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Abstract:  This paper presents a real-coded genetic algorithm (RCGA) with new genetic operations 

(crossover and mutation).  They are called the average-bound crossover (ABX) and wavelet 

mutation (WM).  By introducing the proposed genetic operations, both the solution quality and 

stability are better than the RCGA with conventional genetic operations.  A suite of benchmark test 

functions are used to evaluate the performance of the proposed algorithm.  Application examples on 

economic load dispatch and tuning an associative-memory neural network are used to show the 

performance of the proposed RCGA. 
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I. INTRODUCTION 

 

 Genetic algorithm (GA) is one evolutionary computation technique [9] that can tackle 

complex optimization problems [9, 17, 23].  It has been applied in different areas such as fuzzy 

control [13-14], tuning of neural or neural fuzzy network [15-16], path planning [11], greenhouse 

climate control [1], economic load dispatch [2, 27], etc.  Traditional binary GA [5, 9, 19, 25] has 

some drawbacks when applying to multidimensional and high-precision numerical problems.  The 

situation can be improved if GA in real numbers is used.  Each chromosome is coded as a vector of 

floating point numbers that has the same length as the solution vector.  A large domain can thus be 

handled.  Much research effort has been spent to improve the performance of real-coded GA 

(RCGA).  In general, RCGA involves three operations: selection, crossover and mutation.  The 

selection operation is used to select the chromosomes from the population with respect to some 

probability distribution based on fitness values.  The crossover operation is used to combine the 

information of the selected chromosomes (parents) and generate the offspring.  The mutation 
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operation is used to change the offspring genes.  Selection schemes such as rank-based selection, 

elitist strategies, steady-state election and tournament selection were reported [5].  Recently, 

different crossover operations for RCGA have been proposed to improve the efficiency of the 

algorithm.  The extended intermediate recombination (crossover) (EIX) was proposed by 

Mühlenbein et. al. [20].  The genes (variables) of the offspring are chosen somewhere between the 

genes of the parents. It is capable of producing any point within a hypercube slightly larger than 

that defined by the parents.  The unimodal normal distribution crossover (UNDX) was proposed by 

Ono et. al. [12, 22] for handling multimodal functions and non-separability problems.  UNDX 

mixes the parental information and shows a good searching ability.  However, it changes the 

fundamental concept that the crossover operation should combine the parents to generate offspring, 

not mixing the parents.  The blend crossover (BLX-α) was proposed by Eshelman et. al. [7], which 

combines the parents to reproduce offspring.  It shows a good searching ability for separable 

functions.  However, BLX-α has difficulty in handling non-separability optimisation problems.  

Also, the above crossover operations are not suitable for optimisation problems with the optimal 

point located near the domain boundary.  For mutation operations, the uniform mutation and non-

uniform mutation can be found [19, 21].  The uniform mutation is to change the value of a 

randomly selected gene to a value between its upper and lower bounds.  The non-uniform mutation 

is capable of fine-tuning the parameters by increasing or decreasing the value of a randomly 

selected gene with respect to a weighted random number.  The weight is usually a monotonic 

decreasing function of the number of iteration. 

In this paper, new genetic operations of crossover and mutation are proposed.  The 

crossover operation is called the average-bound crossover (ABX), which combines the average 

crossover and bound crossover.  The average crossover manipulates the genes of the selected 

parents, the minimum, and the maximum possible values of the genes.  The bound crossover is 

capable of moving the offspring near the domain boundary.  On realizing the ABX operation, the 

offspring spreads over the domain so that a higher chance of reaching the global optimum can be 

obtained.  The proposed mutation operation is called the wavelet mutation (WM), which applies the 

wavelet theory [3-4, 18] to realize the mutation.  Wavelet is a tool to model seismic signals by 

combining dilations and translations of a simple, oscillatory function (mother wavelet) of a finite 

duration.  The wavelet function has two properties: 1) the function integrates to zero, and 2) it is 

square integrable, or equivalently has finite energy.  Thanks to the properties of the wavelet, the 

convergence and solution stability are improved.  By introducing these genetic operations, the 

RCGA performs more efficiently and provides a faster convergence than the RCGA with 

conventional genetic operations in a suite of 18 benchmark test functions [6, 8, 24, 30].  In addition, 

the RCGA with the proposed operations gives smaller standard deviations of results, i.e. the 
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solution quality of the RCGA with the proposed operations is more stable.  An experimental study 

will be made to evaluate the searching ability of the proposed mutation.  Also, the sensitivity of the 

parameter in WM and the sensitivity of the genes’ initial range for the proposed RCGA to the 

searching performance will be discussed.  Application examples on economic load dispatch and 

tuning an associative-memory neural network are also given to show the performance of the 

proposed RCGA. 

This paper is organized as follows.  Section II presents the operation of the proposed genetic 

operations.  Experimental studies and analysis are discussed in Section III.  18 benchmark test 

functions will be used to evaluate the performance of the proposed method.  Application examples 

on economic load dispatch and tuning an associative memory neural network are given in Section 

IV.  A conclusion will be drawn in Section V. 

   

II. AVERAGE-BOUND CROSSOVER AND WAVELET MUTATION FOR RCGA 

 

 The Real-Coded Genetic Algorithm (RCGA) process [5, 19, 25] is shown in Fig. 1.  First, a 

set of population of chromosomes P is created.  Each chromosome p contains some genes 

(variables).  Second, the chromosomes are evaluated by a defined fitness function.  The better 

chromosomes will return higher fitness function values in this process.  Third, some of the 

chromosomes are selected to undergo genetic operations for reproduction by the method of 

normalized geometric ranking [10].  Normalized geometric ranking is a selection based on a non-

stationary penalty function, which is a function of the generation number.  As the number of 

generation increases, the penalty increases that puts more and more selective pressure on the RCGA 

to find the feasible solution.  In general, a higher-rank chromosome will have a higher chance to be 

selected.  Fourth, genetic operations of crossover are performed.  The crossover operation is mainly 

for exchanging information between two parents that are obtained by the selection operation.  In the 

crossover operation, one of the parameters is the probability of crossover cp  which gives the 

expected number sizepoppc _× (where sizepop _  is the number of chromosomes in the 

population) of chromosomes that undergo the crossover operation in a generation.  We propose a 

new crossover operation here.  First, four chromosomes are generated (instead of two chromosomes 

in the conventional RCGA) from two selected parents.  Second, the best two offspring in terms of 

the fitness value will be selected to replace their parents.  After the crossover operation, the 

mutation operation follows.  It operates with a parameter called the probability of mutation ( mp ).  

The mutation operation is to change the genes of the chromosomes in the population such that the 

features inherited from their parents can be changed.  After going through the mutation operation, 
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the new offspring will be evaluated using the fitness function.  The new population will be formed 

when the new offspring replaces the chromosome with the smallest fitness value.  After the 

operations of selection, crossover and mutation, a new population is generated.  This new 

population will repeat the same process.  Such an iterative process will be terminated when a 

defined condition is met. The details about the proposed crossover and mutation operations are 

given below. 

 

A. Average-bound crossover operation 

The crossover operation is mainly for exchanging information from the two parents, 

chromosomes p1 and p2, obtained in the selection process.  The two parents will eventually produce 

two offspring.  The average-bound crossover (ABX) comprises two operations: average crossover 

and bound crossover.   
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no_vars denotes the number of variables to be tuned; jparamin and jparamax  are the minimum and 

maximum values of 
jip  respectively for all i; [ ]10, ∈ba ww  denotes the user-defined weight for 

average crossover and bound crossover respectively, ( )21 ,max pp  denotes the vector with each 

element obtained by taking the maximum between the corresponding element of p1 and p2.  For 
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instance, [ ] [ ]( )132,321max − [ ]332= .  Similarly, ( )21 ,min pp  gives a vector by taking 

the minimum value.  For instance, [ ] [ ]( )132,321min − [ ]121 −= .  Among 1
cso  to 4

cso , the 

two with the largest fitness values are used as the offspring of the crossover operation.  These two 

offspring are put back into the population to replace their parents. 

The rationale behind the ABX is that if the offspring spreads over the domain, a higher 

chance of reaching the global optimum can be obtained.  As seen from (1) to (4): The average 

crossover will move the offspring near the centre region of the concerned domain (as aw  in (2) 

approaches 1, 2
cso  approaches 2)( 21 pp + , which is the average of the selected parents; and as aw  

approaches 0, 2
cso  approaches 2)( minmax pp + , which is the average of the domain boundary), 

while bound crossover will move the offspring near the domain boundary (as bw  in (3) and (4) 

approaches 0, 3
cso  and 4

cso  approaches pmax and pmin respectively).  The result of the crossover 

depends on the values of the weights aw  and bw .  Their values depend on the optimisation problem 

and are chosen by trial and error.  Fig. 2 shows an example indicating the relationship between the 

parents and the offspring under different values of the weights.  In this figure, the line represents 

the domain of a gene.  The end points of the line represent the minimum and maximum values of 

the gene.  The dot (․) represents the parents and the circle-dot ( ) represents the offspring.  The 

values in brackets represent the values of the genes under different values of the weights.  For 

example, when 11 =p  and 42 =p , referring to (1) and (2), the offspring 1
cso and 2

cso  should be equal 

to 2.5 and 3.75 respectively when 5.0=aw .  According to (1) to (4), the offspring is generated.  We 

can see how the offspring spreads over the domain under different values of aw  and bw .  Changing 

the value of the weight aw  will change the characteristics of the average crossover operation.  In 

this paper, the value of aw  is arbitrarily set at 0.5.  On the other hand, changing the value of the 

weight bw will change the characteristics of the bound crossover operation. 

 

B. Wavelet mutation operation 

Before presenting the wavelet mutation operation, we first discuss the basic wavelet theory. 

 

1) Wavelet theory 

Certain seismic signals can be modelled by combining translations and dilations of an 

oscillatory function with a finite duration called a “wavelet”.  A continuous-time function )(xψ  is 

called a “mother wavelet” or “wavelet” if it satisfies the following properties: 
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Property 1: 

0)( =∫
+∞
∞− dxxψ  (9)  

In other words, the total positive momentum of )(xψ is equal to the total negative momentum of 

)(xψ . 

Property 2: 
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∞− dxx 2)(ψ  (10) 

where most of the energy in )(xψ  is confined to a finite duration and bounded.  The Morlet 

wavelet (as shown in Fig .3) is an example mother wavelet, which was proposed by Daubechies [4]: 

( ) ( )xex x 5cos2/2−=ψ  (11) 

The Morlet wavelet integrates to zero (Property 1).  Over 99% of the total energy of the function is 

contained in the interval of 5.25.2 ≤≤− x  (Property 2).   

In order to control the magnitude and the position of )(xψ , we define )(, xbaψ  as follows: 
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where a is the dilation parameter and b is the translation parameter.  Notice that 
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it follows that )(0, xaψ  is an amplitude-scaled version of )(xψ .  Fig. 4 shows different dilations of 

the Morlet wavelet.  The amplitude of  )(0, xaψ  will be scaled down as the dilation parameter a 

increases.  This property is used to do the mutation operation in order to enhance the searching 

performance. 

 

2) Wavelet mutation 

The mutation operation is to change the genes of the chromosomes inherited from their 

parents.  In general, various methods like uniform mutation or non-uniform mutation [19, 21] can 

be employed to realize the mutation operation.  We propose a Wavelet Mutation (WM) operation 

based on the wavelet theory, which exhibits a fine-tuning ability.  The details of the operation are as 

follows.  Every gene of the chromosomes will have a chance to mutate governed by a probability of 

mutation, [ ]10∈mp , which is defined by the user.  This probability gives an expected number 

( ×× sizepoppm _ no_vars) of genes that undergo the mutation.  For each gene, a random number 
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between 0 and 1 will be generated such that if it is less than or equal to mp , the mutation will take 

place on that gene which is updated instantly.  If [ ]
sno_sss ooo
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By using the Morlet wavelet in (11) as the mother wavelet, 
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where ϕ  ∈ [−2.5, 2.5] is randomly generated.  If δ  is positive ( 0>δ ) approaching 1, the mutated 

gene will tend to the maximum value of 
jso .  Conversely, when δ  is negative ( 0≤δ ) approaching 

−1, the mutated gene will tend to the minimum value of 
jso .  A larger value of δ  gives a larger 

searching space for 
jso .  When δ  is small, it gives a smaller searching space for fine-tuning the 

gene.  Referring to Property 1 of the wavelet, the sum of the positive δ  is equal to the sum of the 

negative δ  when the number of samples is large and ϕ  is randomly generated. That is, 

01
=∑

NN
δ  for ∞→N ,  (19) 

where N is the number of samples.  

Hence, the overall positive mutation and the overall negative mutation throughout the evolution are 

nearly the same.  This property gives better solution stability (smaller standard deviation of the 

solution values upon many trials).  As over 99% of the total energy of the mother wavelet function 

is contained in the interval [−2.5, 2.5], ϕ  can be generated from [−2.5, 2.5] randomly.  The value of 

the dilation parameter a can be set to vary with the value of 
T
τ  in order to meet the fine-tuning 

purpose, where T is the total number of iteration and τ  is the current number of iteration.  In order 

to perform a local search when τ is large, the value of a  should increase as 
T
τ  increases so as to 
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reduce the significance of the mutation.  Hence, a monotonic increasing function governing a  and 

T
τ  is proposed as follows. 
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where ζ  is the shape parameter of the monotonic increasing function, g is the upper limit of the 

parameter a.  In this paper, g  is set as 10000.  The effects of the various values of the shape 

parameter ζ  to a with respect to 
T
τ  are shown in Fig. 5.  The value of a  is between 1 and 10000.  

Referring to (18), the maximum value of δ  is 1 when the random number of ϕ =0 and a=1 ( 0=
T
τ ).  

Then referring to (15), the offspring gene ( ) j
s

j
ss paraoparaoo

jjj maxmax1ˆ =−×+= .  It ensures that a 

large search space for the mutated gene is given.  When the value 
T
τ  is near to 1, the value of a  is 

so large that the maximum value of δ  will become very small.  For example, at 9.0=
T
τ  and 1=ζ , 

the dilation parameter a = 4000.  If the random value of ϕ  is zero, the value of δ  will be equal to 

0.0158.  With ( )
jjj s

j
ss oparaoo −×+= max0158.0ˆ , a small searching space for the mutated gene is 

given for fine-tuning. 

 

C. Choosing the parameters 

We can regard the RCGA is seeking a balance between the exploration of new regions and 

the exploitation of the already sampled regions in the search space.  This balance, which critically 

controls the performance of the RCGA, is governed by the right choices of the control parameters: 

the probability of crossover ( cp ), the probability of mutation )( mp , the population size (pop_size), 

the weights of the proposed crossover ( aw , bw ) and the shape parameter ζ  of WM.  Some views 

about these parameters are included as follows: 

• The probability of crossover ( cp ) gives us an expected number ( ×cp pop_size) of 

chromosomes which undergo the crossover operation in a generation.  When cp  = 1, all 

chromosomes in a generation will undergo the crossover operation. 

• Increasing the probability of mutation )( mp  tends to transform the genetic search into a 

random search.  This probability gives us an expected number ( ×× pop_sizepm no_vars) of 

genes that undergo the mutation.  When 1=mp , all genes will mutate.  The value of mp  

depends on the desired number of genes that undergo the mutation operation. 
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• Increasing the population size will increase the diversity of the search space, and reduce the 

probability that GA will prematurely converge to a local optimum.  However, it also 

increases the time required for the population to converge to the optimal region in the search 

space. 

• Changing the value of the weight aw  in the average-bounded crossover will change the 

characteristics of the average crossover operations.  It is chosen by trial and error, which 

depends on the kind of the optimisation problem.  As the value of aw  tends to 1, the 

offspring tends to be the average of the selected parents.  As the value of aw tends to 0, the 

offspring tends to be the average of the domain boundary.  For many optimisation problems, 

the value of the weight aw  can be set as 0.5. 

• Changing the value of the weight bw  in the average-bound crossover will change the 

characteristics of the bound crossover operations.  It is also chosen by trial and error, which 

depends on the kind of the optimisation problem.  A value of bw  approaching 1 will make 

the offspring to be near the selected parents.  As the value of bw  tends to 0, the offspring 

will become near the domain boundary. 

• Changing the parameter ζ  will change the characteristics of the monotonic increasing 

function of the wavelet mutation.  The dilation parameter a will take a value so as to 

perform fine-tuning faster as ζ  is increasing.  It is chosen by trial and error, which depends 

on the kind of the optimisation problem.  When ζ  becomes larger, the decreasing speed of 

the step size (δ ) of the mutation becomes faster.  In general, if the optimisation problem is 

smooth and symmetric, the searching algorithm is easier to find the solution and process the 

fine-tuning in early iteration.  Thus, a larger value of ζ  can be used to increase the step size 

of the early mutation.  More details about the sensitivity of ζ  to WM will be discussed in 

the next section. 

 

III. EXPERIMENTAL STUDIES AND ANALYSIS 

 

A. Benchmark test function 

A suite of 18 benchmark test functions [6, 8, 24, 30] are used to test the performance of the 

RCGA with the proposed genetic operations.  Many different kinds of optimization problems are 

covered by these benchmark test functions.  They are divided into three categories: unimodal 

functions, multimodal functions with only a few local minima, and multimodal functions with 

many local minima.  The 18 benchmark test functions are detailed in Appendix A.  They can test 
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the searching ability of the proposed searching algorithm comprehensively.  To avoid the proposed 

crossover operation introducing a strong bias to the optimal location at 2)( minmax pp + , the ranges 

of the domain boundary for some test functions are set different from those in [6, 8, 24, 30].  

Functions f1 to f7 are unimodal functions.  Functions f8 to f13 are multimodal functions with only a 

few local minima.  Functions f14 to f18 are multimodal functions with many local minima.   

 

B. Experimental setup 

The crossover operation for comparison is the UNDXBXover, which consists of two 

published crossover operations: Unimodal normal distribution crossover (UNDX) [12, 22] and 

Blend crossover (BLX-α) [7].  The details of these two crossovers are shown in Appendix B and 

Appendix C respectively.  The mutation operation for comparison is the non-uniform mutation 

(NUM) [19, 21].  The details of NUM are shown in Appendix D.  The simulation conditions are 

described as follows. 

‧ The shape parameter of NUM: It is chosen by trial and error through experiments for good 

performance for all functions. 

‧ The parameters ζ of WM: It is chosen by trial and error through experiments for good 

performance for all functions. 

‧ The weight of the ABX aw : 0.5 for all functions. 

‧ The weight of the ABX bw : 0.5 for 1f  to f8 and f15 to f17; 1.0 for.  f9 to f14 , and f18. 

‧ Population size: 100. 

‧ Number of runs: 50. 

‧ Selection operation: Normalized geometric ranking [10]. 

‧ The probability of selecting the best chromosome [10]: 0.08. 

‧ Crossover operation: For UNDX, the parameters β  and µ  are set at 1 and 0.35 respectively; 

for BLX-α, the parameter α is set at 0.336 [26].   

‧ Probability of crossover cp : 0.8. 

‧ Probability of mutation mp : 0.5 for 1f  to 6f and f14 to f18; 0.8 for f7 to f13. 

‧ Initial population: It is generated uniformly at random. 

 In this paper, RCGA with Avergae-Bound Crossover and Wavelet Mutation (ABX+WM), 

RCGA with Avergae-Bound Crossover and Non-Uniform Mutation (ABX+NUM), RCGA with 

Unimodal Normal Distribution and Blend Crossover and Wavelet Mutation, (UNDXBXover+WM), 

and RCGA with Unimodal Normal Distribution and Blend crossover and Non-Uniform Mutation 

(UNDXBXover+NUM) are used to test the benchmark test functions. 
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C. Experiment results 

 

1. Unimodel Functions 

 Functions 1f  to 6f  are unimodal functions.  The experiment results in terms of the mean 

cost value, best cost value, standard deviation, and the t-test value for 1f  to 6f  are tabulated in 

Table. I.  The comparison between different genetic operations on 1f  to 6f  is shown in Fig. 6.  The 

t-test is a statistical method to evaluate the significant difference between two algorithms.  The t-

value will be negative if the first algorithm is better than the second, and positive if it is poorer.  

When the t-value is smaller than −1.645 (degree of freedom = 49), there is a significant difference 

between the two algorithms with a 95% confidence level.  Function 1f  is a sphere model which is 

probably the most widely used test function.  It is smooth and symmetric.  The performance on this 

function is a measure of the convergence rate of a searching algorithm.  For 1f , the results in terms 

of the mean and the best cost value of ABX with WM or NUM are better than those of the 

corresponding UNDXBXover.  Comparing ABX with WM to UNDXBXover with WM, the mean 

cost value is 2.5 times better.  A much smaller standard deviation is given by the ABX+WM, which 

means the solution is more stable.  Comparing the mutation operations WM and NUM, the 

proposed WM is more effective than NUM in term of the cost value and standard deviation.  Both 

the solution quality and stability offered by WM are better than those offered by NUM.  In addition, 

the t value of −10.62 implies that the improved genetic operations (AveXover with WM) are better 

than the conventional genetic operations (UNDXBXover with NUM).  In Fig. 6, ABX with WM 

displays a faster convergence rate than UNDXBXover with NUM thanks to its better searching 

ability.  It reaches approximately 0.01 in around 250 times of iteration, while it is about 3.0 for 

UNDXBXover with NUM.  Function 2f  is a generalized Rosenbrock’s function which is strongly 

non-separable and the optimum is located in a very narrow ridge.  The tip of the ridge is very sharp, 

and it runs around a parabola.  Algorithms that are unable to discover good searching directions 

will perform poorly in this problem.  The proposed genetic operations (ABX with WM) 

outperforms the UNDXBXover with NUM.  The t value is −313.3.  Although the best cost values 

on using WM with different crossover operations are a bit worse than those on using NUM, the 

mean value, standard deviation and convergence rate offered by WM are better.  Function 3f  is a 

step function that is a representative of flat surfaces.  Flat surfaces are obstacles for optimization 

algorithms because they do not give any information about the search direction.  Unless the 

algorithm has a variable step size, it can get stuck in one of the flat surfaces.  UNDXBXover 

performs poorly for 3f  because it mainly searches in a small local neighbourhood, but the flat 
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surfaces do not give any searching direction for UNDXBXover.  On the other hand, the proposed 

ABX is good for 3f  because it can generate longer jump than UNDXBXover.  Comparing WM to 

NUM with UNDXBXover, the former also gives a better solution.  Function 4f  is a quartic 

function, which is a simple unimodal function padded with noise.  The Gaussian noise causes the 

algorithm never getting the same value at the same point.  Many algorithms that do not do well in 

this function are due to the noisy data.  In this function, the mean cost value, best cost value, 

standard deviation and the convergence rate brought by the proposed ABX and WM are 

significantly better than the conventional genetic operations.  Function 5f  is the Schwefel’s 

problem 2.21, function 6f  is the Schwefel’s problem 2.22 and function 7f  is the Eason’s function.  

In these problems, the performance on using the proposed crossover ABX and mutation WM is 

better than that on using the UNDXBXover and NUM.  The rapid convergence of the proposed 

genetic operations shown in Fig. 6 supports our argument.  In short, the proposed genetic 

operations (ABX and WM) are good to tackle unimodal functions/problems when compared with 

the conventional genetic operations (UNDXBXover and NUM).  Both the solution quality and 

stability are satisfactory. 

 

2. Multimodel functions with a few local minima 

 Functions 8f  to 13f  are multimodal functions with only a few local minima.  The 

experimental results for 8f  to 13f  are tabulated in Table II.  Fig. 7 shows the average values for 8f  

to 13f .  Among these functions, five of them ( 8f , 10f - 13f ) do not show statistically significant 

differences for different genetic operations.  They all reach or get near to the global optima.  For the 

function 9f , we obtain statistically different results from the proposed genetic operations and the 

conventional genetic operations.  The proposed ABX performs better than the UNDXBXover in 

terms of the mean, best value, standard deviation and the convergence rate.  In addition, the results 

offered by WM are better than those by NUM in terms of the mean and the best cost values.  

Furthermore, WM gives a faster convergence rate. 

 

3. Multimodel functions with many local minima 

 Functions 14f  to 18f  are multimodal functions with many local minima, and the dimension 

of each function is comparatively larger than that of 8f  to 13f .  The dimension of these functions is 

30.  The experimental results for 14f  to 18f  are tabulated in Table III.  The comparison between 

different genetic operations is shown in Fig. 8.  It can be seen from Table III that the mean results 

and the best results offered by the proposed genetic operations (ABX and WM) are better than 
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those offered by the conventional genetic operations (UNDXBXover and NUM).  Also, they have 

smaller standard deviations.  Therefore, in terms of the solution quality and stability, the proposed 

genetic operations are better than the conventional operations.  In addition, the t-test value of all 

functions is smaller than −1.645.  Therefore, the proposed genetic operations are significantly better 

than the conventional operations for solving the optimization problems.  From Fig. 8, we can see 

that the convergence rate offered by the proposed genetic operations is better than that offered by 

the conventional genetic operations. 

 

D. The searching ability of wavelet mutation 

In this section, we give an analysis based on experimental results to illustrate that the 

searching ability of WM is better than that of NUM.  The experimental settings are the same as 

before, except the probability of crossover is set at 0 and the probability of mutation is set at 1.  By 

using this setting, no chromosomes will undergo the crossover operation, and all genes in the 

population will mutate under the mutation operation.  Hence, the searching ability of the mutation 

operation can be evaluated.  The experimental results on using WM and NUM for 1f  to 18f  (except 

f3 and f7) without crossover operation are summarized in Table IV.  The comparison between WM 

and NUM is given in Fig. 9 and Fig. 10.  Function f3 and f7 are not included in this experiment 

because they do not perform well with mutation operation only.  As seen from Table IV, the 

average performance of WM is better than NUM.  WM gives smaller standard deviations of results 

for all test functions than NUM, and hence the solution stability offered by WM is better.  From Fig. 

9 and Fig. 10, the convergence of WM is found faster than that of NUM.  In conclusion, the 

searching ability of WM is better than NUM. 

 

E. Sensitivity of the parameter for wavelet mutation 

 The mean cost values offered by WM using different shape parameter ζ  for all test 

functions are tabulated in Table V.  As can be seen from the table, all functions are tested by using 

ζ =0.2, ζ =0.5, ζ =1, ζ =2, and ζ =5.  If the optimization problem needs a more significant 

mutation to reach the optimal point, a smaller ζ  should be given.  Conversely, if the RCGA needs 

to perform the fine-tuning faster, a larger ζ  should be used.  For example, f1 is a sphere model 

which is smooth and symmetric.  Searching algorithms are fast to jump to the area near the global 

optimum and then perform fine-tuning.  Therefore, a larger ζ  is set (ζ =5) so that the RCGA will 

go to perform fine-tuning faster.  On the other hand, ζ  is set as 0.2 for f13 when the mutation 

operation is playing a significant role at the later stage.  In some cases, ζ ’s value is not very 

critical, e.g. f3 and f11.  For f3, the mean cost value for different ζ  is the same.  We say that the best 
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performance is obtained when ζ =0.5 because the standard deviation of the RCGA for ζ =0.5 is the 

smallest.  However, in some cases, the parameter ζ  is so sensitive as to affect the performance of 

the searching, e.g. f1 and f16.  In conclusion, no formal method is available to choose the 

parameterζ ; it depends on the characteristics of the optimization problems. 

 

F. Sensitivity of the initial range of variables 

 Additional experiments are carried out to test the sensitivity of the initial range of the 

variables to the RCGA with the improved genetic operations.  The settings of these experiments are 

exactly the same as before (section III B).  The experiment results for f4 are tabulated in Table VI.  

Fig. 11 shows the results for different genetic operations on f4.  The initial population is generated 

uniformly at random in the ranges of 12.556.2 ≤≤− ix  (twice the original range), 8.124.6 ≤≤− ix  

(5 times of the original range), 6.258.12 ≤≤− ix  (10 times of the original range), and 

2.516.25 ≤≤− ix  (20 times of the original range), making the average distance to the global 

optimum increasingly large.  The enlarged searching space is expected to make the problem more 

difficult to solve.  As can be seen from the table and the figures, the mean cost values offered by 

the proposed genetic operations are better than those by the conventional genetic operations.  From 

Fig. 11, ABX and WM offer faster convergence than UNDXBXover and NUM.  In addition, ABX 

and WM give smaller standard deviation for all initial ranges than UNDXBXover and NUM.  

Hence, the solution quality is more stable.  Two more test functions are then used to test the 

sensitivity to the initial range of variables.  The experiment results for f7 and f16 are tabulated in 

Table VII to VIII respectively.  Fig. 12 and Fig. 13 show the results for different genetic operations 

on f7 and f16 respectively.  In these tables and figures, the results of the improved genetic operations 

in terms of the mean cost value, convergence rate, and standard deviation are better than those of 

the conventional algorithms. 

 

IV. APPLICATION EXAMPLES 

   

 Application examples on economic load dispatch and tuning of associative memory are 

given in this section. 

 

A. Economic load dispatch 

In a power system, minimizing the operation cost is important.  Economic load dispatch 

(ELD) is a method to schedule power generator outputs with respect to the load demands, and to 

operate a power system economically.  The input-output characteristics of modern generators are 
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nonlinear by nature because of the valve-point loadings and rate limits.  The problem of ELD is 

multimodal, discontinuous and highly nonlinear.  RCGAs had been employed to solve the ELD 

problems [2, 27].   

 

1. Mathematic modelling of economic load dispatch with valve-point loading 

The economic load dispatch with valve-point loading problem can be formulated into the 

following objective function: 

( )∑
=

n

i
Li i

PCMin
1

, (21) 

where ( )
iLi PC  is the operation fuel cost of generator i, and n denotes the number of generators.  The 

problem is subject to a balance constraint and generating capacity constraints as follows:  

∑
=

−=
n

i
LossL PPD

i
1

, (22) 

max,min, iii LLL PPP ≤≤ , i = 1, 2, …, n. (23) 

where D is the load demand, 
iLP is the output power of the i-th generator, PLoss is the transmission 

loss, 
max,iLP  and 

min,iLP  are the maximum and minimum output powers of the i-th generator 

respectively.  The operation fuel cost function with valve-point loadings of the generators is given 

by, 

 

( ) ( )( )
iiiii LLiiiLiLiLi PPfecPbPaPC −××+++=

min,
sin2 , (24) 

where ia , ib , and ic  are coefficients of the cost curve of the i-th generator, ie  and if  are 

coefficients of the valve-point loadings.  (The generating units with multivalve steam turbines 

exhibit a great variation in the fuel-cost functions.  The valve-point effects introduce ripples in the 

heat-rate curves.) 

RCGA can be used to solve the economic load dispatch problem.   The chromosomes p is 

defined as follows:  

[ ]
1321 −

=
nLLLL PPPP p , (25) 

From (22), we have, 

∑ +−=
−

=

1

1

n

i
LossLL PPDP

in
. (26) 

In this paper, the power loss is not considered.  Therefore, 

∑−=
−

=

1

1

n

i
LL in

PDP . (27) 
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To ensure 
nLP falls within the range [ ]

max,min,
,

nn LL PP , the following conditions are considered: 

if 
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nn
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nn
LL
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LL PP
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It should be noted from (28) and (29) that if the value of 
1LP is also outside the constraint 

boundaries.  The exceeding portion of the power will further be shared by other generators in order 

to make sure that all generators’ output power is within the safety range.  Referring to (21), the 

fitness function for this ELD problem is defined as: 

fitness = ( )∑
=

−
n

i
Li i

PC
1

, (30) 

where ( )
iLi PC  is defined in (24).  The objective is to maximize the fitness function (30). 

 

2. Case Study 

The RCGA with the proposed genetic operations and the RCGA with the conventional 

genetic operations are applied to a 40-generator system, which was adopted as an example in [2].  

The system is a very large one with nonlinearities.  The data of the units for this example with 

valve-point loadings are tabulated in Table IX.  The load demand (D) is 10500MW.  For 

comparison purpose, RCGA with ABX and WM, RCGA with ABX and NUM, RCGA with 

UNDXBXover and WM, and RCGA with UNDXBXover and NUM are used to solve the ELD 

problem.  The population size used for all RCGAs is 100.  All the simulation results are averaged 

ones out of 50 runs.  For the proposed ABX, the parameters wa and wb are set at 0.5.  For the 

UNDXBXover, the parameters β , µ , and α are set at 1, 0.35, and 0.336 respectively.  For the 

proposed mutation WM, the parameter ζ  is set at 1.  For the NUM, the shape parameter is set at 1.  

The probabilities of crossover and mutation for all approaches are set at 0.6 by trial and error.  For 

all approaches, the number of iteration is 1000.  The statistical results are shown in Table X and Fig. 

14.  It can be seen that the RCGA with the proposed ABX and WM performs better than other 

RCGAs with conventional genetic operations (UNDXBXover and NUM) in terms of cost, t value, 

and standard deviation.  Both the solution quality and stability are good.  The average cost is 

$122811.41 and the best (minimum) cost is $121915.93.  The optimal dispatch solution is 

summarized in Table XI.   

 

B. Tuning associative memory 
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 Learning or training is one of the important issues of neural networks.  The learning process 

aims to find a set of optimal network parameters.  The widely-used gradient methods [28, 31], such 

as MRI, MRII, MRIII rules, and back-propagation techniques, adjust the network parameters based 

on the gradient information of the fitness function in order to reduce the mean square error over all 

input patterns.  One major weakness of the gradient methods is that the derivative information of 

the fitness function has to be known, meaning that the fitness function has to be continuous.  Also, 

the learning process is easily trapped in a local optimum, especially when the problems are 

multimodal and the learning rules are network structure dependent.   To tackle this problem, the 

real-code genetic algorithm (RCGA) [5, 19, 25], was proposed for the optimization problem in a 

large, complex, non-differentiable and multimodal domain [29].  RCGA is a good training 

algorithm for neural or neural-fuzzy networks [15-16].  The same RCGA can be used to train many 

different networks regardless of whether they are feed-forward one, recurrent one, associative 

memory or of other structure types.  This generally saves a lot of human efforts in developing 

training algorithms for different types of networks. 

 Associative memory is one type of neural network that maps its input vector into itself.  

Thus, the desired output vector is its input vector. 50 input vectors are used for the learning.  The 

function of the associative memory is given by: 

( ) ( )∑
=

=
10

1j
jjkk tzwty , k = 1, 2, …, 10 (31) 

where z(t) is the input vector and wjk is the weight of the link between the i-th input and the k-th 

output.  The objective is to minimize the mean square error (MSE), which is defined as follows: 

MSE
( ) ( )( )

5010

10

1

50

1

2

×

−
=
∑∑
= =k t

kk tytz
 (32) 

The initial range of the weight wjk is from −2 to 2.  For comparison purpose, RCGA with ABX and 

WM, RCGA with ABX and NUM, RCGA with UNDXBXover and WM, and RCGA with 

UNDXBXover and NUM are used to solve this problem.  The population size used for all RCGAs 

is 100.  All the simulation results are averaged ones out of 50 runs.  For the proposed ABX, the 

parameters wa and wb are set at 0.5 and 1 respectively.  For the UNDXBXover, the parameters β , 

µ , and α are set at 1, 0.35, and 0.336 respectively.  For the proposed mutation WM, the parameter 

ζ  is set at 2.  For the NUM, the shape parameter is set at 2.  The probabilities of crossover and 

mutation for all approaches are set at 0.8 and 0.2 by trial and error.  For all approaches, the number 

of iteration is 2000.  The experimental results are tabulated in Table XII, and the comparison 

between different genetic operations is shown in Fig. 15.  As can be seen from the table, the mean 

and the best cost value offered by ABX and WM are better.  In addition, the smaller standard 
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deviation implies a more stable solution.  The t-value for this function is −24.67, which is a 

relatively large figure.  In short, the proposed RCGA is good for tuning associative memory. 

 

V. CONCLUSION 

 

An RCGA with improved genetic operations (average-bound crossover and wavelet 

mutation) has been presented.  By using the proposed crossover operation, the offspring spreads 

over the domain so that the probability of reproducing good offspring is increased.  In the proposed 

mutation operation, the wavelet theory is applied.  Thanks to the properties of the wavelet, both the 

solution quality and stability are improved.  A suit of benchmark test functions has been used to 

illustrate the merits of the improved genetic operations.  Examples on economic load dispatch and 

tuning associative memory have also been given. 
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Fig. 1.  RCGA process. 
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Fig. 2.  Parents and offspring under different values of the weights aw and bw  ( aw , bw = 0, 0.25, 0.5, 0.75 and 1.) 

Procedure of the RCGA 
begin 

τ→0  // τ : iteration number 
Initialize P(τ) // P(τ) : population for iteration τ 

       Evaluate f(P(τ))     // f(P(τ)) :fitness function 
while (not termination condition) do 
           begin 
                   τ→τ+1 
                   Select 2 parents p1 and p2 from P(τ−1) 
                   Perform crossover operation with pc 

Four chromosomes will be generated 

                             Select the best two offspring in terms of the fitness value 
                   Perform mutation operation with pm 
                   Reproduce a new P(τ) 
                   Evaluate f(P(τ))                   
            end 
end 



 21 

-3 -2 -1 0 1 2 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x  
Fig. 3.  The Morlet Wavelet. 

-2 0 2
-1

-0.5

0

0.5

1
a=1

-2 0 2
-1

-0.5

0

0.5

1
a=5

-2 0 2
-1

-0.5

0

0.5

1
a=10

-2 0 2
-1

-0.5

0

0.5

1
a=50

-2 0 2
-1

-0.5

0

0.5

1
a=100

-2 0 2
-1

-0.5

0

0.5

1
a=500

-2 0 2
-1

-0.5

0

0.5

1
a=1000

-2 0 2
-1

-0.5

0

0.5

1
a=10000

 
Fig. 4.  A Morlet wavelet dilated by different values of the parameter a (x-axis: x, y-axis: )(0, xaψ .) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

di
la

tio
n 

pa
ra

m
et

er
 

5 

2 

1 

0.5 

0.2 

a 

 
 

Fig. 5.  The effect of the shape parameterζ  to a with respected to T
τ . 

( )xψ  

T
τ  

=ζ  

=ζ  

=ζ  

=ζ  

=ζ  



 22 

 

0 50 100 150 200 250 300 350 400 450 500
10

-4

10
-2

10
0

10
2

10
4

10
6

iteration number

fit
ne

ss
 v

al
ue

ABX+WM

ABX+NUM 

UNDXBXover+NUM 

UNDXBXover+WM

 
f1 

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

iteration number

fit
ne

ss
 v

al
ue

ABX+WM

ABX+NUM

UNDXBXover+WM

UNDXBXover+NUM 

 
f2 

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+NUM 

UNDXXover+WM 

ABX+NUM 

ABX+WM 

 
f3 

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+NUM 

ABX+NUM 

UNDXBXover+WM 

ABX+WM 

 
f4 

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

10
1

10
2

iteration number

fit
ne

ss
 v

al
ue

UNDXXover+WM 

ABX+WM 

ABX+NUM 

UNDXBXover+NUM 

 
f5 

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

10
2

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+WM 

UNDXXover+NUM 

ABX+WM 

ABX+NUM 

 
f6 

0 10 20 30 40 50 60 70 80 90 100
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

iteration number

fit
ne

ss
 v

al
ue

UNDXBXover+WM 

UNDXBXover+NUM 

ABX+WM 

ABX+NUM 

 
f7 

 

Fig. 6.  Comparisons between different genetic operations for f1 to f7.  All results are averaged ones over 50 runs. 
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Fig. 7.  Comparison between different genetic operations for f8 to f13.  All results are averaged ones over 50 runs. 
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Fig. 8. Comparison between different genetic operations for f14 to f18.  All results are averaged ones over 50 runs. 
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Fig. 9.  Comparison between WM and NUM for f1 to f10 (except f3 and f7) without the crossover operation.  All results 

are averaged ones over 50 runs. 
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Fig. 10.  Comparison between WM and NUM for f11 to f18 without the crossover operation.  All results are averaged 

ones over 50 runs. 
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Fig. 11.  Comparison between different genetic operations for f4 with different initial ranges of variables.  All results 

are averaged over 50 runs. 
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Fig. 12.  Comparison between different genetic operations for f7 with different initial ranges of variables.  All results 

are averaged ones over 50 runs. 
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Fig. 13.  Comparison between different genetic operations for f16 with different initial ranges of vriables.  All results are 

averaged ones over 50 runs. 
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Fig. 14.  Comparisons between different genetic operations for ELD.  All results are averaged ones over 50 runs. 
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Fig. 15. Comparisons between different genetic operations for tuning associative memory.  All results are averaged 

ones over 50 runs. 
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1f  ( 410−× ), number of iteration: 500 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 1.6139 4.1263 4.0840 12.614 
Best 0.00048 0.0205 0.6095 4.5084 

Std Dev 2.9147 5.1841 4.0513 6.7184 
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −10.62 

 

2f  ( 210−× ), number of iteration: 500 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 0.24781 0.38064 2768.9 2785.1 
Best 0.02396 0.01624 2660.0 2638.0 

Std Dev 0.16678 0.35854 59.999 62.845 
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −313.3 

 

3f  ( 010× ), number of iteration: 200 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 0 0 10.180 12.640 
Best 0 0 1.0000 3.0000 

Std Dev 0 0 5.0130 5.6524 
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −15.81 

 

4f  ( 310−× ), number of iteration: 500 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 1.5503 2.7952 67.758 87.028 
Best 0.2132 0.4589 15.052 20.588 

Std Dev 1.0533 2.1315 76.725 62.560 
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −9.66 

 

5f  ( 210−× ), number of iteration: 500 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 0.5596 0.6207 654.10 747.30 
Best 0.0072 0.0503 201.66 214.20 

Std Dev 0.4483 0.5905 378.04 510.33 
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −10.35 

 

6f  ( 210−× ), number of iteration: 500 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 1.4924 1.6115 7.9237 14.158 
Best 0.1194 0.0769 0.5154 0.8621 

Std Dev 0.8047 1.2105 6.5454 11.366 
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −7.86 

 

7f  ( 010× ), number of iteration: 100 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean −0.9721 −0.9549 −0.8679 −0.8365 
Best −1.0000 −0.9999 −1.0000 −1.0000 

Std Dev 0.0530 0.1198 0.3277 0.3689 
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −2.57 

 

Table I. Comparison between different genetic operations for f1 to f7.  All results are averaged ones over 50 runs. 
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8f  ( 010× ), number of iteration: 50 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 0.9980 0.9980 0.9980 0.9980 

Best 0.9980 0.9980 0.9980 0.9980 

Std Dev 7101.0277 −×  5103308.1 −×  7103370.1 −×  5105832.2 −×  
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = N/A 

 
9f  ( 410−× ), number of iteration: 200 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 5.9125 6.3380 17.863 29.451 
Best 3.1002 3.3428 3.3147 5.1236 

Std Dev 2.7085 2.6445 36.986 5.5539 
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −26.94 

 
10f  ( 010× ), number of iteration: 20 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean −1 −1 −1 −1 
Best −1 −1 −1 −1 

Std Dev 0 0 4102770.3 −×  4103212.5 −×  
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = N/A 

 
11f  ( 010× ), number of iteration: 50 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean −1.0316 −1.0315 −1.0316 −1.0153 

Best −1.0316 −1.0316 −1.0316 −1.0316 

Std Dev 5101.5724 −×  5105767.1 −×  4107364.7 −×  1101542.1 −×  
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −1.00 

 
12f  ( 010× ), number of iteration: 100 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean −3.8628 −3.8627 −3.8591 −3.8628 
Best −3.8628 −3.8628 −3.8628 −3.8628 

Std Dev 4102.9850 −×  3100403.2 −×  1100288.1 −×  31008581 −×.  
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = N/A 

 
13f  ( 010× ), number of iteration: 100 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean −3.3051 −3.3061 −3.2837 −3.2905 
Best −3.3220 −3.3220 −3.3220 −3.3220 

Std Dev 2101617.4 −×  2104.0406 −×  2106158.5 −×  2103560.5 −×  
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −1.55 

 

Table II.  Comparison between different genetic operations on f8 to f13.  All results are averaged ones over 50 runs. 
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14f  ( 410−× ), number of iteration: 500 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 0.6791 14.340 10.181 38.643 
Best 0.0155 0.0413 0.7273 0.3654 

Std Dev 1.1437 36.254 22.759 51.452 
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −5.22 

 

15f  ( 310−× ), number of iteration: 800 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 2.8729 5.6010 283.16 616.92 
Best 0.1817 0.2907 0.8134 0.6561 

Std Dev 2.4540 5.5464 534.34 940.46 
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −4.62 

 

16f  ( 510−× ), number of iteration: 500 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 6.3267 109.63 1174.3 1797.4 
Best 0.1832 5.0020 1.7688 6.0472 

Std Dev 6.1773 81.434 5773.2 6998.2 
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −1.81 

 

17f  ( 310−× ), number of iteration: 500 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 1.3444 1.7323 10.543 14.665 
Best 0.0203 0.0655 5.2554 4.1783 

Std Dev 1.7323 1.9284 4.0336 6.6873 
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −13.63 

 

18f  ( 010× ), number of iteration: 500 

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean −12569.3 −12596.2 −10261.9 −10188.9 
Best −12569.5 −12569.5 −11168.0 −11089.0 

Std Dev 0.1520 0.2914 431.80 473.84 
     t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −35.52 

 

Table III.  Comparison between different genetic operations for f14 to f18.  All results are averaged ones over 50 runs. 
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  Wavelet Mutation (WM) Non-Uniform Mutation (NUM)  

Function 
Number 

of 
iteration 

Mean Best Std Dev Mean Best Std Dev t-test 
 (WM-NUM) 

f1 ( 310−× ) 500 4.0356 1.0634 0.9161 40.071 12.832 19.287 −13.197 

f2 ( 110× ) 500 3.8008 0.4671 2.3051 5.9549 0.9366 3.2204 −3.8461 

f4 ( 210−× ) 500 5.2538 1.9215 1.8577 8.8118 2.9487 2.9853 −7.1553 

f5 ( 110−× ) 1000 2.5280 1.5811 0.5138 6.7490 3.4751 2.0596 −14.061 

f6 ( 210−× ) 500 2.2759 1.0900 0.6494 2.4184 1.4767 0.6972 −1.0576 

f8 ( 010× ) 200 0.9980 0.9980 7.3982 1110−×  0.9980 0.9980 2.9079 1010−×  N/A 

f9 ( 310−× ) 200 9.3282 0.6078 9.6548 13.393 0.5910 17.639 −1.4294 

f10 ( 010× ) 20 −0.9861 −1.0000 0.0212 −0.9537 −1.0000 0.1283 −1.7618 

f11 ( 010× ) 50 −0.9627 −1.0316 0.2614 −0.9599 −1.0316 0.2239 −0.0575 

f12 ( 010× ) 200 −3.8583 −3.8628 0.0078 −3.8473 −3.8628 0.1093 −0.7098 

f13 ( 010× ) 200 −3.2791 −3.3220 0.0577 −3.2695 −3.3220 0.0597 −0.8176 

f14 ( 310−× ) 500 1.2887 0.3558 0.8485 6.3054 0.5732 5.5154 −6.3569 

f15 ( 010× ) 800 0.5777 0.1783 0.3784 7.4349 4.6367 1.4969 −31.404 

f16 ( 310−× ) 500 3.3964 0.6255 2.7778 6.3268 0.1243 41.201 −0.5018 

f17 ( 210−× ) 500 3.3688 2.1860 0.4944 4.6260 2.3877 1.0430 −7.7018 

f18 ( 010× ) 500 −10837.4 −11502.9 315.1 −9035.1 −10101.9 472.7 −8.7163 
 

Table IV.  Comparison between WM and NUM for f1 to f18 (except f3 and f7) without crossover operations. All results 

are averaged ones over 50 runs. 
 

Function 
Number 

of 
iteration 

2.0=ζ  5.0=ζ  0.1=ζ  0.2=ζ  0.5=ζ  

f1 (
410−× ) 500 92.259 32.283 10.997 7.9005 1.6139 

f2 ( 210−× ) 500 4.3312 2.1228 1.4416 0.9221 0.2478 

f3 ( 010× ) 200 0 0 0 0 0 

f4 ( 310−× ) 500 2.2760 2.0321 1.9075 1.5503 1.7121 

f5 ( 210−× ) 500 1.5283 1.4216 1.0127 0.5596 0.6012 

f6 ( 210−× ) 500 14.552 10.062 5.2128 2.1627 1.4924 

f7( 010× ) 100 −0.7511 −0.9721 −0.9592 −0.9296 −0.8918 

f8 ( 010× ) 50 1.0065 0.9983 0.9980 0.9980 1.8193 

f9 (
410−× ) 200 7.4659 6.1928 6.3950 5.9125 6.4783 

f10 ( 010× ) 20 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 

f11 ( 010× ) 50 −1.0300 −1.0314 −1.0316 −1.0316 −1.0316 

f12 ( 010× ) 100 −3.8627 −3.8627 −3.8302 −3.8509 −3.8471 

f13 ( 010× ) 100 −3.3051 −3.3026 −3.2868 −3.2639 −3.1642 

f14 (
410−× ) 500 0.6791 1.0792 3.2004 2.4721 7.8236 

f15 ( 310−× ) 800 42.220 10.684 5.2720 3.3008 2.8729 

f16 (
510−× ) 500 115.42 59.412 18.244 8.0794 6.3267 

f17 ( 310−× ) 500 12.798 3.8139 3.5067 2.1405 1.3444 

f18 ( 510−× ) 500 −12564.4 −12568.8 −12569.1 −12569.4 −12569.4 

 
Table V.  The mean cost values offered by wavelet mutation with different shape parameter ζ for function f1 to f18.   
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4f  ( 310−× ), number of iteration: 500 
 

Initial range: 12.556.2 ≤≤− ix  

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 4.4350 5.4386 41.007 50.831 
Best 0.2907 0.5751 17.663 23.658 

Std Dev 3.2943 4.0096 14.109 14.128 
      

 
Initial range: 8.124.6 ≤≤− ix  

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 9.1618 10.376 68.112 96.057 
Best 0.4297 0.3694 16.741 31.761 

Std Dev 5.6406 8.2521 23.898 40.070 
      

Initial range: 6.258.12 ≤≤− ix  

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 23.982 30.784 113.54 154.85 
Best 3.0393 0.8271 47.182 62.557 

Std Dev 14.305 26.989 36.270 62.135 
      

Initial range: 2.516.25 ≤≤− ix  

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 59.699 60.358 182.00 241.12 
Best 6.0383 5.3199 56.256 94.396 

Std Dev 35.603 37.199 72.225 81.600 
      

 

Table VI.  Comparison between different operations for f4 with different initial ranges of variables.  All results are 

averaged ones over 50 runs. 
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7f  ( 010× ), number of iteration: 100 
 

Initial range: 600600 ≤≤− ix  

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 0.7471 0.7062 0.6355 0.6227 
Best 1.0000 1.0000 1.0000 1.0000 

Std Dev 0.3417 0.3476 0.4820 0.4768 
      

 
Initial range: 15001500 ≤≤− ix  

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 0.7168 0.6338 0.4079 0.3968 
Best 1.0000 1.0000 1.0000 1.0000 

Std Dev 0.3669 0.3863 0.4899 0.4656 
      

Initial range: 30003000 ≤≤− ix  

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 0.5527 0.5451 0.2019 0.1626 
Best 1.0000 1.0000 1.0000 1.0000 

Std Dev 0.4206 0.4114 0.4030 0.3544 
      

Initial range: 6000060000 ≤≤− ix  

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 0.5353 0.1029 0.4533 0.0799 
Best 1.0000 1.0000 1.0000 1.0000 

Std Dev 0.4078 0.3027 0.4314 0.2737 
      

 

Table VII.  Comparison between different operations for f7 with different initial ranges of variables.  All results are 

averaged ones over 50 runs. 
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16f  ( 210−× ), number of iteration: 500 
 

Initial range: 12002400 ≤≤− ix  

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 0.0837 4.7569 1.7523 5.9533 
Best 0.0013 0.0996 0.0029 0.0043 

Std Dev 0.2108 9.1365 6.9979 11.762 
      

 
Initial range: 30006000 ≤≤− ix  

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 0.0935 0.2158 1.1821 4.5950 
Best 0.0174 0.0048 0.0011 0.0146 

Std Dev 0.0871 0.2408 5.7730 10.320 
      

Initial range: 600012000 ≤≤− ix  

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 0.2869 0.7036 1.4933 7.5643 
Best 0.0142 0.0351 0.0072 0.1285 

Std Dev 0.4371 0.5949 6.5196 11.531 
      

Initial range: 1200024000 ≤≤− ix  

 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
Mean 1.3310 3.9503 3.2419 2.4231 
Best 0.0775 0.1872 0.0329 1.0387 

Std Dev 1.3098 5.0784 8.9199 30.433 
      

 

Table VIII.  Comparison between different operations for f16 with different initial ranges of variables.  All results are 

averaged ones over 50 runs. 
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Unit min,LP (MW) max,LP (MW) a b c e f 

1 36 114 0.00690 6.73 94.705 100 100 
2 36 114 0.00690 6.73 94.705 100 100 
3 60 120 0.02028 7.07 309.54 100 100 
4 80 190 0.00942 8.18 369.03 150 150 
5 47 97 0.01142 5.35 148.89 120 120 
6 68 140 0.01142 8.05 222.33 100 100 
7 110 300 0.00357 8.03 287.71 200 200 
8 135 300 0.00492 6.99 391.98 200 200 
9 135 300 0.00573 6.60 455.76 200 200 
10 130 300 0.00605 12.9 722.82 200 200 
11 94 375 0.00515 12.9 635.20 200 200 
12 94 375 0.00569 12.8 654.69 200 200 
13 125 500 0.00421 12.5 913.40 300 300 
14 125 500 0.00752 8.84 1760.4 300 300 
15 125 500 0.00708 9.15 1728.3 300 300 
16 125 500 0.00708 9.15 1728.3 300 300 
17 220 500 0.00313 7.97 647.85 300 300 
18 220 500 0.00313 7.95 649.69 300 300 
19 242 550 0.00313 7.97 647.83 300 300 
20 242 550 0.00313 7.97 647.81 300 300 
21 254 550 0.00298 6.63 785.96 300 300 
22 254 550 0.00298 6.63 785.96 300 300 
23 254 550 0.00284 6.66 794.53 300 300 
24 254 550 0.00284 6.66 794.53 300 300 
25 254 550 0.00277 7.10 801.32 300 300 
26 254 550 0.00277 7.10 801.32 300 300 
27 10 150 0.52124 3.33 1055.1 120 120 
28 10 150 0.52124 3.33 1055.1 120 120 
29 10 150 0.52124 3.33 1055.1 120 120 
30 47 97 0.01140 5.35 148.89 120 120 
31 60 190 0.00160 6.43 222.92 150 150 
32 60 190 0.00160 6.43 222.92 150 150 
33 60 190 0.00160 6.43 222.92 150 150 
34 90 200 0.00010 8.95 107.87 200 200 
35 90 200 0.00010 8.62 116.58 200 200 
36 90 200 0.00010 8.62 116.58 200 200 
37 25 110 0.01610 5.88 307.45 80 80 
38 25 110 0.01610 5.88 307.45 80 80 
39 25 110 0.01610 5.88 307.45 80 80 
40 242 550 0.00313 7.97 647.83 300 300 

Table IX.  Units Data (40 systems with valve-point loadings): a ($/MW2h), b ($/MWh), c ($/h), e ($/h), and f (rad/MW) 

are cost coefficients. 

 

  ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 

Ave. Cost 122811.41 122840.26 124130.58 124223.25 

Best Cost 121915.93 122232.21 122763.44 123642.92 

Worst Cost 123334.00 123532.57 125092.30 124636.30 
Std. Dev. 313.79 333.36 818.10 805.12 

t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −11.55 
Table X.  Statistical results for ELD with a load demand of 10500MW. 
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iLP (MW), i =  ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 
1 110.97 81.82 110.95 83.56 
2 110.88 112.69 111.20 110.84 
3 98.17 98.03 99.25 97.44 
4 178.85 179.84 179.75 129.88 
5 87.78 87.92 90.01 87.80 
6 140.00 105.49 139.96 105.44 
7 260.37 259.57 265.71 259.67 
8 286.83 285.45 286.60 285.00 
9 285.14 284.23 284.64 211.63 

10 204.86 203.59 204.82 258.57 
11 165.98 168.81 168.81 168.68 
12 167.75 94.00 243.62 243.57 
13 214.31 304.53 304.56 394.27 
14 305.65 394.11 304.54 304.47 
15 393.66 394.43 394.28 304.52 
16 394.60 394.53 394.28 484.02 
17 489.22 489.47 400.03 399.61 
18 489.25 489.25 399.70 489.27 
19 511.23 511.18 511.33 511.27 
20 510.69 511.26 511.58 511.28 
21 524.74 523.39 523.55 523.33 
22 525.52 523.43 526.32 523.28 
23 522.98 524.18 523.52 523.39 
24 523.22 524.24 530.03 523.41 
25 523.26 523.96 523.28 523.48 
26 523.32 523.33 523.39 523.30 
27 10.00 10.00 10.92 10.38 
28 10.00 10.00 10.29 10.49 
29 10.00 10.00 11.14 10.24 
30 88.86 89.50 94.38 89.33 
31 162.30 160.10 170.87 160.34 
32 177.94 159.96 161.74 159.78 
33 160.18 163.09 182.87 165.00 
34 166.54 165.05 172.89 164.80 
35 164.80 169.30 177.58 169.58 
36 170.68 170.48 165.67 183.22 
37 108.17 89.16 89.78 90.24 
38 100.68 108.73 93.91 108.69 
39 109.34 90.19 90.76 85.46 
40 511.28 511.51 511.29 511.27 

Total Power  10500 10500 10500 10500 
Total Cost ($h) 121915.93 122232.21 122763.44 123642.92 

Table XI.  The optimal dispatch solution for different approaches. 

 

 MSE ( 410−× ), number of iteration: 2000 
 ABX+WM ABX+NUM UNDXBXover+WM UNDXBXover+NUM 

Mean 3.3939 4.7965 7.4178 9.5312 
Best 2.5154 2.8983 4.1872 5.8292 

Std Dev 0.4728 0.9566 2.1383 1.6943 
t-test ([ABX+WM]−[ UNDXBXover+NUM]) = −24.67 

Table XII. Statistical results for the example of associative memory 
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APPENDIX 

A. Benchmark test function 

The 18 benchmark test functions for testing the RCGA performance are listed below.  In 

these functions, [ ]nxxx 21=x . 

Unimodal Functions: 

1. Sphere Model  

( ) ∑
=

=
30

1

2
1

i
ixf x , −50 ≤≤ ix 150, min( 1f )= 0)(1 =0f  

2. Generalized Rosenbrock’s Function  

( ) ( ) ( )[ ]∑
=

+ −+−=
29

1

222
12 1100

i
iii xxxf x , 048.2048.2 ≤≤− ix , min( 2f )= 0)(2 =1f  

3. Step Function 

( )  ( )∑
=

+=
30

1

2
3 5.0

i
ixf x , 105 ≤≤− ix , min( 3f )= 0)(3 =0f  

4. Quartic Function (with noise) 

( ) [ )∑
=

+=
30

1

4
4 1,0

i
i randomixf x , 56.228.1 ≤≤− ix , min( 4f )= 0)(4 =0f  

where random [ )1,0 generates uniformly a floating-point number between 0 and 1. 

5. Schwefel’s Problem 2.21 

( ) { }301,max5 ≤≤= ixf ii
x , 50150 ≤≤− ix , min( 5f )= 0)(5 =0f  

6. Schwefel’s Problem 2.22 

( ) ∏∑
==

+=
30

1

30

1
6

i
i

i
i xxf x , 155 ≤≤− ix , min( 6f )= 0)(6 =0f  
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Multimodal Functions with Only a Few Local Minima: 

7. Eason’s Function  

( ) ( ) ( ) ( ) ( )( )( )2
2

2
1217 expcoscos ππ −+−−⋅⋅−= xxxxf x , 300,300 21 ≤≤− xx ,  

min( 7f )= [ ] 1),(7 −=ππf , 

8. Shekel’s Foxholes Function 

( )
( )

1
25

1
62

1

8
1

500
1
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



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



−+
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∑j
i iji axj

f x , 536.65536.65 ≤≤− ix , min( 8f )= [ ] 1)32,32(8 ≈−−f , 

where 
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


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


−−−−−−
−−−

=
323232163232323232
3216032321601632




ija  

9. Kowalik’s Function 

( ) ( )∑
=









++

+
−=

9

1

2

43
2

2
2

1
9

i ii

ii
i xxbb

xbbx
af x , 55 ≤≤− ix ,  

min( 9f )= [ ] 0003075.0)1358.0,1231.0,1908.0,1928.0(9 ≈f  

where 

i  ia  
ib  

1 0.1957 4 
2 0.1947 2 
3 0.1735 1 
4 0.1600 1/2 
5 0.0844 1/4 
6 0.0627 1/6 
7 0.0456 1/8 
8 0.0342 1/10 
9 0.0323 1/12 
10 0.0235 1/14 
11 0.0246 1/16 

10. Maxican hat Function 

( )
21

21
10

)sin()sin(
xx

xxf −=x , 15,5 21 ≤≤− xx , min( 10f )= 0)(lim 10)0,0(
=

→
xf

x
 

11. Six-Hump Camel Back Function 
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( ) 4
2

2
221

6
1

4
1

2
111 44

3
11.24 xxxxxxxf +−++−=x , 5,5 21 ≤≤− xx , 

min( 11f )= [ ] [ ] 0316.1)7126.0,08983.0()7126.0,08983.0( 1111 −≈−=− ff  

12. Hartman’s Family I 

( ) ( ) 







−−−= ∑∑

==

3

1

2
4

1
12 exp

j
ijjij

i
i pxacf x , 10 ≤≤ ix ,  

min( 12f )= [ ] 8628.3)852.0,556.0,114.0(12 −≈f , 

where 

  ija    ijp    i  ic  

i
j

 1 2 3 1 2 3 
   

1 3 10 30 0.3689 0.1170 0.2673  1 1 

2 0.1 10 35 0.4699 0.4387 0.7470  2 1.2 

3 3 10 30 0.1091 0.8732 0.5547  3 3 

4 0.1 10 35 003815 0.5743 0.8828  4 3.2 

13. Hartman’s Family II 

( ) ( ) 







−−−= ∑∑

==

6

1

2
4

1
13 exp

j
ijjij

i
i pxacf x , 10 ≤≤ ix , 

min( 13f )= [ ] 32.3)627.0311.0,275.0,477.0,15.0,201.0(13 −≈f , where 

    ija       ijp     i  ic  

i
j

 1 2 3 4 5 6 1 2 3 4 5 6 
   

1 10 3 17 3.5 1.7 8 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886  1 1 

2 0.05 10 17 0.1 8 14 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991  2 1.2 

3 3 3.5 1.7 10 17 8 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650  3 3 

4 17 8 0.05 10 0.1 14 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381  4 3.2 
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Multimodal Functions with Many Local Minima: 

14. Generalized Penalized Functions 
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15. Generalized Rastrigin’s Function 

( ) ( )[ ]∑
=

+−=
30

1

2
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i
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16. Generalized Griewank Function 
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17. Ackley’s Function 
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18. Schwefel’s Function 
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1
18 sin

i
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B. Unimodal normal distribution crossover (UNDX) 

Unimodal normal distribution crossover is defined as a mixture of three selected parents 1p , 

2p , and 3p .  The resulting offspring 
cso  is defined as, 
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where 

( )
2

21 ppm +
= , (A.3) 

),,0( 2
11 σNz =   ),,0( 2

2σNzi =  (A.4) 

,11 dβσ =   ,2
2 no_vars

dµ
σ =  (A.5) 

( )
,

12

12
1 pp

pp
−
−

=e  (A.6) 

nm ee ⊥  ),( nm ≠   ,1, =nm  , no_vars, (A.7) 

where )(⋅N is a normal distributed random number, 1d  is the distance between the parents 1p  

and 2p , 2d  is the distance of 3p  from the line connecting 1p  and 2p , β  and µ  are constant. 

C. Blend crossover (BLX-α) 

Blend crossover is defined as a combination of two selected parents 1p and 2p .  The 

resulting offspring [ ]
snoc sss ooo

var_21
,,, =so  is chosen randomly from the interval 

[ ]21, ii XX following the uniform distribution, where 

( ) ii dppX
ii

α−= 21
1 ,min , (A.8) 

( ) ii dppX
ii

α+= 21
2 ,max , (A.9) 

where  
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ii
ppdi 21 −=  , 

i
p1 and 

i
p2  are the i-th elements of 1p  and 2p  respectively, and α is a positive 

constant. 

D. Non-uniform mutation (NUM) 

Non-uniform mutation is an operation with a fine-tuning capability.  Its action depends on 

the generation number of the population.  The operation takes place as follows.  If 

[ ]
sno_sss ooo

var21
,,, =so  is a chromosome and the element 

kso is randomly selected for 

mutation (the value of 
kso  is inside [ kk parapara maxmin , ]), the resulting chromosome is then given by 
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,,ˆ,,ˆ =so , k ∈ 1, 2, … no_vars, and  
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where rd is a random number equal to 0 or 1 only.  The function ),( yτ∆  returns a value in the range 

[0, y] such that ),( yτ∆ approaches 0 as τ increases.  It is defined as follows, 
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where r is a random number in [0, 1], τ is the present generation number of the  population, T is the 

maximum generation number of the population, and b is a system parameter that determines the 

degree of non-uniformity. 
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