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Abstract Over the past two decades a number of dif-
ferent approaches to “fuzzy probabilities” have been pre-
sented. The use of the same term masks fundamental
differences. This paper surveys these different theories,
contrasting and relating them to one another. Problems
with these existing approaches are noted and a theory of
“linguistic probabilities” is developed, which seeks to re-
tain the underlying insights of existing work whilst reme-
dying its technical defects. It is shown how the axiomatic
theory of linguistic probabilities can be used to develop
linguistic Bayesian networks which have a wide range of
practical applications. To illustrate this a detailed and
realistic example in the domain of forensic statistics is
presented.

1 Introduction

It is widely acknowledged that devising computational
solutions to real world problems typically demands mech-
anisms for representing uncertain information and rea-
soning with it. So it is that researchers have identified
many different types of uncertainty and proposed cor-
responding treatments. The oldest and arguably most
thoroughly researched of these schemes is that of prob-
ability theory, which models uncertainty about which
propositions are, were or, in the archetypal case, will be
true. Despite the practical and philosophical differences
between its practitioners1, classical probability theory
is invariably commited to the position that its descrip-
tions of the world have well-defined and exact truth con-
ditions. But this simplifying assumption sits rather un-
easily with our everyday concepts. As a familiar quote
from Bertrand Russell (once a notorious proponent of
logical positivism which is essentially the opposite view)

1 In particular, the interpretation of probability theory
remains highly contentious, although subjectivist accounts
have predominated in recent years.

puts it: “All traditional logic [and by extension classical
probability theory] habitually assumes that precise sym-
bols are being employed. It is therefore not applicable to
this terrestrial life but only to an imagined celestial ex-
istence.” (Russell, 1923)

This painful mismatch between the idealised model
of classical logic and ordinary concepts has perhaps been
felt most acutely in Artificial Intelligence where the pro-
gramme of reproducing human behaviour in terms of
the latter2 has often collided with the limitations of the
former. And it is this, of course, that explains the not-
so-paradoxical success of Fuzzy Logic.

Historically, the relationship between fuzziness and
probability has been somewhat troubled. Increasingly
however, the apologetic (or inclusive) stance adopted by
the fuzzy community seems to have succeeded in build-
ing a consensus that the theories are not in competition.
Indeed it is now common to view them as orthogonal
– each quite valid on its own terms. This recognition
has, in turn, catalysed a broader acceptance of hybrid
approaches. This paper focuses on one family of such
hybrids which use fuzzy numbers to generalise the unit
interval quantity space of classical probability theory.

The remainder of this paper is structured as follows.
The following section examines the motivations behind
the attempts to develop such a theory, collecting to-
gether work from psychometric researchers sympathetic
to a fuzzy approach. Section 3 introduces requisite back-
ground material. Section 4 then scrutinizes the two quite
distinct theories that share the name “fuzzy probabil-
ity”. They are found to . Building on earlier work (Hal-
liwell and Shen, 2002), Section 5 attempts to address
these problems developing a new theory which the au-
thors term “linguistic probability” to distinguish it from
previous efforts. A demonstration of the approach’s prac-
tical utility is then presented. Section 6 shows how the
theory may be used within a Bayesian network, and,

2 This broad programme includes modelling expert knowl-
edge and transparent or symbolic machine learning.



2 Joe Halliwell, Qiang Shen

following the work presented in Halliwell et al. (2003),
Section 7 develops a detailed and realistic example in the
domain of forensic science, contrasting the new approach
with a similar classical network. Finally, Section 8 con-
cludes the paper and identifies areas for future work.

2 Motivations

The use of fuzzy sets to model every day descriptions
such as “John is tall” is no doubt familiar. The idea
behind the set of theories sharing the name “fuzzy prob-
ability” is that imprecise linguistic characterizations of
probabilistic uncertainty can be treated in an analogous
way. The goal then, put simply, is to develop a principled
approach to statements such as

It is quite likely to rain tomorrow. (1)

A possible objection at this stage is that (1) is hope-
lessly uninformative. If (probabilistic) information about
the next day’s weather is crucial to a system’s success-
ful operation there are surely better ways to obtain it.
In short, why bother attempting to utilize such woe-
fully low-grade information? The answer, of course, is the
standard argument for “computing with words” (Zadeh,
1996): whilst gold-standard numerical information may
be available about tomorrow’s weather, there are proba-
bilistic assessments which are too difficult, expensive or
simply impossible to obtain with such precision.

For example, consider the questions: Will there be
artificial intelligence in 10 years? 100 years? 1000 years?
Consultation with an expert is unlikely to yield much be-
yond vague probabilistic statments like “It is extremely
unlikely that we will have (true) artificial intelligence in
ten years time.” But if such information is to be used
within the framework of classical probability theory, nu-
merical estimates of the probabilities of interest are re-
quired.

In these cases the difficulty of obtaining point esti-
mates of probability has been widely reported (Kahne-
man et al., 1985; Zimmer, 1983). Whilst an expert may
be willing to assert that it is extremely likely that there
will be intelligent constructs this time next millennium
it would seem odd, a loss of academic integrity even, to
state that the probability of that occurrence is 0.93. In-
deed, a committee of the U.S. National Research Council
(National Research Council Governing Board Commitee
on the Assessment of Risk, 1981; Wallsten et al., 1986)
has written that there is “an important responsibility
not to use numbers, which convey the impression of pre-
cision, when the understanding of relationships is indeed
less secure. Thus whilst quantitative risk assessment fa-
cilitates comparison, such comparison may be illusory
or misleading if the use of precise numbers is unjusti-
fied.” Subjective probability assessments are often the
product of countless barely articulate intuitions and are
often best expressed in words. It is misleading to seek to
express them as precise numbers.

2.1 Psychometric studies

Responding to these difficulties, researchers attempted
to obtain point values for probabilistic terms experi-
mentally. The general form of these investigations is to
present subjects with probabilistic terms requesting a
numerical translation. It is hardly surprising that stud-
ies such as Budescu and Wallsten (1985) have concluded
that point estimates of probability terms vary too greatly
between subjects and exhibit too great an overlap to be
useful for many problems.

Attempts to model probabilistic terms using fuzzy
sets, however, have proven more successful. For exam-
ple, a relatively sophisticated experimental method for
eliciting fuzzy models of probabilistic terms has been de-
veloped by Wallsten et al. (1986) and the inter-subjective
stability of generated terms has been examined with
promising results. In addition, Zimmer (1986) has re-
ported that verbal expressions of probabilistic uncer-
tainty were “more accurate” than numerical values in
estimating the frequency of multiple attributes by exper-
imental studies. Whilst there are outstanding problems
such as context sensitivity with the fuzzy approach to
modelling probabilistic terms, these psychometric stud-
ies are unanimous in preferring it to numerical estimates.

For these and more obvious introspective reasons it
is desirable to develop an account of vagueness in prob-
abilities. To do so, however, will require a reasonably
solid grasp of both classical probability theory and the
mathematics of fuzzy numbers. These are rehearsed in
the following Section.

3 Background

This section introduces the background material that
will be required for the remainder of this paper. Al-
though it is anticipated that many of the concepts will be
familiar to the reader, it was felt that it would be best to
determine these unambiguously and introduce the asso-
ciated notation in a single place. The results mentioned,
especially those relating to the algebra of fuzzy numbers
are essential to the proofs in the following Sections.

3.1 Classical probability theory

The predominant formalisation of probability theory is
that provided by Kolmogorov. These standard defini-
tions may be found in any introductory text on prob-
ability theory e.g. Grimmet and Welsh (1986). Given
an experiment or trial, such as rolling a die, the set of
all possible outcomes or sample space will be denoted
Ω. So, in the die example Ω = {1, 2, 3, 4, 5, 6}. Clearly,
various questions may be asked about the outcome of
a trial. Some of these will be elementary, of the form
“Was the outcome ω?”, but others will be about groups
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of states. Returning to the die example, one might en-
quire “Was the outcome an odd number?” Moreover, it
is often convenient to specify the probability of proposi-
tions modelled as such groups of atomic outcomes. The
notion of an event space is used to capture the idea that
the relevant propositions should be closed under logical
operators.

Definition 1 (Event space). A set E is termed an event
space on a set Ω of possible outcomes if and only if

a) E ⊆ P(Ω)
b) E is non-empty.
c) If A ∈ E then Ac = Ω \ A ∈ E
d) If A1, A2, . . . ∈ E then

⋃∞
i=1 Ai ∈ E

Events spaces are sometimes also referred to as “sigma
algebras” and are said to be closed under complementa-
tion and countable union. Observe that since E is non-
empty, there is some A ∈ E , thus both Ω = A ∪ Ac and
∅ = Ωc are elements of E . With the notion of an event
space in place it is possible to define the central concept
of a probability measure.

Definition 2 (Classical probability measure). A map-
ping P : E → R is termed a probability measure on (Ω, E)
if and only if for all A ∈ E

(CP1) P(A) ≥ 0
(CP2) P(Ω) = 1
(CP3) If A1, A2, . . . ∈ E are disjoint (i.e. Ai ∩
Aj = ∅) then

P(

∞⋃

i=1

Ai) =

∞∑

i=1

P(Ai) (2)

Where P is such a probability measure, the tuple (Ω, E , P)
is termed a probability space.

Note that CP3 implies the existence of
∑∞

i=1 P(Ai).

3.2 Fuzzy sets and numbers

The membership function of a fuzzy set, a, on some uni-
verse of discourse, D, will be denoted µa : D → [0, 1].

Fuzzy numbers, then, are simply fuzzy sets of real
numbers whose membership functions have the right sort
of shape. The level set at α ∈ [0, 1] of a fuzzy set of
numbers, a, will be denoted Lα(a) i.e.

Lα(a) =

{
cl({x ∈ R : µ(x) > 0}) if α = 0

{x ∈ R : µa(x) ≥ α} otherwise
(3)

L0(a) is termed the support of a.

Definition 3 (Fuzzy number). A fuzzy number is a
fuzzy set of real numbers, a, which

a) is normal, i.e. ∃x ∈ R such that µa(x) = 1;
b) is convex, i.e. ∀x, y, z ∈ R if x ≤ y ≤ z then
µa(y) ≥ min(µa(x), µa(z)); and

c) has an upper semi-continuous membership
function

d) has a bounded support

Note that this definition also covers what might be
termed “fuzzy intervals”. It can be shown that these con-
ditions entail that the level sets of a are closed, bounded
intervals i.e.

Lα(a) = [Lα(a), Lα(a)] (4)

Examples of fuzzy numbers can be found in Figure
2 which defines the linguistic probabilities that will be
used in the worked example. The set of all fuzzy numbers
are termed the “fuzzy reals” and denoted, E. Embedded
real numbers are denoted by a χ subscript. For example
the membership function of 1χ (the embedding of 1) is
given by

µ1χ(x) =

{
1 if x = 1

0 otherwise
(5)

A similar notation will also be adopted for embedded
intervals. So, for example,

µ[0,1]χ(x) =

{
1 if x ∈ [0, 1]

0 otherwise
(6)

It is well known that a complete metric on the space
of fuzzy numbers is given by the extended Hausdorff met-
ric

d∞(a, b) = sup
α∈[0,1]

max(|Lα(a) − Lα(b)|, |Lα(a) − Lα(b)|)

(7)
Note that this metric coincides with the standard Eu-
clidean metric for embedded real numbers. Thus proofs
from real analysis immediately carry over to embedded
reals.

3.2.1 The Extension Principle The Extension Princi-
ple identifies a natural way to extend maps between clas-
sical sets to maps on fuzzy sets defined over them (as a
universe of discourse).

Definition 4 (Extension Principle). Given a map,

f : A1 × A2 × . . . × An → B (8)

the natural fuzzy extension, f̃ , is the map determined by:

µf̃(a1,a2,...,an)(y)

= supf(x1,x2,...,xn)=y min(µa1
(x1), µa2

(x2), . . . µan(xn))

for all fuzzy sets a1, a2, . . . , an defined on A1, A2, . . . , An

respectively.

In other words, the possibility of a particular element
being in the image of a fuzzy set under an extended
function is the maximum of the membership values of
elements mapped to it by the original function.
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3.2.2 Partial orderings On the real numbers a ≤ b if
and only if a = min(a, b). Following this observation,
the Extension Principle may be used to induce a natural
partial order, 4, on the fuzzy reals as follows:

a 4 b ⇐⇒ a = m̃in(a, b)

⇐⇒ µa(z) = sup
min(x,y)=z

min(µa(x), µb(y)) ∀z ∈ R

Since the set of fuzzy numbers whose membership func-
tions are zero outside some given real interval [a, b] can
be characterised as

{x ∈ E : aχ 4 x ∧ x 4 bχ} (9)

it is natural to denote such an interval of fuzzy numbers
by [aχ, bχ].

Another partial order on the fuzzy reals is generated
by the fuzzy subset relation i.e. for all a, b ∈ E

a ⊆ b ⇐⇒ ∀x ∈ R µa(x) ≤ µb(x) (10)

Because it is somewhat confusing to talk of one fuzzy
number being a superset of another, we prefer to say that
the former subsumes the latter. One number subsumes
another if it is in effect a kind of less precise version of
it.

3.2.3 Arithmetical operators The Extension Principle
may also be used to define fuzzy counterparts to the
standard arithmetic operators of addition, multiplica-
tion, subtraction and division. If the standard arithmetic
operators are considered as maps from R

2 → R the
straightforward application of the principle yields, for
example,

µa⊕b(z) = sup
x+y=z

min(µa(x), µb(y)) (11)

As is conventional, the extension of a real arithmetic op-
erator will be denoted by circling its usual symbol. In the
context of the fuzzy numbers it is also possible to derive
these operators by examining the effects of performing
interval-based calculations at each level set.

3.2.4 Algebraic properties The basic arithmetical oper-
ators described above are, of course, closed with respect
to the fuzzy reals. As with their classical analogues, fuzzy
addition and multiplication are commutative and asso-
ciative with identities 0χ and 1χ respectively. There are
however, some important differences between classical
and fuzzy arithmetic. First, fuzzy numbers are not dis-
tributive in the classical sense. Instead they are subdis-
tributive i.e. for all a, b, c ∈ E,

a ⊗ (b ⊕ c) ⊆ (a ⊗ b) ⊕ (a ⊗ c) (12)

Note however, that where the quantities involved are
strictly positive (or negative) full distributivity is re-
tained.

Second, in general, fuzzy numbers have neither addi-
tive nor multiplicative inverses, although there are (non-
unique) pseudo-inverses. In particular, for all a ∈ E,
0χ ⊆ a ⊕ (0χ ⊖ a) and with the usual cautions about 0,
1χ ⊆ a ⊗ (1χ ⊘ a).

3.2.5 Operators and subsumption A key property of the
subsumption ordering, that has not been widely observed,
is that it “carries over” any extended operator in the
sense of the following Lemma.

Lemma 1. Given an operator ∗ : Rn → R and fuzzy
numbers, a1, a2, . . . an, b1, b2, . . . bn such that ai ⊆ bi

for all 1 ≤ i ≤ n then

⊛(a1, a2 . . . an) ⊆ ⊛(b1, b2 . . . bn) (13)

Proof: By the Extension Principle

⊛(a1, a2 . . . an)(x) = sup
x=∗(x1,x2...xn)

{ min
1≤i≤n

ai(xi)}

≤ sup
x=∗(x1,x2...xn)

{ min
1≤i≤n

bi(xi)}

= ⊛(b1, b2 . . . bn)(x)

as required.

This result allows complex calculations (such as the
Bayesian sum of products expression for joint probability
distribution considered later) to be rearranged and com-
puted from partial results just as in the classical case.
Note finally that for all a, b ∈ E, a ∩ b is subsumed by
both a and b.

3.2.6 A note on the computability of fuzzy numbers It
has often been observed that commonly used classes of
fuzzy number are not closed under the standard arith-
metic operators. So, for example, the product of two
polygonal fuzzy numbers is not polygonal. This has lead
some to conclude that it is not possible to have a correct
and computationally tractable calculus of fuzzy num-
bers.

If however, fuzzy numbers are represented by a pair
of finite series of finite polynomial shoulder functions
determining the upper and lower boundaries of their
alphacuts, then their arithmetic combinations also fall
into this class and can be computed exactly with relative
ease. As a simple example, consider the fuzzy number,
a, determined by the membership function,

µa(x) =





x if x ∈ [0, 1]

2 − x if x ∈ (1, 2]

0 otherwise

(14)

Then a has an equivalent representation as

a⇂α = [α, 2 − α] (15)



Linguistic Probabilities: Theory and Application 5

Now, a⊗ a has a membership function which can be ob-
tained through solving quadratic equations and paying
careful attention to boundaries

µa⊗a(x) =





√
x if x ∈ [0, 1]

2 −√
x if x ∈ (1, 4]

0 otherwise

(16)

But this is hardly easy to represent and performing fur-
ther computations with it will be increasingly compli-
cated. On the other hand, the alphacut representation is
trivially calculated as

(a ⊗ a)⇂α = [α2, α2 − 4α + 4] (17)

Further computations can be performed with similar ease.
Naturally, “zero-crossing” fuzzy numbers (numbers whose
membership at 0 is non-zero) require some caution and
introduce precision errors (as it becomes necessary to
“split” the polynomials at their roots).

4 Fuzzy probabilities

Two distinct theories of “fuzzy probabilities” have been
presented in the literature, one due to Lotfi Zadeh and
the other due to Jain and Agogino. This Section intro-
duces the two theories and subjects them to a critical
evaluation.

4.1 Zadeh’s fuzzy probabilities

The term “fuzzy probability” first appears, albeit in-
cidentally, in the second part of Lotfi Zadeh’s seminal
paper on linguistic variables (Zadeh, 1975). Here, Zadeh
mentions that fuzzy quantifiers, which are introduced to
capture the sense of vague quantifiers such as “most” or
“few” can be thought of as being like fuzzy probabilities.
The idea then appears to have lain dormant for nearly
ten years.

Indeed, it was not until the mid-eighties that Zadeh
revisited the idea. In “Fuzzy probabilities” (Zadeh, 1984)
he began to develop this loose concept more formally,
combining it with some of his earliest work in the area
concerning the probabilities of fuzzy events.

Zadeh defines the (fuzzy) probability of a fuzzy event
in terms of it’s fuzzy cardinality with respect to some
universe of discourse. This fuzzy cardinality in turn is
defined in terms of a fuzzy set’s

∑
representation.

Definition 5 (
∑

representation of a fuzzy set). The
∑

representation of a fuzzy set, A, defined over a universe
of discourse, D, presents it as a sum of memberships:

A =
∑

d∈D

µA(d)

d

So, for example, one might represent the fuzzy set
RED in the universe of discourse

{brick, salmon, peach, rose, steak, violet}

as follows:

RED =
0.7

brick
+

0.3

salmon
+

0.3

peach
+

1

rose
+

1

steak
+

0

violet

Definition 6 (Zadeh’s fuzzy cardinality). Given D, a
universe of discourse and A, a fuzzy set defined over D,
the fuzzy cardinality of A,

FGCount(A) =
∑

α

α

|A⇂α|

where it is understood that “any gap in FGCount(A) may
be filled by a lower count with the same α”.

Returning to the example, and filling in3 at 0, 1 and
4, the fuzzy cardinality of RED is thus,

FGCount(RED) =
0

0
+

0

1
+

1

2
+

0.7

3
+

0.3

4
+

0.3

5
+

0

6

It is, of course, possible to fill out the notion of “filling
in”, instead defining the fuzzy cardinality of A as

FGCount(A)⇂α = [|A⇂1|, |A⇂α|]

Or, equivalently,

µFGCount(A)(z) = max
{

max
x∈X

(µA(x)) : X ∈ P(D)∧|X | ≤ z
}

This formulation has the advantage that it is a fuzzy real
number as defined in Section 3.

Definition 7 (Zadeh’s fuzzy probability). Given D, a
universe of discourse and A, a fuzzy set defined on that
universe, the fuzzy probability of A,

FProb(A) =
FGCount(A)

|D|χ
A possible application of fuzzy probabilities in this

sense is given in the following example derived from
Zadeh (1984).

Scenario 1. Albert is trying to decide whether to insure
his car, c. He has a database of cars, D at his disposal
containing a subset S of stolen cars and a fuzzy similar-
ity relation, ∼, on the set of database attributes. What
can he conclude about his car’s chances of being stolen?

3 Note that Zadeh’s graphs make it clear that the filling
in should not reach back beyond the lowest count i.e. in this
case 2.
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On Zadeh’s account this is reduced to the question
“What is the (fuzzy) probability of a car like Albert’s be-
ing stolen?”, which is then calculated as the probability
that a car is both like c and has been stolen i.e.

FProb(S ∩ ∼
c) =

FGCount(S ∩ ∼
c)

|D|

where µ∼

c
(d) = µ∼(c, d).

Whilst Zadeh’s approach may be useful for such data-
centered applications4, from the point of view of the
probability theorist this approach is somewhat dubious
as it seems to rest on the assumption that the set of
outcomes consists of a finite number of equiprobable ele-
ments. This limitation aside, on Zadeh’s theory fuzziness
in a probability is secondary, merely a reflection of the
primary fuzziness of the event of interest itself.

Nevertheless, it is clear that fuzzy uncertainty in a
probability assessment need not derive from fuzziness in
an event of interest. For example, when a teacher reas-
sures a panicking student that it is extremely unlikely
he will fail an exam, the vagueness in that description
of the chance of disaster does not arise as a consequence
of vagueness in the concept of what constitutes a fail. In
this case the model provided by Zadeh’s fuzzy probabil-
ities is clearly inappropriate.

4.2 Bayesian fuzzy probabilities

Although survey papers have tended to conflate the two,
it is exactly this point that distinguishes the different ap-
proach to “fuzzy probabilities” taken by Jain and Agogino
(1990). Arguably this paper has been the most influential
publication in the area, however it will be demonstrated
that for technical reasons the theory it presents cannot
provide a satisfactory model for qualitative probability
assessments.

Jain and Agogino call their version of fuzzy proba-
bilities “Bayesian fuzzy probabilities”. The presentation
here differs substantially from the original formulation
of these ideas. In particular, Jain and Agogino do not
explicitly use the idea of a probability measure either to
place FP() in the context of an event space or to define
the “mean” function m.

Definition 8 (Bayesian fuzzy probability measure). Given
an event algebra, E, defined over a set of outcomes, Ω, a
function FP() from the set of events to the set of “convex
normalized fuzzy set[s] . . . of [0, 1]” is a Bayesian fuzzy
probability measure if and only if for all A, B ∈ E

4 It may however be better to think of the sort of applica-
tions Zadeh considers as fuzzy information systems (Okuda
et al., 1978; Tanaka et al., 1979). In this framework the
database of cars would represent a series of fuzzy observa-
tions which can be used to estimate an underlying classical
probabilistic model.

(BF1) FP(A) has a unique “mean” i.e. there is
a function m : E → [0, 1] such that for all x ∈
[0, 1], µFP(A)(x) = 1 if and only if x = m(A)
(in this case FP(()A) is said to be unimodal)

(BF2) µFP(A) is continuous on (0,1)
(BF3) m (as defined in BF1) is a probability
measure

(BF4) FP(Ω) = 1χ

(BF5) If A and B are disjoint then FP(A) ⊕
FP(B) = FP(A ∪ B)

At first sight this definition seems reasonable and
indeed it can and has be used as an informal theory for
reasoning with fuzzy probabilities, however as a formal
theory it is seriously defective as a consequence of the
following Lemma.

Lemma 2. For any event E ∈ E, FP(E)(x) = 0 for
all x < m(E). Such a membership function is termed
left-crisp.

Proof: Consider an arbitrary event E ∈ E. By def-
inition FP(E) has a unique mode m(E) ∈ [0, 1] such
that FP(E)(m(E)) = 1 = FP(Ec)(1 − m(E)). Suppose,
for a contradiction, that 0 < FP(E)(x) ≤ 1 for some
0 ≤ x < m(E). Clearly, 0 < 1 − m(E) + x < 1 and by
the definition of ⊕

0 = 1χ(1 − m(E) + x)

= FP(E ∪ Ec)(1 − m(E) + x)

= max
z+z′=1−m(E)+x

min(FP(E)(z), FP(Ec)(z′))

≥ min(FP(E)(x), FP(Ec)(1 − m(E)))

> 0 (!)

So FP(E)(x) = 0 for all x < m(E).

Thus every BFP is necessarily left-crisp and therefore
the theory cannot act as a formal model for vague prob-
ability assessments such as “quite likely” which tail-off
smoothly to the left of their peak5.

Worse still, there are two ways to strengthen this re-
sult to a proof that BFPs can only be embedded point
probabilities (i.e. both left and right-crisp), both of which
seem to reflect Jain and Agogino’s intentions if not their
precise formulation.

First, ⊕ is an operator defined on the fuzzy reals,
not pairs of “convex normalized fuzzy set[s] . . . of [0, 1]”.
Lemma 1 rests only on the generous assumption that
Jain and Agogino tacitly intended some form of ⊕ re-
stricted to the unit interval. An equally reasonable as-
sumption, albeit rather less generous, would be that the
set of “convex normalized fuzzy set[s] . . . of [0, 1]” refers
to [0χ, 1χ]. In this case suppose that for some m(E) <

5 Note that this criticism applies also to Zadeh’s fuzzy
probabilities.
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x ≤ 1, FP(E)(x) > 0. Then,

0 = 1χ(1 − m(E) + x)

= FP(E ∪ Ec)(1 − m(E) + x)

≥ min(FP(E)(x), FP(Ec)(1 − m(E)))

> 0 (!)

And thus, FP(E) = m(E)χ.
Second, it seems clear from their examples, that Jain

and Agogino intend that for all E ∈ E , FP(E) = 1χ ⊖
FP(Ec). Indeed this principle has considerable intuitive
appeal, since it is roughly equivalent to the assertion that
if you know something (however imprecise) about the
probability of an event, then you know “just as much”
about the probability of that event’s complement6. But
in this case, since every event is the complement of some
left-crisp event, all events are also right-crisp. Again, the
theory reduces to an embedding of classical point prob-
abilities7.

5 Linguistic probability theory

Linguistic probability theory has been developed to ad-
dress the difficulties with Bayesian fuzzy probabilities. It
seeks to do so rigorously, but in a way that is mindful of
eventual applications. This section begins by introducing
the basic elements of the theory. The concepts are then
developed showing how the basic theory may be used to
define discrete linguistic random variables, an analogue
for the classical discrete random variable construct.

5.1 Linguistic probability measure

Linguistic probability theory differs from other theories
of fuzzy probabilities by closely following the classical
theory’s hierarchy of concepts. This means beginning
with the concept of a linguistic probability measure,
modelled after the classic Kolmogorov formulation re-
hearsed in Section 3.

Definition 9 (Linguistic probability measure). Given
an event algebra E defined over a set of outcomes Ω, a
function LP : E → E is termed a linguistic probability
measure if and only if for all A ∈ E

(LP1) 0χ 4 LP(A) 4 1χ

(LP2) LP(Ω) = 1χ and LP(∅) = 0χ

(LP3) If A1, A2, . . . ∈ E are disjoint, then

LP(

∞⋃

i=1

Ai) ⊆
∞∑

i=1

LP(Ai)

6 This will be elaborated further in the following Section
7 Similar criticisms of the existing theories, albeit couched

in very different language and developed independently can
be found in Gert de Cooman’s most recent work (de Cooman,
2003) on possibilistic previsions.

(LP4) LP(A) = 1χ ⊖ LP(Ac)

where LP is a linguistic probability measure on (Ω, E),
the tuple (Ω, E , LP) is termed a linguistic probability space.

Like the first two axioms of classical probability the-
ory LP1 and LP2 simply establish the scale for probabil-
ities, but note that LP1 entails that linguistic probabil-
ities have zero membership outside the chosen quantity
space of the unit interval. The most significant parts
therefore are LP3 and LP4. The underlying intuition is
that vagueness in a probability acts as a soft constraint
on all probabilities that are logically linked to it.

Thus, LP3 is intended to capture the intuition one
might know the probability of the union of (say) two
disjoint events more precisely than the probabilities of
either individually. Consider, for example, tossing a coin
which one knows to be biased. Here, knowledge about
the probability of the result being heads (or tails) is
uncertain, but the probability that result will be either
heads or tails is certain (and equal to 1). Equally, the
probability that the result will not be both heads and
tails is certain (and equal to 0). In a similar vein, LP4
expresses that knowing something about the probabil-
ity of an event translates into equally precise knowledge
about the probability of its complement.

Like classical probability measures, linguistic proba-
bility measures are both continuous and monotonic. Fur-
thermore, it is easy to see that a linguistic probability
measure generalises its classical counterpart in the sense
of the following Lemmas.

Lemma 3. Given a classical probability measure, P, the
map LP : E → E determined by LP(A) = (P(A))χ is a
linguistic probability measure. Proof: Clearly, LP(Ω) =
1χ, LP(∅) = 0χ and 0χ 4 LP(A) 4 1χ for all A ∈ E as
required. Now for pairwise disjoint A1, A2 . . . ∈ E,

LP(
⋃∞

i=1 Ai)= (P(
⋃∞

i=1 Ai))χ = (
∑∞

i=1 P (Ai))χ

=
∑∞

i=1 P(Ai)χ =
∑∞

i=1 LP(Ai)
(18)

Finally, for all A ∈ E. LP(A) = (P(A))χ = (1−P(Ac))χ =
1χ ⊖ LP(Ac).

Thus any classical probability measure has an (em-
bedding as an) equivalent linguistic probability measure.
Similarly, any linguistic probability measure assigning
only point probabilites determines a classical probabil-
ity measure.

Lemma 4. Given a linguistic probability measure, LP,
such that for all A ∈ E, LP(A) = (pA)χ for some pA ∈ R

the map, P : E → [0, 1], determined by P(A) = pA is
a probability measure. Proof: Clearly, P(∅) = 0 and
P(A) ≥ 0 for all A ∈ E as required. Now, given disjoint
A1, A2 . . . ∈ E and letting A =

⋃∞
i=1 Ai,

(pA)χ = LP(A) ⊆
∞∑

i=1

LP(Ai) =
∞∑

i=1

(pAi)χ = (
∞∑

i=1

pAi)χ

(19)
Hence, pA =

∑∞
i=1 pAi as required.
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5.2 Discrete linguistic random variables

As in classical probaility theory discrete random vari-
ables are often more useful than events, although as we
shall see, there is a strong connection between the two.
The theory of discrete linguistic random variables will
be developed in the context of a countable domain.

Definition 10 (Discrete linguistic random variable).
Given a linguistic probability space (Ω, E , LP), and a do-
main DX , a function X : Ω → DX is termed a discrete
linguistic random variable on (Ω, E , LP) if and only if:

a) Image(X) = {X(ω) : ω ∈ Ω} is countable
b) For all x ∈ DX , {ω ∈ Ω : X(ω) = x} ∈ E

Definition 11 (Mass function). The mass function of
a discrete linguistic random variable, X on (Ω, E , LP) is
the function, lpX : DX → E determined by

lpX(x) = LP({ω ∈ Ω : X(ω) = x}) (20)

Representation theorem By definition, a linguistic mass
function satisfies

a) 0χ 4 lpX(x) 4 1χ

b) lpX(x) ⊆ 1χ ⊖ (
∑

x′ 6=x lpX(x′))

for all x ∈ DX . Note that b) also entails that 1χ ⊆∑
x lpX(x) since for any x ∈ DX ,

1χ ⊆ 1χ ⊖ lpX(x) ⊕ lpX(x)

⊆ 1χ ⊖
(
1χ ⊖

∑

x′ 6=x

lpX(x′)
)
⊕ lpX(x)

⊆
∑

x′

lpX(x′)

Whilst these conditions are necessary they are also suf-
ficient conditions in the sense of the following theorem.

Theorem 1 (Representation Theorem). If S = {di :
i ∈ I} is a non-empty countable set (indexed by I) and
{πi : i ∈ I} is a set of fuzzy numbers such that for all
i ∈ I

a) 0χ 4 πi 4 1χ

b) πi ⊆ 1χ ⊖ ∑
j∈I : j 6=i πj

then there exists a linguistic probability space, (Ω, E , LP)
and a discrete linguistic random variable, X, on (Ω, E , LP)
with the mass function

lpX(d) =

{
πi if d = di for some i ∈ I

0χ otherwise
(21)

Proof: The proof proceeds by construction. Let Ω = S,
E = P(Ω) and define LP : E → E by

LP(A) = (
∑

i : si∈A

πi) ∩ (1χ⊖
∑

i : si /∈A

πi) ∩ [0, 1]χ (22)

By definition LP(Ω) = 1χ and LP(∅) = 0χ as re-
quired. Now, for any A ∈ E since and 0χ 4 πi for all
i ∈ I there is an x ∈ [0, 1] such that

µP

i : si∈A πi
(x) = 1 and µ1χ⊖

P

i : si /∈A πi
(x) = 1

(23)
Hence LP(A) as defined is in [0χ, 1χ]. Now suppose A, B ∈
E are disjoint. By definition,

LP(A ∪ B)⊆ ∑
i : si∈A∪B πi

= (
∑

i : si∈A πi) ⊕ (
∑

i : si∈B πi)

⊆ LP(A) ⊕ LP(B)

(24)

Similarly, by definition,

1χ ⊖ LP(Ac)
= 1χ ⊖ {(∑i : si∈Ac πi) ∩ (1χ ⊖ ∑

i : si /∈Ac πi) ∩ [0, 1]χ}
= (1χ ⊖ ∑

i : si∈Ac πi) ∩ (1χ ⊖ 1χ ⊕ ∑
i : si /∈Ac πi) ∩ [0, 1]χ

= LP(A)

Thus (Ω, E , LP) is a linguistic probability space.

Finally, define X : Ω → R by X(ω) = ω. Now, given
s ∈ R, if s 6= si for all i ∈ I, X−1(s) = ∅ and hence
lpX(s) = 0χ. Otherwise, X−1(s) = {si} for some i ∈ I

and since πi ⊆ 1χ ⊖ ∑
j∈I : j 6=i πj

lpX(s) = LP({si}) = πi (25)

as required.

This theorem is important for practical applications
of theory as it allows probabilistic modelling to dispense
with measure theory almost all the time and concentrate
on random variables which are typically the entities of
interest. It is also an essential component in the proof
that linguistic analogues for Bayesian networks can be
constructed.

Note that the full strength of condition b) is only re-
quired to prove that the constructed linguistic random
variable exactly coincides with the relevant πi. If condi-
tion b) were replaced by the weaker condition

1χ ⊆
∑

i∈I

πi (26)

then (ω, E , LP) as constructed above would still be a lin-
guistic probability space. Thus the definition of LP can
be viewed as a kind of recipe for correcting an improp-
erly specified random variable.

Naturally if one considers certain types of domain
i.e. the real numbers, it is possible to develop linguis-
tic analogues for the classical probabilistic concepts of
expectation and other moments, but this is beyond the
scope of the present work.
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Multivariate case As in classical probability theory it
is possible to consider families of random variables and
the realtionships between them.

Definition 12 (Linguistic joint mass function). Given a
set of linguistic discrete random variables X1, X2, . . .Xn

each defined over the linguistic probability space (Ω, E , LP)
and with domains DX1

, DX2
, . . . , DXn , the joint mass

function is the function lpX1,X2,...Xn
:
∏n

i=1 DXi → [0χ, 1χ]
defined by

lpX1,X2,...Xn
(x1, x2, . . . xn)

= LP({ω ∈ Ω : Xi(ω) = xi ∀i ∈ 1, 2, . . . , n})
(27)

This corresponds exactly to the classical definition.
Note that the representation theorem proven above ap-
plies here too since (X1, X2, . . .Xn) can be considered a
single random variable ranging over the domain

∏n
i=1 DXi .

5.3 Conditional linguistic probability

Inference in classical probability theory depends on the
notion of conditional probability.

Definition 13 (Conditional probability). Given a prob-
ability space, (Ω, E , P) and A, B ∈ E the conditional
probability of A with respect to B, written P (A|B) is
given by

P(A|B) =
P(A ∩ B)

P(B)
(28)

The classical formula for conditional probability sug-
gests an analogous definition for linguistic conditional
probabilites, namely

LP(A|B) = LP(A ∩ B) ⊘ LP(B) (29)

But unless P(B) is a point probability this linguistic
conditional probability would not itself be a linguistic
probability measure and would only satisfy the weaker
relation

LP(A ∩ B) ⊆ LP(A|B) ⊗ LP(B) (30)

Note however, that the standard notation for the prob-
ability of A conditional on B, P(A|B) is somewhat mis-
leading since P is a function on a set of events and A|B
has no set-theoretic interpretation. A more suggestive
notation, and one that is in increasingly common use,
writes PB(A) for P(A|B). This makes it much clearer
that a quite separate probability measure is in opera-
tion.

From this perspective, it seems reasonable to set aside
concerns about defining linguistic conditional probabil-
ities and turn instead to an investigation of what con-
ditions a linguistic conditional and prior must obey in
order to determine a viable probability measure. This
question lies at the heart of the following Section.

6 Linguistic Bayesian networks

One of the most celebrated and widely used techniques
to emerge from AI in the past few decades has been
that of Bayesian networks, Pearl (1988) which allow in-
formation about a probabilistic system to be modelled,
stored in a compact form and manipulated efficiently.
Bayesian networks implicitly encode information about
conditional independence relationships in their graphi-
cal structure. The theory of linguistic probabilities as
developed above may be used to develop an analogous
graphical model.

6.1 Network representation

In order to prove that it is possible to specify a lin-
guistic joint probability distribution in the form of a
Bayesian network, it is sufficient to show that the multi-
plying the conditional probability table at a node by its
priors yields a joint distribution. The following Lemma
and Theorem present this result for discrete linguistic
random variables.

Lemma 5. Given functions, f1, f2, . . . , fn and g with
domains D1, D2, . . . , Dn and D∗ = D×∏n

i=1 Di respec-
tively, and the common range [0χ, 1χ], such that for all
i ∈ {1, 2, . . . , n}, x = (x, x1, x2, . . . , xn) ∈ D∗,

a) fi(xi) ⊆ 1χ ⊖ ∑
x′

i 6=xi
fi(x

′
i)

b) g(x) ⊆ 1χ ⊖ ∑
x′ 6=x g(x′)

then for all x ∈ D∗

g(x)
n∏

i=1

fi(xi) ⊆ 1χ ⊖
( ∑

x′ 6=x

g(x′)
n∏

i=1

fi(x
′
i)

)

Proof: The proof proceeds by induction on n.
(Base case) Suppose n = 1. For all x ∈ D, x1 ∈ D1,

g(x, x1)f1(x1)
= f1(x1)g((x, x1))
⊆ f1(x1)

(
1χ ⊖ ∑

x′ 6=x,x′

1
g(x′, x′

1)
)

⊆ f1(x1) ⊖ f1(x1)
∑

x′ 6=x,x′

1
g(x′, x′

1)

⊆ 1χ ⊖ ∑
x′′

1
6=x1

f1(x
′′
1 ) ⊖ f1(x1)

∑
x′ 6=x,x1

g(x′, x′
1)

⊆ 1χ ⊖ ∑
x′′

1
6=x1

f1(x
′′
1 )

∑
x′′ g(x′′, x′′

1 ) ⊖ f1(x1)
∑

x′ 6=x g(x′, x′
1)

= 1χ ⊖ ∑
x′ 6=x,x′

1
6=x1

g(x′, x′
1)f1(x

′
1)

(Inductive case) Suppose the theorem holds for n = k.
Consider the case that n = k + 1. For all x ∈ D ×∏k+1

i=1 Di, by the inductive hypothesis,

g(x)
∏k+1

i=1 fi(xi)

⊆ fk+1(xk+1)
(
1χ ⊖ ∑

x′ 6=x,x′

k+1
=xk+1

g(x′)
∏k

i=1 fi(x
′
i)

)

Now, the sequence of inferences used to establish the
base case proves the desired result.
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This Lemma shows that the mass functions of a set of
conditional and prior discrete linguistic variables (under
certain reasonable conditions) can be combined to form
a joint distribution. The details of this are spelt out in
the following Theorem.

Theorem 2 (Representation Theorem for linguistic Bayesian
networks). Given functions, f1, f2, . . . , fn and g with do-
mains D1, D2, . . . , Dn and D∗ = D × ∏n

i=1 Di respec-
tively, and the common range [0χ, 1χ], such that for all
i ∈ {1, 2, . . . , n}, x = (x, x1, x2, . . . , xn) ∈ D∗,

a) fi(xi) ⊆ 1χ ⊖ ∑
x′

i 6=xi
fi(x

′
i)

b) g(x) ⊆ 1χ ⊖ ∑
x′ 6=x g(x′)

then there exist random variables X, X1, X2, . . . , Xn with
respective domains D, D1, D2, . . . , Dn such that for all
i ∈ 1, 2, . . . , n

lpXi
(x) = fi(x) for all x ∈ Di

and for all x ∈ D∗

lpX,X1,X2,...,Xn
(x) = g(x)

n∏

i=1

fi(xi)

Proof: The result follows directly from the preceding
Lemma and the Representation Theorem.

6.1.1 Computational issues As has been noted, the ba-
sic fuzzy arithmetic operators need not be significantly
more computationally costly than their real-line coun-
terparts. The problem of efficient inference in linguistic
bayesian networks is essentially the same as the classi-
cal one: how to push the sigmas in the sum of products
expression as far in as possible. By minimising the num-
ber of operations that have to be performed to evaluate
a query, fast Bayesian network propagation algorithms
(such as Pearl (1988)) also minimise the amount of im-
precision. When dealing with fuzzy numbers, roughly
speaking, the more operations an algorithm requires the
worse its precision.

7 Application to forensic statistics

This Section places the preceding developments into con-
text by developing a small, but realistic example in the
domain of forensic statistics.

7.1 The use of Bayesian Networks in Forensic Statistics

Forensic statistics is a discipline that is mainly concerned
with the experimental design of forensic examinations
and the analysis of the obtained results. The issues it
studies include hypothesis formulation, deciding on min-
imal sample sizes when studying populations of similar
units of evidence and determining the statistical signif-
icance of the outcome of tests. Recently, the discipline

Table 1 Interpretation of the likelihood ratio.

LR Support of evidence to prosecution
claim over defence claim

1 to 10 limited
10 to 100 moderate
100 to 1,000 moderately strong
1,000 to 10,000 strong
> 10,000 very strong

has been branching out to the study of the statistical im-
plications of forensic examinations on defence and prose-
cution positions during crime investigation and criminal
court proceedings.

In Cook et al. (1998b), a method is proposed to as-
sess the impact of a certain piece of forensic evidence on
a given case. This method is the result of a significant
research effort by the Forensic Science Service (FSS),
the largest provider of forensic science services in Eng-
land and Wales. It involves three steps. First, formalising
the respective claims of the prosecution and the defence
(Cook et al., 1998a; Evett et al., 2000a). Second, com-
puting the probability that the evidence is found given
that the claim of the prosecution is true and the proba-
bility that the evidence is found given that the claim of
the defence is true. Third, dividing the former probabil-
ity by the latter to determine the likelihood ratio,

LR =
P (E | Cp)

P (E | Cd)

where E, Cp, Cd respectively represent the evidence, the
prosecution claim and the defence claim, and P (E | C)
is the probability that evidence E is found if claim C is
true (Balding and Donnelly, 1995).

This approach has two key advantages. First, the po-
tential benefit associated with performing forensic proce-
dures (which are often expensive and resource intensive)
may be assessed in advance by examining the effect of
their possible outcomes on the likelihood ratio. Increas-
ingly, police forces must purchase forensic services. Like-
lihood ratio based calculations can support this difficult
decision making process. Second, the likelihood ratio can
be used to justify the testimonies of forensic experts dur-
ing the court proceedings. To this end, a verbal scale to
help forensic experts interpret the LR is suggested by the
FSS (Evett et al., 2000b). This is reproduced in Table 1
for reference.

7.2 A classical example

The likelihood ratio method is, of course, crucially de-
pendent upon a means to compute the probabilities P (E |
Cp) and P (E | Cd). Bayesian Networks have emerged
as a helpful technique in this context (Aitken et al.,
2003; Cook et al., 1999; Dawid et al., 2002). An ex-
ample may best illustrate this application of Bayesian
networks. Consider the following scenario:
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Table 2 Variables in the one-way transfer case.

Event Domain

qt quantity of transferred fragments {none,few,many}
qp quantity of persisted fragments {none,few,many}
ql quantity of lifted fragments {none,few,many}
tc type of contact {none,some}
ps proportion of fragments shed {none,small,large}
pl proportion of fragments lifted {some,most,all}
pl proportion of fragments lifted {some,most,all}

Scenario 2. A burglar smashes the window of a shop,
steals some money from the cash registry and flees the
scene of the crime. A bystander witnessed this event and
reports a description of the perpetrator to the police who
arrest a man, matching the description of the witness
half an hour after the event. The suspect, Mr. Blue, de-
nies having been near the shop. However, ql glass frag-
ments, matching the type of glass of the shop’s window,
are retrieved from Mr. Blue’s clothes.

Figure 1 shows a Bayesian network that models the
probabilistic relationship between the retrieval of ql glass
fragments from the garment of Mr. Blue in the forensic
laboratory and the type of contact, tc, between Mr. Blue
and the shop’s window. The number of glass fragments,
ql, that are retrieved from Mr. Blue’s clothes depends
on the number of glass fragments that have persisted in
the clothes, qp, and on the effectiveness of the retrieval
technique, pl, where pl represents the proportion of glass
fragments lifted from the garments under examination.
The number of glass fragments, qp, that have persisted in
the clothes until the time of the examination, in turn, is
dependent upon the number of glass fragments, qt, that
were transferred in the first place and the proportion of
fragments, ps, shed between the time of transfer and the
time of the examination. Finally, the number of trans-
ferred fragments, qt, depends on the type of contact tc.
The domains of these variables are reproduced in Table
2. Suppose that the prosecution case is that the defen-
dant has had some contact with the window in question
and that a given forensic procedure has yielded many

matching fragments. The probabilities required to eval-
uate the likelihood ratio are provided in Tables 3, 4, 5
and 6. The relevant calculation is,

LR =
P(ql = many | tc = some)

P(ql = many | tc = none)

=
0.428586

0.038813
= 11.042 . . .

Thus, according to Table 1, this item of forensic evi-
dence provides moderate support to the prosecution case.

7.3 A linguistic example

tc qt qp

ps pl

ql

Fig. 1 Bayesian Network of a one-way transfer case.

Table 3 Classical prior probabilities P(ps) and P(pl).

ps P(ps)

none 0.03
small 0.3
large 0.67

pl P(pl)

none 0.06
few 0.29
many 0.65

Table 4 Classical conditional probabilities P (qt | tc).

tc P(qt = P(qt = P(qt =
none|tc) few|tc) many|tc)

none 0.9 0.05 0.05
some 0.1 0.25 0.65

Table 5 Classical conditional probabilities P (qp | qt, ps).

qt ps P(qp = P(qp = P(qp =
none|qt, ps) few|qt, ps) many|qt, ps

none none 1 0 0
small 1 0 0
large 1 0 0

few none 0 1 0
small 0.1 0.9 0
large 0.3 0.7 0

many none 0 0 1
small 0.05 0.1 0.85
large 0.07 0.48 0.45

Table 6 Classical conditional probabilities P (ql | qp, pl).

qp pl LP(ql = LP(ql = LP(ql =
none | qp, pl) few | qp, pl) many | qp, pl)

none some 1 0 0
most 1 0 0
all 1 0 0

few some 0.05 0.95 0
most 0.05 0.95 0
all 0.02 0.6 0.38

many some 0.08 0.46 0.46
most 0.2 0.2 0.6
all 0 0 1

Table 7 Linguistic prior probabilities LP(ps) and LP(pl)

ps LP(ps)

none nearly impossible
small quite unlikely
large quite likely

pl LP(pl)

none nearly impossible
few quite unlikely
many quite likely
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Fig. 2 The linguisitic probabilites used in the worked example.

Table 8 Linguistic conditional probabilities LP(qt | tc).

tc LP(qt = none | tc) LP(qt = few | tc) LP(qt = many | tc)

none nearly certain nearly impossible nearly impossible
some impossible quite unlikely quite likely

Table 9 Linguistic conditional probabilities P (qp | qt, ps).

qt ps LP(qp = none | qt, ps) LP(qp = few | qt, ps) LP(qp = many | qt, ps)

none none certain impossible impossible
small certain impossible impossible
large certain impossible impossible

few none impossible certain impossible
small very unlikely very likely impossible
large quite unlikely quite likely impossible

many none impossible impossible certain
small nearly impossible very unlikely very likely
large nearly impossible even chance even chance

Table 10 Linguistic conditional probabilities P (ql | qp, pl).

qp pl LP(ql = none | qp, pl) LP(ql = few | qp, pl) LP(ql = many | qp, pl)

none some certain impossible impossible
most certain impossible impossible
all certain impossible impossible

few some nearly impossible nearly certain impossible
most nearly impossible nearly certain impossible
all nearly impossible very likely very unlikely

many some nearly impossible even chance even chance
most very unlikely very unlikely quite likely
all impossible impossible certain
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Fig. 3 Computed linguistic probabilities for LP(ql = many |
tc = some) and LP(ql = many | tc = none).

Tables 7, 8, 9 and 10 present a linguistically specified
version of the network discussed in Section 2. The qual-
itative probability terms themselves are in turn graphed
in Figure 2. Computations are performed in exactly the
same sequence as in the classical case, but with fuzzy
arithmetic operators and numbers. This yields fuzzy val-
ues for LP(ql = many | tc = some), LP(ql = many |
tc = none) and the likelihood ratio. These are presented
in Figures 3 and 4 respectively. Note that the member-
ship functions, as expected, subsume their classical coun-
terparts as calculated in Section 2.

The value calculated for LP(ql = many | tc = none)
is particularly interesting. Practical forensic applications
typically use conservative (high) estimates for P(E|Cd)
(i.e. the denominator in the likelihood calculation) thereby
biasing the case in favour of the defence (Cook et al.,
1999). Additionally, the probabilities typically associ-
ated with the subsets of events modelling the case where
evidence originates not with the crime, but with some
other source, are vanishingly small. Moreover, these prob-
abilities are typically the most difficult to obtain experi-
mentally. The use of linguistic probabilities to represent
such probabilities allows the uncertainty that prompts
this conservatism to be explicitly included in the model.

The fuzzy value calculated for the likelihood ratio
has an extremely broad plateau (α-cut at 1), dramati-
cally exhibiting the sensitivity of this statistic to small
perturbations in the subjective probabilities on which it
is based. That the set’s membership function is greater
than zero in each of the Forensic Science Service’s rec-
ommended interpretation classes that are reproduced in
Table 1 is, of course, partly a result of the rather “low-
resolution” term set used for convenience of presentation
here. Nevertheless, to re-iterate the central argument
of this paper, the effects of propagating uncertainties
should not be brushed aside. It is clear from the graph
that the support provided by the evidence is roughly
speaking moderate to strong8, but that the newly ac-
knowledged uncertainties in the subjective probability
estimates are certainly consistent with much more lim-
ited support.

8 Note that, given a fuzzification of the likelihood ratio
quantity space, it would be possible to automatically generate
this description.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  10  100  1000  10000

Likelihood ratio

Fig. 4 The computed fuzzy likelihood ratio plotted on a
logarithmic scale.

8 Conclusions

This paper has sought to establish a series of proposi-
tions. First, that it is desirable to find a principled way
of reasoning with approximate probability assessments
represented as fuzzy sets. Second, that the two existing
approaches commonly grouped together under the rubric
of “fuzzy probabilities” are quite distinct: Zadeh’s theory
deals with the fuzzy probability induced by fuzzy events
whereas Jain and Agogino seek to represent approximate
knowledge about the probability of a crisp event. Third,
that technical problems with the latter render it unsuited
to its intended purpose. And finally, that it is possible
to address these problems and develop a useful theory of
vague probability assessments or linguistic probabilities,
which is both rich enough to support analogues of clas-
sical probabilitic models and computationally tractable.
This is the main contribution of this article.

The resulting theory of linguistic probabilities has
been used to establish a linguistically-specified analogue
to classical Bayesian networks. The domain of forensic
statistics was chosen as an ideal setting for a discussion
of the importance of this application. Although Bayesian
networks have proven their worth as a knowledge acqui-
sition tool, they rely on a large number of prior and con-
ditional probabilities and it is often practically infeasi-
ble or too expensive to determine these through detailed
experiments. In all such domains, knowledge engineers
must fall back on subjective probability estimates, and
it is at this point that the need for a more expressive rep-
resentation is at its most pressing. The example drawn
from forensic statistics presented earlier demonstrates
this point well.

There are two clear lines of research stemming from
the results presented in this paper. First, we hope to
flesh out the loose interpretation currently attached to
linguistic probabilities into a full semantics. Of course,
in its broadest sense this is a significant challenge as is
evidenced by the continuing disputes about the inter-
pretation of classical probability theory. Nevertheless, it
would be highly desirable to give an account of a decision
theory based on linguistic probabilities that explains the
fact that fuzzy expected values are not necessarily com-
parable. It would also be interesting to formally address
the epistemic origins of vague probability assessments.
In short: how does an agent come to have (only) ap-
proximate beliefs about the probability of some event?
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An answer to this question would help to pave the way
for applications in probabilistic modelling and machine
learning.

Second, although preliminary studies have provided
a proof-of-concept, work is ongoing to build more sophis-
ticated and realistic linguistic Bayesian networks (Hal-
liwell et al., 2003). In particular, we hope to combine
this work with ongoing research into the automatic com-
bination of network fragments for crime scenario cre-
ation and selection. A further aspect of this work will
involve the translation of computed linguistic probabil-
ities back into natural language through the use of lin-
guistic hedges(Gómez Marin-Blazquez and Shen, 2002).
Working with forensic experts in this way will also pro-
vide an opportunity to evaluate the claim that linguistic
probabilities are a useful knowledge acquisition tool.
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