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Abstract New multimedia embedded applications are
increasingly dynamic, and rely on dynamically-allocated data
types (DDTs) to store their data. The optimization of DDTs
for each target embedded system is a time-consuming process
due to the large searching space of possible DDTs implemen-
tations. That implies the minimization of embedded design
variables (memory accesses, power consumption and mem-
ory usage). Up to know, some very effective heuristic algo-
rithms have been developed in order to solve this problem,
but it is unknown how good the selected DDTs are since
the problem is NP-complete and cannot be fully explored. In
these cases the use of parallel processing can be very useful
because it allows not only to explore more solutions spending
the same time, but also to implement new algorithms. This
paper describes several parallel evolutionary algorithms for
DDTs optimization in Embedded Systems, where parallelism
improves the solutions found by the corresponding sequen-
tial algorithm, which indeed is quite effective compared with
other previously proposed procedures. Experimental results
show how a novel parallel multi-objective genetic algorithm,
which combines NSGA-II and SPEA2, allows designers to
reach a larger number of solutions than previous approxima-
tions.
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1 Introduction

Latest multimedia embedded devices are enhancing its capa-
bilities and are currently able to run applications reserved to
powerful desktop computers few years ago (e.g., 3D games,
video players) (Catthoor et al. 2002). As a result, one of the
most important problems designers face nowadays is the inte-
gration of a great amount of applications coming from the
general-purpose domain in a compact and highly constrained
device.

One major task of this porting process is the optimization
of the dynamic memory subsystem. Thus, the designer must
choose among a number of possible dynamically allocated
data structures or dynamic data types (DDTs) implemen-
tations (Antonakos and Mansfield 1999) (dynamic arrays,
linked lists, etc.) for each variable of the application, accord-
ing to some specific constraints of the target device and typ-
ical embedded design metrics, such as memory accesses,
memory usage and energy consumption (Atienza et al. 2007).

This task has been typically performed in the past using a
pseudo-exhaustive evaluation of the design space of DDTs,
including multiple executions of the application, to attain
a Pareto front (PF) of solutions (Coello 1999), which tries
to cover all the optimal implementation points for the some
required design metrics. The construction of this PF has been
proven to be a very time-consuming process, sometimes even
unaffordable (Daylight et al. 2004).

Extensive work has been performed in the field of embed-
ded memory subsystem optimization. Benini and de Micheli
(2000) and Panda et al. (2001) presented two thorough sur-
veys on static data and memory optimization techniques for
embedded systems presented during the last years of the past
century. More recently, in Catthoor et al. (2002) and Day-
light et al. (2004), authors have explored a coordinated data
and computation reordering for array-based data structures
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in multimedia applications. They use a linear time algorithm
reducing the memory subsystems needs by 50%. Neverthe-
less, they are not suitable for exploration of complex DDTs
employed in modern multimedia applications.

Regarding dynamic embedded software, suitable access
methods, power-aware DDT transformations and pruning
strategies based on heuristics have started to be proposed
for multimedia systems (Wuytack et al. 1996; Panda et al.
2001). However, these approaches require the development
of efficient pruning function costs and fully manual opti-
mizations. In addition these works are not able to capture the
evaluation of inter-dependencies of multiple DDTs imple-
mentations operating together, as the method proposed in
this paper achieves by means of evolutionary algorithms
(EAs) (Michalewicz 1996). Atienza et al. (2007) have already
outlined the potential of EAs for dynamic memory opti-
mizations. Nevertheless, their work only performed an initial
analysis of one single type of EA and does not provide a com-
plete analysis of tradeoffs between different technologies of
sequential and parallel EAs, as we perform in this paper.

Also, according to the characteristics of certain parts of
multimedia applications, several transformations for DDTs
and design methodologies (Catthoor et al. 2002; Wuytack
et al. 1996) have been proposed for static data profiling and
optimization considering static memory access patterns to
physical memories. In this context, the use of EA-based opti-
mization has been applied to solve linear- and non-linear
problems by exploring all regions of the state space in par-
allel. Thus, it is possible to perform optimizations in non-
convex regular functions, and also to select the order of
algorithmic transformations in concrete types of source codes
(Panda et al. 2001). However, such techniques are not applica-
ble to DDT implementations, due to the unpredictable nature
at compile-time of the stored data.

In this paper we propose a novel framework to explore
the design space of DDT implementation including a set
of parallel procedures based on multi objective evolution-
ary algorithms (MOEAs) (Deb 2001). The development of
parallel evolutionary algorithms for multi-objective prob-
lems involves the analysis of different paradigms for parallel
processing and their corresponding parameters. In Van Veld-
huizen et al. (2003) a generic formulation for parallel multi-
objective evolutionary algorithms (pMOEA) is proposed and
questions related with migration, replacement and niching
schemes in the context of pMOEA are discussed. In Van Veld-
huizen et al. (2003) four basic pMOEA based on the island
paradigm are described: (1) islands execute the same MOEA
(Xiong and Li 2003); (2) islands execute different MOEA
(Fernandez et al. 2007); (3) each island evaluates a differ-
ent subset of objective functions (Wilson and Moore 2005);
and (4) each island considers a different region of the search
domain (de Toro Negro et al. 2004). Taking into account
this classification, our parallel design may be included in

the second group. Since our migration policy is synchro-
nous, we have combined two elitist evolutionary algorithms
with different complexity, namely Strength Pareto Evolu-
tionary Algorithm 2 (SPEA2) (Zitzler et al. 2002) and Non-
dominated Sorting Genetic Algorithm II (NSGA-II) (Deb
et al. 2002), implementing three variations of a pMOEA.
SPEA2 is O(N 3) and NSGA-II is O(m N 2), where N is the
population size and m is the number of objectives.

Our experiments in a real-life dynamic embedded appli-
cation show that: (1) NSGA-II and SPEA2 reach important
speed-ups (up to 955x faster) with respect to other traditional
heuristics; (2) the parallel algorithm can achieve significant
speed-ups (68% faster) with respect to the sequential ver-
sions in a multi-core architecture. Moreover, we compare the
sequential and parallel approaches by means of multiple met-
rics, showing that the quality of the solutions is improved by
the combination of NSGA-II and SPEA2 in a parallel imple-
mentation; and (3) such combination is executed on a cluster
of 16 workstations of two cores each, where several popu-
lation sizes are used in our experiments. The experimental
results obtained are very promising. In particular, we show
that if we increase the size of the population, the performance
of the pMOEA improves as we increase the number of clus-
ters used.

The rest of the paper is organized as follows. In Sect. 2 the
Dynamic Data Types optimization problem is explained. In
Sect. 3, we present our multi-objective optimization process.
A description of the MOEAs, including an explanation of
our parallel proposal, which combines NSGA-II and SPEA2
algorithms, is also detailed. Section 4 shows some perfor-
mance and quality metrics used in our experiments discussed
in Sect. 5. Finally, in Sect. 6 we summarize the main conclu-
sions of this paper.

2 The DDTs exploration problem

Dynamic data types are software abstractions by means of
which we can manipulate and access data. The implementa-
tion of a DDT has two main effects on the performance of an
application. First, it involves storage aspects that determine
how data memory is allocated and freed at run-time, and how
this memory is tracked. Second, it includes an access compo-
nent, which can refer to two different basic access patterns:
sequential (or iterator-based) and random access.

Figure 1 shows an example of DDTs exploration. The ini-
tial code contains two variables, v1 and v2, instantiated as a
vector and a list, respectively. After the exploration process,
we can obtain for example a candidate solution that recom-
mends v1 to be instantiated as single linked list (SLL) and v2
as double linked list of arrays (DLLAR).

More generally we can state that the application to opti-
mize contains a set of variables V , which are candidates
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Fig. 1 Code before and after the exploration of DDT

Table 1 DDT library

Representation DDT Description

1 AR Array

2 AR(P) Array of pointers

3 SLL Single-linked list

4 DLL Doubly-linked list

5 SLL(O) Single-linked list with roving pointer

6 DLL(O) Doubly-linked list with roving pointer

7 SLL(AR) Single-linked list of arrays

8 DLL(AR) Doubly-linked list of arrays

9 SLL(ARO) Single-linked list of arrays and roving pointer

10 DLL(ARO) Doubly-linked list of arrays and roving pointer

to be instantiated as a certain DDT from the set of possi-
ble implementation of DDTs library D presented in Atienza
et al. (2007) and Daylight et al. (2004). Thus, the goal of our
optimization flow is to obtain a set of pairs (variable, DDT)
{vi ∈ V , d j ∈ D}, such that minimizes memory accesses,
memory usage and power consumption for the target embed-
ded system. Additional constraints as the minimum and max-
imum values for all three objectives may be defined. Clearly,
this is a multi-objective optimization problem.

To measure the quality of a solution, we have defined the
equations to evaluate the behavior of DDT implementations
by means of parameters such as the number of sequential
accesses, random accesses, average size, etc. In our case we
have classified the DDT implementations in basic DDT and
multi-layer implementations relevant for embedded multi-
media applications. Table 1 contains the DDTs implemented
(Atienza et al. 2007).

Once we have fixed the problem optimization process for
DDTs, we can describe the whole process shown in Fig. 2.
It has three main steps: profiling of the application, estima-
tion of the parameters and multi-objective optimization algo-

rithms execution. These three steps are described in the next
paragraphs.

2.1 Profiling

In order to evaluate the different metrics we need to obtain
the real execution information from the application. Unfor-
tunately, the execution of the whole application is not a viable
solution. An alternative good solution recently proposed Day-
light et al. (2004) is to obtain a profiling report of the applica-
tion where the following information is logged: number and
location of the accesses of an element, addition of an element,
removal of an element, the clearing of the container, iterator
operations such as pre-increment or dereference, constructor,
destructor, copy constructor and swap operation. To this end,
we need to replace all the candidate variables in the appli-
cation by our vector DDT implementation, which logs all
the information needed to evaluate them the using equations
developed in Atienza et al. (2007).

2.2 Parameters estimation

In this phase, we extract all information needed from the
profiling report. The purpose is to measure the quality of a
solution (vi , d j ) in the DDT exploration, using several para-
meters, namely, the number of candidate variables, number
of elements stored in the DDT (the worst case), average of the
number of elements stored, size of the elements (in bytes),
size of the pointers (in bytes), number of read accesses, num-
ber of write accesses and cache misses. All these parameters
can be extracted from the profiling report. To this end, we
have developed a tool called Profile Analyzer. Cache misses
are also obtained by means of simulation, generating memory
traces from the profiling report and the DDT library, using
them as input for the Dinero IV cache simulator (Edler and
Hill 2007) for the particular memory configuration of the
target embedded system. This phase is the most-time con-
suming part of the exploration, although it is done only once
for each target architecture, and for each tested applications.

2.3 Optimization

The last phase is the optimization process and this is where
MOEAs work. They take as input the information previously
estimated and try to minimize three different objectives:
memory accesses, memory usage and energy consumption.
To this end, we have implemented sequential versions of
two elitist MOEAs, called SPEA2 and NSGA-II and three
pMOEAs, which combine SPEA2 and NSGA-II. A detailed
explanation is presented in the next section.

When the three phases of the optimization process end,
we obtain a set of DDT instantiation policies, i.e., which
variable should be instantiated by which DDT. We also obtain
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Fig. 2 DDTs optimization
flow
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the gain on memory accesses, memory usage and energy
consumption.

3 Evolutionary algorithms

In this Section we describe the implementation of the two
sequential MOEAs, which are capable of finding a solution
to the DDTs exploration problem in a moderate time. In the
next section, we report several parallel versions that combine
these two algorithms.

Multi-objective optimization aims at simultaneously opti-
mizing several objectives sometimes contradictory (memory
accesses, memory usage and energy consumption for our
problem). For such kind of problems, it does not exist a single
optimal solution, and some compromises have to be made.
Without any loss of generality, we can assume the following
N-objective minimization problem:

Minimize z = ( f1 (x) , f2 (x) , . . . , fN (x))

subject to x ∈ X
(1)

where z is the objective vector with N objectives to be min-
imized, x is the decision vector, and X is the feasible region
in the decision space. A solution x ∈ X is said to dominate

another solution y ∈ X if the following two conditions are
satisfied:

∀i ∈ {1, 2, . . . , N } , fi (x) ≤ fi (y)

∃i ∈ {1, 2, . . . , N } , fi (x) < fi (y)
(2)

If there is no solution which dominates x ∈ X, x is said to be
a Pareto optimal solution (POS). The set of all elements of the
search space that are not dominated by any other element is
called the Pareto optimal front (POF) of the multi-objective
problem: it represents the best possible compromises with
respect to the contradictory objectives. In both algorithms,
the sequential and parallel versions, we attempt to reach the
higher number of solutions of the Pareto front as possible.

Nowadays, many MOEAs have been developed. They
can be classified into two broad categories: non-elitist and
elitist also called first and second generation MOEAs (Coello
1999). In the elitist approach, EAs store in an external set the
best solutions of each generation. This set will then be a part
of the next generation. Thus, the best individuals in each gen-
eration are always preserved, and this helps the algorithm to
get close to its POF. Algorithms such as PESA-II (Corne
et al. 2001), MOMGA-II (Zydallis et al. 2001), NSGA-II
and SPEA2 are examples of this category. In contrast, the
non-elitist approach does not guarantee preserving the set of
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Table 2 Common evolutionary algorithm framework

1. Initialize the Population P

2. (elitist EAs) Select elitist solutions from P to create external set EP

3. Create mating pool from one or both P and EP

4. Reproduction based on the pool to create the next generation P using
evolutionary operators

5. (elitist EAs) Combine EP into P

6. Go to step 2 if the terminated condition is not satisfied

best individuals for the next generation (Zitzler and Thiele
1999). Examples of this category include MOGA (Fonseca
and Fleming 1993), HLGA (Hajela and Lin 1992), NPGA
(Horn et al. 1994) and VEGA (Schaffer 1985).

When implementing a MOEA, the designer has to over-
come two major problems (Zitzler and Thiele 1999). The first
problem is how to get close to the Pareto optimal front (POF)
(Deb 2001). The second problem is how to keep diversity
among the solutions in the obtained set. These two problems
become common criteria for most current algorithmic perfor-
mance comparisons and they will be used in the experimental
results section.

Although all the cited MOEAs are different from each
other, we can find some common steps in these algorithms,
which are summarized in Table 2. As we have already men-
tioned, two representative elitist algorithms, namely, SPEA2
and NSGA-II were selected (Zitzler et al. 2002; Deb et al.
2002).

3.1 SPEA2

SPEA2 is the second version of the elitist MOEA called
strength Pareto evolutionary algorithm (Zitzler and Thiele
1999). This section just concentrates on the main points of
SPEA2 (Zitzler et al. 2002). The initial population, repre-
sentation and evolutionary operators are standard: uniform
distribution, binary representation, binary tournament selec-
tion, single-point crossover, and bit-flip mutation. However,
the real power of SPEA2 lies in the elitist-preserved opera-
tion.

An external set (archive) is created for storing primarily
non-dominated solutions. It is then combined with the current
population to form the next archive that is then used to create
off-spring for the next generation. The size of the archive is
fixed. It can be set to equal to the population size. Therefore,
there exist two special situations when filling solutions in
the archive. The first situation occurs when the number of
non-dominated solutions is smaller than the archive size. In
this case, other dominated solutions taken from the remain-
der part of the population are filled in. The selection is car-
ried out according to a fitness value, specifically defined for
SPEA. That individual fitness value defined for a solution x,

is the total of the SPEA-defined strengths of solutions which
dominate x, plus a density value. The second situation hap-
pens when the number of non-dominated solutions is over
the archive size. In this case, a truncation operator is applied,
such that, the solution with the smallest distance to the other
solutions is removed from the set. If solutions have the same
minimum distance, the second nearest distance is considered,
and so forth. This is called the kth nearest distance rule. For
a deeper explanation of details about the distance concept we
refer the reader to Zitzler et al. (2002).

3.2 NSGA-II

As SPEA2, NSGA-II is also an elitist algorithm (Deb et al.
2002). The differences of NSGA-II from SPEA2 are mainly
because of the elitist-preservation operation. In the case of
NSGA-II, the archive size is set equal to the initial popula-
tion size. The current archive is then determined based on
the combination of the current population and the previous
archive. Thus, NSGA-II uses dominance ranking to classify
the population into a number of layers, such that the first
layer is the best layer (non dominated solutions) in the pop-
ulation. The archive is created based on the order of rank-
ing layers: the best rank being selected first. Moreover, if the
number of individuals in the archive is smaller than the popu-
lation size, the next layer (non dominated solutions excluding
those solutions on the first layer) is taken into account and
so on. If adding a layer would increase the number of indi-
viduals in the archive to exceed the initial population size,
a truncation operator is applied to that layer based on the
crowding distance. The crowding distance of a solution x is
defined as the average objective-value differences between
two adjacent solutions of solution x, where the population is
sorted according to each objective to find adjacent solutions
and where also boundary solutions have infinite values. The
truncation operator removes the individual with the smallest
crowding distance. An offspring population of the same size
as the initial population is then created from the archive by
using crowded tournament selection, crossover, and mutation
operators. The crowded tournament selection rule selects, as
winner of two same-rank solutions, the one with the greater
crowding distance value.

3.3 Encoding a solution

In order to apply our MOEA correctly we need to define
a genetic representation of the design space of all possible
DDT implementations alternatives. Moreover, to be able to
cover all possible inter-dependencies of DDT implementa-
tions for different dynamic variables of an application, we
must guarantee that all the individuals represent real and fea-
sible solutions to the problem and ensure that the search space
is covered in a continuous and optimal way (Deb 2001).
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Table 3 Example of an individual

D 1 2 4 . . . 2
V v1 v2 v3 . . . vn

An individual is represented by a chromosome containing
n genes, where n is the number of the variables logged in the
application (i.e., the number of variables which need a DDT
assignation), n = si ze(V ). Table 3 shows the representation
of an individual, genes are represented in the first row (gray
shaded cells). Each gene represents the DDT that should be
used to instantiate the corresponding variable in the applica-
tion from Table 1. In our example, the second variable v2 ∈ V
will be instantiated by d2 ∈ D, an array of pointers if we use
the order of Table 1. We use an integer to represent the values
of a gene, and the constraint a chromosome must satisfy is:

1 ≤ di ≤ si ze (D) (3)

Consequently, if an application contains n variables, each
individual has to be constituted by n integer fields. The advan-
tages of this representation are simplicity, as DDTs can be
directly obtained from Table 1, and safety, since all genetic
operators will always produce correct and real solutions.

3.4 Evaluation of the solutions

Once the solutions are encoded we need to evaluate the solu-
tions represented by individual. Note that on the second phase
we made a profiling of the real application for a realistic
input set. After that step, all the information required for
the analytical characterization of the DDTs implementations
considered is available. Using equations from Atienza et al.
(2007) and the number of read (Nr) and write (Nw) accesses
to each DDT during execution (supported by the profiling)
for each DDT implementation, we can compute the num-
ber of accesses (NumAcess) to layers of the memory hierar-
chy, memory footprint (AvMem in Bytes) and energy values
(Energy in nJ). In this work we consider a basic memory
hierarchy that consists of a main shared memory and a L1
data-cache. Other memory hierarchies could be modeled as
well by modifying the cited equations.

Regarding the energy calculations, we assume the use of
in-place sharing, as the DDTs lifetimes are short. Energy is
computed as next equation indicates:

Energy = (N pa ∗ Epa) + (Nrw ∗ Erw)

+(AvMem ∗ Eest)

where Nrw is the number of reads/writes to the L1 data-
cache memory, Npa is the number of misses in the data-cache.
Epa is the energy consumed per access to main memory,
Erw is the energy consumption per access to the cache, and
Eest is the static energy consumed by the main memory. We

assume (according to empirical validations) an average miss
rate of the cache memory below 5% of the overall memory
accesses in our energy calculations. However, this value is
user-configurable in our MOEA-based exploration process
and even additional multi-level cache miss rate effects can
be configured. In addition, it is possible to introduce some
constraints and weights for the metrics to be optimized.

3.5 Parallel implementation

In this section we describe how to use two sequential MOEAs
in a parallel environment to solve the exploration of DDTs
in embedded applications described in Sect. 1. The search
process could be improved by using several threads to apply
the operators in a larger number of individuals. We propose
a coarse-grained pMOEA where each thread runs a different
population, using an island model. The number of individu-
als is the same as in the sequential version. Figure 3 provides
a scheme of the parallel procedure with two islands. The spe-
cific MOEA (NSGA-II or SPEA2) is applied to each subpop-
ulation separately, and the best partial results are periodically
sent from one subpopulation to its neighbor on a ring com-
munication topology (Cantú-Paz 2000). As in most of the
pMOEAs, migration from one subpopulation to another is
controlled by several parameters specified at the beginning
of the execution and remains unchanged, as (a) the topology
defined by the connections between subpopulations; (b) a
migration rate that controls how many individuals migrate, in
our case the best individual; and (c) a migration interval that
determines the migration frequency, every 100 generations.
The best individual is selected in the following way. First, we
extract the set of non-dominated solutions in the current pop-
ulation. Second, we sort the resulting set with respect to one
random objective, from where we extract the first individual.
Moreover, since NSGA-II is faster than SPEA2 (O(m N 2)

versus O(N 3), where N is the population size and m is the
number of objectives), NSGA-II could finish while SPEA2
is still exploring early generations. Thus, as Fig. 3 depicts,
our migration policy is synchronized every 100 generations.

Figure 4 shows the general structure of the pMOEA. We
have implemented three variations to be tested in a multi-
core architecture. They differ on which MOEA algorithm is
controlling the subpopulation, i.e., running on each thread.

(1) N S2 configuration: Four islands executing NSGA-II,
SPEA2, NSGA-II and SPEA2.

(2) S4 configuration: Four islands, but running all of them
SPEA2 algorithm

(3) N 4 configuration: Four islands using the NSGA-II algo-
rithm.

The fitness function, the operators, and the stop criterion are
the same as in the sequential version.
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Fig. 3 A graphic representation of the coarse grained model

Begin
create N subpopulations
for each (subpopulation)
assign algorithm to subpopulation ∈ {SPEA2, NSGA-II}
assign neighbour to subpopulation
Run(subpopulation) in a separate thread

End

Run(subpop)
apply genetic operators
if (currentGeneration mod 100 == 0)
select best individual
Send(subpop, individual, neighbour)

End

Send(subpop, ind, neighbour)
while(subpop.currentGeneration>neighbour.currentGeneration)
wait

neighbour.receive(ind)
End

Fig. 4 Parallel multi-objective evolutionary algorithm for DDTs
exploration

The algorithm shown in Fig. 4 follows a multi-threaded
design, which is suitable to be executed in multi-core archi-
tectures. Another approach we have implemented consists of
executing our proposed pMOEA in a cluster of workstations
as well as PCs connected over a LAN. To this end, we have
executed up to 32 islands on a cluster of 16 workstations of
two cores each, using the proposed DEVS/SOA framework
in Mittal et al. (2007). The algorithm is exactly the same, but
each workstation executes two threads. Individuals are sent
between different workstations using web services. Further
details on how DEVS/SOA works are out of the scope of this
paper.

4 Performance and quality metrics

We compare the obtained sets of non-dominated solutions by
means of three criteria explained in this section: Coverage,
Spread and Spacing.

To compare the performance and quality of the differ-
ent MOEAs, we need to evaluate the obtained set of non-
dominated solutions in terms of the following two aspects:

• Convergence to POF.
• Diversity on POF.

As this is an NP-hard problem, we cannot know the exact set
of the POF, and we must evaluate the algorithms by means
of a comparison of the non-dominated sets obtained by each
algorithm. Thus, we use the coverage metric (Zitzler and
Thiele 1999) to measure the convergence.

Let F ′, F ′′ be two sets of non-dominated solutions. The
coverage metric can be defined as follows:

C
(
F ′, F ′′) =

∣
∣p′′ ∈ F ′′; ∃p′ ∈ F ′ : p′�p′′∣∣

|F ′′| (4)

The value C(F’,F”)=1 means that all points in F ′′ are dom-
inated by or equal to points in F ′. On the other hand, C(F ′,
F ′′) = 0 means that no solutions in F ′′ are covered by the
set F ′. It is noted that both C(F ′, F ′′) and C(F ′′, F ′), has
to be considered, since C(F’,F”) is not necessary equal to
C(F ′′, F ′). If C(F ′, F ′′) > C(F ′′, F ′), the rate of domi-
nated solutions in F ′′ is higher than that in F ′.

Then, to evaluate the diversity of the obtained solution
set, we employed two criteria (Deb 2001): spread D and
spacing S. On one hand, D is calculated as the length of the
diagonal line of the minimum N-dimensional hyper rectangle
that includes the solution set:

D =
√

n∑

i=1

(
max|F |

j=1 fi
(
x j

) − min|F |
j=1 fi

(
x j

))2

x j ∈ F, j = 1, 2, . . . , |F |
(5)

On the other hand Spacing (S), which is another measure of
the diversity, is calculated as a standard deviation of the dis-
tance to the neighboring solutions in the N-objective space,
as follows:

S =
√

1
|F |

|F |∑

j=1

(
d j − d̄

)2

d j = min
xk∈F∧k 	= j

N∑

i=1

∣
∣ fi

(
x j

) − fi (xk)
∣
∣

(6)

5 Experimental results

In this section we describe the complete method applied
to compare the different types of sequential and parallel
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Table 4 Parameters for both sequential algorithms

Parameter Value

Population size 200

Number of generations 8,000

Probability of crossover 0.80

Probability of mutation 0.01

MOEAs proposed while optimizing one real-life dynamic
embedded application. We have evaluated the proposed opti-
mization framework for a 3D Physics Engine for elastic
and deformable bodies (Kharevych and Khan 2002). For
this application we logged 3128 variables and the 10 pos-
sible DDTs contained in Table 1, which can cover all the
real-life embedded multimedia applications we are aware
of. To analyze the effect of sequential and distributed algo-
rithms on embedded system’s memory accesses, memory
usage and energy consumption, we utilized processor energy
from Catthoor et al. (2002), and the access time and energy
values for caches of 32 kB and embedded 16 MB DRAM
main memory from Shivakumar and Jouppi (2006) and
Hardee et al. (2004), respectively.

To compare the performance of both sequential and paral-
lel algorithms, all parameters are set to the same values. After
different tests, we have fixed them to the values indicated in
Table 4. The external archive size (where non dominated
solutions are stored) is set to be equal to the initial popula-
tion. The crossover and mutation probabilities are the same
that in the sequential algorithms. The population size is set
to 200 for each island, and the number of generations is set
to 2,000.

Next, we summarize the results obtained by the sequential
and parallel evolutionary algorithms. All the algorithms have
been implemented using Java 6. The multi-threaded version
is based on a multi-threaded Java application which will uti-
lize multiple processors when available. The distributed ver-
sion is made by adding the DEVS/SOA framework proposed
in Mittal et al. (2007). The experiments have been made using
three platforms: (1) AMD Sempron 3600+ 2 GHz with 1 GB
DDR memory, (2) Intel Core 2 CPU 6600 2.40 GHz with
2 GB DDR memory, and (3) cluster of 16 workstations AMD
Opteron Dual Core 2 GHz with 4 GB DDR memory.

5.1 Sequential architecture

We have tested the DDTs exploration speed in comparison to
different alternative methods for a 3D Physics Engine appli-
cation on the AMD Sempron 3600+ 2 GHz with 1 GB DDR
memory. The results obtained for the different tested explo-
ration methods are shown in Table 5. We have compared
our algorithms with state-of-the-art pruning and optimization

Table 5 Comparison between the proposed sequential algorithms and
other techniques

DDT exploration method Time (AMD Sempron)

Breadth-first 18.14 × 106 s.

Deep-first 36.00 × 103 s.

Branch & Bound 25.20 × 103 s.

VEGA [2] 10.80 × 103 s.

NSGA-II 1.90 × 103 s.

SPEA2 3.03 × 103 s

methods for DDT implementations presented in Daylight et
al. (2004), Wuytack et al. (1996). In these cases breadth-
first, deep-first and branch and bound exploration heuristics
are used to minimize overall memory access, memory usage
and energy consumption in embedded multimedia applica-
tions. In this context, we have used a weighted sum of the
three objectives as the fitness function for these three algo-
rithms. Since there are 103,128 feasible solutions (10 DDTs
for 3,128 variables) it is unfeasible to reach the complete POF
by means of exhaustive exploration. The results in Table 5
outline that the exploration process with our method (using
NSGA-II and SPEA2) is much faster than using directly the
implementations of DDTs and other heuristics, namely, 954
× faster.

5.2 Multi-core architecture

We have also explored DDTs with each of the five algorithms
proposed (i.e., SPEA2, NSGA-II, N4, NS2 and S4) on an Intel
Core 2 CPU 6600 2.40 GHz with 2 GB DDR memory. The
coverage, spread and the spacing values are calculated by
averaging results of 100 trials.

Figure 5 depicts the number of non-dominated individ-
uals obtained in the best population. NSGA-II offers the
same non-dominated individuals than SPEA2. NS2 offers
64% more optimal solutions than both NSGA-II and SPEA2,
29% more than S4 and 27% more than N4.

Regarding convergence comparisons, Table 6 shows that
the coverage values of NS2 are better than any other algo-
rithm. For example, C(NS2, NSGA-II) > C(NSGA-II, NS2)

is 0.083 > 0.016 or C(NS2, N4) > C(N4, NS2) is 0.384 >

0.153. Thus, NS2 offers more optimal alternatives to the sys-
tem designer for the implementation of the final embedded
application.

Similar results are obtained using the average spread and
spacing metrics. Table 7 indicates that the lower spread is
found by parallel algorithms in all cases. Note that a larger
value of the spread does not always mean desirable since
the aim of the problem is the minimization. Thus, the larger
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Fig. 5 Non-dominated individuals obtained by NSGA-II, SPEA2, N4,
S4 and NS2

Table 6 Coverage metric

NSGA-II SPEA2 N4 NS2 S4

NSGA-II – 0.065 0.020 0.016 0.023

SPEA2 0.045 – 0.010 0.001 0.017

N4 0.071 0.139 – 0.153 0.267

NS2 0.083 0.152 0.384 – 0.516

S4 0.030 0.061 0.100 0.227 –

Table 7 Spread and spacing for the five algorithms

NSGA-II SPEA2 N4 NS2 S4

Spread 0.142 0.188 0.112 0.127 0.136

Spacing 0.002 0.002 0.001 0.001 0.001

Table 8 Comparison between our sequential and distributed algorithms

AMD Sempron Intel Core 2

NSGA-II 1900.279 s. 712.236 s.

SPEA2 3026.896 s. 1328.312 s.

N4 983.183 s. 421.77 s.

NS2 1186.44 s. 546.682 s.

S4 1701.113 s. 707.063 s.

spread can be calculated if the obtained set is far from the
POF.

Table 8 shows the comparisons between the execution
times of both sequential and parallel algorithms. The left
column contains the execution time using 1 processor. The
column on the right shows the same results, but using 2
processors. In the best case, we obtain an execution time
of 422 s. for N4 and two processors and 3027 s. for SPEA2
and one processor, giving a speed-up of 86%.

For comparison reasons we present Fig. 6 to illustrate the
optimization process that our methodology performs. In this
test, the set of DDTs was successively implemented using
AR, ARP, SLL, etc. All the three objectives have been nor-
malized to the AR DDT and represented in logarithmic scale.
Thus, in the end, compared to the combination proposed by
our five algorithms, the figure shows the achieved level of
optimization and final gains after applying the proposed opti-
mization flow in Fig. 2. Furthermore, as this figure indicates,
NS2 offered the best compromise among objectives.

5.3 Multi-core/distributed architecture

Finally, the NSK configuration was distributed on a cluster
of 16 workstations AMD Opteron Dual Core 270 2 GHz with
4 GB DDR memory. To this end, we placed two threads per
workstation and the communication among workstations was
made through a DEVS/SOA framework (Mittal et al. 2007).

We tested our algorithm using from 1 to 16 workstations,
which leads to 2, 4, 6, …, 32 islands running in parallel,
namely NS1, NS2, NS3, . . ., NS16, and different population
sizes (256, 512, 1,024, and 2,048) changing only the num-
ber of islands in order to observe and study the increase in
performance (speedup). In all these cases the number of gen-
erations was set to 8,000. The external archive size of each
island was set to the entire population size, i.e., 256, 512,
1,024 and 2,048.

In light of the results presented in Fig. 7a, it is possible to
observe that, as the size of the population increased, the per-
formance of the parallel version improved proportionally to
the number of islands. Also, Fig. 7b indicates that the num-
ber of non-dominated individuals increased as the number of
islands increased, especially for large populations.

This shows that the proposed pMOEA is better suited
for large populations. It is also worthwhile to mention that
with small populations a parallel and distributed version of a
genetic algorithm is most likely to converge to a local mini-
mum due to a small gene pool.

6 Conclusions and future work

New multimedia embedded applications are increasingly
dynamic, and rely on DDTs to store their data. The selec-
tion of optimal DDT implementations for each variable in a
particular target embedded system is a very time-consuming
process due to the large design space of possible DDTs imple-
mentations. In this paper we have studied several MOEAs to
solve this problem. Particularly, we have proposed a new
parallel algorithm (N SK ) which combines in a novel man-
ner two widely used MOEAs. The problem is formulated
as a multi-objective combinatorial optimization problem, for
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Fig. 6 Overall results for
different design metrics coming
from various sets of DDT
implementations (logarithmic
scale)
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Fig. 7 Execution times (a) and non-dominated solutions (b) as a function of the number of workstations. Each workstation executes two islands

which we used three objective functions: memory accesses,
memory usage and energy consumption. The results obtained
shows that this parallel approach performs very well. In fact,
the N SK reaches more optimal solutions than the other
sequential and parallel algorithm, obtaining a speed-up of
86% with respect to the non parallel implementation.

We have also executed NSK in a cluster of 16 worksta-
tions of two cores each. Our results show that if the size of
the population is increased, the performance of the parallel
version improves proportionally with respect to the number
of available islands.

As a result, we can conclude that not only parallel imple-
mentations improve the speed of the optimization process,
but also the quality and the variety of the solutions, espe-
cially for large populations.

Future work includes the development of dynamic con-
trol parameters, such as, the topology, and a deeper study of
migration rates and frequency.

We are also working on exploring other alternatives with
new combinations of different MOEAs to those used in this
paper.
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