications of interval analysis. SIAM Studies in Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  33. Poole D. (1991). The effect of knowledge on belief: conditioning, specificity and the lottery paradox in default reasoning. Artif Intell 49(1–3):281–307

    Article  MATH  MathSciNet  Google Scholar 

  34. Reiter R. (1980). A logic for default reasoning. Artif Intell 13(1–2):81–132

    Article  MATH  MathSciNet  Google Scholar 

  35. Roubos JA., Babuska R. (2003). Comments on the benchmarks in “a proposal for improving the accuracy of linguistic modeling” and related articles. IEEE Trans Fuzzy Syst 11(6):861–865

    Article  Google Scholar 

  36. Russell SJ., Norvig P. (1995). Artificial intelligence: a modern approach. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  37. Suzuki E. (2000). Hypothesis-driven discovery of exception rules based on thresholds scheduling. J Japanese Soc Artif Intell 15(4):649–656(in Japanese)

    Google Scholar 

  38. 38. Suzuki E., Kodratoff Y. (1998). Discovery of surprising exception rules based on intensity of implication. In: Zytkow JM., Quafafou M (eds). Principles of data mining and knowledge discovery (PKDD) (Lecture Notes in Computer Science 1510). Springer, Berlin Heidelberg New York

    Google Scholar 

  39. Takagi T., Sugeno M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132

    MATH  Google Scholar 

  40. Uehara K (1994) Fuzzy inference based on a weighted average of fuzzy sets and its learning algorithm for fuzzy exemplars, Proc. of International Joint Conference of 4th IEEE International Conference on Fuzzy Systems and 2nd International Fuzzy Engineering Symposium, Yokohama, Japan, pp 2253–2260

  41. Viaene S., Wets G., Vanthienen J. (2000). A synthesis of fuzzy rule-based system verification. Fuzzy Sets Syst 113(2):253–265

    Article  MATH  Google Scholar 

  42. Yager RR. (1987). Using approximate reasoning to represent default knowledge. Artif Intell 31(1):99–112

    Article  MATH  MathSciNet  Google Scholar 

  43. Yager RR. (1987). Possibilistic qualification and default rules. In: Bouchon B., Yager RR (eds). Uncertainty in knowledge based systems (Lecture Notes in Computer Science 286). Springer, Berlin Heidelberg New York, pp. 41–57

    Google Scholar 

  44. Yager RR. (1988). A generalized view of non-monotonic knowledge: a set of theoretic perspective. Int J Gen Syst 14:251–265

    Article  MathSciNet  Google Scholar 

  45. Yager RR. (1988). A mathematical programming approach to inference with the capability to implement default rules. Int J Man-Mach Stud 29:685–714

    Article  MATH  Google Scholar 

  46. Yager RR. (1993). On a hierarchical structure for fuzzy modeling and control. IEEE Trans Syst Man Cybern 23(4):1189–1197

    Article  Google Scholar 

  47. Yager RR., Larsen HL. (1991). On discovering potential inconsistencies in validating uncertain knowledge bases by reflecting on the input. IEEE Trans Syst Man Cybern 21(4):790–801

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Ishibuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishibuchi, H., Yamamoto, T. & Nakashima, T. An approach to fuzzy default reasoning for function approximation. Soft Comput 10, 850–864 (2006). https://doi.org/10.1007/s00500-005-0005-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-005-0005-y

Keywords

Navigation