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Abstract

A new model for evolving Evolutionary Algorithms (EAs) is proposed
in this paper. The model is based on the Multi Expression Program-
ming (MEP) technique. Each MEP chromosome encodes an evolution-
ary pattern which is repeatedly used for generating the individuals of a
new generation. The evolved pattern is embedded into a standard evo-
lutionary scheme which is used for solving a particular problem. Several
evolutionary algorithms for function optimization are evolved by using
the considered model. The evolved evolutionary algorithms are compared
with a human-designed Genetic Algorithm. Numerical experiments show
that the evolved evolutionary algorithms can compete with standard ap-
proaches for several well-known benchmarking problems.
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1 Introduction

Solving problems defines the human history. Unfortunately, each problem re-
quires its own method for solving it. Modern techniques and algorithms tried
to overcome this drawback. For instance, Evolutionary Computation [16, 17]
tries to shift the difficulty from algorithms to representation: the algorithm is
intend to be a general one, whereas the solution representation and associated
genetic operators should be problem dependent.

The questions related to the efficiency of a particular evolutionary scheme
have led the birth of No Free Lunch theorems for Search and Optimization [37,
38]. The answer was negative: we cannot have the best Evolutionary Algorithm
(EA) which could perfectly solve all the optimization problems. All we can do
is designing optimal or near-optimal algorithms for some particular problems
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without expecting any guaranty related to their generalization ability on new
and unseen test problems.

Many evolutionary algorithms have been proposed for dealing with optimiza-
tion problems. However, the lack of mathematical proofs of convergence does
exist in most of the cases. Only some experimental evidence has been employed
for supporting the proposed theories.

Instead of involving sophisticated mathematical theories we propose a simple
way of deriving good evolutionary algorithms for a particular problem or set of
problems: by evolving them. Our purpose is to evolve an evolutionary algorithm
capable of solving a particular optimization problem. Thus, we will work with
EAs at two levels: the first (macro) level consists in a steady-state EA [34]
which uses a fixed population size, a fixed mutation probability, a fixed crossover
probability etc. The second (micro) level consists in the solutions encoded in a
chromosome of the first level EA.

The macro level evolves a population of evolutionary algorithms in the micro
level. The evolutionary algorithms in the micro level evolve solutions for a
particular optimization problem (such as function optimization, TSP, etc.) Thus
the output of the micro level EAs are solutions for a particular problem being
solved, whereas the output of macro level EA is the best evolutionary algorithm
in the micro level.

For the first (macro) level EA we use a standard evolutionary model, similar
to Multi Expression Programming (MEP) [24, 25, 26], which is very suitable for
evolving computer programs that may be easily translated into an imperative
language (like C or Pascal). The basic idea of evolving evolutionary algorithms
is depicted in Figure 1.

Instead of evolving an entire EA we evolve only the heart of the algorithm,
which is the sequence of instructions that generates a new offspring by tak-
ing information from the current population. The size of the search space is
considerable smaller in this case. Numerical experiments performed with the
proposed model reveal a short training time for obtaining a good evolutionary
algorithm capable of competing a standard genetic algorithm for some particular
test problems.

Note that the rules employed by the evolved EAs are not preprogrammed.
These rules are automatically discovered by the evolution.

This research was motivated by the need of answering several important
questions concerning evolutionary algorithms:

What is the optimal structure of an evolutionary algorithm?

Which are the genetic operators that have to be used in conjunction with an
EA (for a given problem)?

Which is the optimal (or near-optimal) sequence of genetic operations (se-
lections, crossovers and mutations) to be performed during a generation of an
EA for a particular problem?
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Figure 1: A schematic view of the process of evolving evolutionary algorithms.
Macro level EA evolves evolutionary algorithms within micro level. The output
of the macro-level EA is the best EA within micro-level.
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For instance, in a standard genetic algorithm the sequence is the following:
selection, recombination and mutation. But, how do we know that this scheme
is the best for a particular problem (or problem instance)? We had better let
the evolution to find the answer for us. Note that evolving only the probabilities
for applying specific genetic operators is not enough. Also, the structure of an
EA and the order in which these genetic operators are applied is also important.

The source code for evolving Evolutionary Algorithms is available at https:
//github.com/mihaioltean/evolve-algorithms.

The paper is organized as follows. An overview of the related work in the
field of evolving evolutionary algorithms is made in section 2. The new model
proposed for evolving EAs is presented in section 3. Several numerical exper-
iments are performed in section 4. These experiments proved that the model
proposed in this paper is able to evolve good evolutionary algorithm capable
of competing with human-written algorithms. Further research directions are
suggested in section 5.

2 Related Work

Several attempts for evolving Evolutionary Algorithms using similar techniques
were made in the past. A non-generational EA was evolved [25] by using the
Multi Expression Programming (MEP) technique [25, 26]. A generational EA
was evolved [27, 29] by using the Linear Genetic Programming (LGP) technique
[7, 23]. Numerical experiments have shown [25, 27] that the evolved EAs perform
similarly and sometimes even better than the standard evolutionary approaches
with which they are compared.

There are also several approaches that evolve genetic operators for solving
difficult problems [2, 3, 12, 33, 35]. In his paper on Meta-Genetic Programming,
Edmonds [12] used two populations: a standard GP population and a co-evolved
population of operators that act on the main population. Note that all these
approaches use a fixed evolutionary algorithm which is not changed during the
search.

Attempts for evolving complex heuristics for particular problems were made
in the recent past. In [28] the authors evolve an heuristic for the Traveling
Salesman Problem. The obtained heuristic is a mathematical expression that
takes as input some information about the already constructed path and outputs
the next node of the path. It was shown [28] that the evolved heuristic performs
better than other well-known heuristics (Nearest Neighbor Heuristic, Minimum
Spanning Tree Heuristic [11, 15]) for the considered test problems.

A recent paper of Spector and Robinson [32] describes a language called
Push which supports a new, self-adaptive form of evolutionary computation
called autoconstructive evolution. An experiment showing good results was
reported for symbolic regression problems.
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2.1 Multi Expression Programming based Approach

Multi Expression Programming (MEP) [24, 25, 26] 1 uses a special represen-
tation that is similar to the way in which C and Pascal compilers translate
mathematical expressions into machine code [1]. The MEP genes are (repre-
sented by) substrings of variable length. The number of genes in a chromosome
is constant and it represents the chromosome length. Each gene encodes a ter-
minal (an element in the terminal set T ) or a function symbol (an element in
the function set F ). A gene encoding a function includes pointers towards the
function arguments. Function parameters always have indices of lower values
than the position of that function itself in the chromosome.

According to the proposed representation scheme, the first symbol in a chro-
mosome must be a terminal symbol. In this way only syntactically correct
programs are obtained.

Example
We use a representation where the numbers on the left stand for gene la-

bels (or memory addresses). Labels do not belong to the chromosome, they are
provided only for explanatory purposes. An example of a chromosome is given
below (assuming that T = {a, b, c, d} and F = {+, -, *, /}):

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 2, 6

The MEP chromosomes are read top-down, starting with the first position.
A terminal symbol specifies a simple expression. A function symbol specifies a
complex expression (formed by linking the operands specified by the argument
positions with the current function symbol).

The expressions encoded in this chromosome are:

E1 = a;
E2 = b;
E3 = a+ b;
E4 = c;
E5 = d;
E6 = c+ d;
E7 = b ∗ (c+ d).

We have to choose one of these expressions (E1, . . . , E7) to represent the
chromosome. There is neither theoretical nor practical evidence that one of

1MEP source code is available at https://mepx.org or https://github.com/mepx.
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them is better than the others. Thus, we choose to encode multiple solutions
in a single chromosome. Each MEP chromosome encodes a number of expres-
sions equal to the chromosome length (the number of genes). The expression
associated to each chromosome position is obtained by reading the chromosome
bottom-up from the current position, by following the links provided by the
function pointers. The fitness of each expression encoded in a MEP chromo-
some is computed in a conventional manner (the fitness depends on the problem
being solved). The best expression encoded in an MEP chromosome is chosen to
represent the chromosome (the fitness of an MEP individual equals the fitness
of the best expression encoded in that chromosome).

Genetic operators used in conjunction with MEP are crossover and mutation
(see [24] for more information).

2.1.1 Evolving full EAs with MEP

In order to use MEP for evolving EAs the set of terminal symbols and a set
of function symbols have been redefined [25]. We have to keep in mind that
the value stored in a terminal symbol is independent of other symbols in the
chromosome and a function symbol changes the solution stored in another gene.

We have decided to use 4 types of genetic operators in our evolved EA. The
evolution will decide which operators are good and which are bad for our prob-
lem. The employed operators along with their meaning are given below:

• Initialization - randomly initializes a solution,

• Selection - selects the best solution among several already existing solu-
tions

• Crossover - recombines two already existing solutions,

• Mutation - varies an already existing solution.

These operators will act as symbols that may appear into an MEP chromo-
some. The only operator that generates a solution independent of the already
existing solutions is the Initialization operator. This operator will constitute the
terminal set. The other operators will be considered function symbols. Thus,
we have T = {Initialization}, F = {Selection, Crossover, Mutation}.

An MEP chromosome C, storing an evolutionary algorithm, can look like:

1: Initialization {Randomly generates a solution}
2: Initialization {Randomly generates another solution}
3: Mutation 1 {Mutates the solution stored on position 1}
4: Selection 1, 3 {Selects the best solution from those}

{stored on positions 1 and 3}
5: Crossover 2, 4 {Recombines the solutions on positions 2 and 4}
6: Mutation 4 {Mutates the solution stored on position 4}
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Table 1: Evolutionary Algorithms encoded in the MEP chromosome C

EA1 EA2 EA3 EA4

i1=Initialization i1=Initialization i1=Initialization i1 = Initialization
i2=Mutation(i1) i2=Mutation(i1)

i3=Selection(i1,i2)
EA5 EA6 EA7 EA8

i1=Initialization i1=Initialization i1=Initialization i1=Initialization
i2=Initialization i2=Mutation(i1) i2=Initialization i2=Initialization
i3=Mutation(i1) i3=Selection(i1, i2) i3=Mutation(i1) i3=Mutation(i1)
i4=Selection(i1, i3) i4=Mutation(i3) i4=Selection(i1, i3) i4=Selection(i1, i3)
i5=Crossover(i1, i4) i5=Crossover(i2, i4) i5=Mutation(i4)

i6=Mutation(i5) i6=Crossover(i2, i5)

7: Mutation 5 {Mutates the solution stored on position 5}
8: Crossover 2, 6 {Recombines the solutions on positions 2 and 6}

This MEP chromosome encodes multiple evolutionary algorithms (in fact 8
EAs as many). They are given in Table 1. Each EA is obtained by reading the
chromosome bottom-up, starting with the current gene and following the links
provided by the function pointers. The best evolutionary algorithm encoded
into a chromosome will represent that chromosome (will provide the fitness of
that chromosome).

The complexity of the EAs encoded into a MEP chromosome varies from
very simple (EAs made up of a single instruction) to very complex (sometimes
using all genes of the MEP chromosome). This is very useful because we do
not know, in advance, the complexity of the EA required to solve a problem.
The required algorithm could be very simple (and, in this case, the simplest
individuals encoded by MEP are very useful) or it could be very complex (and,
in this case, the most complex EAs are taken into account).

Thus we deal with EAs at two different levels: a micro level representing
the evolutionary algorithm encoded in an MEP chromosome and a macro level
GA, which evolves MEP individuals. The number of genetic operators (initial-
izations, crossovers, mutations, selections) is not fixed and it may vary between
1 and the MEP chromosome length. These values are automatically discovered
by the evolution. The macro level GA execution is bound by the known rules
for GAs ([16]). This process is depicted in Figure 1.

Remarks

(i) In our model, the Crossover operator always generates a single offspring
from two parents. The crossover operators generating two offspring may
also be designed to fit our evolutionary model.
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(ii) The Selection operator acts as a binary tournament selection. The better
out of two individuals is always accepted as the selection result.

(iii) The Initialization, Crossover and Mutation operators are problem depen-
dent.

2.1.2 Fitness assignment

We have to compute the quality of each EA encoded in the chromosome in order
to establish the fitness of an MEP individual. For this purpose each EA encoded
in an MEP chromosome is run on the particular problem being solved.

Roughly speaking the fitness of an MEP individual is equal to the fitness of
the best solution generated by one of the evolutionary algorithms encoded in
that MEP chromosome. But, since the EAs encoded in an MEP chromosome
use pseudo-random numbers it is likely that successive runs of the same EA
generate completely different solutions. This stability problem is handled in
the following manner: each EA encoded in an MEP chromosome was executed
(run) more times and the fitness of an MEP chromosome is the average of the
fitness of the best EA encoded in that chromosome over all runs. In all the
experiments performed in [25] each EA encoded into an MEP chromosome was
run 200 times.

2.2 Linear Genetic Programming based Approach

Linear Genetic Programming (LGP) [5, 7, 23] uses a specific linear representa-
tion of computer programs. Programs of an imperative language (like C ) are
evolved instead of the tree-based GP expressions of a functional programming
language (like LISP).

An LGP individual is represented by a variable-length sequence of simple
C language instructions. Instructions operate on one or two indexed variables
(registers) r or on constants c from predefined sets. The result is assigned to a
destination register, e.g. ri = rj * c.

An example of an LGP program is the following:

void LGP Program(double v[8])
{
. . .

v[0] = v[5] + 73;
v[7] = v[4]− 59;
v[4] = v[2] ∗ v[1];
v[2] = v[5] + v[4];
v[6] = v[1] ∗ 25;
v[6] = v[4]− 4;
v[1] = sin(v[6]);
v[3] = v[5] ∗ v[5];
v[7] = v[6] ∗ 2;
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v[5] = [7] + 115;
v[1] = sin(v[7]);

}

2.2.1 LGP for Evolving EAs

The structure of an LGP chromosome has been adapted for evolving EAs [27].
Instead of working with registers, our LGP program will modify an array of
individuals (the population). We denote by Pop the array of individuals (the
population) which will be modified by an LGP program.

The set of function symbols will consist in genetic operators that may appear
into an evolutionary algorithm. There are usually 3 types of genetic operators
that may appear into an EA (see section 2.1): Crossover, Mutation and Selec-
tion. The Initialization operator (see section 2.1) is used for initialization of the
population and it is not evolved like all other operators.

The LGP statements are considered to be genetic operations executed dur-
ing an EA generation. Since the purpose was to evolve a generational EA a
wrapper loop has been added around the genetic operations that are executed
during an EA generation. Even more, each EA starts with a random popula-
tion of individuals. Thus, the LGP program must contain some instructions
that initialize the initial population.

An LGP chromosome encoding an EA is given below:

void LGP Program(Chromosome Pop[8]) // a population with of 8 individuals
{

Randomly initialize the population();
// repeat for a number of generations
for (int k = 0; k < MaxGenerations; k++){

Pop[0] = Mutation(Pop[5]);
Pop[7] = Selection(Pop[3], Pop[6]);
Pop[4] = Mutation(Pop[2]);
Pop[2] = Crossover(Pop[0], Pop[2]);
Pop[6] = Mutation(Pop[1]);
Pop[2] = Selection(Pop[4], Pop[3]);
Pop[1] = Mutation(Pop[6]);
Pop[3] = Crossover(Pop[5], Pop[1]);
}

}

Remarks

(i) The initialization function and the for cycle will not be affected by the
genetic operators. These parts are kept unchanged during the search pro-
cess.
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(ii) Each LGP chromosome encodes a single EA. This is different from the
MEP approach where each chromosome encodes multiple EAs.

The quality of an EA encoded in an LGP chromosome is computed as in
the case of the MEP approach (see section 2.1.2). The EA encoded in an LGP
chromosome is run on the particular problem being solved and the quality of
the EA is equal to the quality of the best solution evolved by that EA.

3 Proposed Model

The model proposed for evolving evolutionary algorithms is described in this
section.

3.1 Motivation

This section tries to answer an important question:

”Why evolving EAs with patterns?”

In the previously described models (MEP-based and LGP-based), the search
space of the evolutionary algorithms was huge. The time needed to train a
human-competitive evolutionary algorithm could take between several hours
and several days.

Instead of evolving an entire EA we will try to evolve a small piece of code
that will repeatedly be used in order to obtain new individuals. Most of the
known evolutionary schemes use this form of evolution. For instance, in a stan-
dard GA, the following piece of code is successively applied until the new pop-
ulation is filled:

p1 = Selection (); // randomly choose two individuals from the current
population and

//the best of them will be the result of the selection
p2 = Selection (); // choose another two randomly individuals and return

the best of them in p2
c = Crossover(p1, p2);
c = Mutation(c);
Fitness(c); // compute the fitness of the individual c
Copy c in the next generation;

The patern employed by a simple (1+1) Evolution Strategy [6] is:

b = Mutation(a);
Fitness(b) // compute the fitness of the individual b
if b is better than a
then Replace a with b;

10



endif

The patern employed by a Steady-State Evolutionary Algorithm [34] is:

p1 = Selection (); // randomly choose two individuals from the current
population and

//the best of them will be the result of the selection
p2 = Selection (); // choose another two randomly individuals and return

the best of them in p2
c = Crossover(p1, p2);
c = Mutation(c);
Fitness(c); // compute the fitness of the individual c
if c is better than the worst individual in the population
then Replace the worst individual in the population with c;
endif

The main advantage of this approach is its reduced complexity: the size of
the pattern is considerably smaller than the size of the entire EA as evolved in
[25, 27].

The patterns in an evolutionary algorithm can be assimilated with the Au-
tomatically Defined Functions (ADFs) in Genetic Programming [19].

3.2 Representation

As shown in the previous section, the use of patterns greatly reduces the size of
the search space.

Our pattern will be represented as an MEP computer program whose in-
structions will be executed during the EA evolution. We have chosen Multi
Expression Programming for representing the patterns because MEP provides
an easy way to store a sequence of instructions. Note that, in our approach,
MEP will store only one solution (pattern) per chromosome because, due to
the generational algorithm where the pattern will be embedded, is difficult to
handle multiple evolutionary patterns in the same chromosome. We will still
use the MEP notation but the there will be only one solution per chromosome
in all cases and experiments below.

Other GP methods (such as standard Genetic Programming [18] and Gene
Expression Programming [13] may also be used for storing patterns. Linear
Genetic Programming [7] is less suitable for this model because we are not very
interested in storing (by using some destination variables) the results of the
crossover, selection and mutation operators. However, in our implementation
we use some destination variables, but these variables are fixed and they are
not subject to evolution (as in the LGP model).

As previously described in section 2.1, we have decided to use 4 types of
genetic operation within an EA:
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• Initialization - randomly initializes a solution,

• Selection - selects the best solution among several already existing solu-
tions,

• Crossover - recombines two already existing solutions,

• Mutation - varies an already existing solution.

Since our purpose is to evolve a small piece of code that will be used in order
to generate a new population based on the old population we will not use the
Initialization operator. This operator is used once at the moment of population
initialization. The other three operators Selection, Crossover and Mutation will
be used within the evolved pattern.

The operators that appear in the evolved EA and their new meanings are
shown below:

• Selection - selects a solution from the old population. This operation is im-
plemented as a binary tournament selection: two individuals are randomly
chosen and the best of them is the result of selection.

• Crossover (a, b) - recombines solutions a and b.

• Mutation (a) - varies solution a.

Function set is F = {Crossover, Mutation} and the terminal set is T =
{Selection}. As a restriction imposed by the MEP representation, the first in-
struction in a chromosome must be a Selection.

Let us recall the MEP representation as given in section 2.1. A MEP chro-
mosome can have the form (we took only the first 5 genes of the chromosome
given in section 2.1):

1: a
2: b
3: + 1, 2
4: * 4, 5
5: c

We will replace the terminal set {a, b, ...} by the new terminal symbol
{Selection} which is specific to our purpose. Also the function set {+, *, -, ...}
will be replaced by {Crossover, Mutation}.

Example 1
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An example of a MEP chromosome encoding a pattern is given below:

1: Selection
2: Selection
3: Mutation 1
4: Mutation 2
5: Crossover 2, 4

This MEP chromosome should be interpreted as follows:

• An individual (let us denote it by a) is selected from the current population

• Another individual (let us denote it by b) is selected from the current
population

• Individual a is mutated. The result of the mutation is a new individual
denoted by c.

• Individual b is mutated. A new individual (denoted by d) is obtained.

• Individuals b and d are recombined using a problem-dependent crossover.
A new individual e is obtained.

Example 2

The pattern employed by a standard GA rewritten as an MEP chromosome
is given below:

1: Selection
2: Selection
3: Crossover 1, 2
4: Mutation 3

The obtained individual is added to the new population.

3.3 What brings new the proposed approach

There are several important differences between the MEP-based technique [25]
presented in section 2.1.1 and the one proposed in this paper. First of all, the
complexity of the evolved algorithms is quite different. In the first approach [25]
we have evolved an entire EA, which is a simple sequence of genetic instructions
(no generations, no loops for filling a population). In the current approach we
keep intact most of the GA parts: we have generations and we have a loop which
fills the new population.

Another important modifications have been performed to the genetic opera-
tors employed by the evolved evolutionary algorithms. As a general modification

13



all genetic operators manipulate only individuals from the current population.
This is again different from the method proposed in [25] whose operators manip-
ulate individuals taken from the set of all individuals created since the beginning
of the search process.

Other particular modifications are described below:

• Initialization. In the MEP-based approach proposed in [25] we could use
initialization operator anywhere in the evolved algorithm. Here, in the
current approach, this operator has been removed from the set of possible
operators that could appear into an evolved pattern. Initialization is used
only at the beginning of the algorithm. However that part is not subject
to evolution.

• Selection. In the MEP-based approach used in [25] we have used a se-
lection operator which has 2 fixed parameters (e.g. Selection 5, 2). In
the current approach we use a more general type of selection operator
which has no parameter. This operator also selects two random individu-
als and outputs the best of them, but is not bound anymore to some fixed
positions in the population.

• Crossover - no modifications.

• Mutation - no modifications.

3.4 Decoding MEP individuals

The individual generated by the last instruction of the MEP chromosome will
be added to the new population. It can be easily seen that not all MEP instruc-
tions are effective. Thus, we have to see the sequence of instructions that has
generated that individual. In order to extract all effective instructions we pro-
ceed in a bottom-up manner. We begin by marking the last instruction in the
chromosome and then we follow the function pointers recursively until we get
some terminals. The marked MEP genes are the only useful genetic instructions
for our purpose.

For instance in the example 1 only the instructions in positions 2, 4 and 5
are actually utilized. Thus the pattern will be reduced to 3 instructions only:

1: Selection
2: Mutation 1
3: Crossover 1, 2

The other instructions (introns) have been removed from this final pattern
and the function pointers have been relabeled in order to reflect changes. Note
that the introns removal is performed only for the best chromosome (in the
population) at the end of the search process.

14



Remark.
Other operators could be added to the function and terminal sets in order to

define a more complex behavior for the evolved pattern. For instance we could
add an operator that computes the worst individual in the current population.
This operator is very useful in a steady-state evolutionary model [34].

3.5 Where the pattern is embedded?

The evolved pattern is a sequence of instructions which will repeatedly be used
for obtaining new individuals. This process is depicted in Figure 2. Note that
the proposed approach tells us only the way in which a new individual is gener-
ated based on the existing individuals (the current population) and it does not
tell us what to do with the obtained individual. In this model we have chosen
to add the obtained individual to the new population. The new population will
replace the current population at the end of a generation and the search process
continues.

The algorithm where the pattern will be embedded is a standard one: it
starts with a random population of solutions; always copies the best-of-generation
individual in the next generation and all the other individuals are obtained by
applying the pattern.

The evolutionary algorithm embedding the pattern is given below:

The Evolutionary Algorithm embedding the Evolved Pattern

S1. Randomly create the initial population P(0)
S2. for t = 1 to Max Generations do
S3. P’(t) = { The best individual in P (t) };

//The best individual in the current population is added to the new
population

S4. for k = 2 to |P(t)| do
S5. RUN THE PATTERN() // the evolved pattern is run here

// an offspring offspr is obtained
S6. Add offspf to P’(t); //add offspr in the new population
S7. endfor
S8. P(t+1) = P’(t);
S9. endfor

Note that this algorithm will be used (see section 4.1.2) for solving particular
problems such as function optimization. After obtaining the pattern we will
not be anymore interested in MEP and other techniques for evolving complex
computer programs (such EAs). We will focus only in using the pattern for
solving some particular problems.

3.6 Fitness Assignment

We deal with EAs at two different levels: a micro level representing the pattern
encoded into an MEP chromosome and a macro level GA, which evolves MEP

15



Figure 2: The dataflow view of the process of obtaining new individuals using
the evolved pattern. The input for the pattern is the current population. The
output (the individual obtained by applying the pattern) is always added to the
new population.
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individuals. Macro level GA execution is bounded by known rules for GAs (see
[16]).

In order to compute the fitness of an MEP individual we have to compute
the quality of the pattern encoded in that chromosome. For this purpose, the
pattern encoded into a MEP chromosome is embedded into an evolutionary
algorithm which is run on the particular problem being solved (as shown in
the previous section). A solution (for the particular problem being solved) is
obtained. For instance, this solution could be a real-valued array (in the case
of function optimization problems) or could be a path in a graph in the case of
the TSP problem.

Roughly speaking, the fitness of an MEP individual equals the fitness of
the solution generated by the pattern encoded into that MEP chromosome.
But, since the pattern encoded into an MEP chromosome uses pseudo-random
numbers, it is very likely that successive runs of the same EA will generate
completely different solutions. This stability problem is handled in a standard
manner: the EA embedding the pattern encoded into an MEP chromosome is
executed (run) more times (100 runs are, in fact, performed in all the experi-
ments for evolving EAs for function optimization) and the fitness of an MEP
chromosome is the average of the fitness of the EA encoded in that chromosome
over all runs.

The optimization type (minimization/maximization) of the macro level EA
is the same as the optimization type of the micro level EA. In our experiments
we have employed a minimization relation (finding the minimum of a function).

3.7 The Model used for Evolving EAs

We use the steady state algorithm described in section 3.8 in order to evolve
EAs. For increasing the generalization ability (i.e. the ability of the evolved EA
to yield good results on new test problems), the problem set is divided into three
sets, suggestively called training set, validation set and test set (see [30]). In
our experiments the training set consists in a difficult test problem. Validation
is performed by using another difficult test problem. The test set consists in
some other well-known benchmarking problems.

A method called early stopping [30] is used in order to avoid the overfitting
of the population individuals to the particular training examples used. This
method consists in computing the test set performance for the chromosome
which had the minimum validation error during the search process. The use of
early stopping technique will increase the generalization performance [30].

The test set consists in several well-known benchmarking problems [10, 31,
36] used for assessing the performances of the evolutionary algorithms.

3.8 The Algorithm for Evolving EAs

For evolving MEP individuals we use a steady-state [34] evolutionary algorithm.
The sketch of this algorithm has been depicted in Figure 1.
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The steady-state MEP algorithm starts with a randomly chosen population
of individuals. The following steps are repeated until a termination condition is
reached: Two parents are selected by using binary tournament and then they
are recombined with a fixed crossover probability. Two offspring are obtained
by the recombination of two parents. The offspring are mutated and the better
of them replaces the worst individual in the current population (if the offspring
is better than the worst individual in the current population).

The output of the MEP algorithm is the best evolutionary pattern encoded
into a MEP chromosome. This pattern (sequence of intructions) will be embed-
ded in the algorithm described in section 3.5. The obtained algorithm will be
used in section 4.1.2 for solving several well-known optimization problems.

3.9 Complexity and running time

The complexity of the proposed method is bounded by the known rules for
evolutionary algorithm. In the case of the algorithm where evolved pattern is
embeded (see section 3.5) then complexity can be simply described by the classic
equation:

CA = O(PopSize ∗NumberOfGenerations ∗NumberOfGenes ∗ C), (1)

where NumberOfGenes is the number of genes in the MEP pattern, C is
the complexity induced by the representation (real-valued array, TSP path etc)
and the other parameters are self explaining.

The complexity of the algorithm used for evolving patterns is given by the
formula:

O(PopSize ∗NumberOfGenerations ∗ CA). (2)

The CA factor was introduced here because we need to compute the fitness
of each newly evolved pattern, which actually means that we have to run the
algorithm given in section 3.5 whose complexity is described by equation 1.

Note that the values of parameters PopSize and NumberOfGenerations
may be different in formulas 1 and 2.

The process of evolving algorithms is a complex task which requires many
computational resources. This is because we need to assess the performance of
each evolved pattern by applying it to a particular problem (function optimiza-
tion in our case). For evolving an evolutionary pattern (see section 4) we need
about 1 hour. This is a significant improvement compared to the technique
proposed in [29] which requires about 1 day to evolve an algorithm.

4 Numerical Experiments

In this section, several numerical experiments for evolving EAs are performed.
An evolutionary algorithm for function optimization is evolved. Several numer-
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ical experiments, with a standard Genetic Algorithm [16] for function optimiza-
tion, are also performed in order to assess the performance of the evolved EA.
Finally the results are compared.

4.1 Evolving EAs for Function Optimization

In this section, an Evolutionary Algorithm for function optimization is evolved.

4.1.1 Test Functions

Ten test problems f1 − f10 (given in Table 2) are used in order to asses the
performance of the evolved EA. Functions f1 − f6 are unimodal test function.
Functions f7 − f10 are highly multimodal (the number of the local minima
increases exponentially with the problem dimension [36]).

Table 2: Test functions used in our experimental study. The parameter n is the
space dimension (n = 5 in our numerical experiments) and fmin is the minimum
value of the function.

Test function Domain fmin

f1(x) =
n∑

i=1

(i · x2i ). [-10, 10]n 0

f2(x) =
n∑

i=1

x2i . [-100, 100]n 0

f3(x) =
n∑

i=1

|xi|+
n∏

i=1

|xi|. [-10, 10]n 0

f4(x) =
n∑

i=1

(
i∑

j=1

xj

)2

. [-100, 100]n 0

f5(x) = maxi{xi, 1 ≤ i ≤ n}. [-100, 100]n 0

f6(x) =
n−1∑
i=1

100 · (xi+1 − x2i )2 + (1− xi)2. [-30, 30]n 0

f7(x) = 10 · n+
n∑

i=1

(x2i − 10 · cos(2 · π · xi)) [-5, 5]n 0

f8(x) = −a · e−b

√
n∑

i=1

x2
i

n − e
∑

cos(c·xi)

n + a+ e. [-32, 32]n

a = 20, b = 0.2, c
= 2π.

0

f9(x) = 1
4000 ·

n∑
i=1

x2i −
n∏

i=1

cos( xi√
i
) + 1. [-500, 500]n 0

f10(x) =
n∑

i=1

(−xi · sin(
√
|xi|)) [-500, 500]n -n∗ 418.98
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4.1.2 Experimental Results

In this section we evolve an EA for function optimization and then we asses
its performance. A comparison with standard GA is performed further in this
section.

For evolving an EA we use f1 as the training problem and f2 as the validation
problem. The number of dimensions was set to 5 for all numerical experiments.

An important issue concerns the solutions evolved by the EAs encoded into
an MEP chromosome and the specific genetic operators used for this purpose.
The solutions evolved by the EA encoded into MEP chromosomes are repre-
sented by using real values [16]. Thus, each chromosome of the evolved EA is a
fixed-length array of real values. By initialization, a point within the definition
domain is randomly generated. Convex crossover with α = 1/2 and Gaussian
mutation with σ = 0.01 are used [16].

A short description of real encoding and the corresponding genetic operators
is given in Table 3.

Table 3: A short description of real encoding.

Function to be optimized f :[MinX, MaxX ]n → <
Individual representation x = (x1, x2, . . . , xn).
Convex Recombination with α =
0.5

parent 1 – x = (x1, x2, . . . , xn).
parent 2 – y = (y1, y2, . . . , yn).
the offspring – o = (x1+y1

2 , x2+y2

2 , ... , xn+yn

2 ).
Gaussian Mutation the parent – x = (x1, x2, . . . , xn).

the offspring – o = (x1 +G(0,σ), x2 +G(0,σ),
. . . , xn +G(0,σ)),
where G is a function that generates real val-
ues with Gaussian distribution.

Experiment 1

An Evolutionary Algorithm for function optimization is evolved in this ex-
periment.

The parameters of the MEP algorithm are given in Table 4.
The parameters of the evolved EA are given in Table 5.
The results of this experiment are depicted in Figure 3.
The effectiveness of our approach can be seen in Figure 3. The MEP tech-

nique is able to evolve an EA for solving optimization problems. The quality of
the evolved EA improves as the search process advances.

One complete run (100 generations) took about 1 hour. Note that one run
in the case of the LGP approach [27] took one day.

One of the best evolved evolutionary patterns is given below in MEP no-
tation. Note that we have removed the introns [7] and we have kept only the
effective code. This is why the pattern is shorter than the MEP chromosome
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Table 4: The parameters of the MEP algorithm used for evolving evolutionary
algorithms.

Parameter Value
Population size 100
Code Length 15 instructions
Number of generations 100
Crossover probability 0.8
Crossover type Uniform Crossover
Mutation 1 mutation per chromosome
Function set F = {Crossover, Mutation}
Terminal set F = {Selection}

Table 5: The parameters of the evolved EA for function optimization.
Parameter Value
Individual representation fixed-length array of real values.
Population size 50
Number of generations 50
Crossover probability 1
Crossover type Convex Crossover with α = 0.5
Mutation Gaussian mutation with σ = 0.01
Mutation probability 1
Selection Binary Tournament
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Figure 3: The evolution of the fitness of the best individual, the worst individual
and the average fitness in a particular run. We have depicted a window of 25
runs just in order to provide a better visualisation.
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used in evolution (see Table 4).

1: Selection
2: Selection
3: Mutation 2
4: Mutation 3
5: Crossover 1, 4
6: Mutation 5
7: Mutation 6
8: Mutation 7
9: Mutation 8

This chromosome selects two individuals (a and b), mutates twice the in-
dividual b and then performs a crossover between the result and a. Then the
offspring is mutated four times. The structure of the chromosome suggests that
the standard mutation (with σ = 0.01) is not sufficient for this test function.
Additional mutations are performed in order to improve the algorithm’s perfor-
mance.

We have also analyzed the quality of other individuals involved in the search
process. We have randomly chosen one of the runs and we have analyzed the
fitness of the best and of the worst individual in the population (see Figure 3).
The fitness of the best individual in the first generation is 4.92, while the average
fitness (of all the individuals at generation 0) is 85.15. This means that we have
some good individuals in the first generation, but we also have some very unfit
individuals. The worst individual in the first generation has the fitness equal to
151.70. This individual is given below in MEP notation:

1: Selection
2: Mutation 1
3: Selection
4: Crossover 2, 3
5: Selection
6: Crossover 4, 5
7: Selection
8: Crossover 6, 7
9: Mutation 8

In the second generation the average fitness is 22.01 and the fitness of the
worst individual is 121.02. In the third generation the worst individual in the
population has the fitness 6.83, whereas the fitness of the best individual is
4.06. We see that in very few generations the average fitness quickly decreases,
getting close to the value of the best fitness in the population. This means that
the very unfit individuals are quickly replaced by some very fit individuals.
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Experiment 2

This experiment serves our purpose of comparing the evolved EA with a
standard Genetic Algorithm. The parameters used by the evolutionary algo-
rithm embedding the evolved pattern are given in Table 5. The parameters
used by standard GA are given in Table 6. The results of the comparison are
given in Table 7.

The standard GA algorithm, used for comparison, is given below:

Standard GA algorithm

S1. Randomly create the initial population P(0)
S2. for t = 1 to Max Generations do
S3. P’(t) = { The best individual in P (t) };
S4. for k = 2 to |P(t)| do
S5. p1 = Selection(P(t)); // select an individual from the population
S6. p2 = Selection(P(t)); // select the second individual
S7. Crossover (p1, p2, offsp); // crossover the parents p1 and p2

// an offspring offspr is obtained
S8. Mutation (offspr); // mutate the offspring offspr
S9. Add offspf to P’(t); //move offspr in the new population
S10. endfor
S11. P(t+1) = P’(t);
S12. endfor

The best solution in the last generation is the output of the program.
The pattern (the sequence of code that is repeatedly used) is given by steps

S5 − S9.
The parameters of the standard GA are given in Table 6. Results are given

in Table 7.

Table 6: The parameters of a standard GA for Experiment 2.
Parameter Value
Population size 50
Individual encoding fixed-length array of real values
Number of generations 50
Crossover probability 1
Crossover type Convex Crossover with α = 0.5
Mutation Gaussian mutation with σ = 0.01
Mutation probability 1
Selection Binary Tournament

Taking into account the averaged values we can see in table 7 that the evolved
EA significantly performs better than the standard GA in 9 cases (out of 10).
For the test function f2 the latter performs better than the evolved pattern.
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Table 7: The results obtained by applying the Evolved EA and the Standard
GA to the considered test functions. StdDev stands for the standard deviation.
The results are averaged over 500 runs.

Test function
Evolved EA Standard GA
Best run Worst

run
Mean StdDev Best run Worst

run
Mean StdDev

f1 2.62E-5 4.306 0.128 0.401 1.424E-5 5.503 0.335 0.691
f2 6.878E-5 366.563 27.115 38.991 3.990E-5 468.196 25.963 35.553
f3 4.852E-3 2.297 0.250 0.364 3.676E-3 4.708 0.487 0.571
f4 6.244E-5 458.838 38.277 58.218 4.899E-4 417.656 38.821 57.073
f5 6.592E-3 14.279 2.996 2.306 3.283E-3 14.701 3.032 2.120
f6 5.513E-2 9801.02 339.818 993.006 4.310E-3 27823.4 485.559 1935.170
f7 3.073E-3 15.361 1.861 1.577 4.636E-3 19.304 3.243 3.811
f8 1.036E-2 8.536 2.775 1.756 4.915E-3 9.507 2.905 1.599
f9 2.163E-2 3.520 0.509 0.340 2.123E-2 3.387 0.533 0.323
f10 -1641.83 -569.444 -

1010.610
171.799 -1642.01 -610.59 -998.549 174.782

When taking into account the solution obtained in the best run, the standard
GA performs better than the evolved EA in 8 cases (out of 10).

When taking into account the solution obtained in the worst run, the evolved
EA performs better than the standard GA in 7 cases (out of 10).

In order to determine whether the differences between the Evolved EA and
the standard GA are statistically significant, we use a t-test with 95% confidence.
Only the best solutions in each run have been taken into account for these tests.
Before applying the t-test, an F -test has been used for determining whether the
compared data have the same variance. The P -values of a two-tailed t-test are
given in Table 8.

Table 8 shows that the difference between the EA embedding the evolved
pattern and the standard GA is statistically significant (P < 0.05) for 6 test
problems.

Experiment 3

We are also interested in analyzing the relationship between the number
of generations of the evolved EA and the quality of the solutions obtained by
applying the evolved EA to the considered test functions. The parameters of
the Evolved EA are given in Table 5 and the parameters of the standard GA
are given in Table 6.

The results of this experiment are depicted in Figure 4 (the unimodal test
functions) and in Figure 5 (the multimodal test functions).

Figures 4 and 5 show that the Evolved EA is scalable regarding the num-
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Figure 4: The relationship between the number of generations and the quality
of the solutions obtained by the Evolved EA and by the standard GA for the
unimodal test functions f1 − f6. The number of generations varies between 10
and 200. Results are averaged over 100 runs.
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Figure 5: The relationship between the number of generations and the quality
of the solutions obtained by the Evolved EA and by the standard GA for the
multimodal test functions f7 − f10. The number of generations varies between
10 and 200. Results are averaged over 100 runs.
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Table 8: The results of the t-Test and F-Test with 499 degrees of freedom.
Function F-Test t-Test
f1 9.22E-10 8.59E-10
f2 3.94E-2 6.25E-1
f3 5.08E-23 1.72E-14
f4 6.57E-1 8.81E-1
f5 5.97E-2 7.96E-1
f6 5.65E-47 1.34E-1
f7 2.75E-77 2.10E-13
f8 3.69E-2 2.21E-1
f9 2.33E-1 2.48E-1
f10 7.00E-1 2.71E-1

ber of generations. We can see a continuous improvement tendency during the
search process for all test functions (f1 − f10).

Experiment 4

We are also interested in analyzing the relationship between the population
size of the evolved EA and the quality of the solutions obtained by applying the
evolved EA to the considered test functions. The parameters of the Evolved EA
are given in Table 5 and the parameters of the standard GA are given in Table
6.

The results of this experiment are depicted in Figure 6 (the unimodal test
functions) and in Figure 7 (the multimodal test functions).

Figures 6 and 7 show that the Evolved EA is scalable on what concerns the
number of individuals in the population. We can see a continuous improvement
tendency during the search process for all test functions (f1 − f10).

5 Conclusions and further work

A new model for evolving Evolutionary Algorithms has been proposed in this
paper. A detailed description of the proposed approach has been given, thus
allowing researchers to apply the method for evolving Evolutionary Algorithms
that could be used for solving problems in their fields of interest.

The proposed model has been used for evolving Evolutionary Algorithms for
function optimization. Numerical experiments emphasize the robustness and
the efficacy of this approach. The evolved Evolutionary Algorithms perform
similarly and sometimes even better than some standard approaches in the
literature for the considered test functions.

In order to evolve high quality EAs and assess their performance, an ex-
tended set of training problems should be used. This set should include prob-
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Figure 6: The relationship between the population size and the quality of the
solutions obtained by the Evolved EA and by the standard GA for the unimodal
test functions f1 − f6. Population size varies between 30 and 200. Results are
taken from the last generation and averaged over 100 independent runs.
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Figure 7: The relationship between the population size and the quality of the
solutions obtained by the Evolved EA and by the standard GA for the mul-
timodal test functions f7 − f10. Population size varies between 30 and 200.
Results are averaged over 100 runs.
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lems from different fields, such as function optimization, symbolic regression
[18], the Traveling Salesman Problem [14, 15], the Quadratic Assignment Prob-
lem [20, 22] classification etc. Further efforts will be dedicated to the training
of such an algorithm which should have an increased generalization ability.

An extended set of operators will be used in order to obtain more powerful
Evolutionary Algorithms. This set will include operators that compute the
fitness of the best/worst individual in the population. In this case, the evolved
EA will have the ”elitist” feature which will allow us to compare it with more
complex evolutionary schemes like steady-state [34].

For obtaining better results we also plan to evolve the parameters involved
by the pattern (e.g. mutation probability, crossover probability etc). In this
case, the evolved structure will contain a MEP chromosome and some numerical
values for the parameters whose optimal value we want to find.

Only fixed-size populations have been used in our experiments. Another
extension of the proposed approach will take into account the scalability of the
population size.

Further effort will be focused on evolving evolutionary algorithms for other
difficult (NP-Complete problem) [10, 15, 31].
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