
 1

An Improved Genetic Algorithm with Average-Bound Crossover and

Wavelet Mutation Operations

S.H. Ling and F.H.F. Leung

Centre for Multimedia Signal Processing, Department of Electronic and Information Engineering,

The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Abstract: This paper presents a real-coded genetic algorithm (RCGA) with new genetic operations

(crossover and mutation). They are called the average-bound crossover (ABX) and wavelet

mutation (WM). By introducing the proposed genetic operations, both the solution quality and

stability are better than the RCGA with conventional genetic operations. A suite of benchmark test

functions are used to evaluate the performance of the proposed algorithm. Application examples on

economic load dispatch and tuning an associative-memory neural network are used to show the

performance of the proposed RCGA.

Keywords: Crossover, mutation, real-coded genetic algorithm, associative-memory neural network,

and economic load dispatch.

I. INTRODUCTION

 Genetic algorithm (GA) is one evolutionary computation technique [9] that can tackle

complex optimization problems [9, 17, 23]. It has been applied in different areas such as fuzzy

control [13-14], tuning of neural or neural fuzzy network [15-16], path planning [11], greenhouse

climate control [1], economic load dispatch [2, 27], etc. Traditional binary GA [5, 9, 19, 25] has

some drawbacks when applying to multidimensional and high-precision numerical problems. The

situation can be improved if GA in real numbers is used. Each chromosome is coded as a vector of

floating point numbers that has the same length as the solution vector. A large domain can thus be

handled. Much research effort has been spent to improve the performance of real-coded GA

(RCGA). In general, RCGA involves three operations: selection, crossover and mutation. The

selection operation is used to select the chromosomes from the population with respect to some

probability distribution based on fitness values. The crossover operation is used to combine the

information of the selected chromosomes (parents) and generate the offspring. The mutation

 2

operation is used to change the offspring genes. Selection schemes such as rank-based selection,

elitist strategies, steady-state election and tournament selection were reported [5]. Recently,

different crossover operations for RCGA have been proposed to improve the efficiency of the

algorithm. The extended intermediate recombination (crossover) (EIX) was proposed by

Mühlenbein et. al. [20]. The genes (variables) of the offspring are chosen somewhere between the

genes of the parents. It is capable of producing any point within a hypercube slightly larger than

that defined by the parents. The unimodal normal distribution crossover (UNDX) was proposed by

Ono et. al. [12, 22] for handling multimodal functions and non-separability problems. UNDX

mixes the parental information and shows a good searching ability. However, it changes the

fundamental concept that the crossover operation should combine the parents to generate offspring,

not mixing the parents. The blend crossover (BLX-α) was proposed by Eshelman et. al. [7], which

combines the parents to reproduce offspring. It shows a good searching ability for separable

functions. However, BLX-α has difficulty in handling non-separability optimisation problems.

Also, the above crossover operations are not suitable for optimisation problems with the optimal

point located near the domain boundary. For mutation operations, the uniform mutation and non-

uniform mutation can be found [19, 21]. The uniform mutation is to change the value of a

randomly selected gene to a value between its upper and lower bounds. The non-uniform mutation

is capable of fine-tuning the parameters by increasing or decreasing the value of a randomly

selected gene with respect to a weighted random number. The weight is usually a monotonic

decreasing function of the number of iteration.

In this paper, new genetic operations of crossover and mutation are proposed. The

crossover operation is called the average-bound crossover (ABX), which combines the average

crossover and bound crossover. The average crossover manipulates the genes of the selected

parents, the minimum, and the maximum possible values of the genes. The bound crossover is

capable of moving the offspring near the domain boundary. On realizing the ABX operation, the

offspring spreads over the domain so that a higher chance of reaching the global optimum can be

obtained. The proposed mutation operation is called the wavelet mutation (WM), which applies the

wavelet theory [3-4, 18] to realize the mutation. Wavelet is a tool to model seismic signals by

combining dilations and translations of a simple, oscillatory function (mother wavelet) of a finite

duration. The wavelet function has two properties: 1) the function integrates to zero, and 2) it is

square integrable, or equivalently has finite energy. Thanks to the properties of the wavelet, the

convergence and solution stability are improved. By introducing these genetic operations, the

RCGA performs more efficiently and provides a faster convergence than the RCGA with

conventional genetic operations in a suite of 18 benchmark test functions [6, 8, 24, 30]. In addition,

the RCGA with the proposed operations gives smaller standard deviations of results, i.e. the

 3

solution quality of the RCGA with the proposed operations is more stable. An experimental study

will be made to evaluate the searching ability of the proposed mutation. Also, the sensitivity of the

parameter in WM and the sensitivity of the genes’ initial range for the proposed RCGA to the

searching performance will be discussed. Application examples on economic load dispatch and

tuning an associative-memory neural network are also given to show the performance of the

proposed RCGA.

This paper is organized as follows. Section II presents the operation of the proposed genetic

operations. Experimental studies and analysis are discussed in Section III. 18 benchmark test

functions will be used to evaluate the performance of the proposed method. Application examples

on economic load dispatch and tuning an associative memory neural network are given in Section

IV. A conclusion will be drawn in Section V.

II. AVERAGE-BOUND CROSSOVER AND WAVELET MUTATION FOR RCGA

 The Real-Coded Genetic Algorithm (RCGA) process [5, 19, 25] is shown in Fig. 1. First, a

set of population of chromosomes P is created. Each chromosome p contains some genes

(variables). Second, the chromosomes are evaluated by a defined fitness function. The better

chromosomes will return higher fitness function values in this process. Third, some of the

chromosomes are selected to undergo genetic operations for reproduction by the method of

normalized geometric ranking [10]. Normalized geometric ranking is a selection based on a non-

stationary penalty function, which is a function of the generation number. As the number of

generation increases, the penalty increases that puts more and more selective pressure on the RCGA

to find the feasible solution. In general, a higher-rank chromosome will have a higher chance to be

selected. Fourth, genetic operations of crossover are performed. The crossover operation is mainly

for exchanging information between two parents that are obtained by the selection operation. In the

crossover operation, one of the parameters is the probability of crossover cp which gives the

expected number sizepoppc _× (where sizepop _ is the number of chromosomes in the

population) of chromosomes that undergo the crossover operation in a generation. We propose a

new crossover operation here. First, four chromosomes are generated (instead of two chromosomes

in the conventional RCGA) from two selected parents. Second, the best two offspring in terms of

the fitness value will be selected to replace their parents. After the crossover operation, the

mutation operation follows. It operates with a parameter called the probability of mutation (mp).

The mutation operation is to change the genes of the chromosomes in the population such that the

features inherited from their parents can be changed. After going through the mutation operation,

 4

the new offspring will be evaluated using the fitness function. The new population will be formed

when the new offspring replaces the chromosome with the smallest fitness value. After the

operations of selection, crossover and mutation, a new population is generated. This new

population will repeat the same process. Such an iterative process will be terminated when a

defined condition is met. The details about the proposed crossover and mutation operations are

given below.

A. Average-bound crossover operation

The crossover operation is mainly for exchanging information from the two parents,

chromosomes p1 and p2, obtained in the selection process. The two parents will eventually produce

two offspring. The average-bound crossover (ABX) comprises two operations: average crossover

and bound crossover.

1) Average crossover

()
2

21
1

ppos

+
=

c
 (1)

2
)()1)((21minmax

2
aa ww

c

ppppos

++−+
= (2)

2) Bound crossover

() bb ww
c

21max ,max)1(3 pppos +−= (3)

() bb ww
c

21min ,min)1(4 pppos +−= (4)

where

[]k
varsno

kkk
c sss ooo

_21
=so , k = 1, 2, 3, 4.

[]
no_vars21 iiiii pppp

j
=p , i = 1, 2; j = 1, 2, …, no_vars , (5)

j
i

j parappara
j maxmin ≤≤ , (6)

[]varsnoparaparapara _
max

2
max

1
maxmax =p , (7)

[]varsnoparaparapara _
min

2
min

1
minmin =p , (8)

no_vars denotes the number of variables to be tuned; jparamin and jparamax are the minimum and

maximum values of
jip respectively for all i; []10, ∈ba ww denotes the user-defined weight for

average crossover and bound crossover respectively, ()21 ,max pp denotes the vector with each

element obtained by taking the maximum between the corresponding element of p1 and p2. For

 5

instance, [] []()132,321max − []332= . Similarly, ()21 ,min pp gives a vector by taking

the minimum value. For instance, [] []()132,321min − []121 −= . Among 1
cso to 4

cso , the

two with the largest fitness values are used as the offspring of the crossover operation. These two

offspring are put back into the population to replace their parents.

The rationale behind the ABX is that if the offspring spreads over the domain, a higher

chance of reaching the global optimum can be obtained. As seen from (1) to (4): The average

crossover will move the offspring near the centre region of the concerned domain (as aw in (2)

approaches 1, 2
cso approaches 2)(21 pp + , which is the average of the selected parents; and as aw

approaches 0, 2
cso approaches 2)(minmax pp + , which is the average of the domain boundary),

while bound crossover will move the offspring near the domain boundary (as bw in (3) and (4)

approaches 0, 3
cso and 4

cso approaches pmax and pmin respectively). The result of the crossover

depends on the values of the weights aw and bw . Their values depend on the optimisation problem

and are chosen by trial and error. Fig. 2 shows an example indicating the relationship between the

parents and the offspring under different values of the weights. In this figure, the line represents

the domain of a gene. The end points of the line represent the minimum and maximum values of

the gene. The dot (․) represents the parents and the circle-dot () represents the offspring. The

values in brackets represent the values of the genes under different values of the weights. For

example, when 11 =p and 42 =p , referring to (1) and (2), the offspring 1
cso and 2

cso should be equal

to 2.5 and 3.75 respectively when 5.0=aw . According to (1) to (4), the offspring is generated. We

can see how the offspring spreads over the domain under different values of aw and bw . Changing

the value of the weight aw will change the characteristics of the average crossover operation. In

this paper, the value of aw is arbitrarily set at 0.5. On the other hand, changing the value of the

weight bw will change the characteristics of the bound crossover operation.

B. Wavelet mutation operation

Before presenting the wavelet mutation operation, we first discuss the basic wavelet theory.

1) Wavelet theory

Certain seismic signals can be modelled by combining translations and dilations of an

oscillatory function with a finite duration called a “wavelet”. A continuous-time function)(xψ is

called a “mother wavelet” or “wavelet” if it satisfies the following properties:

 6

Property 1:

0)(=∫
+∞
∞− dxxψ (9)

In other words, the total positive momentum of)(xψ is equal to the total negative momentum of

)(xψ .

Property 2:

∞<∫
+∞
∞− dxx 2)(ψ (10)

where most of the energy in)(xψ is confined to a finite duration and bounded. The Morlet

wavelet (as shown in Fig .3) is an example mother wavelet, which was proposed by Daubechies [4]:

() ()xex x 5cos2/2−=ψ (11)

The Morlet wavelet integrates to zero (Property 1). Over 99% of the total energy of the function is

contained in the interval of 5.25.2 ≤≤− x (Property 2).

In order to control the magnitude and the position of)(xψ , we define)(, xbaψ as follows:







 −

=
a

bx
a

xba ψψ 1)(, (12)

where a is the dilation parameter and b is the translation parameter. Notice that

()xx ψψ =)(0,1 (13)

As







=

a
x

a
xa ψψ 1)(0, , (14)

it follows that)(0, xaψ is an amplitude-scaled version of)(xψ . Fig. 4 shows different dilations of

the Morlet wavelet. The amplitude of)(0, xaψ will be scaled down as the dilation parameter a

increases. This property is used to do the mutation operation in order to enhance the searching

performance.

2) Wavelet mutation

The mutation operation is to change the genes of the chromosomes inherited from their

parents. In general, various methods like uniform mutation or non-uniform mutation [19, 21] can

be employed to realize the mutation operation. We propose a Wavelet Mutation (WM) operation

based on the wavelet theory, which exhibits a fine-tuning ability. The details of the operation are as

follows. Every gene of the chromosomes will have a chance to mutate governed by a probability of

mutation, []10∈mp , which is defined by the user. This probability gives an expected number

(×× sizepoppm _ no_vars) of genes that undergo the mutation. For each gene, a random number

 7

between 0 and 1 will be generated such that if it is less than or equal to mp , the mutation will take

place on that gene which is updated instantly. If []
sno_sss ooo

var21
,,, =so is the selected

chromosome and the element
jso is randomly selected for mutation (the value of

jso is inside

[jj parapara maxmin ,]), the resulting chromosome is given by []
snoj sss ooo

var_1
,,ˆ,,ˆ =so ,

where j ∈ 1, 2, … no_vars, and

()
()





≤−×+

>−×+
=

0 if

0 if
ˆ

min

max

δδ

δδ
j

ss

s
j

s

s paraoo

oparao
o

jj

jj

j
, (15)

)(0, ϕψδ a= (16)







=

aa
ϕψδ 1 (17)

By using the Morlet wavelet in (11) as the mother wavelet,















=







−

a
e

a
a ϕδ
ϕ

5cos1 2
2

 (18)

where ϕ ∈ [−2.5, 2.5] is randomly generated. If δ is positive (0>δ) approaching 1, the mutated

gene will tend to the maximum value of
jso . Conversely, when δ is negative (0≤δ) approaching

−1, the mutated gene will tend to the minimum value of
jso . A larger value of δ gives a larger

searching space for
jso . When δ is small, it gives a smaller searching space for fine-tuning the

gene. Referring to Property 1 of the wavelet, the sum of the positive δ is equal to the sum of the

negative δ when the number of samples is large and ϕ is randomly generated. That is,

01
=∑

NN
δ for ∞→N , (19)

where N is the number of samples.

Hence, the overall positive mutation and the overall negative mutation throughout the evolution are

nearly the same. This property gives better solution stability (smaller standard deviation of the

solution values upon many trials). As over 99% of the total energy of the mother wavelet function

is contained in the interval [−2.5, 2.5], ϕ can be generated from [−2.5, 2.5] randomly. The value of

the dilation parameter a can be set to vary with the value of
T
τ in order to meet the fine-tuning

purpose, where T is the total number of iteration and τ is the current number of iteration. In order

to perform a local search when τ is large, the value of a should increase as
T
τ increases so as to

 8

reduce the significance of the mutation. Hence, a monotonic increasing function governing a and

T
τ is proposed as follows.

() ()g
T

g
ea

ln1ln +





 −×−

=

ζτ

 (20)

where ζ is the shape parameter of the monotonic increasing function, g is the upper limit of the

parameter a. In this paper, g is set as 10000. The effects of the various values of the shape

parameter ζ to a with respect to
T
τ are shown in Fig. 5. The value of a is between 1 and 10000.

Referring to (18), the maximum value of δ is 1 when the random number of ϕ =0 and a=1 (0=
T
τ).

Then referring to (15), the offspring gene () j
s

j
ss paraoparaoo

jjj maxmax1ˆ =−×+= . It ensures that a

large search space for the mutated gene is given. When the value
T
τ is near to 1, the value of a is

so large that the maximum value of δ will become very small. For example, at 9.0=
T
τ and 1=ζ ,

the dilation parameter a = 4000. If the random value of ϕ is zero, the value of δ will be equal to

0.0158. With ()
jjj s

j
ss oparaoo −×+= max0158.0ˆ , a small searching space for the mutated gene is

given for fine-tuning.

C. Choosing the parameters

We can regard the RCGA is seeking a balance between the exploration of new regions and

the exploitation of the already sampled regions in the search space. This balance, which critically

controls the performance of the RCGA, is governed by the right choices of the control parameters:

the probability of crossover (cp), the probability of mutation)(mp , the population size (pop_size),

the weights of the proposed crossover (aw , bw) and the shape parameter ζ of WM. Some views

about these parameters are included as follows:

• The probability of crossover (cp) gives us an expected number (×cp pop_size) of

chromosomes which undergo the crossover operation in a generation. When cp = 1, all

chromosomes in a generation will undergo the crossover operation.

• Increasing the probability of mutation)(mp tends to transform the genetic search into a

random search. This probability gives us an expected number (×× pop_sizepm no_vars) of

genes that undergo the mutation. When 1=mp , all genes will mutate. The value of mp

depends on the desired number of genes that undergo the mutation operation.

 9

• Increasing the population size will increase the diversity of the search space, and reduce the

probability that GA will prematurely converge to a local optimum. However, it also

increases the time required for the population to converge to the optimal region in the search

space.

• Changing the value of the weight aw in the average-bounded crossover will change the

characteristics of the average crossover operations. It is chosen by trial and error, which

depends on the kind of the optimisation problem. As the value of aw tends to 1, the

offspring tends to be the average of the selected parents. As the value of aw tends to 0, the

offspring tends to be the average of the domain boundary. For many optimisation problems,

the value of the weight aw can be set as 0.5.

• Changing the value of the weight bw in the average-bound crossover will change the

characteristics of the bound crossover operations. It is also chosen by trial and error, which

depends on the kind of the optimisation problem. A value of bw approaching 1 will make

the offspring to be near the selected parents. As the value of bw tends to 0, the offspring

will become near the domain boundary.

• Changing the parameter ζ will change the characteristics of the monotonic increasing

function of the wavelet mutation. The dilation parameter a will take a value so as to

perform fine-tuning faster as ζ is increasing. It is chosen by trial and error, which depends

on the kind of the optimisation problem. When ζ becomes larger, the decreasing speed of

the step size (δ) of the mutation becomes faster. In general, if the optimisation problem is

smooth and symmetric, the searching algorithm is easier to find the solution and process the

fine-tuning in early iteration. Thus, a larger value of ζ can be used to increase the step size

of the early mutation. More details about the sensitivity of ζ to WM will be discussed in

the next section.

III. EXPERIMENTAL STUDIES AND ANALYSIS

A. Benchmark test function

A suite of 18 benchmark test functions [6, 8, 24, 30] are used to test the performance of the

RCGA with the proposed genetic operations. Many different kinds of optimization problems are

covered by these benchmark test functions. They are divided into three categories: unimodal

functions, multimodal functions with only a few local minima, and multimodal functions with

many local minima. The 18 benchmark test functions are detailed in Appendix A. They can test

 10

the searching ability of the proposed searching algorithm comprehensively. To avoid the proposed

crossover operation introducing a strong bias to the optimal location at 2)(minmax pp + , the ranges

of the domain boundary for some test functions are set different from those in [6, 8, 24, 30].

Functions f1 to f7 are unimodal functions. Functions f8 to f13 are multimodal functions with only a

few local minima. Functions f14 to f18 are multimodal functions with many local minima.

B. Experimental setup

The crossover operation for comparison is the UNDXBXover, which consists of two

published crossover operations: Unimodal normal distribution crossover (UNDX) [12, 22] and

Blend crossover (BLX-α) [7]. The details of these two crossovers are shown in Appendix B and

Appendix C respectively. The mutation operation for comparison is the non-uniform mutation

(NUM) [19, 21]. The details of NUM are shown in Appendix D. The simulation conditions are

described as follows.

‧ The shape parameter of NUM: It is chosen by trial and error through experiments for good

performance for all functions.

‧ The parameters ζ of WM: It is chosen by trial and error through experiments for good

performance for all functions.

‧ The weight of the ABX aw : 0.5 for all functions.

‧ The weight of the ABX bw : 0.5 for 1f to f8 and f15 to f17; 1.0 for. f9 to f14 , and f18.

‧ Population size: 100.

‧ Number of runs: 50.

‧ Selection operation: Normalized geometric ranking [10].

‧ The probability of selecting the best chromosome [10]: 0.08.

‧ Crossover operation: For UNDX, the parameters β and µ are set at 1 and 0.35 respectively;

for BLX-α, the parameter α is set at 0.336 [26].

‧ Probability of crossover cp : 0.8.

‧ Probability of mutation mp : 0.5 for 1f to 6f and f14 to f18; 0.8 for f7 to f13.

‧ Initial population: It is generated uniformly at random.

 In this paper, RCGA with Avergae-Bound Crossover and Wavelet Mutation (ABX+WM),

RCGA with Avergae-Bound Crossover and Non-Uniform Mutation (ABX+NUM), RCGA with

Unimodal Normal Distribution and Blend Crossover and Wavelet Mutation, (UNDXBXover+WM),

and RCGA with Unimodal Normal Distribution and Blend crossover and Non-Uniform Mutation

(UNDXBXover+NUM) are used to test the benchmark test functions.

 11

C. Experiment results

1. Unimodel Functions

 Functions 1f to 6f are unimodal functions. The experiment results in terms of the mean

cost value, best cost value, standard deviation, and the t-test value for 1f to 6f are tabulated in

Table. I. The comparison between different genetic operations on 1f to 6f is shown in Fig. 6. The

t-test is a statistical method to evaluate the significant difference between two algorithms. The t-

value will be negative if the first algorithm is better than the second, and positive if it is poorer.

When the t-value is smaller than −1.645 (degree of freedom = 49), there is a significant difference

between the two algorithms with a 95% confidence level. Function 1f is a sphere model which is

probably the most widely used test function. It is smooth and symmetric. The performance on this

function is a measure of the convergence rate of a searching algorithm. For 1f , the results in terms

of the mean and the best cost value of ABX with WM or NUM are better than those of the

corresponding UNDXBXover. Comparing ABX with WM to UNDXBXover with WM, the mean

cost value is 2.5 times better. A much smaller standard deviation is given by the ABX+WM, which

means the solution is more stable. Comparing the mutation operations WM and NUM, the

proposed WM is more effective than NUM in term of the cost value and standard deviation. Both

the solution quality and stability offered by WM are better than those offered by NUM. In addition,

the t value of −10.62 implies that the improved genetic operations (AveXover with WM) are better

than the conventional genetic operations (UNDXBXover with NUM). In Fig. 6, ABX with WM

displays a faster convergence rate than UNDXBXover with NUM thanks to its better searching

ability. It reaches approximately 0.01 in around 250 times of iteration, while it is about 3.0 for

UNDXBXover with NUM. Function 2f is a generalized Rosenbrock’s function which is strongly

non-separable and the optimum is located in a very narrow ridge. The tip of the ridge is very sharp,

and it runs around a parabola. Algorithms that are unable to discover good searching directions

will perform poorly in this problem. The proposed genetic operations (ABX with WM)

outperforms the UNDXBXover with NUM. The t value is −313.3. Although the best cost values

on using WM with different crossover operations are a bit worse than those on using NUM, the

mean value, standard deviation and convergence rate offered by WM are better. Function 3f is a

step function that is a representative of flat surfaces. Flat surfaces are obstacles for optimization

algorithms because they do not give any information about the search direction. Unless the

algorithm has a variable step size, it can get stuck in one of the flat surfaces. UNDXBXover

performs poorly for 3f because it mainly searches in a small local neighbourhood, but the flat

 12

surfaces do not give any searching direction for UNDXBXover. On the other hand, the proposed

ABX is good for 3f because it can generate longer jump than UNDXBXover. Comparing WM to

NUM with UNDXBXover, the former also gives a better solution. Function 4f is a quartic

function, which is a simple unimodal function padded with noise. The Gaussian noise causes the

algorithm never getting the same value at the same point. Many algorithms that do not do well in

this function are due to the noisy data. In this function, the mean cost value, best cost value,

standard deviation and the convergence rate brought by the proposed ABX and WM are

significantly better than the conventional genetic operations. Function 5f is the Schwefel’s

problem 2.21, function 6f is the Schwefel’s problem 2.22 and function 7f is the Eason’s function.

In these problems, the performance on using the proposed crossover ABX and mutation WM is

better than that on using the UNDXBXover and NUM. The rapid convergence of the proposed

genetic operations shown in Fig. 6 supports our argument. In short, the proposed genetic

operations (ABX and WM) are good to tackle unimodal functions/problems when compared with

the conventional genetic operations (UNDXBXover and NUM). Both the solution quality and

stability are satisfactory.

2. Multimodel functions with a few local minima

 Functions 8f to 13f are multimodal functions with only a few local minima. The

experimental results for 8f to 13f are tabulated in Table II. Fig. 7 shows the average values for 8f

to 13f . Among these functions, five of them (8f , 10f - 13f) do not show statistically significant

differences for different genetic operations. They all reach or get near to the global optima. For the

function 9f , we obtain statistically different results from the proposed genetic operations and the

conventional genetic operations. The proposed ABX performs better than the UNDXBXover in

terms of the mean, best value, standard deviation and the convergence rate. In addition, the results

offered by WM are better than those by NUM in terms of the mean and the best cost values.

Furthermore, WM gives a faster convergence rate.

3. Multimodel functions with many local minima

 Functions 14f to 18f are multimodal functions with many local minima, and the dimension

of each function is comparatively larger than that of 8f to 13f . The dimension of these functions is

30. The experimental results for 14f to 18f are tabulated in Table III. The comparison between

different genetic operations is shown in Fig. 8. It can be seen from Table III that the mean results

and the best results offered by the proposed genetic operations (ABX and WM) are better than

 13

those offered by the conventional genetic operations (UNDXBXover and NUM). Also, they have

smaller standard deviations. Therefore, in terms of the solution quality and stability, the proposed

genetic operations are better than the conventional operations. In addition, the t-test value of all

functions is smaller than −1.645. Therefore, the proposed genetic operations are significantly better

than the conventional operations for solving the optimization problems. From Fig. 8, we can see

that the convergence rate offered by the proposed genetic operations is better than that offered by

the conventional genetic operations.

D. The searching ability of wavelet mutation

In this section, we give an analysis based on experimental results to illustrate that the

searching ability of WM is better than that of NUM. The experimental settings are the same as

before, except the probability of crossover is set at 0 and the probability of mutation is set at 1. By

using this setting, no chromosomes will undergo the crossover operation, and all genes in the

population will mutate under the mutation operation. Hence, the searching ability of the mutation

operation can be evaluated. The experimental results on using WM and NUM for 1f to 18f (except

f3 and f7) without crossover operation are summarized in Table IV. The comparison between WM

and NUM is given in Fig. 9 and Fig. 10. Function f3 and f7 are not included in this experiment

because they do not perform well with mutation operation only. As seen from Table IV, the

average performance of WM is better than NUM. WM gives smaller standard deviations of results

for all test functions than NUM, and hence the solution stability offered by WM is better. From Fig.

9 and Fig. 10, the convergence of WM is found faster than that of NUM. In conclusion, the

searching ability of WM is better than NUM.

E. Sensitivity of the parameter for wavelet mutation

 The mean cost values offered by WM using different shape parameter ζ for all test

functions are tabulated in Table V. As can be seen from the table, all functions are tested by using

ζ =0.2, ζ =0.5, ζ =1, ζ =2, and ζ =5. If the optimization problem needs a more significant

mutation to reach the optimal point, a smaller ζ should be given. Conversely, if the RCGA needs

to perform the fine-tuning faster, a larger ζ should be used. For example, f1 is a sphere model

which is smooth and symmetric. Searching algorithms are fast to jump to the area near the global

optimum and then perform fine-tuning. Therefore, a larger ζ is set (ζ =5) so that the RCGA will

go to perform fine-tuning faster. On the other hand, ζ is set as 0.2 for f13 when the mutation

operation is playing a significant role at the later stage. In some cases, ζ ’s value is not very

critical, e.g. f3 and f11. For f3, the mean cost value for different ζ is the same. We say that the best

 14

performance is obtained when ζ =0.5 because the standard deviation of the RCGA for ζ =0.5 is the

smallest. However, in some cases, the parameter ζ is so sensitive as to affect the performance of

the searching, e.g. f1 and f16. In conclusion, no formal method is available to choose the

parameterζ ; it depends on the characteristics of the optimization problems.

F. Sensitivity of the initial range of variables

 Additional experiments are carried out to test the sensitivity of the initial range of the

variables to the RCGA with the improved genetic operations. The settings of these experiments are

exactly the same as before (section III B). The experiment results for f4 are tabulated in Table VI.

Fig. 11 shows the results for different genetic operations on f4. The initial population is generated

uniformly at random in the ranges of 12.556.2 ≤≤− ix (twice the original range), 8.124.6 ≤≤− ix

(5 times of the original range), 6.258.12 ≤≤− ix (10 times of the original range), and

2.516.25 ≤≤− ix (20 times of the original range), making the average distance to the global

optimum increasingly large. The enlarged searching space is expected to make the problem more

difficult to solve. As can be seen from the table and the figures, the mean cost values offered by

the proposed genetic operations are better than those by the conventional genetic operations. From

Fig. 11, ABX and WM offer faster convergence than UNDXBXover and NUM. In addition, ABX

and WM give smaller standard deviation for all initial ranges than UNDXBXover and NUM.

Hence, the solution quality is more stable. Two more test functions are then used to test the

sensitivity to the initial range of variables. The experiment results for f7 and f16 are tabulated in

Table VII to VIII respectively. Fig. 12 and Fig. 13 show the results for different genetic operations

on f7 and f16 respectively. In these tables and figures, the results of the improved genetic operations

in terms of the mean cost value, convergence rate, and standard deviation are better than those of

the conventional algorithms.

IV. APPLICATION EXAMPLES

 Application examples on economic load dispatch and tuning of associative memory are

given in this section.

A. Economic load dispatch

In a power system, minimizing the operation cost is important. Economic load dispatch

(ELD) is a method to schedule power generator outputs with respect to the load demands, and to

operate a power system economically. The input-output characteristics of modern generators are

 15

nonlinear by nature because of the valve-point loadings and rate limits. The problem of ELD is

multimodal, discontinuous and highly nonlinear. RCGAs had been employed to solve the ELD

problems [2, 27].

1. Mathematic modelling of economic load dispatch with valve-point loading

The economic load dispatch with valve-point loading problem can be formulated into the

following objective function:

()∑
=

n

i
Li i

PCMin
1

, (21)

where ()
iLi PC is the operation fuel cost of generator i, and n denotes the number of generators. The

problem is subject to a balance constraint and generating capacity constraints as follows:

∑
=

−=
n

i
LossL PPD

i
1

, (22)

max,min, iii LLL PPP ≤≤ , i = 1, 2, …, n. (23)

where D is the load demand,
iLP is the output power of the i-th generator, PLoss is the transmission

loss,
max,iLP and

min,iLP are the maximum and minimum output powers of the i-th generator

respectively. The operation fuel cost function with valve-point loadings of the generators is given

by,

() ()()
iiiii LLiiiLiLiLi PPfecPbPaPC −××+++=

min,
sin2 , (24)

where ia , ib , and ic are coefficients of the cost curve of the i-th generator, ie and if are

coefficients of the valve-point loadings. (The generating units with multivalve steam turbines

exhibit a great variation in the fuel-cost functions. The valve-point effects introduce ripples in the

heat-rate curves.)

RCGA can be used to solve the economic load dispatch problem. The chromosomes p is

defined as follows:

[]
1321 −

=
nLLLL PPPP p , (25)

From (22), we have,

∑ +−=
−

=

1

1

n

i
LossLL PPDP

in
. (26)

In this paper, the power loss is not considered. Therefore,

∑−=
−

=

1

1

n

i
LL in

PDP . (27)

 16

To ensure
nLP falls within the range []

max,min,
,

nn LL PP , the following conditions are considered:

if
()







=

−+=
>

max,

max,11

max,

nn

nn

nn
LL

LLLNewL

LL PP

PPPP
PP , (28)

if
()







=

−−=
<

min,

min,11

min,

nn

nn

nn
LL

LLLNewL

LL PP

PPPP
PP . (29)

It should be noted from (28) and (29) that if the value of
1LP is also outside the constraint

boundaries. The exceeding portion of the power will further be shared by other generators in order

to make sure that all generators’ output power is within the safety range. Referring to (21), the

fitness function for this ELD problem is defined as:

fitness = ()∑
=

−
n

i
Li i

PC
1

, (30)

where ()
iLi PC is defined in (24). The objective is to maximize the fitness function (30).

2. Case Study

The RCGA with the proposed genetic operations and the RCGA with the conventional

genetic operations are applied to a 40-generator system, which was adopted as an example in [2].

The system is a very large one with nonlinearities. The data of the units for this example with

valve-point loadings are tabulated in Table IX. The load demand (D) is 10500MW. For

comparison purpose, RCGA with ABX and WM, RCGA with ABX and NUM, RCGA with

UNDXBXover and WM, and RCGA with UNDXBXover and NUM are used to solve the ELD

problem. The population size used for all RCGAs is 100. All the simulation results are averaged

ones out of 50 runs. For the proposed ABX, the parameters wa and wb are set at 0.5. For the

UNDXBXover, the parameters β , µ , and α are set at 1, 0.35, and 0.336 respectively. For the

proposed mutation WM, the parameter ζ is set at 1. For the NUM, the shape parameter is set at 1.

The probabilities of crossover and mutation for all approaches are set at 0.6 by trial and error. For

all approaches, the number of iteration is 1000. The statistical results are shown in Table X and Fig.

14. It can be seen that the RCGA with the proposed ABX and WM performs better than other

RCGAs with conventional genetic operations (UNDXBXover and NUM) in terms of cost, t value,

and standard deviation. Both the solution quality and stability are good. The average cost is

$122811.41 and the best (minimum) cost is $121915.93. The optimal dispatch solution is

summarized in Table XI.

B. Tuning associative memory

 17

 Learning or training is one of the important issues of neural networks. The learning process

aims to find a set of optimal network parameters. The widely-used gradient methods [28, 31], such

as MRI, MRII, MRIII rules, and back-propagation techniques, adjust the network parameters based

on the gradient information of the fitness function in order to reduce the mean square error over all

input patterns. One major weakness of the gradient methods is that the derivative information of

the fitness function has to be known, meaning that the fitness function has to be continuous. Also,

the learning process is easily trapped in a local optimum, especially when the problems are

multimodal and the learning rules are network structure dependent. To tackle this problem, the

real-code genetic algorithm (RCGA) [5, 19, 25], was proposed for the optimization problem in a

large, complex, non-differentiable and multimodal domain [29]. RCGA is a good training

algorithm for neural or neural-fuzzy networks [15-16]. The same RCGA can be used to train many

different networks regardless of whether they are feed-forward one, recurrent one, associative

memory or of other structure types. This generally saves a lot of human efforts in developing

training algorithms for different types of networks.

 Associative memory is one type of neural network that maps its input vector into itself.

Thus, the desired output vector is its input vector. 50 input vectors are used for the learning. The

function of the associative memory is given by:

() ()∑
=

=
10

1j
jjkk tzwty , k = 1, 2, …, 10 (31)

where z(t) is the input vector and wjk is the weight of the link between the i-th input and the k-th

output. The objective is to minimize the mean square error (MSE), which is defined as follows:

MSE
() ()()

5010

10

1

50

1

2

×

−
=
∑∑
= =k t

kk tytz
 (32)

The initial range of the weight wjk is from −2 to 2. For comparison purpose, RCGA with ABX and

WM, RCGA with ABX and NUM, RCGA with UNDXBXover and WM, and RCGA with

UNDXBXover and NUM are used to solve this problem. The population size used for all RCGAs

is 100. All the simulation results are averaged ones out of 50 runs. For the proposed ABX, the

parameters wa and wb are set at 0.5 and 1 respectively. For the UNDXBXover, the parameters β ,

µ , and α are set at 1, 0.35, and 0.336 respectively. For the proposed mutation WM, the parameter

ζ is set at 2. For the NUM, the shape parameter is set at 2. The probabilities of crossover and

mutation for all approaches are set at 0.8 and 0.2 by trial and error. For all approaches, the number

of iteration is 2000. The experimental results are tabulated in Table XII, and the comparison

between different genetic operations is shown in Fig. 15. As can be seen from the table, the mean

and the best cost value offered by ABX and WM are better. In addition, the smaller standard

 18

deviation implies a more stable solution. The t-value for this function is −24.67, which is a

relatively large figure. In short, the proposed RCGA is good for tuning associative memory.

V. CONCLUSION

An RCGA with improved genetic operations (average-bound crossover and wavelet

mutation) has been presented. By using the proposed crossover operation, the offspring spreads

over the domain so that the probability of reproducing good offspring is increased. In the proposed

mutation operation, the wavelet theory is applied. Thanks to the properties of the wavelet, both the

solution quality and stability are improved. A suit of benchmark test functions has been used to

illustrate the merits of the improved genetic operations. Examples on economic load dispatch and

tuning associative memory have also been given.

ACKNOWLEDGEMENT

The work described in this paper was substantially supported by a grant from the Hong

Kong Polytechnic University (PhD Student Account Code: RG9T).

REFERENCES

[1] Caponetto R., Fortuna L., Nunnari G., Occhipinti L., and Xibilia M.G., “Soft computing for

greenhouse climate control,” IEEE Trans., Fuzzy Systems, vol. 8, no. 6, pp. 753-760, Dec. 2000.

[2] Chen P.H. and Chang H.C., “Large-scale economic dispatch by genetic algorithm,” IEEE Trans.

Power Syst., vol. 10, pp. 117-124, Feb. 1995.

[3] Daubechies I., “The wavelet transform, time-frequency localization and signal analysis,” IEEE

Trans. Information Theory, vol. 36, no.5, pp. 961-1005, Sep. 1990.

[4] Daubechies I., Ten lectures on wavelets. Philadelphia, PA: Society for Industrical and Applied

Mathematics, 1992.

[5] Davis L., Handbook of genetic algorithms. NY: Van Nostrand Reinhold, 1991.

[6] De Jong K.A., “An analysis of the behavior of a class of genetic adaptive systems,” Ph.D. Thesis,

University of Michigan, Ann Arbor, MI, 1975.

[7] Eshelman L.J. and Schaffer J.D., “Real-coded genetic algorithms and interval-schemata,”

Foundations of Genetic Algorithms 2, pp. 187-202, 1993.

[8] Goldstein A.A. and Price I.F., “On descent from local minima,” Math. Comput., vol. 25, no. 115,

1971.

[9] Holland J.H., Adaptation in natural and artificial systems. University of Michigan Press, Ann

Arbor, MI, 1975.

 19

[10] Joines J. and Houck C., “On the use of non-stationary penalty functions to solve constrained

optimization problems with genetic algorithm,” in Proc. 1994 Int. Symp. Evolutionary Computation,

Ordando, 1994, pp. 579-584.

[11] Juidette H. and Youlal H., “Fuzzy dynamic path planning using genetic algorithms,” Electronics

Letters, vol. 36, no. 4, pp. 374-376, Feb. 2000.

[12] Kita H., Ono I., and Kobayashi S., “Theoretical analysis of the unimodal normal distribution

crossover for real-coded genetic algorithms,” in Proc. of the Congress on Evolutionary

Computational (CEC1998), World Congress on Computational Intelligence (WCCI 1998), May 4-9,

1998, pp. 529-534.

[13] Lam H.K., Leung F.H.F., and Tam P.K.S., “Design and stability analysis of fuzzy model based

nonlinear controller for nonlinear systems using genetic algorithm,” IEEE Trans. Syst., Man and

Cybern, Part B: Cybernetics, vol. 33, no. 2, pp. 250-257, Feb. 2003.

[14] Leung F.H.F., Lam H.K., Ling S.H., and Tam P.K.S., "Optimal and stable fuzzy controllers for

nonlinear systems using an improved genetic algorithm," IEEE Trans. Industrial Electronics, vol. 51,

no. 1, pp.172-182, Feb. 2004.

[15] Leung F.H.F, Lam H.K., Ling S.H., and Tam P.K.S., "Tuning of the structure and parameters of

neural network using an improved genetic algorithm," IEEE Trans. Neural Networks, vol.14, no. 1,

pp.79-88, Jan. 2003.

[16] Ling S.H., Leung F.H.F, Lam H.K., and Tam P.K.S., "Short-term electric load forecasting based on a

neural fuzzy network," IEEE Trans. Industrial Electronics, vol. 50, no. 6, pp.1305-1316, Dec. 2003.

[17] Liu B.D., Chen C.Y., and Tsao J.Y., “Design of adaptive fuzzy logic controller based on linguistic-

hedge concepts and genetic algorithms,” IEEE Trans. Systems, Man and Cybernetics, Part B, vol. 31

no. 1, pp. 32-53, Feb. 2001.

[18] Mallat S.G., “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE

Trans. Pattern analysis and machine intelligence, vol. 11, no.7, pp. 674-693, Jul. 1989.

[19] Michalewicz Z., Genetic Algorithm + Data Structures = Evolution Programs, 2nd extended ed.

Springer-Verlag, 1994.

[20] Mühlenkein H. and Schlierkamp-Voosen D., “Predictive models for the breeder genetic algorithm I.

continuous parameter optimization,” Evolutionary Computation, vol.1, no.1, pp. 25-49, 1993.

[21] Neubauer A., “A theoretical analysis of the non-uniform mutation operator for the modified genetic

algorithm,” in Proc. IEEE Int. Conf. Evolutionary Computation, 1997, Indianapolis, pp. 93-96.

[22] Ono I. and Kobayashi S., “A real-coded genetic algorithm for function optimization using unimodal

normal distribution crossover,” in Proc. 7th ICGA, 1997, pp. 246-253.

[23] Pham D.T. and Karaboga D., Intelligent Optimization Techniques, Genetic Algorithms, Tabu Search,

Simulated Annealing and Neural Networks. Springer, 2000.

[24] Schwefel H.P., Numerical optimization of computer models. Chichester, Wiley & Sons, 1981.

[25] Srinivas M.and Patnaik L.M., "Genetic algorithms: a survey," IEEE Computer, vol. 27, issue 6, pp.

17-26, June 1994.

 20

[26] Takahashi M. and Kita H., “A crossover operator using independent component analysis for real-

coded genetic algorithms,” in Proc. of the Congress on Evolutionary Computation, (CEC2001),

2001, pp.643-638.

[27] Walter D.C. and Sheble G.B., “Genetic algorithm solution of economic dispatch with valve point

loading,” IEEE Trans. Power Syst., vol. 8, pp.1325-1332, Aug. 1993.

[28] Widrow B. and Lehr M.A., "30 years of adaptive neural networks: Perceptron, madaline, and

backpropagation," Proceedings of the IEEE, vol. 78, no. 9, pp. 1415-1442, Sept. 1990.

[29] Yao X., “Evolving artificial networks,” Proceedings of the IEEE, vol. 87, no. 7, pp. 1423-1447,

1999.

[30] Yao X. and Liu Y., “Evolutionary programming made faster,” IEEE Trans. Evolutionary

Computation, vol. 3, no. 2, pp. 82-102, July 1999.

[31] Zurada J.M., Introduction to Artificial Neural Systems. West Info Access, 1992.

Fig. 1. RCGA process.

offspring
parent

1p

ip
i
cs

O

2p
1=aw

1
cs

O 2
cs

Ominpara maxpara

75.0=aw

5.0=aw

25.0=aw

0=aw

1=bw

75.0=bw

5.0=bw

25.0=bw

0=bw

)0()10(
)1()4()5.2(

1p 2p1
cs

O 2
cs

Ominpara maxpara
)0()10()1()4()5.2()13.3(

1p 2p1
cs

O 2
cs

Ominpara
maxpara

)0()10(
)1()4()5.2()75.3(

1p 2p1
cs

O 2
cs

Ominpara maxpara

)0()10(
)1()4()5.2()38.4(

1p 2p1
cs

O 2
cs

Ominpara maxpara

)0()10()1()4()5.2()5(

1p 2p3
csO 4

csOminpara maxpara
)0()10()1()4(

1p 2pminpara
maxpara

)0()10()1()4()75.0()5.5(

1p 2pminpara
maxpara

)0()10()1()4()5.0()7(

1p 2pminpara maxpara
)0()10(

)1()4()25.0(

1p 2pminpara
maxpara

)0()10(
)1()4()0()10(

3
csO

4
csO

3
csO 4

csO

)5.8(

4
csO3

csO

3
csO 4

csO

Fig. 2. Parents and offspring under different values of the weights aw and bw (aw , bw = 0, 0.25, 0.5, 0.75 and 1.)

Procedure of the RCGA
begin

τ→0 // τ : iteration number
Initialize P(τ) // P(τ) : population for iteration τ

 Evaluate f(P(τ)) // f(P(τ)) :fitness function
while (not termination condition) do
 begin
 τ→τ+1
 Select 2 parents p1 and p2 from P(τ−1)
 Perform crossover operation with pc

Four chromosomes will be generated

 Select the best two offspring in terms of the fitness value
 Perform mutation operation with pm
 Reproduce a new P(τ)
 Evaluate f(P(τ))
 end
end

 21

-3 -2 -1 0 1 2 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
Fig. 3. The Morlet Wavelet.

-2 0 2
-1

-0.5

0

0.5

1
a=1

-2 0 2
-1

-0.5

0

0.5

1
a=5

-2 0 2
-1

-0.5

0

0.5

1
a=10

-2 0 2
-1

-0.5

0

0.5

1
a=50

-2 0 2
-1

-0.5

0

0.5

1
a=100

-2 0 2
-1

-0.5

0

0.5

1
a=500

-2 0 2
-1

-0.5

0

0.5

1
a=1000

-2 0 2
-1

-0.5

0

0.5

1
a=10000

Fig. 4. A Morlet wavelet dilated by different values of the parameter a (x-axis: x, y-axis:)(0, xaψ .)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

di
la

tio
n

pa
ra

m
et

er

5

2

1

0.5

0.2

a

Fig. 5. The effect of the shape parameterζ to a with respected to T
τ .

()xψ

T
τ

=ζ

=ζ

=ζ

=ζ

=ζ

 22

0 50 100 150 200 250 300 350 400 450 500
10

-4

10
-2

10
0

10
2

10
4

10
6

iteration number

fit
ne

ss
 v

al
ue

ABX+WM

ABX+NUM

UNDXBXover+NUM

UNDXBXover+WM

f1

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

iteration number

fit
ne

ss
 v

al
ue

ABX+WM

ABX+NUM

UNDXBXover+WM

UNDXBXover+NUM

f2

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+NUM

UNDXXover+WM

ABX+NUM

ABX+WM

f3

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+NUM

ABX+NUM

UNDXBXover+WM

ABX+WM

f4

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

10
1

10
2

iteration number

fit
ne

ss
 v

al
ue

UNDXXover+WM

ABX+WM

ABX+NUM

UNDXBXover+NUM

f5

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

10
2

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+WM

UNDXXover+NUM

ABX+WM

ABX+NUM

f6

0 10 20 30 40 50 60 70 80 90 100
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+WM

UNDXBXover+NUM

ABX+WM

ABX+NUM

f7

Fig. 6. Comparisons between different genetic operations for f1 to f7. All results are averaged ones over 50 runs.

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

 23

0 5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+NUM

UNDXBXover+WM

ABX+WM

ABX+NUM

f8

0 20 40 60 80 100 120 140 160 180 200
10

-4

10
-3

10
-2

10
-1

10
0

iteration number

fit
ne

ss
 v

al
ue

ABX+WM

ABX+NUM UNDXBXover+WM

UNDXBXover+NUM

f9

0 2 4 6 8 10 12 14 16 18 20
-1

-0.995

-0.99

-0.985

-0.98

-0.975

-0.97

-0.965

-0.96

-0.955

-0.95

iteration number

fit
ne

ss
 v

al
ue

ABX+NUM

ABX+WM

UNDXBXover+WM

UNDXBXover+NUM

f10

0 5 10 15 20 25 30 35 40 45 50
-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

iteration number

fit
ne

ss
 v

al
ue

ABX+WM
ABX+NUM

UNDXBXover+NUM
UNDXBXover+WM

f11

0 10 20 30 40 50 60 70 80 90 100
-3.9

-3.85

-3.8

-3.75

-3.7

-3.65

-3.6

-3.55

-3.5

-3.45

-3.4

iteration number

fit
ne

ss
 v

al
ue

ABX+WM
ABX+NUM
UNDXBXover+WM
UNDXBXover+NUM

f12

0 10 20 30 40 50 60 70 80 90 100
-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

iteration number

fit
ne

ss
 v

al
ue

ABX+WM
ABX+NUM
UNDXBXover+WM
UNDXBXover+NUM

f13

Fig. 7. Comparison between different genetic operations for f8 to f13. All results are averaged ones over 50 runs.

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

 24

0 50 100 150 200 250 300 350 400 450 500
10

-5

10
0

10
5

10
10

iteration number

fit
ne

ss
 v

al
ue

ABX+WM

ABX+NUM

UNDXBXover+WM

UNDXBXover+NUM

f14

0 100 200 300 400 500 600 700 800
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+NUM

UNDXBXover+WM

ABX+WM

ABX+NUM

f15

0 50 100 150 200 250 300 350 400 450 500

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+NUM

UNDXBXover+WM

ABX+WM
ABX+NUM

f16

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

10
1

10
2

iteration number

fit
ne

ss
 v

al
ue

ABX+WM

ABX+NUM

UNDXBXover+NUM

UNDXBXover+WM

f17

0 50 100 150 200 250 300 350 400 450 500
-14000

-12000

-10000

-8000

-6000

-4000

-2000

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+NUM

UNDXBXover+WM

AveBXover+WM

AveBXover+NUM

f18

Fig. 8. Comparison between different genetic operations for f14 to f18. All results are averaged ones over 50 runs.

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

ABX+NUM

ABX+WM

co
st

 v
al

ue

 25

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

iteration number

fit
ne

ss
 v

al
ue

WM

NUM

f1

0 50 100 150 200 250 300 350 400 450 500

10
2

10
3

10
4

iteration number

fit
ne

ss
 v

al
ue

WM

NUM

f2

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

10
2

10
3

iteration number

fit
ne

ss
 v

al
ue

NUM

WM

f4

0 100 200 300 400 500 600 700 800 900 1000
10

-1

10
0

10
1

10
2

iteration number

fit
ne

ss
 v

al
ue

NUM

WM

f5

0 50 100 150 200 250 300 350 400 450 500

10
-2

10
0

10
2

10
4

10
6

10
8

iteration number

fit
ne

ss
 v

al
ue

WM

NUM

f6

0 20 40 60 80 100 120 140 160 180 200

10
0

10
1

10
2

iteration number

fit
ne

ss
 v

al
ue

NUM

WM

f8

0 20 40 60 80 100 120 140 160 180 200
10

-2

10
-1

iteration number

fit
ne

ss
 v

al
ue

WM

NUM

f9

2 4 6 8 10 12 14 16 18 20
-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

iteration number

fit
ne

ss
 v

al
ue

WM

NUM

f10

Fig. 9. Comparison between WM and NUM for f1 to f10 (except f3 and f7) without the crossover operation. All results

are averaged ones over 50 runs.

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

 26

0 5 10 15 20 25 30 35 40 45 50
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

iteration number

fit
ne

ss
 v

al
ue

WM

NUM

f11

0 20 40 60 80 100 120 140 160 180 200
-3.9

-3.85

-3.8

-3.75

-3.7

-3.65

-3.6

-3.55

-3.5

-3.45

-3.4

iteration number

fit
ne

ss
 v

al
ue

WM

NUM

f12

0 20 40 60 80 100 120 140 160 180 200
-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

iteration number

fit
ne

ss
 v

al
ue

NUM

WM

f13

0 50 100 150 200 250 300 350 400 450 500
10

-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

iteration number

fit
ne

ss
 v

al
ue NUM

WM

f14

0 100 200 300 400 500 600 700 800
10

-1

10
0

10
1

10
2

10
3

iteration number

fit
ne

ss
 v

al
ue

NUM

WM

f15

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

iteration number

fit
ne

ss
 v

al
ue NUM

WM

f16

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

10
2

iteration number

fit
ne

ss
 v

al
ue

NUM

WM

f17

0 50 100 150 200 250 300 350 400 450 500
-11000

-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

iteration number

fit
ne

ss
 v

al
ue

NUM

WM

f18

Fig. 10. Comparison between WM and NUM for f11 to f18 without the crossover operation. All results are averaged

ones over 50 runs.

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

 27

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

10
1

10
2

iteration number

fit
ne

ss
 v

al
ue

ABX+WM

ABX+NUM
UNDXBXover+NUM

UNDXBXover+WM

(a)

0 50 100 150 200 250 300 350 400 450 500

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+WM

UNDXBXover+NUM

ABX+WM

ABX+NUM

(b)

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

iteration number

fit
ne

ss
 v

al
ue UNDXBXover+WM

UNDXBXover+NUM

ABXr+NUM

ABX+WM

(c)

0 50 100 150 200 250 300 350 400 450 500

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

iteration number

fit
ne

ss
 v

al
ue UNDXBXover+WM

UNDXBXover+NUM

ABX+NUM

ABX+WM

(d)

Fig. 11. Comparison between different genetic operations for f4 with different initial ranges of variables. All results

are averaged over 50 runs.

0 10 20 30 40 50 60 70 80 90 100
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+NUM

UNDXBXover+WM

ABX+NUM ABX+WM

(a)

0 10 20 30 40 50 60 70 80 90 100
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+NUM

UNDXBXover+WM

ABX+WM
ABX+NUM

(b)

0 10 20 30 40 50 60 70 80 90 100
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

iteration number

fit
ne

ss
 v

al
ue

ABX+WM
ABX+NUM

UNDXBXover+WM
UNDXBXover+NUM

(c)

0 10 20 30 40 50 60 70 80 90 100

-0.5

-0.4

-0.3

-0.2

-0.1

0

iteration number

fit
ne

ss
 v

al
ue

ABX+WM

ABX+NUM

UNDXBXover+WM

UNDXBXover+NUM

(d)

Fig. 12. Comparison between different genetic operations for f7 with different initial ranges of variables. All results

are averaged ones over 50 runs.

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

 28

0 50 100 150 200 250 300 350 400 450 500
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

iteration number

fit
ne

ss
 v

al
ue

ABX+WM

UNDXBXover+WM

ABX+NUM

UNDXBXover+NUM

(a)

0 50 100 150 200 250 300 350 400 450 500
10

-4

10
-2

10
0

10
2

10
4

10
6

iteration number

fit
ne

ss
 v

al
ue

ABX+WM ABX+NUM

UNDXBXover+NUM

UNDXBXover+WM

(b)

0 50 100 150 200 250 300 350 400 450 500
10

-4

10
-2

10
0

10
2

10
4

10
6

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+WM

UNDXBXover+NUM

ABX+WM

ABX+NUM

(c)

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+WM

UNDXBXover+NUM

ABX+WM

ABX+NUM

(d)

Fig. 13. Comparison between different genetic operations for f16 with different initial ranges of vriables. All results are

averaged ones over 50 runs.

0 100 200 300 400 500 600 700 800 900 1000
1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.3
x 10

5

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+NUM UNDXBXover+WM

ABX+NUM

ABX+WM

Fig. 14. Comparisons between different genetic operations for ELD. All results are averaged ones over 50 runs.

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

co
st

 v
al

ue

 29

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-4

10
-3

10
-2

10
-1

iteration number

fit
ne

ss
 v

al
ue

AveBXover+WM

AveBXover+NUM

UNDXBXover+WM

UNDXBXover+NUM

Fig. 15. Comparisons between different genetic operations for tuning associative memory. All results are averaged

ones over 50 runs.

ABX+WM

ABX+NUM

co
st

 v
al

ue

 30

1f (410−×), number of iteration: 500

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 1.6139 4.1263 4.0840 12.614
Best 0.00048 0.0205 0.6095 4.5084

Std Dev 2.9147 5.1841 4.0513 6.7184
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −10.62

2f (210−×), number of iteration: 500

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 0.24781 0.38064 2768.9 2785.1
Best 0.02396 0.01624 2660.0 2638.0

Std Dev 0.16678 0.35854 59.999 62.845
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −313.3

3f (010×), number of iteration: 200

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 0 0 10.180 12.640
Best 0 0 1.0000 3.0000

Std Dev 0 0 5.0130 5.6524
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −15.81

4f (310−×), number of iteration: 500

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 1.5503 2.7952 67.758 87.028
Best 0.2132 0.4589 15.052 20.588

Std Dev 1.0533 2.1315 76.725 62.560
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −9.66

5f (210−×), number of iteration: 500

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 0.5596 0.6207 654.10 747.30
Best 0.0072 0.0503 201.66 214.20

Std Dev 0.4483 0.5905 378.04 510.33
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −10.35

6f (210−×), number of iteration: 500

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 1.4924 1.6115 7.9237 14.158
Best 0.1194 0.0769 0.5154 0.8621

Std Dev 0.8047 1.2105 6.5454 11.366
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −7.86

7f (010×), number of iteration: 100

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean −0.9721 −0.9549 −0.8679 −0.8365
Best −1.0000 −0.9999 −1.0000 −1.0000

Std Dev 0.0530 0.1198 0.3277 0.3689
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −2.57

Table I. Comparison between different genetic operations for f1 to f7. All results are averaged ones over 50 runs.

 31

8f (010×), number of iteration: 50

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 0.9980 0.9980 0.9980 0.9980

Best 0.9980 0.9980 0.9980 0.9980

Std Dev 7101.0277 −× 5103308.1 −× 7103370.1 −× 5105832.2 −×
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = N/A

9f (410−×), number of iteration: 200

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 5.9125 6.3380 17.863 29.451
Best 3.1002 3.3428 3.3147 5.1236

Std Dev 2.7085 2.6445 36.986 5.5539
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −26.94

10f (010×), number of iteration: 20

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean −1 −1 −1 −1
Best −1 −1 −1 −1

Std Dev 0 0 4102770.3 −× 4103212.5 −×
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = N/A

11f (010×), number of iteration: 50

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean −1.0316 −1.0315 −1.0316 −1.0153

Best −1.0316 −1.0316 −1.0316 −1.0316

Std Dev 5101.5724 −× 5105767.1 −× 4107364.7 −× 1101542.1 −×
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −1.00

12f (010×), number of iteration: 100

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean −3.8628 −3.8627 −3.8591 −3.8628
Best −3.8628 −3.8628 −3.8628 −3.8628

Std Dev 4102.9850 −× 3100403.2 −× 1100288.1 −× 31008581 −×.
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = N/A

13f (010×), number of iteration: 100

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean −3.3051 −3.3061 −3.2837 −3.2905
Best −3.3220 −3.3220 −3.3220 −3.3220

Std Dev 2101617.4 −× 2104.0406 −× 2106158.5 −× 2103560.5 −×
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −1.55

Table II. Comparison between different genetic operations on f8 to f13. All results are averaged ones over 50 runs.

 32

14f (410−×), number of iteration: 500

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 0.6791 14.340 10.181 38.643
Best 0.0155 0.0413 0.7273 0.3654

Std Dev 1.1437 36.254 22.759 51.452
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −5.22

15f (310−×), number of iteration: 800

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 2.8729 5.6010 283.16 616.92
Best 0.1817 0.2907 0.8134 0.6561

Std Dev 2.4540 5.5464 534.34 940.46
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −4.62

16f (510−×), number of iteration: 500

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 6.3267 109.63 1174.3 1797.4
Best 0.1832 5.0020 1.7688 6.0472

Std Dev 6.1773 81.434 5773.2 6998.2
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −1.81

17f (310−×), number of iteration: 500

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 1.3444 1.7323 10.543 14.665
Best 0.0203 0.0655 5.2554 4.1783

Std Dev 1.7323 1.9284 4.0336 6.6873
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −13.63

18f (010×), number of iteration: 500

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean −12569.3 −12596.2 −10261.9 −10188.9
Best −12569.5 −12569.5 −11168.0 −11089.0

Std Dev 0.1520 0.2914 431.80 473.84
 t-test ([ABX+WM]−[UNDXBXover+NUM]) = −35.52

Table III. Comparison between different genetic operations for f14 to f18. All results are averaged ones over 50 runs.

 33

 Wavelet Mutation (WM) Non-Uniform Mutation (NUM)

Function
Number

of
iteration

Mean Best Std Dev Mean Best Std Dev t-test
 (WM-NUM)

f1 (310−×) 500 4.0356 1.0634 0.9161 40.071 12.832 19.287 −13.197

f2 (110×) 500 3.8008 0.4671 2.3051 5.9549 0.9366 3.2204 −3.8461

f4 (210−×) 500 5.2538 1.9215 1.8577 8.8118 2.9487 2.9853 −7.1553

f5 (110−×) 1000 2.5280 1.5811 0.5138 6.7490 3.4751 2.0596 −14.061

f6 (210−×) 500 2.2759 1.0900 0.6494 2.4184 1.4767 0.6972 −1.0576

f8 (010×) 200 0.9980 0.9980 7.3982 1110−× 0.9980 0.9980 2.9079 1010−× N/A

f9 (310−×) 200 9.3282 0.6078 9.6548 13.393 0.5910 17.639 −1.4294

f10 (010×) 20 −0.9861 −1.0000 0.0212 −0.9537 −1.0000 0.1283 −1.7618

f11 (010×) 50 −0.9627 −1.0316 0.2614 −0.9599 −1.0316 0.2239 −0.0575

f12 (010×) 200 −3.8583 −3.8628 0.0078 −3.8473 −3.8628 0.1093 −0.7098

f13 (010×) 200 −3.2791 −3.3220 0.0577 −3.2695 −3.3220 0.0597 −0.8176

f14 (310−×) 500 1.2887 0.3558 0.8485 6.3054 0.5732 5.5154 −6.3569

f15 (010×) 800 0.5777 0.1783 0.3784 7.4349 4.6367 1.4969 −31.404

f16 (310−×) 500 3.3964 0.6255 2.7778 6.3268 0.1243 41.201 −0.5018

f17 (210−×) 500 3.3688 2.1860 0.4944 4.6260 2.3877 1.0430 −7.7018

f18 (010×) 500 −10837.4 −11502.9 315.1 −9035.1 −10101.9 472.7 −8.7163

Table IV. Comparison between WM and NUM for f1 to f18 (except f3 and f7) without crossover operations. All results

are averaged ones over 50 runs.

Function
Number

of
iteration

2.0=ζ 5.0=ζ 0.1=ζ 0.2=ζ 0.5=ζ

f1 (
410−×) 500 92.259 32.283 10.997 7.9005 1.6139

f2 (210−×) 500 4.3312 2.1228 1.4416 0.9221 0.2478

f3 (010×) 200 0 0 0 0 0

f4 (310−×) 500 2.2760 2.0321 1.9075 1.5503 1.7121

f5 (210−×) 500 1.5283 1.4216 1.0127 0.5596 0.6012

f6 (210−×) 500 14.552 10.062 5.2128 2.1627 1.4924

f7(010×) 100 −0.7511 −0.9721 −0.9592 −0.9296 −0.8918

f8 (010×) 50 1.0065 0.9983 0.9980 0.9980 1.8193

f9 (
410−×) 200 7.4659 6.1928 6.3950 5.9125 6.4783

f10 (010×) 20 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000

f11 (010×) 50 −1.0300 −1.0314 −1.0316 −1.0316 −1.0316

f12 (010×) 100 −3.8627 −3.8627 −3.8302 −3.8509 −3.8471

f13 (010×) 100 −3.3051 −3.3026 −3.2868 −3.2639 −3.1642

f14 (
410−×) 500 0.6791 1.0792 3.2004 2.4721 7.8236

f15 (310−×) 800 42.220 10.684 5.2720 3.3008 2.8729

f16 (
510−×) 500 115.42 59.412 18.244 8.0794 6.3267

f17 (310−×) 500 12.798 3.8139 3.5067 2.1405 1.3444

f18 (510−×) 500 −12564.4 −12568.8 −12569.1 −12569.4 −12569.4

Table V. The mean cost values offered by wavelet mutation with different shape parameter ζ for function f1 to f18.

 34

4f (310−×), number of iteration: 500

Initial range: 12.556.2 ≤≤− ix

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 4.4350 5.4386 41.007 50.831
Best 0.2907 0.5751 17.663 23.658

Std Dev 3.2943 4.0096 14.109 14.128

Initial range: 8.124.6 ≤≤− ix

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 9.1618 10.376 68.112 96.057
Best 0.4297 0.3694 16.741 31.761

Std Dev 5.6406 8.2521 23.898 40.070

Initial range: 6.258.12 ≤≤− ix

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 23.982 30.784 113.54 154.85
Best 3.0393 0.8271 47.182 62.557

Std Dev 14.305 26.989 36.270 62.135

Initial range: 2.516.25 ≤≤− ix

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 59.699 60.358 182.00 241.12
Best 6.0383 5.3199 56.256 94.396

Std Dev 35.603 37.199 72.225 81.600

Table VI. Comparison between different operations for f4 with different initial ranges of variables. All results are

averaged ones over 50 runs.

 35

7f (010×), number of iteration: 100

Initial range: 600600 ≤≤− ix

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 0.7471 0.7062 0.6355 0.6227
Best 1.0000 1.0000 1.0000 1.0000

Std Dev 0.3417 0.3476 0.4820 0.4768

Initial range: 15001500 ≤≤− ix

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 0.7168 0.6338 0.4079 0.3968
Best 1.0000 1.0000 1.0000 1.0000

Std Dev 0.3669 0.3863 0.4899 0.4656

Initial range: 30003000 ≤≤− ix

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 0.5527 0.5451 0.2019 0.1626
Best 1.0000 1.0000 1.0000 1.0000

Std Dev 0.4206 0.4114 0.4030 0.3544

Initial range: 6000060000 ≤≤− ix

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 0.5353 0.1029 0.4533 0.0799
Best 1.0000 1.0000 1.0000 1.0000

Std Dev 0.4078 0.3027 0.4314 0.2737

Table VII. Comparison between different operations for f7 with different initial ranges of variables. All results are

averaged ones over 50 runs.

 36

16f (210−×), number of iteration: 500

Initial range: 12002400 ≤≤− ix

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 0.0837 4.7569 1.7523 5.9533
Best 0.0013 0.0996 0.0029 0.0043

Std Dev 0.2108 9.1365 6.9979 11.762

Initial range: 30006000 ≤≤− ix

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 0.0935 0.2158 1.1821 4.5950
Best 0.0174 0.0048 0.0011 0.0146

Std Dev 0.0871 0.2408 5.7730 10.320

Initial range: 600012000 ≤≤− ix

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 0.2869 0.7036 1.4933 7.5643
Best 0.0142 0.0351 0.0072 0.1285

Std Dev 0.4371 0.5949 6.5196 11.531

Initial range: 1200024000 ≤≤− ix

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
Mean 1.3310 3.9503 3.2419 2.4231
Best 0.0775 0.1872 0.0329 1.0387

Std Dev 1.3098 5.0784 8.9199 30.433

Table VIII. Comparison between different operations for f16 with different initial ranges of variables. All results are

averaged ones over 50 runs.

 37

Unit min,LP (MW) max,LP (MW) a b c e f

1 36 114 0.00690 6.73 94.705 100 100
2 36 114 0.00690 6.73 94.705 100 100
3 60 120 0.02028 7.07 309.54 100 100
4 80 190 0.00942 8.18 369.03 150 150
5 47 97 0.01142 5.35 148.89 120 120
6 68 140 0.01142 8.05 222.33 100 100
7 110 300 0.00357 8.03 287.71 200 200
8 135 300 0.00492 6.99 391.98 200 200
9 135 300 0.00573 6.60 455.76 200 200
10 130 300 0.00605 12.9 722.82 200 200
11 94 375 0.00515 12.9 635.20 200 200
12 94 375 0.00569 12.8 654.69 200 200
13 125 500 0.00421 12.5 913.40 300 300
14 125 500 0.00752 8.84 1760.4 300 300
15 125 500 0.00708 9.15 1728.3 300 300
16 125 500 0.00708 9.15 1728.3 300 300
17 220 500 0.00313 7.97 647.85 300 300
18 220 500 0.00313 7.95 649.69 300 300
19 242 550 0.00313 7.97 647.83 300 300
20 242 550 0.00313 7.97 647.81 300 300
21 254 550 0.00298 6.63 785.96 300 300
22 254 550 0.00298 6.63 785.96 300 300
23 254 550 0.00284 6.66 794.53 300 300
24 254 550 0.00284 6.66 794.53 300 300
25 254 550 0.00277 7.10 801.32 300 300
26 254 550 0.00277 7.10 801.32 300 300
27 10 150 0.52124 3.33 1055.1 120 120
28 10 150 0.52124 3.33 1055.1 120 120
29 10 150 0.52124 3.33 1055.1 120 120
30 47 97 0.01140 5.35 148.89 120 120
31 60 190 0.00160 6.43 222.92 150 150
32 60 190 0.00160 6.43 222.92 150 150
33 60 190 0.00160 6.43 222.92 150 150
34 90 200 0.00010 8.95 107.87 200 200
35 90 200 0.00010 8.62 116.58 200 200
36 90 200 0.00010 8.62 116.58 200 200
37 25 110 0.01610 5.88 307.45 80 80
38 25 110 0.01610 5.88 307.45 80 80
39 25 110 0.01610 5.88 307.45 80 80
40 242 550 0.00313 7.97 647.83 300 300

Table IX. Units Data (40 systems with valve-point loadings): a ($/MW2h), b ($/MWh), c ($/h), e ($/h), and f (rad/MW)

are cost coefficients.

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM

Ave. Cost 122811.41 122840.26 124130.58 124223.25

Best Cost 121915.93 122232.21 122763.44 123642.92

Worst Cost 123334.00 123532.57 125092.30 124636.30
Std. Dev. 313.79 333.36 818.10 805.12

t-test ([ABX+WM]−[UNDXBXover+NUM]) = −11.55
Table X. Statistical results for ELD with a load demand of 10500MW.

 38

iLP (MW), i = ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM
1 110.97 81.82 110.95 83.56
2 110.88 112.69 111.20 110.84
3 98.17 98.03 99.25 97.44
4 178.85 179.84 179.75 129.88
5 87.78 87.92 90.01 87.80
6 140.00 105.49 139.96 105.44
7 260.37 259.57 265.71 259.67
8 286.83 285.45 286.60 285.00
9 285.14 284.23 284.64 211.63

10 204.86 203.59 204.82 258.57
11 165.98 168.81 168.81 168.68
12 167.75 94.00 243.62 243.57
13 214.31 304.53 304.56 394.27
14 305.65 394.11 304.54 304.47
15 393.66 394.43 394.28 304.52
16 394.60 394.53 394.28 484.02
17 489.22 489.47 400.03 399.61
18 489.25 489.25 399.70 489.27
19 511.23 511.18 511.33 511.27
20 510.69 511.26 511.58 511.28
21 524.74 523.39 523.55 523.33
22 525.52 523.43 526.32 523.28
23 522.98 524.18 523.52 523.39
24 523.22 524.24 530.03 523.41
25 523.26 523.96 523.28 523.48
26 523.32 523.33 523.39 523.30
27 10.00 10.00 10.92 10.38
28 10.00 10.00 10.29 10.49
29 10.00 10.00 11.14 10.24
30 88.86 89.50 94.38 89.33
31 162.30 160.10 170.87 160.34
32 177.94 159.96 161.74 159.78
33 160.18 163.09 182.87 165.00
34 166.54 165.05 172.89 164.80
35 164.80 169.30 177.58 169.58
36 170.68 170.48 165.67 183.22
37 108.17 89.16 89.78 90.24
38 100.68 108.73 93.91 108.69
39 109.34 90.19 90.76 85.46
40 511.28 511.51 511.29 511.27

Total Power 10500 10500 10500 10500
Total Cost ($h) 121915.93 122232.21 122763.44 123642.92

Table XI. The optimal dispatch solution for different approaches.

 MSE (410−×), number of iteration: 2000
 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM

Mean 3.3939 4.7965 7.4178 9.5312
Best 2.5154 2.8983 4.1872 5.8292

Std Dev 0.4728 0.9566 2.1383 1.6943
t-test ([ABX+WM]−[UNDXBXover+NUM]) = −24.67

Table XII. Statistical results for the example of associative memory

 39

APPENDIX

A. Benchmark test function

The 18 benchmark test functions for testing the RCGA performance are listed below. In

these functions, []nxxx 21=x .

Unimodal Functions:

1. Sphere Model

() ∑
=

=
30

1

2
1

i
ixf x , −50 ≤≤ ix 150, min(1f)= 0)(1 =0f

2. Generalized Rosenbrock’s Function

() () ()[]∑
=

+ −+−=
29

1

222
12 1100

i
iii xxxf x , 048.2048.2 ≤≤− ix , min(2f)= 0)(2 =1f

3. Step Function

()  ()∑
=

+=
30

1

2
3 5.0

i
ixf x , 105 ≤≤− ix , min(3f)= 0)(3 =0f

4. Quartic Function (with noise)

() [)∑
=

+=
30

1

4
4 1,0

i
i randomixf x , 56.228.1 ≤≤− ix , min(4f)= 0)(4 =0f

where random [)1,0 generates uniformly a floating-point number between 0 and 1.

5. Schwefel’s Problem 2.21

() { }301,max5 ≤≤= ixf ii
x , 50150 ≤≤− ix , min(5f)= 0)(5 =0f

6. Schwefel’s Problem 2.22

() ∏∑
==

+=
30

1

30

1
6

i
i

i
i xxf x , 155 ≤≤− ix , min(6f)= 0)(6 =0f

 40

Multimodal Functions with Only a Few Local Minima:

7. Eason’s Function

() () () () ()()()2
2

2
1217 expcoscos ππ −+−−⋅⋅−= xxxxf x , 300,300 21 ≤≤− xx ,

min(7f)= [] 1),(7 −=ππf ,

8. Shekel’s Foxholes Function

()
()

1
25

1
62

1

8
1

500
1

−

=
= 
















−+
+= ∑

∑j
i iji axj

f x , 536.65536.65 ≤≤− ix , min(8f)= [] 1)32,32(8 ≈−−f ,

where









−−−−−−
−−−

=
323232163232323232
3216032321601632




ija

9. Kowalik’s Function

() ()∑
=









++

+
−=

9

1

2

43
2

2
2

1
9

i ii

ii
i xxbb

xbbx
af x , 55 ≤≤− ix ,

min(9f)= [] 0003075.0)1358.0,1231.0,1908.0,1928.0(9 ≈f

where

i ia
ib

1 0.1957 4
2 0.1947 2
3 0.1735 1
4 0.1600 1/2
5 0.0844 1/4
6 0.0627 1/6
7 0.0456 1/8
8 0.0342 1/10
9 0.0323 1/12
10 0.0235 1/14
11 0.0246 1/16

10. Maxican hat Function

()
21

21
10

)sin()sin(
xx

xxf −=x , 15,5 21 ≤≤− xx , min(10f)= 0)(lim 10)0,0(
=

→
xf

x

11. Six-Hump Camel Back Function

 41

() 4
2

2
221

6
1

4
1

2
111 44

3
11.24 xxxxxxxf +−++−=x , 5,5 21 ≤≤− xx ,

min(11f)= [] [] 0316.1)7126.0,08983.0()7126.0,08983.0(1111 −≈−=− ff

12. Hartman’s Family I

() () 







−−−= ∑∑

==

3

1

2
4

1
12 exp

j
ijjij

i
i pxacf x , 10 ≤≤ ix ,

min(12f)= [] 8628.3)852.0,556.0,114.0(12 −≈f ,

where

 ija ijp i ic

i
j

 1 2 3 1 2 3

1 3 10 30 0.3689 0.1170 0.2673 1 1

2 0.1 10 35 0.4699 0.4387 0.7470 2 1.2

3 3 10 30 0.1091 0.8732 0.5547 3 3

4 0.1 10 35 003815 0.5743 0.8828 4 3.2

13. Hartman’s Family II

() () 







−−−= ∑∑

==

6

1

2
4

1
13 exp

j
ijjij

i
i pxacf x , 10 ≤≤ ix ,

min(13f)= [] 32.3)627.0311.0,275.0,477.0,15.0,201.0(13 −≈f , where

 ija ijp i ic

i
j

 1 2 3 4 5 6 1 2 3 4 5 6

1 10 3 17 3.5 1.7 8 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 1 1

2 0.05 10 17 0.1 8 14 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 2 1.2

3 3 3.5 1.7 10 17 8 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650 3 3

4 17 8 0.05 10 0.1 14 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 4 3.2

 42

Multimodal Functions with Many Local Minima:

14. Generalized Penalized Functions

() () () ()[] () ()[]

(),4,100,5,

2sin113sin113sin1.0

30

1

29

1
30

22
301

22
1

2
14

∑

∑

=

=
+

+









+−++⋅−+=

i
i

i
ii

xu

xxxxxf πππx

5050 ≤≤− ix , min(14f)= 0)(14 =1f

where

()
()

()







<−−
≤≤−

>−
=

axaxk
axa

axaxk
mkaxu

i
m

i

i
m

i

i

,
,0

,,
,,, 1

15. Generalized Rastrigin’s Function

() ()[]∑
=

+−=
30

1

2
15 102cos10

i
ii xxf πx , 24.1012.5 ≤≤− ix , min(15f)= 0)(15 =0f

16. Generalized Griewank Function

() ,1cos
4000

1 30

1

30

1

2
16 +∑ ∏ 








−=

= =i i

i
i i

xxf x 6001200 ≤≤− ix , min(16f)= 0)(16 =0f

17. Ackley’s Function

() exxf
i

i
i

i ++







−










−−= ∑∑

==

202cos
30
1exp

30
12.0exp20

30

1

30

1

2
17 πx , 3264 ≤≤− ix ,

min(17f)= 0)(17 =0f

18. Schwefel’s Function

() ()()∑
=

−=
30

1
18 sin

i
ii xxf x , 500500 ≤≤− ix ,

min(18f)= [] 5.125699829.41830)9687.420,9687.420(18 −=×−=f

 43

B. Unimodal normal distribution crossover (UNDX)

Unimodal normal distribution crossover is defined as a mixture of three selected parents 1p ,

2p , and 3p . The resulting offspring
cso is defined as,

,z
var_

2
i111

_
1
2

1
1

1 ∑
=

++=



=

sno

i
isss eezooo

varsnoc
mos  (A.1)

,z
var_

2
i111

_
1
2

1
1

2 ∑
=

−−=



=

sno

i
isss eezooo

varsnoc
mos  (A.2)

where

()
2

21 ppm +
= , (A.3)

),,0(2
11 σNz =),,0(2

2σNzi = (A.4)

,11 dβσ = ,2
2 no_vars

dµ
σ = (A.5)

()
,

12

12
1 pp

pp
−
−

=e (A.6)

nm ee ⊥),(nm ≠ ,1, =nm , no_vars, (A.7)

where)(⋅N is a normal distributed random number, 1d is the distance between the parents 1p

and 2p , 2d is the distance of 3p from the line connecting 1p and 2p , β and µ are constant.

C. Blend crossover (BLX-α)

Blend crossover is defined as a combination of two selected parents 1p and 2p . The

resulting offspring []
snoc sss ooo

var_21
,,, =so is chosen randomly from the interval

[]21, ii XX following the uniform distribution, where

() ii dppX
ii

α−= 21
1 ,min , (A.8)

() ii dppX
ii

α+= 21
2 ,max , (A.9)

where

 44

ii
ppdi 21 −= ,

i
p1 and

i
p2 are the i-th elements of 1p and 2p respectively, and α is a positive

constant.

D. Non-uniform mutation (NUM)

Non-uniform mutation is an operation with a fine-tuning capability. Its action depends on

the generation number of the population. The operation takes place as follows. If

[]
sno_sss ooo

var21
,,, =so is a chromosome and the element

kso is randomly selected for

mutation (the value of
kso is inside [kk parapara maxmin ,]), the resulting chromosome is then given by

[]
svarnok sss ooo

_1
,,ˆ,,ˆ =so , k ∈ 1, 2, … no_vars, and

()
()





=−∆−

=−∆+
=

1 if ,

0 if ,
ˆ

min

max

 rparaoo

 roparao
o

d
k

ss

ds
k

s
s

kk

kk

k τ

τ
, (A.10)

where rd is a random number equal to 0 or 1 only. The function),(yτ∆ returns a value in the range

[0, y] such that),(yτ∆ approaches 0 as τ increases. It is defined as follows,














−=∆







 −

b

Tryy
τ

τ
1

1),(, (A.11)

where r is a random number in [0, 1], τ is the present generation number of the population, T is the

maximum generation number of the population, and b is a system parameter that determines the

degree of non-uniformity.

	Unimodal Functions:
	Multimodal Functions with Only a Few Local Minima:

