Skip to main content
Log in

Gradual elements in a fuzzy set

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The notion of a fuzzy set stems from considering sets where, in the words of Zadeh, the “transition from non-membership to membership is gradual rather than abrupt”. This paper introduces a new concept in fuzzy set theory, that of a gradual element. It embodies the idea of fuzziness only, thus contributing to the distinction between fuzziness and imprecision. A gradual element is to an element of a set what a fuzzy set is to a set. A gradual element is as precise as an element, but the former is flexible while the latter is fixed. The gradual nature of an element may express the idea that the choice of this element depends on a parameter expressing some relevance or describing some concept. Applications of this notion to fuzzy cardinality, fuzzy interval analysis, fuzzy optimization, and defuzzification principles are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bellman R, Zadeh LA (1970) Decision making in a fuzzy environment. Manage Sci 17:B141–B164

    Article  MathSciNet  Google Scholar 

  • Chanas S (1983) The use of parametric programming in fuzzy linear programming. Fuzzy Sets Syst 11:229–241

    Article  Google Scholar 

  • Chanas S, Nowakowski M (1988) Single value simulation of fuzzy variable. Fuzzy Sets Syst 25:43–57

    Article  MATH  MathSciNet  Google Scholar 

  • Delgado M, Sanchez D, Martin-Bautista MJ, Vila MA (2002) A probabilistic definition of a nonconvex fuzzy cardinality. Fuzzy Sets Syst 126:177–190

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois D (1987) Linear programming with fuzzy data. In: Bezdek JC (ed) The Analysis of fuzzy information. Applications in Engineering and Science, vol. 3. CRC Press, Boca Raton, pp 241–263

    Google Scholar 

  • Dubois D, Prade H (1978) Operations on fuzzy numbers. Int J Syst Sci 9:613–626

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois D, Prade H (1980) Fuzzy sets & systems: theory and applications, mathematics in science and engineering series, vol. 144. Academic, New York

    Google Scholar 

  • Dubois D, Prade H (1982) On several representations of an uncertain body of evidence. In: Gupta MM, Sanchez E (eds) Fuzzy information and decision processes. North-Holland, Amsterdam, pp. 167–181

    Google Scholar 

  • Dubois D, Prade H (1984) On distances between fuzzy points and their use for plausible reasoning. In: Proceedings of IEEE International Conference on Cybernetics & Society, Bombay, New Dehli, 30 Dec 1983–7 Jan 1984, pp 300–303

  • Dubois D, Prade H (1985) Fuzzy cardinality and the modeling of imprecise quantification. Fuzzy Sets Syst 16:199–230

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois D, Prade H (1987) The mean value of a fuzzy number. Fuzzy Sets Syst 24:279–300

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois D, Prade H (1988) On incomplete conjunctive information. Comput Math Appl 15:797–810

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois D, Prade H (2005) Fuzzy elements in a fuzzy set. In: Proceedings of 10th International Fuzzy Systems Assoc. (IFSA) Congress, Beijing, pp 55–60

  • Dubois D, Kerre E, Mesiar R, Prade H (2000) Fuzzy interval analysis. In: Dubois D, Prade H (eds) Fundamentals of fuzzy sets, the handbooks of fuzzy sets series. Kluwer, Boston, pp 483–581

    Google Scholar 

  • Dubois D, Fargier H, Fortin J (2004) A generalized vertex method for computing with fuzzy intervals. In: Proceedings of the International Conference on Fuzzy Systems, Budapest, Hungary, pp 541–546

  • Fortin J, Dubois D, Fargier H (2007) Gradual numbers and their application to fuzzy interval analysis. IEEE Trans Fuzzy Syst (in press)

  • Friedman M, Ma M, Kandel A (1998) Fuzzy linear systems. Fuzzy Sets Syst 96:201–209

    Article  MATH  MathSciNet  Google Scholar 

  • Gantner T, Steinlage R, Warren R (1978) Compactness in fuzzy topological spaces. J Math Anal Appl 62:547–562

    Article  MATH  MathSciNet  Google Scholar 

  • Gebhardt J, Kruse R (1993) The context model: an integrating view of vagueness and uncertainty. Int J Approx Reason 9:283–314

    Article  MATH  MathSciNet  Google Scholar 

  • Goetschel RH Jr (1997) Representations with fuzzy darts. Fuzzy Sets Syst 89:77–105

    Article  MATH  MathSciNet  Google Scholar 

  • Goodman IR (1982) Fuzzy sets as equivalence classes of random sets. In: Yager RR (ed) Fuzzy sets and possibility theory. Pergamon, Oxford, pp 327–342

    Google Scholar 

  • Herencia J, Lamata M (1999) A total order for the graded numbers used in decision problems. Int J Uncertain Fuzziness Knowl-Based Syst 7:267–276

    Article  MATH  MathSciNet  Google Scholar 

  • Hoehle U (1987) Fuzzy real numbers as Dedekind cuts with respect to a multiple-valued logic. Fuzzy Sets Syst 24:263–278

    Article  MATH  Google Scholar 

  • Hoehle U (1998) Many-valued equalities, singletons and fuzzy partitions. Soft Comput 2:134–140

    Google Scholar 

  • Hutton B (1975) Normality in fuzzy topological spaces. J Math Anal Appl 50:74–79

    Article  MATH  MathSciNet  Google Scholar 

  • Kaucher E (1980) Interval analysis in the extended interval space IR. Comput Suppl 2:33–49

    MathSciNet  Google Scholar 

  • Klement EP (ed) (1979) Proceedings of the the 1st international seminar on fuzzy set theory, J. Kepler Universitaet, Linz Austria

  • Kolesnik R, Prokopowicz P, Kosinski W (2004) Fuzzy calculator—useful tool for programming with fuzzy algebra. In: Rutkowski L et al (eds) Artificial intelligence and soft computing (ICAISC 2004). Lect Notes Comput Sci 3070, pp 320–325

  • Kosinski W, Prokopowicz P, Slezak D (2005) Calculus with fuzzy numbers. In: Bolc L et al (eds) Intelligent media technology for communicative intelligence (IMTCI 2004). Lect Notes Comput Sci 3490. Springer, Heidelberg, pp 21–28

  • Lakoff G (1987) Women, fire, and dangerous things—what categories reveal about the mind. University of Chicago Press, Chicago

    Google Scholar 

  • Lowen R (1996) Fuzzy set theory. Fuzzy real numbers, Chap. 5. Kluwer, Dordrecht

  • Moore R (1979) Methods and applications of interval analysis. SIAM Stud Appl Math

  • Negoita CV, Ralescu DA (1975) Representation theorems for fuzzy concepts. Kybernetes 4:169–174

    MATH  Google Scholar 

  • Nguyen HT (1978) A note on the extension principle for fuzzy sets. J Math Anal Appl 64:369–380

    Article  MATH  MathSciNet  Google Scholar 

  • Orlovsky S (1977) On programming with fuzzy constraint set. Kybernetes 6:197–201

    MATH  Google Scholar 

  • Pollet Y (1993) Une approche formelle de la manipulation des nombres mal connus. 3d National Conference “Les Applications des Ensembles Flous”. Nimes, EC2, Nanterre France, pp. 145–154

  • Ralescu DA (1992) A generalization of the representation theorem. Fuzzy Sets Syst 51:309-311

    Article  MATH  MathSciNet  Google Scholar 

  • Ralescu DA (2002) Average level of a fuzzy set. In: Bertoluzza C et al (eds) Statistical modeling, analysis and management of fuzzy data. Springer, Heidelberg, pp 119–126

    Google Scholar 

  • Rocacher D, Bosc P (2003) About Zf, the set of relative integers, and the definition of fuzzy bags on Zf. IFSA’03 Istanbul, LNCS 2715, Springer, Heidelberg, pp 95–102

  • Rocacher D, Bosc P (2005) The set of fuzzy rational numbers and flexible querying. Fuzzy Sets Syst 155:317–339

    Article  MATH  MathSciNet  Google Scholar 

  • Rodabaugh SE (1982) Fuzzy addition in the L-fuzzy real line. Fuzzy Sets Syst 8:39–51

    Article  MATH  MathSciNet  Google Scholar 

  • Roventa E, Spircu T (2003) Averaging procedures in defuzzification processes. Fuzzy Sets Syst 136:375–385

    Article  MATH  MathSciNet  Google Scholar 

  • Shapley LS (1953) A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games, II. Princeton University Press, Princeton, pp 307–317

    Google Scholar 

  • Tanaka H, Okuda T, Asai K (1974) On fuzzy mathematical programming. J Cybernetics 3(4):37–46

    MathSciNet  Google Scholar 

  • Yager RR (1981) A procedure for ordering fuzzy subsets of the unit interval. Inform Sci 24:143–161

    Article  MATH  MathSciNet  Google Scholar 

  • Yager RR (1982) Level sets for membership evaluation of fuzzy subsets. In: Yager RR (ed) Fuzzy sets and possibility theory. Pergamon, Oxford, pp 90–97

    Google Scholar 

  • Wygralak M (1996) Vaguely defined objects: representations, fuzzy sets and nonclassical cardinality theory. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh LA (1979) A theory of approximate reasoning. In: Hayes JE, Michie D, Mikulich D (eds) Machine intelligence, vol. 9. Elsevier, New York, pp 149–194

    Google Scholar 

  • Zimmermann H (1976) Description and optimisation of fuzzy systems. Int J Gen Syst 2:209–215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Dubois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois, D., Prade, H. Gradual elements in a fuzzy set. Soft Comput 12, 165–175 (2008). https://doi.org/10.1007/s00500-007-0187-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-007-0187-6

Keywords

Navigation