Skip to main content

Advertisement

Log in

An Evolutionary-Based Stereo Matching Method with a Multilevel Searching Strategy

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Stereo matching is one of the fundamental problems in computer vision. It consists in identifying features in two or more stereo images that are generated by the same physical feature in the three-dimensional space. This paper presents an evolutionary approach with a multilevel searching strategy for matching edges extracted from two stereo images. The matching problem is turned into an optimization task, which is performed by means of a genetic algorithm with a new encoding scheme. For an effective exploitation of the genetic stereo matching algorithm for real-time obstacle detection, a multilevel searching strategy is proposed to match the edges at different levels by considering their gradient magnitudes. Experimental results and comparative analysis are presented to demonstrate the effectiveness of the proposed method for real-time obstacle detection in front of a moving vehicle using linear stereo vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Marr D, Poggio T (1976) Cooperative computation of stereo disparity. Science 194:283–287

    Article  Google Scholar 

  2. Barnard ST, Thompson WB (1980) Disparity analysis of images. IEEE Trans Pattern Anal Mach Intell (2)4:333–340

    Article  Google Scholar 

  3. Ballard DH, Brown CM (1982) Computer vision. Englewood Cliffs, Prentice Hall

    Google Scholar 

  4. Dhond UR, Aggarwal JK (1989) Structure from stereo—a review. IEEE Trans Man Cybernet 19:1489–1510

    Article  MathSciNet  Google Scholar 

  5. Jähne B, Haußecker H (2000) Computer vision and applications. Academic, New york

    MATH  Google Scholar 

  6. Barnard S, Fisher M (1982) Computational stereo. ACM Comput Surv 14:553–572

    Article  Google Scholar 

  7. Dooze D (2001) Conception et réalisation d’un stéréoscope bimodal à portée variable: application à la détection d’obstacles à l’avant de véhicules guidés automatisés. PhD Thesis, Université des Sciences et Technologies de Lille

  8. Haralick RM, Shapiro LG (1992) Image matching, computer and robot vision, part 2. Addison-Wesley, New York

    Google Scholar 

  9. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis (47)1–3:7–42

    Article  MATH  Google Scholar 

  10. Saito H, Mori M (1995) Application of genetic algorithms to stereo matching of images. Pattern Recognit Lett 16:815–821

    Article  Google Scholar 

  11. Han KP, Song KW, Chung EY, Cho SJ, Ha YH (2001) Stereo matching using genetic algorithm with adaptive chromosomes. Pattern Recognit 34:1729–1740

    Article  MATH  Google Scholar 

  12. Tang L, Wu C, Chen Z (2002) Image dense matching based on region growth with adaptive window. Pattern Recognit Lett 23:1169–1178

    Article  MATH  Google Scholar 

  13. Lee SH, Leou JJ (1994) A dynamic programming approach to line segment matching in stereo vision. Pattern Recognit Lett 8(27):961–986

    Google Scholar 

  14. Lee K, Lee J (2004) Genetic obstacle detection on roads by dynamic programming for remapped stereo images to an overhead view. In: Proceedings of the IEEE International Conference on Networking, Sensing and Control, Taipei, Taiwan, pp 897–902

  15. Nasrabadi NM (1992) A stereo vision technique using curve-segments and relaxation matching. IEEE Trans Pattern Anal Mach Intell 5(14):566–572

    Article  Google Scholar 

  16. Tien FC (2004) Solving line-feature stereo matching with genetic algorithms in Hough space. Journal of the Chinese Institute of Industrial Engineers 5(21):515–526

    Google Scholar 

  17. Pajares G, de la Cruz JM (2004) On combining support vector machines and simulated annealing in stereovision matching. IEEE Trans Man Cybern Part B 4(34):1646–1657

    Article  Google Scholar 

  18. Candocia F, Adjouadi A (1997) A similarity measure for stereo feature matching. IEEE Trans Image Processing 6:1460–1464

    Article  Google Scholar 

  19. Starink JPP, Backer E (1995) Finding point correspondences using simulated annealing. Pattern Recogn 2(28):231–240

    Article  Google Scholar 

  20. Wang JH, Hsiao CP (1999) On disparity matching in stereo vision via a neural network framework. Proc Natl Sci Counc ROC(A) 5(23):665–678

    Google Scholar 

  21. Zhang P, Lee DJ, Beard R (2004) Solving correspondence problems with 1-D signal matching. In: Casasent DP, Hall EL, Roning J (eds) Intelligent robots and computer vision XXII: Algorithms, techniques and active vision. Proceedings of the SPIE 5608, Philadelphia, pp 207–217

  22. Kriegman DJ, Triendl E, Binford TO (1989) Stereo vision and navigation in buildings for mobile robot. IEEE Trans Robot Autom 6(5):792–803

    Article  Google Scholar 

  23. Nitzan D (1988) Three–dimensional vision structure for robot application. IEEE Trans Pattern Analy Mach Intell 3(10): 291–309

    Article  Google Scholar 

  24. Bruyelle JL, Postaire JG (1993) Direct range measurement by linear stereo vision for real-time obstacle detection in road traffic. Robo Auton Syst 11:261–268

    Article  Google Scholar 

  25. Inigo RM, Tkacik T (1987) Mobile robot operation in real-time with linear image array based vision. In: Proceedings of the IEEE Intelligent Control Symposium, pp 228–233

  26. Colle O (1990) Vision stéréoscopique à l’aide de deux cameras linéaires: application à la robotique mobile.PhD Thesis, Institut National des Sciences Appliquées de Lyon, France

    Google Scholar 

  27. Burie JC, Bruyelle JL, Postaire JG (1995) Detecting and localising obstacles in front of a moving vehicle using linear stereo vision. Math Comput Model 4–7(22):235–246

    Article  Google Scholar 

  28. Ruichek Y, Postaire JG (1996) A neural matching algorithm for 3–D reconstruction from stereo pairs of linear images. Pattern Recognit Lett 17: 387–398

    Article  Google Scholar 

  29. Ruichek Y, Postaire JG, Bruyelle JL (1998) A neural approach for obstacle detection with a linear stereoscopic sensor. Math Comput Model 9–11(27):215–228

    Article  Google Scholar 

  30. Ruichek Y, Postaire JG (1999) A new neural real-time implementation for obstacle detection using linear stereo vsion. Real Time Imaging 5:141–115

    Google Scholar 

  31. Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading

  32. Ruichek Y, Issa H, Postaire JG (2000) Genetic approach for obstacle detection using linear stereo vision. Proceedings of the IEEE Intelligent Vehicles Symposium, pp 261–266

  33. Bruyelle JL (1994) Conception et réalisation d’un dispositif de prise de vue stéréoscopique linéaire: Application à la détection d’obstacles à l’avant des véhicules routiers. PhD thesis, Université des Sciences et Technologies de Lille, France

    Google Scholar 

  34. Deriche R (1990) Fast algorithms for low-level vision. IEEE Trans Pattern Anal Mach Intell 1(12):78–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Ruichek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruichek, Y., Issa, H. & Postaire, JG. An Evolutionary-Based Stereo Matching Method with a Multilevel Searching Strategy. Soft Comput 10, 1145–1159 (2006). https://doi.org/10.1007/s00500-005-0037-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-005-0037-3

Keywords

Navigation